SUPPLEMENTAL MATERIALS

Study design

The data reported in this manuscript were generated from a substudy of the HVTN 106 trial, which was a phase 1, multicenter, randomized, double-blinded trial of three different HIV-1 Env immunizations (clinicaltrials.gov NCT02296541). These vaccines were delivered as DNA formulations encoding the gp160 Env protein from a clade B transmitted founder virus (T/F B.1059, HV13288) (NatB), the gp160 Env protein from the group M consensus virus (HV13287) (ConS), or a trivalent gp160 Env protein (HV13284, HV13285, and HV13286) designed for optimal global coverage (Mosaic)(1). Each vaccine was administered intramuscularly at a dose of 4mg DNA on day 0 (V2), day 28 (V4), and day 56 (V6). Volunteers were then boosted with an intramuscular immunization on day 112 (V8) and day 224 (V10) with 10⁸ pfu of MVA-CMDR expressing the Env gp150 protein from a clade E virus (isolate CM235) together with Gag and inactivated Pol from a clade A virus (isolate CM240). Placebo volunteers were primed and boosted with saline at the same timepoints. A total of 105 volunteers participated in the whole trial, with 30 in each Env vaccination group and 15 in the placebo group. Twenty of these volunteers provided leukapheresis samples after vaccination as a source of monocytes for the library experiments in this ancillary study.

At the time of experimentation, all those involved in this study, including the volunteers, the clinical staff, and the authors, were blinded with respect to sample identity. Samples were therefore evaluated for CD4⁺ T cell responses to overlapping ConS peptides, which provided the best overall match across all vaccines. The study was

1

unblinded on completion of the full protocol, at which time it was revealed that eight volunteers had received ConS DNA, four had received NatB DNA, four had received Mosaic DNA, and four were placebo controls. The vaccination regimens are shown in **Table S1**.

The trial was conducted by the HIV Vaccine Trials Network (HVTN). The IND sponsor was the Division of AIDS (DAIDS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS). The vaccines were provided by DAIDS (DNA) and the Military HIV Research Program (MHRP) at the Walter Reed Army Institute of Research (MVA).

Human samples

Venous blood samples were collected from volunteers at the HVTN clinical sites. Leukapheresis samples were collected at two of these sites (Boston and Seattle). PBMCs were isolated via standard density gradient centrifugation as described previously (2). Peripheral blood samples for the generation of allogeneic feeder cells were processed similarly from leukapheresis cones purchased from National Health Service (NHS) Blood and Transplant UK. Allogeneic feeder cells were irradiated at 45 Gy.

T cell libraries

PBMCs cryopreserved from pre-vaccination samples (V2) were thawed and enriched for CD4⁺ T cells using a MicroBead Kit (Miltenyi Biotec). CD14⁺ monocytes were prepared similarly from leukapheresis samples using a MicroBead Kit (Miltenyi Biotec) and cryopreserved in liquid nitrogen for use in downstream assays with autologous

2

CD4⁺ T cells. CD4⁺ T cells were stained for 15 min at room temperature with LIVE/DEAD Fixable Aqua (Thermo Fisher Scientific), anti-CD3–APC-Cy7 (clone SK7; 561800 BD Biosciences), anti-CD4–APC (clone SK3; 566915 BD Biosciences), anti-CD45RA–PacBlue (clone MEM56; MHCD45RA28 Thermo Fisher Scientific), anti-CCR7–FITC (clone 3D12; 11-1979-42 Thermo Fisher Scientific), and the dump markers anti-CD8–PE-Cy7 (clone SK1; 335787 BD Biosciences), anti-CD14–PE-Cy7 (clone M5E2; 557742 BD Biosciences), anti-CD16–PE-Cy7 (clone 3G8; 557744 BD Biosciences), anti-CD19–PE-Cy7 (clone SJ25C1; 557835 BD Biosciences), and anti-CD56–PE-Cy7 (clone B159; 557747 BD Biosciences). Live dump⁻ CD3⁺ CD4⁺ T cells were sorted into naïve (CD45RA⁺ CCR7⁺) and memory (CD45RA⁻ CCR7^{-/+}) populations (0.5 x 10^5 to 2 x 10^6 per subset) at a minimum purity of 98% using a FACSAria III (BD Biosciences).

FACS-sorted naïve and memory CD4⁺ T cells were seeded at a limiting dilution of 3 x 10^4 cells/mL into RAB5, which comprised RPMI 1640 glutamine [-] medium supplemented with 1% non-essential amino acids, 1% sodium pyruvate, 1% glutamine, 0.1% β-mercaptoethanol, and 1% penicillin/streptomycin (all from Thermo Fisher Scientific), 5% pooled human AB sera (UK National Blood Service), and 500 U/mL IL-2 (University of Oxford). Cells were expanded with 1µg/mL PHA (Remel) in the presence of irradiated allogeneic feeder cells from four different healthy donors (0.5 x 10⁶ feeder cells/mL). After 20 days, an aliquot of each line was screened for the capacity to proliferate in response to ConS. Overlapping peptides spanning the entire protein were split into two pools (pool 1 and pool 2) to avoid DMSO toxicity issues (**Table S2**). Autologous CD14⁺ monocytes were thawed, irradiated at 45 Gy, and incubated at 3 x 10⁵ cells/mL with pool 1 or pool 2 peptides (2 µg/mL) for 5 hours.

Negative control wells incorporated medium supplemented with 0.045% DMSO (Sigma-Aldrich), and positive control wells incorporated medium supplemented with 10 μ g/mL PHA (Remel) and 100 U/mL IL-2 (University of Oxford). An aliquot of 2.5 x 10⁶ cells/mL from each CD4⁺ T cell line was added to the monocytes after washing and resting in fresh culture medium without IL-2 for 4 hours. After 3 days, 1 μ Ci/mL [³H]-thymidine was added to the cultures, and proliferation was measured after a further 18 hours using a MicroBeta2 Counter (Perkin Elmer) (3-6).

Positive responses were defined as >3,000 cpm with a stimulation index >5 after background subtraction (cpm in the negative control wells), informed by previous studies of assay reproducibility (3, 4). These cell lines were cryopreserved for further analysis. Proliferative responses were confirmed in epitope mapping experiments. The precursor frequency of responding cells per million was calculated according to the Poisson distribution (3-6). The 95% confidence intervals were determined according to the modified Wald method (7).

To confirm unbiased clonal expansion, live naïve-enriched (CD45RA⁺) and memoryenriched (CD45RA⁻) CD4⁺ T cells were FACS-sorted as above using a FACSAria III (BD Biosciences). Cells were then stained using a TCR V β Repertoire Kit (IOTest Beta Mark, PMIM3497 Beckman Coulter). The expression of different TCR V β families determined by flow cytometry was compared on day 0 before expansion and on day 27 after expansion as described above.

Peptide pools and mapping

ConS peptides were synthesized as 15mers overlapping by 11 amino acids (total n = 212; GenScript). Peptides were split equally split into two pools (pool 1 and pool 2) and used at a final concentration of 2 μ g/mL (**Table S2**). Individual peptides recognized by T cell lines from the pre-immunization timepoint were mapped using a matrix designed from pool 1 or pool 2 as appropriate. Matrices comprised 18 pools with 18 peptides per pool and a coverage of 3 as described previously (8). Each positive cell line was stimulated as described above and assayed for IFN- γ production via ELISpot.

Env-specific responses in PBMCs from V7 and V15 were mapped using ex vivo IFN- γ ELISpot assays employing a matrix comprising 60 pools with 18 peptides per pool and a coverage of 5 spanning all 212 peptides. Pool 1 and pool 2 peptides were used separately in cultured IFN- γ ELISpot assays from the same timepoints. Specific responses identified after matrix deconvolution were confirmed in further IFN- γ ELISpot assays with single peptides.

ELISpot assay

ELISpot plates (Millipore) were coated with anti-IFN- γ (clone 1-D1K; 1 µg/mL; 3420-2A Mabtech) and blocked with R10, which comprised RPMI 1640 glutamine [-] medium supplemented with 1% non-essential amino acids, 1% sodium pyruvate, 1% glutamine, 0.1% β-mercaptoethanol, and 1% penicillin/streptomycin (all from Thermo Fisher Scientific), and 10% fetal bovine serum (Gibco). PBMCs (2 x 10⁵ cells/well) or T cell lines (4 x 10⁴ cells/well) were added to the blocked plates and incubated with peptides (2 µg/mL) for 18–24 hours at 37°C. After incubation, the plates were washed eight times in Dulbecco's phosphate buffered saline supplemented with 0.05% Tween (PBS-Tween; Sigma-Aldrich) and incubated for 2–4 hours at room temperature with biotinylated anti-IFN-γ (clone 7-B6-1; 1 µg/mL; 3420-2A Mabtech) diluted in PBS containing 0.5% bovine serum albumin (Sigma-Aldrich). The plates were then washed eight times in PBS-Tween, incubated with biotin-avidin peroxidase (Vector Laboratories) for 1 hour at room temperature, washed four times in PBS-Tween and four times in PBS, and developed for 20 minutes with AEC Substrate Solution or ImmPACT AMEC Red Peroxidase Substrate Solution (both from Vector Laboratories). Spots were counted using an automated ELISpot Reader System (Autoimmun Diagnostika GmbH).

Each assay was repeated by a different operator using separate aliquots of cryopreserved PBMCs. Independent confirmation was important in this context, because DNA typically elicits only weak primary immune responses in humans (9). Positive responses were defined as >20 SFU/10⁶ cells in ex vivo assays and >50 SFU/10⁶ cells in cultured assays after background subtraction.

Short-term cell lines

PBMCs cryopreserved from V7 and V15 were thawed and cultured for 10 days at 1.5 $\times 10^{6}$ cells/mL in RAB10 (as for RAB5 with 10% pooled human AB sera) supplemented with pool 1 or pool 2 peptides (2 µg/mL) and 25 ng/mL IL-7 (R&D Systems). Cultures were supplemented on days 3 and 7 with 1,800 U/mL IL-2 (University of Oxford) in fresh RAB10. After 10 days, cells were washed three times and rested for 30 hours in RAB10.

Peptide-specific CD4⁺ T cell clones

Reactive lines from the T cell library were thawed and rested for 2–3 hours in RAB5. Autologous CD14⁺ monocytes were thawed, irradiated at 45 Gy, and incubated at 3 x 10^{6} cells/mL with the relevant peptides (2 μ g/mL) for 3 hours. Rested CD4⁺ T cells were added to the pulsed monocytes at a 3:1 ratio. Negative controls incorporated medium supplemented with 0.045% DMSO (Sigma-Aldrich). After 7 days, cells were stained for 15 minutes at 37°C with LIVE/DEAD Fixable Agua (Thermo Fisher Scientific), anti-CD3-PE-Texas Red (clone 7D6; MHCD0317 Invitrogen), anti-CD4-APC-Cy7 (clone RPA-T4; 557871 BD Biosciences), anti-CD25-PE-Cy7 (clone 2A3; 335824 BD Biosciences), anti-ICOS-PE (clone C398.4A; 313508 BioLegend), and the dump marker anti-CD14-FITC (clone M5E2; 561712 BD Biosciences). Activated live T cells (CD14⁻ CD3⁺ CD4⁺ CD25⁺ ICOS⁺) were sorted using a FACSAria III (BD Biosciences) and seeded at 0.4 cells/well into 384-well plates (Corning). Cells were expanded with 1 µg/mL PHA (Remel) in the presence of irradiated allogeneic feeder cells from three different healthy donors (0.5 x 10⁶ feeder cells/mL) in RAB5 supplemented with 500 U/mL IL-2 (University of Oxford). After 12-14 days, T cell clones were identified and transferred into 96-well round-bottom plates (Corning). An aliquot from each clone (5x 10⁴ cells/mL) was stimulated with the relevant peptide (2 μ g/mL) after washing and resting in fresh RAB5 without IL-2 for 5 hours. IFN- γ production was measured via ELISpot. Positive clones were defined as >50 SFU/10⁶ cells after background subtraction.

TCR sequencing

Peptide-specific CD4⁺ T cell clones were stained as described above for viability and surface expression of CD3 and CD4. A maximum of 5 x 10^3 live CD3⁺ CD4⁺ T cells

7

was sorted into 100 μ L of RNAlater (Ambion) using a FACSAria III (BD Biosciences). All expressed *TRA* and *TRB* gene transcripts were amplified using an unbiased template-switch anchored RT-PCR (10). Amplicons were sub-cloned, sampled, and sequenced as described previously (11). Gene use was assigned using the ImMunoGeneTics (IMGT) nomenclature (12).

SUPPLEMENTAL FIGURES AND FIGURE LEGENDS

Figure S1. Isolation and expansion of pre-immunization naïve and memory CD4⁺ T cells. (A) Flow cytometric gating strategy for the purification of naïve and memory CD4⁺ T cells. Cells were gated serially as singlets, lymphocytes, and Aqua⁻ CD8⁻ CD14⁻ CD16⁻ CD19⁻ CD56⁻ events, and then as naïve (CD45RA⁺ CCR7⁺) or memory (CD45RA⁻ CCR7^{-/+}) CD3⁺ CD4⁺ T cells. (B) Naïve and memory CD4⁺ T cells were tested for protein-level expression of the indicated TCR V β segments before (day 0) and after expansion (day 27). Data are shown from one representative donor. (C) Correlations between percent expression of each TCR V β segment at day 0 and day 27. Significance was assessed using the Spearman rank test.

Figure S2. The pre-immunization repertoire and epitope specificity of Envspecific naïve CD4⁺ T cells. Pre-immunization repertoires of 20 donors were screened for Env reactivity using the T cell library method with two pools of overlapping peptides collectively spanning the entire consensus sequence protein (ConS). Positive control wells included phytohemagglutinin (PHA) and IL-2. Proliferative responses are shown for naïve (**A**) before vaccination (V2). Data are shown after background subtraction (mean ± SD). Positive responses were defined as >3,000 cpm with a stimulation index >5 (dotted line). Env-reactive CD4⁺ T cell lines derived from the preimmunization naïve were mapped for epitope specificity and the precursor frequency was calculated (**B**).

Figure S3. Epitope specificity of Env-reactive CD4⁺ T cells after boosting with MVA-CMDR. Post-vaccination CD4⁺ T cell responses were mapped and quantified at V15 using ex vivo and cultured IFN-γ ELISpot assays. (**A**) Heatmaps showing the combined epitope mapping data from all volunteers at V15 (left) alongside a comparison with the epitope mapping data from all volunteers at V7 (right). Ex vivo results are shown if both ex vivo and cultured data were available. (**B**) Sequence similarity (% identity of amino acids, determined by alignment of peptide sequences with the MVA-CMDR Env gp-150 sequence) between the five peptides from ConS-Env identified in both V7 and V15 and the MVA-CMDR sequence. Peptides from ConS-Env identified in NatB donors have also been aligned to the NatB Env sequence. (**C**) Heatmaps showing a comparison between response magnitudes from all volunteers at V15 (left) and precursor frequencies from all volunteers at V2 (right). Data are shown as mean values. SFU, spot-forming unit.

Whole sequence comparison	Overall Identity %
ConS vs NatB	80%
ConS vs Mosaic1	85%
ConS vs Mosaic2	84%
ConS vs Mosaic3	82%
ConS vs MVA-CMDR	80%
NatB vs MVA-CMDR	74%
Mosaic1 vs MVA-CMDR	75%
Mosaic2 vs MVA-CMDR	77%
Mosaic3 vs MVA-CMDR	75%

PEPTIDE ID	PEPTIDE SEQUENCE	Single Identity with MVA-CMDF
6-24	NCQHLWRWGTLILGM	75%
18-32	GTLILGMLMICSAAE	67%
22-36	LGMLMICSAAENLWV	67%
34-48	LWVTVYYGVPVWKEA	87%
38-52	VYYGVPVWKEANTTL	80%
42-56	VPVWKEANTTLFCAS	80%
90-104	TENFNMWKNNMVEQM	100%
106-120	EDIISLWDQSLKPCV	93%
114-128	QSLKPCVKLTPLCVT	100%
165-179	IRDKKQKVYALFYRL	80%
169-183	KQKVYALFYRLDVVP	80%
173-187	YALFYRLDVVPIDDN	73%
247-261	CTHGIKPVVSTQLLL	100%
321-334	GDIIGDIRQAHCNIS	73%
340-354	KTLQQVAKKLREHFN	60%
410-424	TITLPCRIKQIINMW	87%
418-432	CRIKQIINMWQGVGQ	87%
422-436	QIINMWQGVGQAMYA	93%
458-472	GNNNTNETEIFRPGG	77%
482-496	ELYKYKVVKIEPLGV	87%
486-500	YKVVKIEPLGVAPTK	80%
546-560	SGIVQQQSNLLRAIE	100%
558-572	AIEAQQHLLQLTVWG	100%
562-576	QQHLLQLTVWGIKQL	100%
570-584	VWGIKQLQARVLAVE	100%
606-620	TTVPWNSSWSNKSQD	67%
618-632	SQDEIWDNMTWMEWE	73%
634-648	EINNYTDIIYSLIEE	53%
638-652	YTDIIYSLIEESQNQ	60%
658-672	QELLALDKWASLWNW	80%
666-680	WASLWNWFDITNWLW	93%
714-728	PLSFQTLIPNPRGPD	60%
742-756	RDRSIRLVNGFLALA	not found
770-784	RLRDFILIAARTVEL	not found
790-804	WEALKYLWNLLQYWG	not found
794-808	KYLWNLLQYWGQELK	not found
806-820	ELKNSAISLLDTTAI	not found
830-844	IEVVQRACRAILNIP	not found
842-856	NIPRRIRQGLERALL	not found

Figure S4. Sequence comparison with MVA-CMDR.

(A) Sequence similarities (expressed as % identity in amino acids, determined from sequence alignments) between the antigens used in different arms of the study (ConS, NatB and trivalent Mosaic) and MVA-CMDR. (B) Sequence matching with MVA-CMDR (% identity of amino acids, determined by alignment of peptides sequences with the MVA-CMDR Env gp150 sequence) of the individual ConS peptides found to be recognised at the pre-vaccination time point.

Α

Donor	106-009	Э																			DEDTID	_
Clone s	specific	for p	eptid	e 34	0-354	l: к1	LOOV	AKKI	REHF	N									DON	OR ID	ENRICHM	E- ENT
CELL	LINE	C		FID	TF	RAV	 Т	RAV	CDR3	1	RA.I	TRB	v	TRB	/ CDR	3	TRB.I	-	106	6-009	340-35	4
								0.0	00110							-	11120		106	6-009	340-35	4
memo	ry#180		66		-	22	CAV	VSGY	STLTF	·	11	20-	I C	SAREVGR	SSYNS	SPLH	1-6		106	5-009	340-35	4
memor	ry#180		23		2	22	CAV	ISGY	STLTF	2	11	20-	1 c	CSAREVGK	SSYNS	SPLH	1-6		106	5-009	340-35	4
																			100	-009	340-35	4
Donor	106-039	Э																	106	3-009 3-009	340-33	4 1
Clone s	specific	for p	eptid	e 57	0-584	: vw	GIKQ	LQAF	RVLAV.	Е									106	6-009	340-35	4
		CLO		_														-	106	6-009	340-35	4
CELL	LINE	1	D	Т	RAV		TF	RAV	CDR3		TRA	J TF	BV	TRE	BV CDF	R3	TRBJ		106	6-009	340-35	4
memo	ry#55	:	3		21	С	AVSN	TNAG	KST		27	5	-1	CASSWG	IGAPG	GELF	2-2	-	106	6-009	340-35	4
memo	ry#55	;	3	23	3/DV6	6 C	AALE	TGNY	GQNF	V	26	5	-1	CASSWG	IGAPG	GELF	2-2		106	6-009	340-35	4
memo	ry#55		7		21	C	AVSN	TNAG	KST		27	5	-1	CASSWG	IGAPG	GELF	2-2		106	6-009	340-35	4
memo	ry#55		7	23	3/DV6	6 C	AALE	TGNY	GQNF	V	26	5	-1	CASSWG	IGAPG	GELF	2-2		106	6-039	570-58	4
memo	ry#62	2	5		n.d.			n.c	1.		n.d	13	2-3	CASSSA	GGTYE	QY	2-7		106	6-039	570-58	4
memo	ry#99	:	2		n.d.			n.c	1.		n.d	1:	2-3	CASSSA	GGTYE	QY	2-7		106	5-039	570-58	4
memo	ry#99	;	3		n.d.			n.c	1.		n.d	. 1	9	CASSLA	FNQPQI	Н	1-5		106	5-039	570-58	4
																			100	-039	570-56	4
																			100	5-039	570-58	4 1
																			100	5-035	570.58	4
																			100	5-039	570-58	4
																			106	5-039	570-58	4
																			106	5-039	570-58	4
																			106	6-039	570-58	4
~							4	00	00	^												
C		- 0					.1	00	-00	9												
-	1×1	0 ⁰]																				
S																						
č		-	0																			
ਬੁ			0	0																		
ಕ				0																		
ģ	1×10	1-1																				
4 -		1			0	0	0															
\geq								0	0													
2		1								_												
Ľ		1							(0	0	0	0	0 0	CS	SARI	EVGK	SSY	NSP	LH		
•		1																				
	1×1()- <u>-</u> +	1	2	2	Å	5	Ġ	7	ò	ò	10	11	12 12	-							
			1	2	3	4	5	0	'	0	9	10	11	12 13								
							Clor	noty	pe n	um	ber	•										

Figure S5. Clonotype representation in the pre- and post-vaccination repertoire of Env-reactive CD4⁺ T cells. (A) CD4⁺ T cell clones were derived from the preimmunization repertoires (V2) of two volunteers, 106-009 and 106-039, who showed matching post-vaccination responses to ConS peptides (V7). Expressed TRA and TRB gene rearrangements were sequenced from mRNA.Cryopreserved PBMCs from V7 were cultured with the relevant Env peptides to expand the corresponding epitopespecific CD4⁺ T cells. After 10 days, memory CD4⁺ T cells were FACS-sorted to purity, and constituent clonotypes were identified by sequencing all expressed TRB gene rearrangements from mRNA. (B) Clonotype frequencies in donors 106-009 and 106-039. The highlighted sequence was found in the pre-immunization repertoire of donor 106-009. (C) Graphical representation of the data shown in A for donor 106-009.

Β

TRBV

5-6

7-2

3-1

20-1 7-2

9

20-1

20-1

5-1

18

7-2

27

20-1

16

12-4

5-1

27

19

TRBV CDR3

CASSQEVLNSAFTGELF

CSASPSGRKSSYNEQF

CSAREVGKSSYNSPL

CASSRGRGQGANEKLF CASSPLSRVNNQPQH

CASSFGTGNQETQY

CASSSSGTLQETQY

CASSVGAGTSPLH

CSARDPQGDTQY

11-3 CASSLGETYEQY 5-6 CASSLVDNTEAF

12-4 CASRTGTSGRYEQF

20-1 CSAGQVNYGYT 4-2 CASSQVWAVSTN

CASSHOGRDGYT

CSARRTAGTEAF

CASSQVWAVSTNNEQF

CASSPRTGLDYGYT

CASGRIGQGNNEQF

CASSLANQPGDTQY

CASSETTESYEOF CASSIAGNQPQH

19 CASSIAPDDGYT

20-1 CSATYNEOF

CASSSGQDRFLWY

CAESGRSNTGELF

TRBJ

2-7

2-2

2-2

2-1

2-5

1-6

2-3

1-6

1-5

2-7 1-1

2-1

2-5

2-1

1-2

1-1

1-2 2-1

1-2

2-1

2-3

2-1 1-5

1-2

Freq (%)

27.78

19.44

8.33

8.33

8.33

5 56

5.56

2.78

2.78

2.78

2.78

2.78

2 78

62.79

6.98

4.65

4.65

4.65 2.33

2.33

2.33

2.33

2.33 2.33

2.33

Vaccination schedule

TIME COUR	SE													
VISIT 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
DAY	0	14	28	42	56	70	112	126	224	231	238	334	417	425
WEEK	0	2	4	6	8	10	16	18	32	33	34	44	55	56
ARM														
Nat-B 013*, 032, 042, 058	DNA NatB		DNA NatB		DNA NatB		MVA CMDR		MVA CMDR					
Con-S 003, 005, 009, 010, 039, 049, 060, 091	DNA ConS		DNA ConS		DNA ConS		MVA CMDR		MVA CMDR					
Mosaic 038, 072, 077, 104	DNA Mosaic		DNA Mosaic		DNA Mosaic		MVA CMDR		MVA CMDR					
Placebo 001, 006, 069, 071	saline		saline		saline		saline		saline					
$\overline{\mathbf{t}}$ $\overline{\mathbf{t}}$ $\overline{\mathbf{t}}$														
Ble	ood dra	aw						Blo	od draw					
*volunteers are depicted in anonymized format by abbreviated publication-IP, lacking the 106 prefix.														

 Table S1. Schematic representation of the vaccination schedule.

Δ		SEQUENCE		DESCRIPTION		R		SEQUENCE		DESCRIPTION	
~	1-16	MRVRGIQRNCQHLWR	POOL 1	HVTN106 Con S	gp160		426-440	MWOGVGOAMYAPPIE	POOL 2	HVTN106 Con S	ap160
	2-20	GIQRNCQHLWRWGTL	POOL 1	HVTN106 Con S	gp160		430-444	VGQAMYAPPIEGKIT	POOL 2	HVTN106 Con S	gp160
	6-24	NCQHLWRWGTLILGM	POOL 1	HVTN106 Con S	gp160		434-448	MYAPPIEGKITCKSN	POOL 2	HVTN106 Con S	gp160
	14-28	LWRWGTLILGMLMIC	POOL 1	HVTN106 Con S	gp160		438-452	PIEGKITCKSNITGL	POOL 2	HVTN106 Con S	gp160
	18-32	GTLILGMLMICSAAE	POOL 1	HVTN106 Con S	gp160		442-456	KITCKSNITGLLLTR	POOL 2	HVTN106 Con S	gp160
	22-36	LGMLMICSAAENLWV	POOL 1	HVTN106 Con S	gp160		446-460	KSNITGLLLTRDGGN	POOL 2	HVTN106 Con S	gp160
	26-40	MICSAAENLWVTVYY	POOL 1	HVIN106 Con S	gp160		450-463	TGLLLTRDGGNNNTN	POOL 2	HVTN106 Con S	gp160
	30-44	AAENLWVTVYYGVPV	POOL 1	HVTN106 Con S	gp160 gp160		454-468	LTRDGGNNNTNETEIF	POOL 2	HVIN106 Con S	gp160
	38-52	VYYGVPVWKEANTTI.	POOL 1	HVTN106 Con S	gp160		458-472	GNNNTNETEIFRPGG	POOL 2	HVTN106 Con S	gp160
	42-56	VPVWKEANTTLFCAS	POOL 1	HVTN106 Con S	gp160		462-476	FIFFDCCCDMPDNWP	POOL 2	HVTN106 Con S	gp160 gp160
	46-60	KEANTTLFCASDAKA	POOL 1	HVTN106 Con S	gp160		400-480	PGGGDMRDNWRSELY	POOL 2	HVTN106 Con S	gp160
	50-64	TTLFCASDAKAYDTE	POOL 1	HVTN106 Con S	gp160		474-488	DMRDNWRSELYKYKV	POOL 2	HVTN106 Con S	gp160
	54-68	CASDAKAYDTEVHNV	POOL 1	HVTN106 Con S	gp160		478-492	NWRSELYKYKVVKIE	POOL 2	HVTN106 Con S	gp160
	58-72	AKAYDTEVHNVWATH	POOL 1	HVTN106 Con S	gp160		482-496	ELYKYKVVKIEPLGV	POOL 2	HVTN106 Con S	gp160
	62-76	DTEVHNVWATHACVP	POOL 1	HVIN106 Con S	gp160		486-500	YKVVKIEPLGVAPTK	POOL 2	HVTN106 Con S	gp160
	70.84	ATHACUPTOPNOFT	POOL 1	HVTN106 Con S	gp160		490-504	KIEPLGVAPTKAKRR	POOL 2	HVTN106 Con S	gp160
	74-88	CVPTDPNPOEIVLEN	POOL 1	HVTN106 Con S	gp160		494-508	LGVAPTKAKRRVVER	POOL 2	HVIN106 Con S	gp160
	78-92	DPNPQEIVLENVTEN	POOL 1	HVTN106 Con S	gp160		498-512	PTKAKERVVEREKEA	POOL 2	HVTN106 Con S	gp160 gp160
	82-90	QEIVLENVT	POOL 1	HVTN106 Con S	gp160		502-516	VEDERDAUCTCAUEL	POOL 2	HVTN106 Con S	gp100 gp160
	88-96	NVTENFNMW	POOL 1	HVTN106 Con S	gp160		510-520	KRAVGIGAVFLGFLG	POOL 2	HVTN106 Con S	gp160
	86-100	LENVTENFNMWKNNM	POOL 1	HVTN106 Con S	gp160		524-528	GIGAVFLGFLGAAGS	POOL 2	HVTN106 Con S	gp160
	90-104	TENFNMWKNNMVEQM	POOL 1	HVIN106 Con S	gp160 gp160		518-532	VFLGFLGAAGSTMGA	POOL 2	HVTN106 Con S	gp160
	94-108	NMWKNNMVEQMHEDI	POOL 1	HVTN106 Con S	gp160		522-536	FLGAAGSTMGAASIT	POOL 2	HVTN106 Con S	gp160
	98-112	ROMMEDITEINDOGI	POOL 1	HVTN106 Con S	gp100		526-540	AGSTMGAASITLTVQ	POOL 2	HVTN106 Con S	gp160
	106-120	EDITSLWDOSLKPCV	POOL 1	HVTN106 Con S	gp100 gp160		530-544	MGAASITLTVQARQL	POOL 2	HVTN106 Con S	gp160
	110-125	SLWDQSLKPCVKLTP	POOL 1	HVTN106 Con S	gp160		534-548	SITLTVQARQLLSGI	POOL 2	HVTN106 Con S	gp160
	114-128	QSLKPCVKLTPLCVT	POOL 1	HVTN106 Con S	gp160		538-552	TVQARQLLSGIVQQQ	POOL 2	HVTN106 Con S	gp160
	118-132	PCVKLTPLCVTLNCT	POOL 1	HVTN106 Con S	gp160		542-556	RQLLSGIVQQQSNLL	POOL 2	HVTN106 Con S	gp160
	122-136	LTPLCVTLNCTNVNV	POOL 1	HVTN106 Con S	gp160		546-560	SGIVQQQSNLLRAIE	POOL 2	HVIN106 Con S	gp160
	126-140	CVTLNCTNVNVTNTT	POOL 1	HVIN106 Con S	gp160		550-564	QQQSNLLRAIEAQQH	POOL 2	HVTN106 Con S	gp160
	130-144	NUTRINING	POOL 1	HVTN106 Con S	gp160		559 572	NTERATEAUQUEDUE	POOL 2	HVTN106 Con S	gp100 gp160
	140-155	NTTNNTEEKGEIKNC	POOL 1	HVTN106 Con S	gp160 ap160		562-576	OOHLLOLTVWGIKOL	POOL 2	HVTN106 Con S	gp160
	145-159	TNNTEEKGEIKNCSF	POOL 1	HVTN106 Con S	ap160		566-580	LOLTVWGIKOLOARV	POOL 2	HVTN106 Con S	ap160
	149-163	EEKGEIKNCSFNITT	POOL 1	HVTN106 Con S	gp160		570-584	VWGIKQLQARVLAVE	POOL 2	HVTN106 Con S	gp160
	153-167	EIKNCSFNITTEIRD	POOL 1	HVTN106 Con S	gp160		574-588	KQLQARVLAVERYLK	POOL 2	HVTN106 Con S	gp160
	157-171	CSFNITTEIRDKKQK	POOL 1	HVTN106 Con S	gp160		578-592	ARVLAVERYLKDQQL	POOL 2	HVTN106 Con S	gp160
	161-175	ITTEIRDKKQKVYAL	POOL 1	HVTN106 Con S	gp160		582-596	AVERYLKDQQLLGIW	POOL 2	HVTN106 Con S	gp160
	165-179	IRDKKQKVYALFYRL	POOL 1	HVIN106 Con S	gp160		586-600	YLKDQQLLGIWGCSG	POOL 2	HVTN106 Con S	gp160
	169-183	KQKVYALFYRLDVVP	POOL 1	HVTN106 Con S	gp160 gp160		590-604	QQLLGIWGCSGKLIC	POOL 2	HVIN106 Con S	gp160
	177-100	YRLDVVPTDDNNNS	POOL 1	HVTN106 Con S	gp160 gp160		594-608	GIWGCSGKLICTTTV	POOL 2	HVTN106 Con S	gp160 gp160
	181-195	VVPIDDNNNNSSNYR	POOL 1	HVTN106 Con S	ap160		602-616	LICTTUDWNSSWSN	POOL 2	HVTN106 Con S	gp100 gp160
	184-197	DDNNNNSSNYRLINC	POOL 1	HVTN106 Con S	gp160		606-620	TTVPWNSSWSNKSOD	POOL 2	HVTN106 Con S	gp160
	185-197	NNSSNYRLINCNTSA	POOL 1	HVTN106 Con S	gp160		610-624	WNSSWSNKSQDEIWD	POOL 2	HVTN106 Con S	gp160
	188-202	NYRLINCNTSAITQA	POOL 1	HVTN106 Con S	gp160		614-628	WSNKSQDEIWDNMTW	POOL 2	HVTN106 Con S	gp160
	191-205	YRLINCNTSAITQAC	POOL 1	HVTN106 Con S	gp160		618-632	SQDEIWDNMTWMEWE	POOL 2	HVTN106 Con S	gp160
	195-209	NCNTSAITQACPKVS	POOL 1	HVTN106 Con S	gp160 gp160		622-636	IWDNMTWMEWEREIN	POOL 2	HVTN106 Con S	gp160
	203-217	OACPKVSFEPIPIHY	POOL 1	HVTN106 Con S	gp160 gp160		626-640	MTWMEWEREINNYTD	POOL 2	HVIN106 Con S	gp160
	203-217	KVSFEPIPIHYCAPA	POOL 1	HVTN106 Con S	gp160		630-644	EWEREINNYTDIIYS	POOL 2	HVIN106 Con S	gp160
	211-225	EPIPIHYCAPAGFAI	POOL 1	HVTN106 Con S	gp160		634-648	VTDIIVSLIEE	POOL 2	HVTN106 Con S	gp160 gp160
	215-229	IHYCAPAGFAILKCN	POOL 1	HVTN106 Con S	gp160		642-656	IYSLIEESONOOEKN	POOL 2	HVTN106 Con S	gp160
	219-233	APAGFAILKCNDKKF	POOL 1	HVTN106 Con S	gp160		646-660	IEESQNQQEKNEQEL	POOL 2	HVTN106 Con S	gp160
	223-237	FAILKCNDKKFNGTG	POOL 1	HVTN106 Con S	gp160		650-664	QNQQEKNEQELLALD	POOL 2	HVTN106 Con S	gp160
	227-241	KCNDKKFNGTGPCKN	POOL 1	HVIN106 Con S	gp160		654-668	EKNEQELLALDKWAS	POOL 2	HVTN106 Con S	gp160
	231-245	GTGPCKNVSTVOCTH	POOL 1	HVTN106 Con S	gp160 gp160		658-672	QELLALDKWASLWNW	POOL 2	HVTN106 Con S	gp160
	239-253	CKNVSTVOCTHGIKP	POOL 1	HVTN106 Con S	gp160		662-676	ALDKWASLWNWFDIT	POOL 2	HVTN106 Con S	gp160
	243-257	STVQCTHGIKPVVST	POOL 1	HVTN106 Con S	gp160		666-680	WASLWNWFDITNWLW	POOL 2	HVIN106 Con S	gp160
	247-261	CTHGIKPVVSTQLLL	POOL 1	HVTN106 Con S	gp160		670-684	NUMPDIINNLWIIKI	POOL 2	HVTN106 Con S	gp100 gp160
	251-265	IKPVVSTQLLLNGSL	POOL 1	HVTN106 Con S	gp160		678-692	WLWYIKIFIMIVGGL	POOL 2	HVTN106 Con S	gp160
	255-269	VSTQLLLNGSLAEEE	POOL 1	HVTN106 Con S	gp160		682-696	IKIFIMIVGGLIGLR	POOL 2	HVTN106 Con S	gp160
	259-273	COLARRELITIK	POOL 1	HVTN106 Con S	gp160		686-700	IMIVGGLIGLRIVFA	POOL 2	HVTN106 Con S	gp160
	263-277	ERELITIRSENTTNNA	POOL 1	HVTN106 Con S	gp160 ap160		690-704	GGLIGLRIVFAVLSI	POOL 2	HVTN106 Con S	gp160
	271-285	IIRSENITNNAKTII	POOL 1	HVTN106 Con S	gp160		694-708	GLRIVFAVLSIVNRV	POOL 2	HVTN106 Con S	gp160
	275-289	ENITNNAKTIIVQLN	POOL 1	HVTN106 Con S	gp160		698-712	VFAVLSIVNRVRQGY	POOL 2	HVIN106 Con S	gp160
	279-293	NNAKTIIVQLNESVE	POOL 1	HVTN106 Con S	gp160		702-716	NEVEROCVEDI CEOTI	POOL 2	HVTN106 Con S	gp100 gp160
	283-297	TIIVQLNESVEINCT	POOL 1	HVTN106 Con S	gp160		710-720	OGYSPLSFOTLIPNP	POOL 2	HVTN106 Con S	gp160
	287-301	QLNESVEINCTRPNN	POOL 1	HVIN106 Con S	gp160 gp160		714-728	PLSFQTLIPNPRGPD	POOL 2	HVTN106 Con S	gp160
	291-305	NCTRONNTRESTRT	POOL 1	HVTN106 Con S	gp100 gp160		718-732	QTLIPNPRGPDRPEG	POOL 2	HVTN106 Con S	gp160
	299-315	PNNNTRKSIRIGPGQ	POOL 1	HVTN106 Con S	gp160		722-736	PNPRGPDRPEGIEEE	POOL 2	HVTN106 Con S	gp160
	303-319	TRKSIRIGPGQAFYA	POOL 1	HVTN106 Con S	gp160		726-740	GPDRPEGIEEEGGEQ	POOL 2	HVTN106 Con S	gp160
	309-323	IRIGPGQAFYATGDI	POOL 1	HVTN106 Con S	gp160		730-744	PEGIEEEGGEQDRDR	POOL 2	HVTN106 Con S	gp160
	313-326	PGQAFYATGDIIGDI	POOL 1	HVTN106 Con S	gp160		734-748	EEEGGEQDRDRSIRL	POOL 2	HVIN106 Con S	gp160
	317-330	FYATGDIIGDIRQAH	POOL 1	HVIN106 Con S	gp160		738-752	GEQUEDESTELVNGF	POOL 2	HVTN106 Con S	gp160 gp160
	321-334	CDIIGDIRQAHCNIS	POOL 1	HVTN106 Con S	gp160 gp160		746-760	TRLVNGFLALAWDDL	POOL 2	HVTN106 Con S	gp160
	324-338	OAHCNISGTKWNKTL	POOL 1	HVTN106 Con S	gp160 ap160		750-764	NGFLALAWDDLRSLC	POOL 2	HVTN106 Con S	gp160
	332-346	NISGTKWNKTLQQVA	POOL 1	HVTN106 Con S	gp160		754-768	ALAWDDLRSLCLFSY	POOL 2	HVTN106 Con S	gp160
	336-350	TKWNKTLQQVAKKLR	POOL 1	HVTN106 Con S	gp160		758-772	DDLRSLCLFSYHRLR	POOL 2	HVTN106 Con S	gp160
	340-354	KTLQQVAKKLREHFN	POOL 1	HVTN106 Con S	gp160		762-776	SLCLFSYHRLRDFIL	POOL 2	HVTN106 Con S	gp160
	344-359	QVAKKLREHFNNKTI	POOL 1	HVTN106 Con S	gp160		66-780	FSYHRLRDFILIAAR	POOL 2	HVTN106 Con S	gp160
	348-363	KLREHFNNKTIIFKP	POOL 1	HVIN106 Con S	gp160		770-784	RLRDFILIAARTVEL	POOL 2	HVIN106 Con S	gp160
	352-367	HFNNKTIIFKPSSGG	POOL 1	HVIN106 Con S	gp160 gp160		774-788a	FILIAARTVELLGRK	POOL 2	HVIN106 Con S	gp160
	361-375	FKPSSGGDLEI	POOL 1	HVTN106 Con S	gp160 gp160		778-702	VELLGRKGLBRGLKR	POOL 2	HVTN106 Con S	gp100 ap160
	365-379	SGGDLEITTHSFNCR	POOL 1	HVTN106 Con S	gp160		782-796	GRKGLRRGWEALKYI.	POOL 2	HVTN106 Con S	gp160
	369-383	LEITTHSFNCRGEFF	POOL 1	HVTN106 Con S	gp160		786-800	LRRGWEALKYLWNLL	POOL 2	HVTN106 Con S	gp160
	373-387	THSFNCRGEFFYCNT	POOL 1	HVTN106 Con S	gp160		790-804	WEALKYLWNLLQYWG	POOL 2	HVTN106 Con S	gp160
	377-391	NCRGEFFYCNTSGLF	POOL 1	HVTN106 Con S	gp160		794-808	KYLWNLLQYWGQELK	POOL 2	HVTN106 Con S	gp160
	381-395	EFFYCNTSGLFNSTW	POOL 1	HVTN106 Con S	gp160		798-812	NLLQYWGQELKNSAI	POOL 2	HVTN106 Con S	gp160
	385-399	CNTSGLFNSTWIGNG	POOL 1	HVIN106 Con S	gp160		802-816	YWGQELKNSAISLLD	POOL 2	HVTN106 Con S	gp160
	389-404	STWIGNGTKNN STWIGNGTKNNNNTN	POOL 1 POOL 1	HVTN106 Con S	gp 160 ap160		806-820	ELKNSAISLLDTTAI	POOL 2	HVTN106 Con S	gp160
	396-413	GNGTKNNNNTNDT T T	POOL 1	HVTN106 Con S	gp160		810-824	SAISLLDTTAIAVAE	POOL 2	HVTN106 Con S	gp160 gp160
	403-416	KNNNNTNDTITLPCR	POOL 1	HVTN106 Con S	gp160		814-828	TATAVAEGTOR	POOL 2	HVTN106 Con S	9P100 an160
	406-420	NTNDTITLPCRIKQI	POOL 1	HVTN106 Con S	gp160		010-032 822-836	VAEGTDRVIEV	POOL 2	HVTN106 Con S	ap160
	410-424	TITLPCRIKQIINMW	POOL 1	HVTN106 Con S	gp160		826-840	TDRVIEVVQRACRAI	POOL 2	HVTN106 Con S	gp160
	414-428	ITLPCRIKQIINMWQ	POOL 1	HVTN106 Con S	gp160		830-844	IEVVQRACRAILNIP	POOL 2	HVTN106 Con S	gp160
	418-432	CRIKQIINMWQGVGQ	POOL 1	HVTN106 Con S	gp160		834-848	QRACRAILNIPRRIR	POOL 2	HVTN106 Con S	gp160
	422-436	GTTNUMMOGAOGAWAA	FOULT	IN IN IDO CON S	Ah ion		838-852	RAILNIPRRIRQGLE	POOL 2	HVTN106 Con S	gp160
							842-856	NIPRRIRQGLERALL	POOL 2	HVIN106 Con S	gp160

Table S2. Pool 1 and pool 2 peptides from ConS gp160 Env.

			PRE-IMMUNIZATION		POST-VACCINATION				
PUBID	ARM	PEPTIDES	V2 T cell Library (antigen-spec cell/10^6)	V2 <i>ex vivo</i> ELISpot (SFU/10^6)	V7 <i>ex vivo</i> ELISpot (SFU/10^6)	V7 cultured ELISpot (SFU/10^6)			
106-003	ConS	606-620	3 831 (memory)	<20					
		6-24	1 193 (naïve)	<20					
106-009	ConS	340-354	1 012 (memory)	<20	36.25				
		18-32	0.607 (memory)	<20					
106-010	ConS	22-36	1.828 (memory)	<20					
		165-179	1.217 (memory)	<20					
106-039	ConS	570-584	1.565 (memory)	<20		100.00			
		34-48	0.773 (naïve)	<20		47.92			
		38-52	0.773 (naïve)	<20					
		114-128	0.773 (naïve)	<20					
		247-261	1.013 (memory)	<20					
		410-424	0.773 (naïve)	<20					
		418-432	1.013 (memory)	<20					
		422-436	0.506 (memory)	<20		25.00			
		546-560	0.506 (memory)	<20	36.88	31.25			
		558-572	0.773 (naïve)	<20					
		562-576	0.773 (naïve)	<20					
106-060	ConS	570-584	3.115/0.506 (naïve/memory)	<20					
		618-632	0.506 (memory)	<20					
		638-652	1.013 (memory)	22.92					
		658-672	0.773 (naïve)	<20					
		666-680	0.773 (naïve)	<20					
		714-728	2.331 (naïve)	<20					
		770-784	0.506 (memory)	<20		114.59			
		790-804	0.773 (naïve)	<20					
		794-808	0.773 (naïve)	<20					
		806-820	0.773 (naïve)	<20					
		842-856	0.773 (naïve)	<20		137.50			
106-091	ConS	321-334	0.452 (memory)	<20	85.50	79.17			
106-013	Nat B	570-584	4.141 (naïve)	<20					
		418-432	0.323 (memory)	<20					
106-032	Nat B	422-436	0.323 (memory)	<20					
		562-576	0.323 (memory)	<20					
		6-24	1.312 (memory)	<20					
106-042	Nat B	42-56	0.654 (memory)	<20	39.84				
		173-187	0.654 (memory)	<20					
		458-472	1.828 (memory)	<20					
106-058	Nat B	570-584	1.026 (naïve)	<20	30.00				
		830-844	6.975 (memory)	<20					
106-104	Mosaic	482-496	1.28 (naïve)	83.33					
		169-183	1.214 (naïve)	<20					
106-006	Placebo	634-648	1.163 (memorv)	30.00					
		742-756	1.214 /1.163 (naïve/memory)	<20	131.53				
		247-261	1.787 (memory)	<20					
106-069	Placebo	486-500	1.787 (memory)	<20					
		742-756	3.584 (memory)	<20					
		90-104	0.72 (naïve)	<20					
106-071	Placebo	106-120	0.72 (naïve)	<20					

Table S3. Ex vivo IFN- γ ELISpot data from donors in whom pre-immunization responses were detected at V2 compared with the corresponding T cell library data at V2 and the corresponding IFN- γ ELISpot data at V7.

- 1. Santra, S., et al., *A centralized gene-based HIV-1 vaccine elicits broad cross-clade cellular immune responses in rhesus monkeys.* PNAS, 2008. **105**(30): p. 10489-10494.
- 2. Bull, M., et al., *Defining blood processing parameters for optimal detection of cryopreserved antigen-specific responses for HIV vaccine trials.* J Immunol Methods, 2007. **322**(1-2): p. 57-69.
- Campion, S.L., et al., Proteome-wide analysis of HIV-specific naive and memory CD4(+) T cells in unexposed blood donors. J Exp Med, 2014. 211(7): p. 1273-80.
- 4. Geiger, R., et al., *Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells.* J Exp Med, 2009. **206**(7): p. 1525-1534.
- 5. Lindestam Arlehamn, C.S., et al., *Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset.* PLoS Pathog, 2013. **9**(1): p. e1003130.
- 6. Mele, F., et al., *Phenotype and specificity of T cells in primary human cytomegalovirus infection during pregnancy: IL-7Rpos long-term memory phenotype is associated with protection from vertical transmission.* PLoS One, 2017. **12**(11): p. e0187731.
- 7. Harrell, F.E., *Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis.*, ed. S.S.B. Media. 2013: Springer.
- 8. Precopio, M.L., et al., *Optimizing Peptide Matrices for Identifying T-Cell Antigens.* Cytometry A, 2008. **73A**: p. 1071-1078.
- Goonetilleke, N., et al., Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-specific T cells capable of proliferation in healthy subjects by using a prime-boost regimen of DNA- and modified vaccinia virus Ankaravectored vaccines expressing HIV-1 Gag coupled to CD8+ T-cell epitopes. J Virol, 2006. 80(10): p. 4717-28.
- 10. Quigley, M.F., et al., *Unbiased molecular analysis of T cell receptor expression using template-switch anchored RT-PCR.* Curr Protoc Immunol, 2011. **10**(10.33).
- 11. Price, D.A., et al., Avidity for antigen shapes clonal dominance in CD8+ T cell populations specific for persistent DNA viruses. J Exp Med, 2005. **202**(10): p. 1349-61.

12. Lefranc, M.P., *IMGT, the international ImMunoGeneTics database.* Nucleic Acids Res, 2003. **31**(1): p. 307-10.