Groups	Ν	circCRIM1 expression / β-actin	<i>P</i> value
Normal ovarian tissues	24	0.128±0.050	0.001
ovarian cancer tissues	130	0.914±0.223	

Supplemental Table 1: circCRIM1 expression in normal ovarian and ovarian cancer tissues

Bold and Italics means P < 0.05.

Groups	Ν	CRIM1 expression / β-actin	P value
Normal ovarian tissues	24	0.238±0.063	0.015
Ovarian cancer tissues	130	0.992±0.299	

Supplemental Table 2: CRIM1 expression in normal ovarian and ovarian cancer tissues

Bold and Italics means P < 0.05.

Clinicopathological features	Ν	circCRIM1 expression / β-actin	P value
The pathology types			0.254
Serous carcinoma	101	0.780 ± 0.256	
The other pathology types	29	1.382 ± 0.454	
Age			1.000
≤ 52	67	0.914 ±0.316	
> 52	63	0.915 ±0.319	
FIGO stages			0.067
I-II	44	0.471 ±0.172	
III-IV	85	1.155 ±0.328	
Pathology classification			0.464
Well+Mod	28	0.636 ± 0.238	
Poor	99	0.898 ± 0.266	

Supplemental Table 3: Correlation of circCRIM1 expression with different clinicopathological features of ovarian cancer

Bold and Italics means P < 0.05, one ovarian cancer patient lacks information on stage, and three lack information on differentiation.

Clinicopathological features	Ν	CRIM1 expression / β-actin	P value
The pathology types			0.338
Serous carcinoma	101	0.839 ± 0.342	
The other pathology types	29	1.526 ± 0.621	
Age			0.914
≤ 52	67	1.023 ± 0.461	
> 52	63	0.959 ± 0.380	
FIGO stages			0.110
I-II	44	0.475 ± 0.202	
III-IV	85	1.261 ±0.444	
Pathology classification			0.073
Well+Mod	28	0.348 ± 0.102	
Poor	99	1.023±0.359	

Supplemental Table 4: Correlation of CRIM1 expression with different clinicopathological features of ovarian cancer

Bold and Italics means P < 0.05, one ovarian cancer patient lacks information on stage, and three lack information on differentiation.

Supplemental Table 5: circCRIM1 expression plasmid construction (The bold area are circCRIM1 sequences)

GGGAATGGAGCTATATAGCAGAGCTCGTTTAGTGACCGTCAGATCGCCTGGAGACGCCATC CACGCTGTTTTGACCTCCATAGAAGACACCGACTCTACTAGAGGATCTATTTCCGGTGAATT CAAAGTGCTGAGATTACAGGCGTGAGCCACCACCCCCGGCCCACTTTTTGTAAAGGTACGT <u>ACTAATGACTTTTTTTTTTTTATACTTCAG</u>ATGAGAACTGGACTGATGACCAACTGCTTGGTT TTAAACCATGCAATGAAAACCTTATTGCTGGCTGCAATATAATCAATGGGAAATGTGAA TGTAACACCATTCGAACCTGCAGCAATCCCTTTGAGTTTCCAAGTCAGGATATGTGCC TTTCAGCTTTAAAGAGAATTGAAGAAGAGAAGCCAGATTGCTCCAAGGCCCGCTGTG TCCTGGGGAGTGCTGTCCCTTACCCAGCCGCTGCGTGTGCAACCCCGCAGGCTGTCT GCGCAAAGTCTGCCAGCCGGGAAACCTGAACATACTAGTGTCAAAAGCCTCAGGGAA GCCGGGAGAGTGCTGTGACCTCTATGAGTGCAAACCAGTTTTCGGCGTGGACTGCAG GACTGTGGAATGCCCTCCTGTTCAGCAGACCGCGTGTCCCCCGGACAGCTATGAAAC **TCAAGTCAGACTAACTGCAGATGGTTGCTGTACTTTGCCAACAAG**GTAAGAAGCAAGG AAAAGAATTAGGCTCGGCACGGTAGCTCACACCTGTAATCCCAGCAGGATCCATCGATACT AGTAAGGATCTGCGATCGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTC CCCGAGAAGTTGGGGGGGGGGGGGGGGCGGCAATTGAACGGGTGCCTAGAGAAGGTGGCGCGG GGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGGTGGGG

Supplemental Table 6: The sequences of shRNA targeting circCRIM1 (The bold area are the target sequences) sh1-circCRIM1 Top strand: GATCCGTGCCAACAAGATGAGAACTGGACTTCAAGAGAGTCCAGTTCTCATCTTGTTG GCATTTTTC Bottom strand: AATTGAAAAATGCCAACAAGATGAGAACTGGACTCTCTTGAAGTCCAGTTCTCATCT TGTTGGCACG

sh2-circCRIM1 Top strand: GATCCGACTTTGCCAACAAGATGAGAACTGTTCAAGAGACAGTTCTCATCTTGTTGGC AAAGTTTTTTTC Bottom strand: AATTGAAAAAACTTTGCCAACAAGATGAGAACTGTCTCTTGAACAGTTCTCATCTTG TTGGCAAAGTCG **Supplemental Table 7:** circCRIM1-FLAG expression plasmid construction (The bold area are 3×flag sequences)

Supplemental Table 8: The introduced sequences of 188aa-flag plasmid (The bold area are 3×flag sequences)

ATGGTTGCTGTACTTTGCCAACAAGATGAGAACTGGACTGATGACCAACTGCTTGGTTTTAAACCATGCAAT GAAAACCTTATTGCTGGCTGCAATATAATCAATGGGAAATGTGAATGTAACACCATTCGAACCTGCAGCAATC CCTTTGAGTTTCCAAGTCAGGATATGTGCCTTTCAGCTTTAAAGAGAATTGAAGAAGAAGAGAAGCCAGATTGCT CCAAGGCCCGCTGTGAAGTCCAGTTCTCTCCACGTTGTCCTGAAGATTCTGTTCTGATCGAGGGTTATGCTCC TCCTGGGGAGTGCTGTCCCTTACCCAGCCGCTGCGTGTGCAACCCCGCAGGCTGTCTGCGCAAAGTCTGCC AGCCGGGAAACCTGAACATACTAGTGTCAAAAGCCTCAGGGAAGCCGGGAGAGTGCTGTGACCTCTATGA GTGCAAACCAGTTTTCGGCGTGGACTGCAGGACTGTGGAATGCCCTCTGTTCAGCAGACCGCGTGTCCCC CGGACAGCTATGAAACTCAAGTCAGACTAACTGCAGATGGTTGCTGTACTTTGCCAACAAGAGACCTACA AGCATGACGATGACAAGTCAGACTAACTGCAGATGGTTGCTGTACTTTGCCAACAAGAGACCTACA AGGATGACCGATGACAAGGATTACAAAGACCGACGATGATAAGGACTATAAGGATGAT GACGACAAATGA

Supplemental Table 9: The detail of primer sequences

Names	Sequences	
circ primer —	L 5'-agtgctgtgacctctatga-3'	
	R 5'-ctggcttctcttcttcaattc-3'	
convergent primer1	L 5'-acatctgtcgctgtaagaa-3'	
	R 5'-catttcccgtccattgaga-3'	
convergent primer2	L 5'-gtgctgtcccttaccca-3'	
	R 5'-cagtccacgccgaaa-3'	
mRNA primer	L 5'-ctctggcttatgtggtttcc-3'	
	R 5'-cgcaggctggctttgt-3'	

Supplemental Figure 1: CircCRIM1 is derived from CRIM1 by back-splicing

CircCRIM1 was generated from exon2-4 of CRIM1 (a). Sanger sequencing verified the back-splicing junction of circCRIM1 (b). CircCRIM1 was more resistant to RNase R than CRIM1 and 18s (c). CircCRIM1 was only derived from RNA but not DNA (d). Three separate experiments were conducted; Data are shown as the mean \pm SD. *P < 0.05, **P<0.01, ***P<0.001 and ****P<0.0001.