- 1 Supplementary Materials (Gong, Donnelly, Heath et al.): Six supplementary figures and
- 2 three supplementary tables are provided for this manuscript.
- 3
- 4

Supplementary Figure 1

Supplementary Figure 1. The expression levels of *IFNAR1* were not correlated with
interferon-stimulated genes in HNSCC specimens. Spearman's correlation analysis was
performed to assess the relationship between the expression levels of *IFNAR1* and those of *MX1*(a), *ISG15* (b), *IFIT2* (c), *CXCL9* (d) and *CXCL10* (e) among 520 HNSCC specimens in the
TCGA database. Each dot represents one HNSCC specimen.

14 Supplementary Figure 2. Association of MX1 immunohistochemical scores with disease 15 site, cancer stage, and nodal metastasis. Raw MX1 scores were generated by quantifying MX1 16 immunohistochemical staining in TMAs from 195 HNSCC patients, followed by correlation with primary disease site (a), cancer stage (b), or status of nodal metastasis (c). No statistical 17 18 differences were observed between MX1 and any of these variables, although a non-statistically 19 significant positive association was observed between MX1 score and increased HNSCC cancer stages (P = 0.09). Univariate Cox linear regression modeling was used to analyze the association 20 21 between MX1 score and each variable.

- 26 Supplementary Figure 3. a-b MX1 immunohistochemical scores were segregated for patients
- 27 in the highest quartile vs. all other patients (lowest 75%) and the Kaplan-Meier curves of each
- 28 group were compared for overall survival (**a**) or recurrence-free time (**b**) using a log-rank test.

32 Supplementary Figure 4. a-b MX1 immunohistochemical scores were segregated for patients
33 in the highest quartile vs. patients in the lowest 75% following construction of a multivariate

- 34 model which assumes the following parameters: 59 years old, advanced stage (3 or 4), oral
- 35 cavity cancer, mild comorbidities, and average CD4⁺ and CD8⁺ T-cell infiltration (15 cells/mm²).
- 36 Kaplan-Meier curves of each group were compared for overall survival (a) or recurrence-free
- 37 time (**b**) using a log-rank test.
- 38

41	Supplementary Figure 5. Representative immunohistochemical staining for MX1 in
42	conjunction with CD4, CD8, and CD44. TMAs were stained for MX1, CD4, CD8, or CD44,
43	followed by quantification of MX1 and CD44 IHC scores selectively within cancer cells. (a)
44	Representative images of each marker from an MX1-low core (upper panels) or MX1-high core
45	(lower panels). Scale bar: 200 μ m. (b) The HNSCC cancer stem cell marker CD44 was
46	positively correlated with MX1 in HPV ⁺ tumors (left panel; $n = 54$ patients) and oropharyngeal
47	tumors (right panel; $n = 52$ patients).
48	
49	

67	Supplementary Table 1 - Descriptive statistics for MX1 and CD44 immunohistochemical
68	staining scores obtained by Aperio ImageScope quantification of TMAs. MX1 scores were
69	available from 195 patients, CD44 scores were available from 262 patients, and both MX1 and
70	CD44 scores were available from 181 HNSCC patients.

							25 th	75 th
Protein	n	Mean	SD	Median	Minimum	Maximum	Percentile	Percentile
MX1	195	22.01	16.925	18.534	0.1144	86.25	9.33	31.94
CD44	262	7.39	8.128	4.577	0.0375	40.68	1.475	10.31

74 Supplementary Table 2. Number of cells detected for each tumor immune cell cluster identified

Cell cluster	Cell identity	Total number of cells detected
Cluster 1	Myeloid-derived suppressor cells	2112
Cluster 2	Myeloid-derived suppressor cells	1263
Cluster 3	Tcf7 ⁺ CD4 ⁺ T-cells	1217
Cluster 4	CXCR5 ⁺ B-cells	1066
Cluster 5	Myeloid-derived suppressor cells	1009
Cluster 6	Tbet1 ⁺ PD1 ⁺ CD8 ⁺ T-cells	906
Cluster 7	Myeloid-derived suppressor cells	778
Cluster 8	Myeloid-derived suppressor cells	684
Cluster 9	Myeloid-derived suppressor cells	674
Cluster 10	CXCR5 ⁺ B-cells	598
Cluster 11	CXCR5 ⁺ B-cells	507
Cluster 12	Myeloid-derived suppressor cells	500
Cluster 13	M2-like macrophages	471
Cluster 14	Tumor cells	292
Cluster 15	Regulatory T-cells	220
Cluster 16	γδ T-cells	219
Cluster 17	Natural killer cells	174
Cluster 18	Tcf7 ⁺ CD8 ⁺ T-cells	143
Cluster 19	Basophils	47
Cluster 20	Conventional dendritic cells type 1	27

75 by single cell RNA-sequencing and immune cell deconvolution.