A Directive Ni Catalyst Overrides Conventional Site-Selectivity in

Pyridine C–H Alkenylation

Tao Zhang,^{*} Yu-Xin Luan,^{*} Nelson Y. S. Lam,[†] Jiang-Fei Li,^{*} Yue Li,^{*} Mengchun Ye,^{*‡} Jin-Quan Yu^{†‡}

*State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China. †The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA. ‡Corresponding author. E-mail: mcye@nankai.edu.cn, yu200@scripps.edu

Table of Contents

1. General Information	2
2. Synthesis of Ligands	2
3. Reaction Optimization	5
4. Crystal Structure Information of L ₁₀	9
5. Mechanistic Experiments	10
6. Typical Procedure for Ni-Catalyzed C3-Alkenylation	15
7. Reference	34
8. NMR Spectra	35

1. General Information

Unless stated otherwise, all reactions were conducted under N₂ atmosphere. All solvents were received from commercial sources without further purification. Commercially available reagents were used as received. Non-commercially available substrates were synthesized following reported protocols. Melting points were measured on X-4B microscope melting point apparatus and uncorrected. Thin-layer chromatography (TLC) was performed by UV absorbance (254 nm). 200–300 mesh silica gel was used for column chromatography separation. NMR spectra were recorded on Bruker AV 400 spectrometer at 400 MHz (¹H NMR), 100 MHz (¹³C NMR) and 376 MHz (¹⁹F NMR). Proton and carbon chemical shifts are reported relative to the solvent used as an internal reference (CDCl₃: $\delta_{\rm H} = 7.26$ ppm; $\delta_{\rm C} = 77.13$ ppm). All coupling constants (*J* values) were reported in Hertz (Hz). Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), triplet of doublets (td), quartet (q), and multiplet (m). High resolution mass spectra (HRMS) were recorded on an Agilent 6520 Q-TOF LC/MS with Electron Spray Ionization (ESI) resource. Single crystal X-ray diffraction data were collected on Rigaku Saturn70 diffract meter.

2. Synthesis of Ligands

To a two-neck flask equipped with a magnetic stirring bar and a reflux condenser were added aniline (10 mmol), dione (10 mmol), $(CH_2O)_n$ (20 mmol, 600 mg), NH₄OAc (10 mmol, 770 mg) and 1.5 mL of CH₃COOH. The mixture was refluxed for 18 h and then cooled down to room temperature. The pH of the solution was adjusted to 9 by adding K₂CO₃. The resulting biphasic mixture was extracted with ether (4 × 50 mL). The combined organic extracts were washed with brine (30 mL) and dried over anhydrous sodium sulfate. All volatiles were removed under reduced pressure. The crude mixture was purified by column chromatography (EtOAc/*n*-hexane) to obtain imidazoles.

A solution of imidazole (5 mmol) and 2-bromoethanol (625 mg, 5 mmol) in toluene (15 mL) was refluxed for 18 h. The mixture was cooled to room temperature and the solvent was removed under reduced pressure. The crude mixture was purified by column chromatography (DCM/EtOH) to obtain the corresponding ligands. Ligands L_1-L_4 and L_{12} were synthesized according to the literature procedure.^{1,2}

3-(2-Hydroxyethyl)-1-mesityl-1*H*-benzo[*d*]imidazol-3-ium bromide (L₅).

Purification via column chromatography on silica gel (DCM/EtOH = 15/1, v/v, $R_f = 0.25$) afforded L₅ as Brown solid(1.12 g, 3.25 mmol, 65% yield), m.p. 202-204 °C. ¹H **NMR** (400 MHz, CDCl₃) δ 10.45 (s, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.72 (t, J = 7.8 Hz, 1H), 7.62 (t, J = 7.8 Hz, 1H), 7.29 (d, J = 1.8 Hz, 1H), 7.09 (s, 2H), 5.17 (t, J = 5.0 Hz, 2H), 4.95 (s, 1H), 4.15 (t, J = 4.6 Hz, 2H), 2.40 (s, 3H), 2.02 (s, 6H). ¹³C **NMR** (100 MHz, CDCl₃) δ 143.3, 141.7, 135.4, 131.7, 131.4, 131.1, 130.2, 127.9, 127.7, 113.8, 113.3, 59.0, 49.5, 21.3, 17.7. **HRMS** (ESI) m/z: calcd. for C₁₈H₂₁N₂O [M–Br]⁺ 281.1648, found 281.1645.

3-(2-Hydroxyethyl)-1-mesityl-4,5-dimethyl-1*H*-imidazol-3-ium bromide (L₆)

Purification via column chromatography on silica gel (DCM/EtOH = 15/1, v/v, $R_f = 0.25$) afforded L_6 as White solid (0.95 g, 2.82 mmol, 56% yield), m.p. 201-203 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.50 (s, 1H), 7.01 (s, 2H), 4.95 – 4.85 (m, 1H), 4.76 – 4.68 (m, 2H), 3.99 (s, 2H), 2.38 (s, 3H), 2.35 (s, 3H), 2.00 (s, 6H), 1.96 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 141.3, 136.1, 135.0, 129.9, 128.9, 127.1, 59.1, 49.3, 21.2, 17.6, 9.1, 8.3. HRMS (ESI) m/z: calcd. for $C_{16}H_{23}N_2O$ [M–Br]⁺ 259.1805, found 259.1802.

1-(2,6-Diethyl-4-methylphenyl)-3-(2-hydroxyethyl)-4,5-dimethyl-1*H*-imidazol-3-i um bromide (L₇)

Purification via column chromatography on silica gel (DCM/EtOH = 15/1, v/v, $R_f = 0.25$) afforded L_7 as Brown solid (1.24 g, 3.41 mmol, 68% yield), m.p. 212-214 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.42 (s, 1H), 7.04 (s, 2H), 4.87 (t, J = 6.8 Hz, 1H), 4.72 (t, J = 4.8 Hz, 2H), 4.02 – 3.90 (m, 2H), 2.38 (s, 6H), 2.18 (q, J = 7.6 Hz, 4H), 1.93 (s, 3H), 1.13 (t, J = 7.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 141.8, 140.7, 136.7, 128.0, 127.7, 127.5, 126.8, 59.1, 49.2, 23.9, 21.5, 14.6, 9.0, 8.6. HRMS (ESI) m/z: calcd. for C₁₈H₂₇N₂O [M–Br]⁺ 287.2118, found 287.2114.

1-(4-(Dimethylamino)-2,6-dimethylphenyl)-3-(2-hydroxyethyl)-4,5-dimethyl-1*H*-i midazol-3-ium bromide (L₈)

Purification via column chromatography on silica gel (DCM/EtOH = 15/1, v/v, $R_f = 0.25$) afforded L_8 as Brown solid (1.36 g, 3.74 mmol, 74% yield), m.p. 148-150 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.37 (s, 1H), 6.42 (s, 2H), 4.94 (t, J = 7.0 Hz, 1H), 4.76 – 4.64 (m, 2H), 4.02 – 3.93 (m, 2H), 2.99 (s, 6H), 2.35 (s, 3H), 1.97 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 151.5, 136.6, 135.6, 127.9, 126.6, 119.9, 111.7, 59.1, 49.1, 40.3, 18.2, 9.1, 8.3. HRMS (ESI) m/z: calcd. for $C_{17}H_{26}N_3O$ [M–Br]⁺ 288.2070, found 288.2067.

1-(2,6-Dimethyl-4-(pyrrolidin-1-yl)phenyl)-3-(2-hydroxyethyl)-4,5-dimethyl-1*H*-i midazol-3-ium bromide (L₉)

Purification via column chromatography on silica gel (DCM/EtOH = 15/1, v/v, $R_f = 0.25$) afforded L₉ as Brown solid (0.98 g, 2.52 mmol, 50% yield), m.p. 146-147 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.24 (s, 1H), 6.26 (s, 2H), 4.93 (t, J = 6.8 Hz, 1H), 4.76 – 4.55 (m, 2H), 3.96 (dd, J = 10.7, 5.9 Hz, 2H), 3.28 (t, J = 6.4 Hz, 4H), 2.36 (s, 3H), 2.05 – 1.99 (m, 4H), 1.94 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 136.7, 135.6, 128.0, 126.4, 119.1, 111.2, 59.1, 49.1, 47.6, 25.5, 18.1, 9.0, 8.3. HRMS (ESI) m/z: calcd. for C₁₉H₂₈N₃O [M–Br]⁺ 314.2227, found 314.2223.

3-(2-Hydroxyethyl)-1-(4-methoxy-2,6-dimethylphenyl)-4,5-dimethyl-1*H***-imidazol** -**3-ium bromide** (L₁₀)

Purification via column chromatography on silica gel (DCM/EtOH = 15/1, v/v, $R_f = 0.25$) afforded L_{10} as Brown solid (1.22 g, 3.48 mmol, 69% yield), m.p. 157-158 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.53 (s, 1H), 6.72 (s, 2H), 4.92 (t, J = 7.0 Hz, 1H), 4.73 (t, J = 4.8 Hz, 2H), 4.05 – 3.93 (m, 2H), 3.84 (s, 3H), 2.37 (s, 3H), 2.02 (s, 6H),

1.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 136.8, 136.3, 127.4, 127.1, 124.1, 114.3, 59.1, 55.6, 49.3, 18.0, 9.1, 8.3. **HRMS** (ESI) m/z: calcd. for C₁₆H₂₃N₂O₂ [M–Br]⁺ 275.1754, found 275.1749.

1-(4-Benzhydryl-2,6-dimethylphenyl)-3-(2-hydroxyethyl)-4,5-dimethyl-1*H*-imida zol-3-ium bromide (L₁₁)

Purification via column chromatography on silica gel (DCM/EtOH = 15/1, v/v, $R_f = 0.25$) afforded L_{11} as Brown solid (1.74 g, 3.57 mmol, 71% yield), m.p. 216-218 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.44 (s, 1H), 7.33 (t, J = 7.3 Hz, 4H), 7.26 (d, J = 8.8 Hz, 2H), 7.13 (d, J = 7.3 Hz, 4H), 6.96 (s, 2H), 5.53 (s, 1H), 4.89 (t, J = 6.3 Hz, 1H), 4.74 (t, J = 4.2 Hz, 2H), 3.97 (d, J = 4.2 Hz, 2H), 2.39 (s, 3H), 1.97 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 142.8, 136.2, 135.2, 130.3, 129.6, 129.5, 128.6, 127.1, 127.0, 126.8, 59.1, 56.5, 49.2, 17.8, 9.0, 8.4. HRMS (ESI) m/z: calcd. for C₂₈H₃₁N₂O [M–Br]⁺ 411.2431, found 411.2424.

3. Reaction Optimization

Ni(cod)₂ (10 mol%) Ligand (20 mol%) AIMe₃ (20 mol%), toluene ⁿPr-<u></u>Pr 2a 3a, C3 (mono, di) C2 C4 1a Ligand (20 mol%) C3-mono (%) C3-di (%) entry C2 (%) C4 (%) Ph₃P PCy₃ Cy₂POH Ph₂POH 5 ^b **IMes**·HCI IMes 7 ^b SIMes[·]HCI **IPrHCI** IPr 10^b SIPr⁻HCI 11^b L₁

Table S1. Ligand Effects^{*a*}

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), toluene (0.5 mL) at 100 °C under N₂ for 12h. Yield of isomers was determined by ¹H NMR with CH₂Br₂ as the internal standard. ^{*b*}NaO^tBu (30 mol%).

	Ni(coc L ₁ ^t BuON AIMe ₃ (x ⁿ Pr-	t) ₂ (10 mol%) (20 mol%) √a (30 mol%) ≅ mol%), toluene = ⁿ Pr 2a	ⁿ Pr ⁿ Pr N 3a C3 (mono di)	$r + \sum_{n \in N} r$	Pr ⁿ Pr + II N	ⁿ Pr ⁿ Pr
en	try	AIMe ₃ (mol%)	C3-mono (%)	C3-di (%)	C2 (%)	C4 (%)
1	1	0	0	0	0	0
2	2	10	17	0	1	15
3	3	20	33	5	5	8
2	1	30	9	8	19	5
5	5	40	8	1	19	5

Table S2. AlMe₃ Loading Effects^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), toluene (0.5 mL) at 100 °C under N₂ for 12h. Yield of isomers was determined by ¹H NMR with CH_2Br_2 as the internal standard.

More loadings of AlMe₃ favors C2 and C4-alkenylation without cooperative catalysis.

N - 1a	Ni(cod) ₂ (10 mol%) L ₁ (20 mol%) [†] BuONa (30 mol%) L.A. (20 mol%), toluene ⁿ Pr— ⁿ Pr 2a	ⁿ Pr ⁿ N 3a , C3 (mono	Pr ^nPr +	ⁿ Pr n N C2	r + ∭ N	ⁿ Pr ⁿ Pr C4
ent	ry L.A. (20 mol%)		C3-mono (%)	C3-di (%)	C2 (%)	C4 (%)
1	AIMe ₃		33	5	5	8
2	AIEt ₃	tp.,	34	7	3	7
3	Al [/] Bu ₃	O _{AI} .Me	36	12	5	7
4	Al(Oct) ₃		17	12	0	8
5	AIMe ₂ CI	(BHT)AIMe ₂	0	0	0	0
6	(BHT)AIMe _{2.}	()	0	0	0	0
7	MAD	tou tou	0	0	0	0
8	Al(O ^t Bu) ₃		1	0	0	1
9	ZnEt ₂		l o	0	0	0
1	0 BEt ₃	 → Bu Bu 	0	0	0	0
1	1 ^b Al ⁱ Bu ₃		31	19	1	14

Table S3. Lewis Acid Effects^a

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol) toluene (0.5 mL) at 100 °C under N₂ for 12h. Yield of isomers was determined by ¹H NMR with CH₂Br₂ as the internal standard. ^{*b*}18-crown-6 (10 mol%) added.

Strong Al-Lewis acids are required, and increasing the steric bulkiness of the substituent on the aluminum, the yields of the C3-mono and dialkenylation products slightly increased, which suggested a proper coordination between pyridine and $Al^{i}Bu_{3}$ was critical to the reactivity and selectivity.

Table S4. Base Effects^a

N AM	Ni(cod) ₂ (10 mol%) L ₁ (20 mol%) base (30 mol%) Bu ₃ (20 mol%), toluene ⁿ Pr ──── ⁿ Pr 2a	ⁿ Pr ⁿ Pr N 3a , C3 (mono, di)	r +	r ≫ [/] Pr + ∬ N	ⁿ Pr ⁿ Pr C4
entry	base (30 mol%)	C3-mono (%)	C3-di (%)	C2 (%)	C4 (%)
1	NaO ^t Bu	36	12	5	7
2	KO ^t Bu	24	12	5	7
3	NaHMDS	28	6	4	5
4	KHMDS	17	4	2	3
5	0	0	0	0	0

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol) toluene (0.5 mL) at 100 °C under N₂ for 12h. Yield of isomers was determined by ¹H NMR with CH₂Br₂ as the internal standard.

Table S5. Base Loading Effects^a

N Ia	Ni(cod) ₂ (10 L ₁ (20 m ⁴ BuONa (x Al [/] Bu ₃ (20 mol ⁰ ⁷ Pr ⁷	0 mol%) юl%) <u>: mol%) </u>	ⁿ Pr ⁿ Pr ⁿ Pr N 3a , C3(mono, di)	r +	≫ ^{″Pr} + ∬ N	^{//Pr} //Pr C4
ent	try ^t Bi	u <mark>ONa (mol%</mark>)	C3-mono (%)	C3-di (%)	C2 (%)	C4 (%)
1		20	25	12	5	5
2	2	25	39	14	5	5
3	5	30	36	12	5	7
4	Ļ	35	19	8	8	8

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol) toluene (0.5 mL) at 100 °C under N₂ for 12h. Yield of isomers was determined by ¹H NMR with CH_2Br_2 as the internal standard.

Table S6. Ligand Effects^a

^aReaction conditions:**1a** (0.2 mmol), **2a** (0.6 mmol), toluene (0.5 mL) under N₂ at 100 °C for 12h. Yield of isomers and regioselectivity (C3-mono/C3-di/C2/C4) were determined by ¹H-NMR with CH₂Br₂ as the internal standard. ^{*b*}L₁₀ (10 mol%), Al^{*i*}Bu₃ (10 mol%), ^{*t*}BuONa (12.5 mol%)

Table S7. Ligand Loading Effects^a

$ \begin{array}{c} \mathbf{N} \\ \overset{t_{BL}}{\overbrace{A}^{'}B} \\ \mathbf{1a} \\ \end{array} $	i(cod) ₂ (10 mol%) L ₁₀ (× mol%) iONa (1.25× mol%) → ^{//} Pr u ₃ (× mol%), toluene ¹ Pr- <u></u> ^{//} Pr 2a	ⁿ Pr N 3a , C3 (mono, di)	$r + \bigvee_{C2}^{n_{F}} N$	Pr ≫ ["] "Pr + ∬ N. 2	ⁿ Pr ⁿ Pr C4
entry	loading (mol%)	C3-mono (%)	C3-di (%)	C2 (%)	C4 (%)
1	5	22	10	3	2
2	10	59	22	5	1
3	20	53	19	4	5

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol) toluene (0.5 mL) at 100 °C under N₂ for 12h. Yield of isomers was determined by ¹H NMR with CH_2Br_2 as the internal standard.

Taking the results from Table S1 and Table S6, we can form the following conclusions with regards to the role of the bifunctional ligand in this reaction.

1) The native selectivity for the Lewis acid promoted Ni(0)-catalyzed C–H alkenylation favors the C2 and C4 positions. This is illustrated with control experiments using PCy₃, IMes and IPr as ligands, giving only C2 or C4 alkenylated products (Table S1, entry 2, 6 and 9). This native selectivity is also reinforced by Nakao and Ong's finding for their highly C4-selective processes.^{3,4}

2) The incorporation of a hydroxyl directing handle in L_1 (Table S1, entry 11) gives C3 product as the major product, indicating a switch in mechanism away from substrate-induced selectivity to ligand-induced selectivity.

3) Methylation of the free hydroxyl group (L_{12} , Table S6) completely shut down reactivity (from a ligand that otherwise gave 48% combined C3 yields: see L_1 , Table S6), indicating that free OH group is crucial for both reactivity and selectivity of the reaction. This result reaffirms our mechanistic hypothesis that the free OH reacts with ^{*i*}Bu₃Al to form the active Al species, which is then able to recruit the pyridine substrate.

4) Structural deviations (in particular, alteration of linker chain length, see L_1 vs L_3 in Table S6) dramatically alter yield and selectivity distribution. These structural deviations from designed factors again point towards the crucial role the ligand plays in both the reactivity and the selectivity of the transformation

Altogether, these observations provide evidence for a critical ligand effect operative in this reaction. Crucially, these results provide overwhelming support that the ligand is enforcing both the reactivity and selectivity of the C3-selective process, overriding the intrinsic C2/C4 selectivity observed in our control studies (Table S1) and related works^{3,4}

5) Notably, the use of the imidazolium halide precursor to L_{12} led to complete shut-down of the reaction in a manner similar to the use of IPr·HCl and IMes·HCl, where the formed ^{*t*}BuOH can deleteriously react with the Al Lewis acid. Unfortunately, our attempt at generating and employing the free carbene from L_5 was unsuccessful due to the instability of the formed carbene species.

4. Crystal Structure Information of L₁₀

S9 / 101

CCDC Deposition Number 2018614

Data Block Name: data_r20200517c; Unit Cell Parameters: a 10.4742(3) b 10.7125(3) c 15.1154(5) P21/c

5. Mechanistic Experiments

5.1 KIE Determination by Competitive Reaction.

To a 15 mL oven dried tube were added ligand L_{10} (7.3 mg, 10 mol%), Ni(cod)₂ (5.5 mg, 10 mol%), ^{*i*}BuONa (2.3 mg, 12.5 mol%) and dry degassed toluene (0.5 mL) under N₂ atmosphere. The mixture solution was stirred at 80 °C for 30 mins and then cooled down to room temperature. To a solution of 3-phenylpyridine (15.5 mg, 0.1 mmol, 1equiv.) and deuterated 3-phenylpyridine (15.6 mg, 0.1 mmol, 1equiv.) in dry toluene (0.5 mL) were added Al^{*i*}Bu₃ (1.1 M/toluene, 18.1 μ L, 10 mol%) and alkyne (1.2 mmol, 3 equiv.). Then the tube was sealed and stirred at 100 °C for 1 h. After that, the mixture solution was cooled to r.t., quenched with 2 mL of 5% EDTA disodium salt solution, filtered through a short plug of silica gel (EtOAc as the eluent) and concentrated *in vacuo*. The residue was dissolved in 2.0 mL CDCl₃, and CH₂Br₂ (14 μ L, 0.2 mmol) was added as the internal standard for ¹H NMR detection. KIE was obtained by calculating the NMR yields of mixed products. Low KIE (1.20) suggested that C–H cleavage was not involved in the rate-determining step.

5.2 Deuterium-Labeling Experiment

The experiment was carried out according to the typical procedure. And the ¹H NMR spectrum showed that complete deuterium-transfer occurred from the C3 position of pyridine to the olefinic position of the product.

5.3 KIE Determined by Parallel Reactions

Parallel reactions were set up following the typical procedure. Aliquots were taken at 25 minute intervals for the 100 minutes. Product yield was determined by ¹H MNR using CH₂Br₂ as an internal standard. Low KIE (1.2) suggested that C–H cleavage was not involved in the rate-determining step.

5.4 NMR Tracing Experiments

1) Synthesis of pyridine-Al Complex A (11-AlMe₃)

To a 15 mL oven dried Schlenk tube were added **11** (310.4 mg, 2.0 mmol), toluene (1.0 mL) and AlMe₃ (1.0 mL, 2.0 M in toluene, 2.0 mmol) at room temperature under N₂ atmosphere. After stirring for 0.5 h, the solvent was removed *in vacuo* to afford a yellow solid (moisture-sensitive). ¹H NMR (400 MHz, C₆D₆) δ 8.75 (d, *J* = 2.2 Hz,

2) Synthesis of pyridine-Al-NHC Complex B

To a 15 mL oven dried Schlenk tube were added **Complex A** (0.1 mmol), L_1 (0.1 mmol), ¹BuONa (0.1 mmol) and C_6D_6 (1.0 mL) at room temperature under N₂ atmosphere. The solution was cooled to room temperature after stirring 0.5 h at 70 °C. The resulting solution was transferred into a NMR tube and sealed for ¹H NMR detection. ¹H NMR (400 MHz, C_6D_6) δ 9.18 (d, J = 2.2 Hz, 1H), 8.77 (d, J = 4.4 Hz, 1H), 7.62 –7.57 (m, 1H), 7.52 – 7.50 (m, 1H), 7.49 (s, 1H), 7.42 – 7.35 (m, 5H), 6.83 (s, 2H), 6.24 (s, 1H), 4.32 – 4.20 (m, 2H), 4.19 – 4.02 (m, 2H), 2.23 (s, 3H), 1.58 (s, 6H), -0.07 (s, 6H).

^{10,5 10,0 9,5 9,0 8,5 8,0 7,5 7,0 6,5 6,0 5,5 5,0 4,5 4,0 3,5 3,0 2,5 2,0 1,5 1,0 0,6 0,0 -0,5 -1,0}

To a 15 mL oven dried Schlenk with **Complex B** (0.01 mmol) in dry degassed toluene (0.5 mL) under N₂ atmosphere were added Ni(cod)₂ (5.5 mg, 0.02 mmol) and 3-phenylpyridine (29.5 mg, 0.19 mmol). The tube was then sealed with a Teflon-lined screw cap, removed from the glove box, and stirred at 100 °C for 12 h. After cooled to room temperature, the mixture was concentrated under reduce pressure and the crude product was examined by ¹H NMR using CH₂Br₂ as the internal standard.

34% yield

4) Attempted detection of Ni-H intermediates via ¹H NMR

6. Typical Procedure for Ni-Catalyzed C3-Alkenylation

To a 15 mL oven dried tube were added ligand L_{10} (14.5 mg, 10 mol%), Ni(cod)₂ (11.0 mg, 10 mol%), and ^{*t*}BuONa (4.6 mg, 12.5 mol%) and dry degassed toluene (1.0

mL) under N₂ atmosphere. The mixture solution was stirred at 80 °C in a dry block heater for 30 mins and then cooled down to room temperature. The pyridine derivative 1 (0.4 mmol, 1 equiv.), AlⁱBu₃ (1.1 M/toluene, 36.3 μ L, 10 mol%) and alkyne (1.2 mmol, 3 equiv.) were added, and the tube was sealed and stirred at 100 °C in a dry block heater for 12 h. After that, the mixture was cooled to r.t., quenched with 2 mL of 5% EDTA disodium salt solution, filtered through a short plug of silica gel (EtOAc as the eluent) and concentrated *in vacuo* to afford a crude product. Further purification by flash column chromatography on silica gel (eluting with EtOAc/hexanes) gave the pure product.

(E)-3-(Oct-4-en-4-yl)pyridine (3a, C3-mono)³

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, $R_f = 0.3$) afforded **3a** (C3-mono) as yellow oil (40.8 mg, 0.216 mmol, 54% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.58 (br s, 1H), 8.44 (d, J = 4.0 Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.20 (dd, J = 7.8, 4.8 Hz, 1H), 5.68 (t, J = 7.3 Hz, 1H), 2.55 – 2.39 (m, 2H), 2.18 (q, J = 7.3 Hz, 2H), 1.55 – 1.41 (m, 2H), 1.40 – 1.27 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H), 0.87 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.0, 147.7, 138.9, 137.2, 133.6, 131.2, 123.1, 31.5, 30.7, 23.0, 21.7, 14.0, 14.0.

3,5-Di((E)-oct-4-en-4-yl)pyridine (3a, C3-di)

Purification via column chromatography on silica gel (*n*-hexane/EA = 20/1, v/v, $R_f = 0.4$) afforded **3a** (C3-*di*) as yellow oil (23.9 mg, 0.08 mmol, 20% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 2.0 Hz, 2H), 7.51 (t, J = 2.2 Hz, 1H), 5.69 (t, J = 7.4 Hz, 2H), 2.53 – 2.42 (m, 4H), 2.19 (q, J = 7.4 Hz, 4H), 1.55 – 1.43 (m, 4H), 1.41 – 1.29 (m, 4H), 0.97 (t, J = 7.4 Hz, 6H), 0.88 (t, J = 7.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 146.0, 138.2, 137.3, 131.2, 131.0, 31.6, 30.8, 23.1, 21.8, 14.1, 14.0. HRMS (ESI) m/z: calcd. for C₂₁H₃₄N (M+H)⁺ 300.2686, found 300.2682.

(*E*)-3-Methyl-5-(oct-4-en-4-yl)pyridine (3b)⁴

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, $R_f = 0.3$) afforded **3b** as yellow oil (59.6 mg, 0.244 mmol, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 1.6 Hz, 1H), 8.27 (s, 1H), 7.40 (s, 1H), 5.65 (t, J = 7.4 Hz,

1H), 2.50 – 2.40 (m, 2H), 2.31 (s, 3H), 2.17 (q, J = 7.4 Hz, 2H), 1.46 (dd, J = 14.8, 7.4 Hz, 2H), 1.33 (dd, J = 15.2, 7.6 Hz, 2H), 0.95 (t, J = 7.4 Hz, 3H), 0.86 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 145.2, 138.5, 137.2, 134.3, 132.4, 131.0, 31.6, 30.7, 23.0, 21.8, 18.5, 14.0, 13.9.

(E)-3-Benzyl-5-(oct-4-en-4-yl)pyridine (3c)

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, R_f = 0.3) afforded **3c** as yellow oil (64.8 mg, 0.232 mmol, 58% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.36 (d, *J* = 2.2 Hz, 1H), 8.24 (d, *J* = 2.2 Hz, 1H), 7.31 (t, *J* = 2.4 Hz, 1H), 7.24 – 7.17 (m, 2H), 7.15 – 7.06 (m, 3H), 5.57 (t, *J* = 7.2 Hz, 1H), 3.88 (s, 2H), 2.38 – 2.29 (m, 2H), 2.08 (q, *J* = 7.4 Hz, 2H), 1.36 (dt, *J* = 14.8, 7.4 Hz, 2H), 1.30 – 1.17 (m, 2H), 0.86 (t, *J* = 7.4 Hz, 3H), 0.77 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 145.9, 140.0, 138.5, 137.0, 135.6, 133.9, 131.0, 128.8, 128.7, 126.4, 39.1, 31.4, 30.7, 23.0, 21.7, 14.0, 13.9. **HRMS** (ESI) m/z: calcd. for C₂₀H₂₆N (M+H)⁺ 280.2060, found 280.2058.

(E)-3-(((tert-Butyldimethylsilyl)oxy)methyl)-5-(oct-4-en-4-yl)pyridine (3d)

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, R_f = 0.2) afforded **3d** as yellow oil (71.9 mg, 0.216 mmol, 54% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 2.0 Hz, 1H), 8.38 (d, *J* = 1.6 Hz, 1H), 7.58 (t, *J* = 2.0 Hz, 1H), 5.69 (t, *J* = 7.4 Hz, 1H), 4.75 (s, 2H), 2.51 – 2.43 (m, 2H), 2.18 (q, *J* = 7.3 Hz, 2H), 1.53 – 1.42 (m, 2H), 1.40 – 1.28 (m, 2H), 0.96 (d, *J* = 7.3 Hz, 3H), 0.94 – 0.92 (m, 9H), 0.87 (t, *J* = 7.4 Hz, 3H), 0.10 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 146.7, 145.9, 138.4, 137.1, 136.0, 131.5, 131.1, 62.9, 31.6, 30.7, 26.0, 23.0, 21.8, 18.4, 14.0, 14.0, -5.2. HRMS (ESI) m/z: calcd. for C₂₀H₃₆NOSi (M+H)⁺ 334.2561, found 334.2557.

(E)-3-Methoxy-5-(oct-4-en-4-yl)pyridine (3e)

Purification via column chromatography on silica gel (*n*-hexane/EA = 8/1, v/v, $R_f = 0.2$) afforded **3e** as yellow oil (54.3 mg, 0.248 mmol, 62% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.21 (br s, 1H), 8.16 (br s, 1H), 7.12 (s, 1H), 5.70 (t, *J* = 7.2 Hz, 1H), 3.87 (s, 3H), 2.46 (t, *J* = 7.6 Hz, 2H), 2.19 (q, *J* = 7.2 Hz, 2H), 1.53 – 1.43 (m, 2H), 1.35 (dt, *J*

= 14.6, 7.2 Hz, 2H), 0.97 (t, J = 7.4 Hz, 3H), 0.88 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 140.7, 139.7, 137.0, 135.0, 131.4, 118.7, 55.7, 31.7, 30.7, 23.0, 21.8, 14.1, 14.0. **HRMS** (ESI) m/z: calcd. for C₁₄H₂₂NO (M+H)⁺ 220.1696, found 220.1694.

(E)-3-(Oct-4-en-4-yl)-5-(pyrrolidin-1-yl)pyridine (3f)

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, R_f = 0.2) afforded **3f** as yellow oil (48.5 mg, 0.188 mmol, 47% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (br s, 1H), 7.86 (br s, 1H), 6.74 (s, 1H), 5.66 (t, *J* = 7.2 Hz, 1H), 3.32 (d, *J* = 6.0 Hz, 4H), 2.45 (t, *J* = 7.4 Hz, 2H), 2.17 (q, *J* = 7.2 Hz, 2H), 2.07 – 1.78 (m, 4H), 1.54 – 1.42 (m, 2H), 1.41 – 1.30 (m, 2H), 0.96 (t, *J* = 7.2 Hz, 3H), 0.87 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.5, 139.1, 138.0, 135.6, 132.5, 130.2, 115.8, 47.4, 31.8, 30.7, 25.5, 23.1, 21.8, 14.0, 14.0. **HRMS** (ESI) m/z: calcd. for C₁₇H₂₇N₂ (M+H)⁺ 259.2169, found 259.2166.

(E)-5-(Oct-4-en-4-yl)-N,N-diphenylpyridin-3-amine (3g)

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, $R_f = 0.2$) afforded **3g** as yellow oil (88.3 mg, 0.248 mmol, 62% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (d, J = 1.6 Hz, 1H), 8.11 (d, J = 2.4 Hz, 1H), 7.32 – 7.15 (m, 5H), 7.07 – 6.94 (m, 6H), 5.57 (t, J = 7.2 Hz, 1H), 2.33 – 2.24 (m, 2H), 2.06 (q, J = 7.4 Hz, 2H), 1.36 (dt, J = 14.8, 7.4 Hz, 2H), 1.23 (dt, J = 14.8, 7.4 Hz, 2H), 0.86 (t, J = 7.4 Hz, 3H), 0.76 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.1, 143.9, 143.3, 141.6, 139.1, 136.8, 131.1, 129.6, 127.7, 124.3, 123.6, 31.4, 30.7, 23.0, 21.7, 14.0, 13.9. HRMS (ESI) m/z: calcd. for C₂₅H₂₉N₂ (M+H)⁺ 357.2325, found 357.2322.

(E)-3-Fluoro-5-(oct-4-en-4-yl)pyridine (3h)

Purification via column chromatography on silica gel (*n*-hexane/EA = 20/1, v/v, $R_f = 0.2$) afforded **3h** as yellow oil (73.7 mg, 0.356 mmol, 89% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.36 (m, 1H), 8.30 (d, J = 4.8 Hz, 1H), 7.13 (t, J = 5.6 Hz, 1H), 5.68 (t, J = 7.2 Hz, 1H), 2.45 (t, J = 7.6 Hz, 2H), 2.19 (q, J = 7.2 Hz, 2H), 1.55 – 1.39 (m, 2H), 1.36 – 1.22 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H), 0.85 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.0 (d, J = 253.9 Hz), 145.7 (d, J = 4.6 Hz), 139.2 (d, J = 11.8

Hz), 138.4 (d, J = 26.1 Hz), 134.9, 134.0, 124.4, 31.8 (d, J = 2.6 Hz), 30.4, 22.8, 21.6, 13.9, 13.9. ¹⁹F NMR (376 Hz, CDCl₃) -130.41. HRMS (ESI) m/z: calcd. for $C_{13}H_{19}FN$ (M+H)⁺ 208.1496, found 208.1492.

(E)-3-(Oct-4-en-4-yl)-5-(trifluoromethyl)pyridine (3i)

Purification via column chromatography on silica gel (*n*-hexane/EA = 20/1, v/v, R_f = 0.2) afforded **3i** as yellow oil (82.3 mg, 0.320 mmol, 80% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 8.75 (br s, 1H), 8.71 (br s, 1H), 7.85 – 7.73 (m, 1H), 5.75 (t, *J* = 6.8 Hz, 1H), 2.57 – 2.40 (m, 2H), 2.21 (q, *J* = 6.6 Hz, 2H), 1.48 (dt, *J* = 14.0, 7.2 Hz, 2H), 1.41 – 1.27 (m, 2H), 1.04 – 0.93 (m, 3H), 0.92 – 0.81 (m, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 151.1, 144.4 (q, *J* = 3.8 Hz), 139.0, 136.0, 133.2, 130.4 (q, *J* = 3.4 Hz), 126.3 (q, *J* = 3.9 Hz), 123.7 (q, *J* = 270.8 Hz), 31.4, 30.8, 22.9, 21.7, 14.0, 13.9. ¹⁹**F** NMR (376 Hz, CDCl₃) -62.36. **HRMS** (ESI) m/z: calcd. for C₁₄H₁₉F₃N (M+H)⁺ 258.1464, found 258.1459.

(E)-Methyl 5-(oct-4-en-4-yl)nicotinate (3j)

Purification via column chromatography on silica gel (*n*-hexane/EA = 8/1, v/v, $R_f = 0.2$) afforded **3j** as yellow oil (60.3 mg, 0.244 mmol, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.05 (d, J = 1.8 Hz, 1H), 8.72 (d, J = 2.2 Hz, 1H), 8.20 (t, J = 2.0 Hz, 1H), 5.75 (t, J = 7.4 Hz, 1H), 3.95 (s, 3H), 2.58 – 2.46 (m, 2H), 2.20 (q, J = 7.4 Hz, 2H), 1.48 (dt, J = 14.8, 7.4 Hz, 2H), 1.34 (dt, J = 14.8, 7.4 Hz, 2H), 0.97 (t, J = 7.4 Hz, 3H), 0.88 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 151.6, 148.7, 138.7, 136.3, 134.5, 132.5, 125.6, 52.5, 31.4, 30.8, 22.9, 21.7, 14.0, 13.9. HRMS (ESI) m/z: calcd. for C₁₅H₂₂NO₂ (M+H)⁺ 248.1645, found 248.1641.

(E)-N,N-Diisopropyl-5-(oct-4-en-4-yl)nicotinamide (3k)⁵

Purification via column chromatography on silica gel (*n*-hexane/EA = 2/1, v/v, $R_f = 0.3$) afforded **3k** as yellow oil (70.8 mg, 0.224 mmol, 56% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.57 (br s, 1H), 8.40 (br s, 1H), 7.61 – 7.51 (m, 1H), 5.71 (t, J = 7.4 Hz, 1H), 4.04 – 3.36 (m, 2H), 2.59 – 2.38 (m, 2H), 2.18 (q, J = 7.4 Hz, 2H), 1.75 – 1.40 (m, 7H), 1.40 – 1.28 (m, 4H), 1.28 – 1.06 (m, 5H), 0.95 (t, J = 7.2 Hz, 3H), 0.86 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.7, 148.1, 144.4, 138.8, 136.6, 133.9, 132.1,

131.2, 31.4, 30.8, 22.9, 21.7, 20.9, 14.0, 13.9. **HRMS** (ESI) m/z: calcd. for $C_{20}H_{33}N_2O$ (M+H)⁺ 317.2587, found 317.2582.

(E)-3-(Oct-4-en-4-yl)-5-phenylpyridine (3l)⁴

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, R_f = 0.2) afforded **3l** as yellow oil (75.3 mg, 0.284 mmol, 71% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.68 (br s, 1H), 8.57 (br s, 1H), 7.78 (d, *J* = 1.4 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 2H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.44 – 7.36 (m, 1H), 5.76 (t, *J* = 7.2 Hz, 1H), 2.53 (t, *J* = 7.6 Hz, 2H), 2.22 (q, *J* = 7.4 Hz, 2H), 1.56 – 1.45 (m, 2H), 1.45 – 1.34 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H), 0.90 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 146.3, 138.8, 138.3, 137.2, 136.1, 132.1, 131.5, 129.1, 128.1, 127.3, 31.6, 30.8, 23.0, 21.8, 14.0, 14.0. HRMS (ESI) m/z: calcd. for C₁₉H₂₄N (M+H)⁺ 266.1903, found 266.1899.

(E)-3-(Naphthalen-2-yl)-5-(oct-4-en-4-yl)pyridine (3m)

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, R_f = 0.2) afforded **3m** as yellow oil (107.1 mg, 0.340 mmol, 85% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.84 (d, *J* = 2.0 Hz, 1H), 8.63 (d, *J* = 2.0 Hz, 1H), 8.08 (d, *J* = 1.8 Hz, 1H), 8.01 – 7.89 (m, 4H), 7.75 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.60 – 7.50 (m, 2H), 5.83 (t, *J* = 7.2 Hz, 1H), 2.65 – 2.55 (m, 2H), 2.27 (q, *J* = 7.2 Hz, 2H), 1.56 (dt, *J* = 14.8, 7.4 Hz, 2H), 1.45 (dt, *J* = 14.8, 7.4 Hz, 2H), 1.03 (t, *J* = 7.4 Hz, 3H), 0.95 (t, *J* = 7.4Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 146.9, 146.6, 138.9, 137.2, 136.1, 135.5, 133.7, 132.9, 132.3, 131.6, 128.9, 128.3, 127.8, 126.7, 126.5, 126.3, 125.3, 31.6, 30.8, 23.0, 21.8, 14.1, 14.0. **HRMS** (ESI) m/z: calcd. for C₂₃H₂₆N (M+H)⁺ 316.2060, found 316.2058.

(E)-3-(4-Methoxyphenyl)-5-(oct-4-en-4-yl)pyridine (3n)

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, $R_f = 0.2$) afforded **3n** as yellow oil (97.9 mg, 0.332 mmol, 83% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.64 (d, J = 1.6 Hz, 1H), 8.51 (d, J = 2.1 Hz, 1H), 7.74 (t, J = 2.2 Hz, 1H), 7.53 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 5.75 (t, J = 7.2 Hz, 1H), 3.86 (s, 3H), 2.59 – 2.44 (m, 2H), 2.21 (q, J = 7.2 Hz, 2H), 1.50 (dt, J = 14.8, 7.4 Hz, 2H), 1.39 (dt, J = 14.8, 7.4 Hz, 2H), 0.98 (t, J = 7.4 Hz, 3H), 0.89 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz,

CDCl₃) δ 159.8, 146.2, 146.0, 138.8, 137.2, 135.7, 131.7, 131.4, 130.6, 128.4, 114.6, 55.5, 31.6, 30.8, 23.0, 21.8, 14.1, 14.0. **HRMS** (ESI) m/z: calcd. for C₂₀H₂₆NO (M+H)⁺ 296.2009, found 296.2005.

(E)-3-(Oct-4-en-4-yl)-5-(4-(trimethylsilyl)phenyl)pyridine (30)

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, R_f = 0.2) afforded **30** as yellow oil (120.0 mg, 0.356 mmol, 89% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.69 (d, *J* = 2.0 Hz, 1H), 8.57 (d, *J* = 2.0 Hz, 1H), 7.79 (t, *J* = 2.2 Hz, 1H), 7.65 (d, *J* = 8.2 Hz, 2H), 7.59 (d, *J* = 8.2 Hz, 2H), 5.77 (t, *J* = 7.2 Hz, 1H), 2.58 – 2.50 (m, 2H), 2.22 (q, *J* = 7.2 Hz, 2H), 1.51 (dt, *J* = 14.8, 7.4 Hz, 2H), 1.40 (dt, *J* = 14.8, 7.4 Hz, 2H), 0.99 (t, *J* = 7.4 Hz, 3H), 0.90 (t, *J* = 7.4 Hz, 3H), 0.32 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 146.3, 140.4, 138.8, 138.6, 137.1, 136.1, 134.1, 132.1, 131.5, 126.7, 31.6, 30.8, 23.0, 21.8, 14.1, 14.0, -1.0. **HRMS** (ESI) m/z: calcd. for C₂₂H₃₂NSi (M+H)⁺ 338.2299, found 338.2294.

(*E*)-3-(Oct-4-en-4-yl)-5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)py ridine (3p)

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, R_f = 0.2) afforded **3p** as light yellow solid (106.4 mg, 0.272 mmol, 68% yield), m.p. 73.0 - 73.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, *J* = 2.2 Hz, 1H), 8.57 (d, *J* = 2.2 Hz, 1H), 7.92 (d, *J* = 8.0 Hz, 2H), 7.79 (t, *J* = 2.2 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 2H), 5.76 (t, *J* = 7.2 Hz, 1H), 2.62 – 2.45 (m, 2H), 2.22 (q, *J* = 7.2 Hz, 2H), 1.58 – 1.44 (m, 2H), 1.44 – 1.38 (m, 2H), 1.37 (s, 12H), 0.98 (t, *J* = 7.4 Hz, 3H), 0.90 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.1, 146.4, 140.9, 138.9, 137.1, 136.0, 135.6, 132.2, 131.6, 126.6, 84.0, 31.6, 30.8, 25.0, 23.0, 21.8, 14.1, 14.0. HRMS (ESI) m/z: calcd. for C₂₅H₃₅BNO₂ (M+H)⁺ 392.2755, found 392.2758.

(E)-3-(Oct-4-en-4-yl)-4-phenylpyridine (3q)

Purification via column chromatography on silica gel (*n*-hexane/EA = 15/1, v/v, $R_f = 0.2$) afforded **3q** as yellow oil (31.8 mg, 0.120 mmol, 30% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 5.0 Hz, 1H), 8.42 (s, 1H), 7.46 – 7.35 (m, 5H), 7.18 (d, *J* = 5.0 Hz, 1H), 5.57 (t, *J* = 7.4 Hz, 1H), 2.12 (q, *J* = 7.4 Hz, 2H), 1.83 – 1.76 (m, 2H), 1.45 (dt, *J* =

14.8, 7.4 Hz, 2H), 1.07 (dt, J = 14.8, 7.4 Hz, 2H), 0.95 (t, J = 7.4 Hz, 3H), 0.68 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 150.9, 148.2, 146.9, 139.6, 138.6, 138.3, 133.3, 128.6, 128.4, 128.1, 124.1, 32.3, 30.5, 22.9, 21.5, 14.0, 13.9. **HRMS** (ESI) m/z: calcd. for C₁₉H₂₄N (M+H)⁺ 266.1903, found 266.1901.

(E)-4-Fluoro-3-(oct-4-en-4-yl)-5-phenylpyridine (3r)

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, $R_f = 0.2$) afforded **3r** as yellow oil (101.9 mg, 0.360 mmol, 90% yield). ¹H NMR (400 MHz) δ 8.53 (d, J = 9.4 Hz, 1H), 8.39 (d, J = 9.2 Hz, 1H), 7.62 – 7.52 (m, 2H), 7.51 – 7.45 (m, 2H), 7.45 – 7.38 (m, 1H), 5.61 (t, J = 7.2 Hz, 1H), 2.47 (t, J = 7.6 Hz, 2H), 2.27 – 2.16 (m, 2H), 1.55 – 1.45 (m, 2H), 1.38 – 1.31 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H), 0.88 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.7 (d, J = 262.3 Hz), 151.0 (d, J = 4.9 Hz), 150.3 (d, J = 3.6 Hz), 134.1, 132.9, 132.5, 129.3, 129.3, 128.8, 128.5, 125.2 (d, J = 11.8 Hz), 32.4 (d, J = 2.0 Hz), 30.4, 22.9, 21.6, 13.9, 13.9. ¹⁹F NMR (376 Hz, CDCl₃) -112.40. HRMS (ESI) m/z: calcd. for C₁₉H₂₃NF (M+H)⁺ 284.1809, found 284.1804.

(*E*)-2-Fluoro-5-(oct-4-en-4-yl)pyridine (3t)

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, R_f = 0.2) afforded **3t** as yellow oil (24.9 mg, 0.120 mmol, 30% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (d, J = 5.4 Hz, 1H), 7.16 – 7.03 (m, 1H), 6.83 (s, 1H), 5.91 (t, J = 7.4 Hz, 1H), 2.43 (t, J = 7.8 Hz, 2H), 2.19 (q, J = 7.4 Hz, 2H), 1.54 – 1.42 (m, 2H), 1.40 – 1.30 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H), 0.88 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.5 (d, J = 236.1 Hz), 156.6 (d, J = 7.7 Hz), 147.2 (d, J = 15.3 Hz), 137.3 (d, J = 2.1 Hz), 133.6, 118.9 (d, J = 3.4 Hz), 106.3 (d, J = 37.0 Hz), 31.0, 30.8, 22.8, 21.8, 14.0, 13.9. ¹⁹F NMR (376 Hz, CDCl₃) -69.37. HRMS (ESI) m/z: calcd. for C₁₃H₁₉FN (M+H)⁺ 208.1496, found 208.1492.

(*E*)-2-Fluoro-4-(oct-4-en-4-yl)pyridine (3t')

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, $R_f = 0.2$) afforded **3t'** as yellow oil (48.8 mg, 0.236 mmol, 59% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 4.6 Hz, 1H), 7.62 – 7.54 (m, 1H), 7.14 – 7.05 (m, 1H),

5.55 (t, J = 7.4 Hz, 1H), 2.43 (t, J = 7.6 Hz, 2H), 2.22 – 2.11 (m, 2H), 1.51 – 1.38 (m, 2H), 1.33 – 1.20 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H), 0.84 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.7 (d, J = 238.2 Hz), 145.4 (d, J = 15.1 Hz), 140.6 (d, J = 5.6 Hz), 134.8 (d, J = 4.4 Hz), 133.7, 126.7 (d, J = 29.3 Hz), 121.3 (d, J = 4.3 Hz), 31.9 (d, J = 3.2 Hz), 30.4, 22.8, 21.6, 13.9, 13.8. ¹⁹F NMR (376 Hz, CDCl₃) -68.78. HRMS (ESI) m/z: calcd. for C₁₃H₁₉FN (M+H)⁺ 208.1496, found 208.1494.

(E)-4-(Oct-4-en-4-yl)pyridazine (3u)

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, $R_f = 0.2$) afforded **3u** as yellow oil (63.0 mg, 0.332 mmol, 83% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 9.20 (s, 1H), 9.06 (d, J = 5.4 Hz, 1H), 7.42 – 7.32 (m, 1H), 6.04 (t, J = 7.2 Hz, 1H), 2.57 – 2.42 (m, 2H), 2.25 (q, J = 7.2 Hz, 2H), 1.59 –1.45 (m, 2H), 1.44 – 1.32 (m, 2H), 0.98 (t, J = 7.2 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 151.1, 149.7, 140.5, 135.3, 134.9, 122.4, 30.9, 30.3, 22.6, 21.7, 13.9, 13.9. **HRMS** (ESI) m/z: calcd. for C₁₂H₁₉N₂ (M+H)⁺ 191.1543, found 191.1542.

(*E*)-5-(Oct-4-en-4-yl)pyrimidine (3v)

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, $R_f = 0.2$) afforded **3v** as yellow oil (38.0 mg, 0.200 mmol, 50% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 9.03 (br s, 1H), 8.66 (br s, 2H), 5.73 (t, J = 7.2 Hz, 1H), 2.45 (t, J = 7.6 Hz, 2H), 2.28 – 2.03 (m, 2H), 1.46 (dt, J = 14.4, 7.2 Hz, 2H), 1.35 (dq, J = 15.0, 7.4 Hz, 2H), 0.94 (t, J = 7.4 Hz, 3H), 0.87 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156.8, 154.4, 136.3, 134.1, 133.1, 31.1, 30.7, 22.8, 21.7, 14.0, 13.9. **HRMS** (ESI) m/z: calcd. for C₁₂H₁₉N₂ (M+H)⁺ 191.1543, found 191.1541.

(*E*)-5-(Oct-4-en-4-yl)-2-phenylpyrimidine (3w)

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, $R_f = 0.2$) afforded **3w** as yellow oil (69.2 mg, 0.260 mmol, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 2H), 8.50 – 8.38 (m, 2H), 7.55 – 7.42 (m, 3H), 5.82 (t, *J* = 7.2 Hz, 1H), 2.51 (t, *J* = 7.6 Hz, 2H), 2.23 (q, *J* = 7.34 Hz, 2H), 1.52 (dt, *J* = 14.6, 7.4 Hz, 2H), 1.41 (dt, *J* = 14.8, 7.4 Hz, 2H), 0.98 (t, *J* = 7.4 Hz, 3H), 0.91 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.8, 154.7, 137.6, 134.3, 133.7, 132.3, 130.5, 128.7, 128.0, 31.1,

30.8, 22.9, 21.8, 14.0, 13.9. **HRMS** (ESI) m/z: calcd. for $C_{18}H_{23}N_2 (M+H)^+$ 267.1856, found 267.1851.

(*E*)-3-(Oct-4-en-4-yl)quinoline $(3x)^4$

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, R_f = 0.2) afforded **3u** as yellow oil (34.2 mg, 0.144 mmol, 36% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.95 (s, 1H), 8.07 (d, *J* = 8.4 Hz, 1H), 8.00 (s, 1H), 7.79 (d, *J* = 8.2 Hz, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 7.51 (t, *J* = 7.4 Hz, 1H), 5.85 (t, *J* = 7.2 Hz, 1H), 2.59 (t, *J* = 7.5 Hz, 2H), 2.65 – 2.54 (m, 2H), 1.52 (dt, *J* = 14.8, 7.4 H, 2H), 1.41 (dt, *J* = 14.8, 7.4 Hz, 2H), 1.00 (t, *J* = 7.2 Hz, 3H), 0.91 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 150.1, 147.1, 137.3, 136.1, 132.0, 131.8, 129.2, 128.8, 128.1, 127.8, 126.7, 31.6, 30.9, 23.1, 21.8, 14.0, 14.0.

(*E*)-4-(Oct-4-en-4-yl)quinoline $(3x')^4$

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, R_f = 0.2) afforded **3**x' as yellow oil (34.0 mg, 0.142 mmol, 36% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.82 (d, *J* = 4.4 Hz, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 8.08 – 7.97 (m, 1H), 7.72 – 7.65 (m, 1H), 7.54 – 7.47 (m, 1H), 7.16 (d, *J* = 4.4 Hz, 1H), 5.52 (t, *J* = 7.4 Hz, 1H), 2.52 (q, *J* = 8.8, 2H), 2.32 – 2.24 (m, 2H), 1.58 – 1.48 (m, 2H), 1.35 – 1.26 (m, 2H), 1.01 (q, *J* = 7.4 Hz, 3H), 0.87 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.7, 150.0, 148.7 137.3, 132.9, 129.8, 129.1, 127.4, 126.2, 126.0, 120.3, 34.2, 30.4, 23.0, 21.8, 14.1, 14.1.

(E)-3-Fluoro-5-(hex-3-en-3-yl)pyridine (4a)

Purification via column chromatography on silica gel (*n*-hexane/EA = 20/1, v/v, $R_f = 0.2$) afforded **4a** as yellow oil (65.9 mg, 0.368 mmol, 92% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 2.2 Hz, 1H), 8.31 (d, J = 5.0 Hz, 1H), 7.18 – 7.10 (m, 1H), 5.65 (t, J = 7.2 Hz, 1H), 2.47 (q, J = 7.4 Hz, 2H), 2.22 (quint, J = 7.4 Hz, 2H), 1.06 (t, J = 7.6 Hz, 3H), 0.92 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.1 (d, J = 254.0 Hz), 145.7 (d, J = 5.0 Hz), 138.8 (d, J = 26.1 Hz), 138.4 (d, J = 27.0 Hz), 135.7 (d, J = 2.0 Hz), 135.0, 124.4, 23.0 (d, J = 2.0 Hz), 21.6, 14.2, 13.3. ¹⁹F NMR (376 Hz,

CDCl₃) -130.28. **HRMS** (ESI) m/z: calcd. for $C_{11}H_{15}FN (M+H)^+$ 180.1183, found 180.1180.

(E)-3-(Dec-5-en-5-yl)-5-fluoropyridine (4b)

Purification via column chromatography on silica gel (*n*-hexane/EA = 20/1, v/v, $R_f = 0.2$) afforded **4b** as yellow oil (78.0 mg, 0.332 mmol, 83% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 2.4 Hz, 1H), 8.29 (dd, J = 4.8, 0.8 Hz, 1H), 7.11 (dd, J = 6.6, 5.0 Hz, 1H), 5.65 (t, J = 7.2 Hz, 1H), 2.54 – 2.38 (m, 2H), 2.20 (q, J = 7.2 Hz, 2H), 1.50 – 1.32 (m, 4H), 1.30 – 1.20 (m, 4H), 0.92 (t, J = 7.0 Hz, 3H), 0.83 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.1 (d, J = 253.9 Hz), 145.6 (d, J = 4.9 Hz), 139.2 (d, J = 11.7 Hz), 138.4 (d, J = 26.1 Hz), 134.8 (d, J = 2.6 Hz), 134.0 (d, J = 0.9 Hz), 124.3, 31.7, 30.6, 29.5 (d, J = 2.6 Hz) 28.1, 22.5, 22.5, 14.1, 13.9. ¹⁹F NMR (376 Hz, CDCl₃) -130.39. HRMS (ESI) m/z: calcd. for C₁₅H₂₃FN (M+H)⁺ 236.1809, found 236.1807.

(E)-3-(Dodec-6-en-6-yl)-5-fluoropyridine (4c)

Purification via column chromatography on silica gel (*n*-hexane/EA = 20/1, v/v, R_f = 0.2) afforded **4c** as yellow oil (86.2 mg, 0.328 mmol, 82% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.29 (d, *J* = 2.6 Hz, 1H), 8.23 (d, *J* = 4.8 Hz, 1H), 7.06 (dd, *J* = 6.6, 5.0 Hz, 1H), 5.60 (t, *J* = 7.2 Hz, 1H), 2.50 – 2.32 (m, 2H), 2.13 (q, *J* = 7.2 Hz, 2H), 1.45 – 1.32 (m, 2H), 1.31 – 1.23 (m, 4H), 1.22 – 1.07 (m, 6H), 0.88 – 0.80 (m, 3H), 0.80 – 0.71 (m, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 157.0 (d, *J* = 253.9 Hz), 145.6 (d, *J* = 4.9 Hz), 139.1 (d, *J* = 11.7 Hz), 138.3 (d, *J* = 26.1 Hz), 134.8 (d, *J* = 2.3 Hz), 134.0 (d, *J* = 1.0 Hz), 124.3 (d, *J* = 1.4 Hz), 31.6, 29.7 (d, *J* = 2.5 Hz), 29.2, 28.4, 28.1, 22.6, 22.5, 14.1, 14.0. ¹⁹**F NMR** (376 Hz, CDCl₃) -130.37. **HRMS** (ESI) m/z: calcd. for C₁₇H₂₇FN (M+H)⁺ 264.2122, found 264.2125.

(E)-3-Fluoro-5-(tetradec-7-en-7-yl)pyridine (4d)

Purification via column chromatography on silica gel (*n*-hexane/EA = 20/1, v/v, $R_f = 0.2$) afforded **4d** as yellow oil (105.9 mg, 0.364 mmol, 91% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 2.4 Hz, 1H), 8.30 (d, J = 4.8 Hz, 1H), 7.12 (dd, J = 6.6, 5.0 Hz, 1H), 5.66 (t, J = 7.2 Hz, 1H), 2.54 – 2.39 (m, 2H), 2.20 (q, J = 7.2 Hz, 2H),

1.52 – 1.40 (m, 2H), 1.39 – 1.28 (m, 6H), 1.28 – 1.19 (m, 8H), 0.95 – 0.79 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 158.7 (d, J = 250.0 Hz), 145.7 (d, J = 4.9 Hz), 139.1 (d, J = 11.7 Hz), 138.5 (d, J = 26.1 Hz), 134.9 (d, J = 2.2 Hz), 134.1 (d, J = 1.0 Hz), 124.3 (d, J = 1.6 Hz), 31.8, 31.7, 29.8 (d, J = 2.5 Hz), 29.5, 29.1, 28.4, 22.7, 22.7, 14.2, 14.1. ¹⁹F NMR (376 Hz, CDCl₃) -130.38. HRMS (ESI) m/z: calcd. for C₁₉H₃₁FN (M+H)⁺ 292.2435, found 292.2431.

(E)-3-(2,9-Dimethyldec-5-en-5-yl)-5-fluoropyridine (4e)

Purification via column chromatography on silica gel (*n*-hexane/EA = 20/1, v/v, $R_f = 0.2$) afforded **4e** as yellow oil (97.9 mg, 0.372 mmol, 93% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.35 (d, J = 2.2 Hz, 1H), 8.29 (d, J = 4.8 Hz, 1H), 7.16 – 7.04 (m, 1H), 5.64 (t, J = 7.2 Hz, 1H), 2.51 – 2.41 (m, 2H), 2.20 (q, J = 7.6 Hz, 2H), 1.61 (dq, J = 13.4, 6.6 Hz, 1H), 1.49 (dq, J = 13.4, 6.6 Hz, 1H), 1.32 (q, J = 7.2 Hz, 2H), 1.19 – 1.10 (m, 2H), 0.91 (d, J = 6.6 Hz, 6H), 0.84 (d, J = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 157.0 (d, J = 254.1 Hz), 145.7 (d, J = 4.8 Hz), 139.2 (d, J = 11.6 Hz), 138.4 (d, J = 26.1 Hz), 134.7 (d, J = 2.4 Hz), 134.1, 124.3 (d, J = 0.5 Hz), 38.7, 37.7, 28.0, 27.8 , 27.8 (d, J = 2.5 Hz), 26.3, 22.6, 22.5. ¹⁹F NMR (376 Hz, CDCl₃) -130.28. HRMS (ESI) m/z: calcd. for C₁₇H₂₇FN (M+H)⁺ 264.2122, found 264.2119.

(*E*)-3-Fluoro-5-(hept-2-en-2-yl)pyridine (4f) (*E*)-3-Fluoro-5-(hept-2-en-3-yl)pyridine (4f')

Purification via column chromatography on silica gel (*n*-hexane/EA = 20/1, v/v, $R_f = 0.2$) afforded **4f** + **4f** 'as yellow oil (71.8 mg, 0.372 mmol, 93% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.35 (d, J = 2.4 Hz, 1H), 8.29 (d, J = 4.8 Hz, 1H), 7.20 – 7.06 (m, 1H), 5.85 – 5.71 (m, 1H), 2.46 (t, J = 7.0 Hz, 0.5 H), 2.20 (q, J = 7.2 Hz, 1.5H), 1.99 (s, 2.3H), 1.80 (d, J = 7.0 Hz, 0.7H), 1.48 – 1.31 (m, 3H), 1.30 – 1.18 (m, 1H), 0.92 (t, J = 7.1 Hz, 2.2H), 0.87 – 0.80 (m, 0.8H). ¹³C NMR (100 MHz, CDCl₃) δ 156.9 (d, J = 253.7 Hz), 156.8 (d, J = 254.2 Hz), 145.6 (d, J = 4.8 Hz), 145.6 (d, J = 4.8 Hz), 139.6 (d, J = 10.9 Hz), 139.0 (d, J = 11.9 Hz), 138.4 (d, J = 26.1 Hz), 138.3 (d, J = 26.1 Hz), 135.2 (d, J = 3.1 Hz), 134.9 (d, J = 0.9 Hz), 128.7 (d, J = 0.9 Hz), 128.5 (d, J = 2.3 Hz), 124.1, 123.3, 31.2, 30.3, 29.1 (d, J = 2.4 Hz), 28.3, 22.4, 22.4, 16.0 (d, J = 3.3 Hz), 14.0, 13.9, 13.8. ¹⁹F NMR (376 Hz, CDCl₃) -130.48, -130.16. HRMS (ESI) m/z: calcd. for C₁₂H₁₇FN (M+H)⁺ 194.1340, found 194.1340.

(E)-3-Fluoro-5-(4-methylpent-2-en-2-yl)pyridine (4g)

Purification via column chromatography on silica gel (*n*-hexane/EA = 20/1, v/v, R_f = 0.2) afforded **4g** as yellow oil (58.7 mg, 0.328 mmol, 82% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.36 (d, *J* = 2.6 Hz, 1H), 8.30 (d, *J* = 4.8 Hz, 1H), 7.15 (dd, *J* = 6.8, 4.8 Hz, 1H), 5.63 (d, *J* = 12.0, 1H), 2.77 – 2.62 (m, 1H), 2.02 (s, 3H), 1.05 (d, *J* = 6.6 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 157.0 (d, *J* = 254.2 Hz), 145.7 (d, *J* = 4.9 Hz), 142.3 (d, *J* = 3.0 Hz), 139.7 (d, *J* = 10.9 Hz), 138.5 (d, *J* = 26.1 Hz), 126.9 (d, *J* = 0.8 Hz), 123.5 (d, *J* = 1.4 Hz), 27.9, 22.6, 16.1 (d, *J* = 3.5 Hz). ¹⁹**F NMR** (376 Hz, CDCl₃) -129.97. **HRMS** (ESI) m/z: calcd. for C₁₁H₁₅FN (M+H)⁺ 180.1183, found 180.1181.

(E)-3-(4,4-Dimethylpent-2-en-2-yl)-5-fluoropyridine (4h)

Purification via column chromatography on silica gel (*n*-hexane/EA = 20/1, v/v, $R_f = 0.2$) afforded **4h** as yellow oil (67.9 mg, 0.352 mmol, 88% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 2.6 Hz, 1H), 8.32 (d, J = 4.6 Hz, 1H), 7.24 – 7.05 (m, 1H), 5.86 (s, 1H), 2.17 (s, 3H), 0.20 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 156.9 (d, J = 254.1 Hz), 145.7 (d, J = 5.0 Hz), 144.5 (d, J = 1.5 Hz), 141.7 (d, J = 11.4 Hz), 138.4 (d, J = 25.9 Hz), 128.4, 123.9, 33.3, 30.7, 17.5 (d, J = 3.4 Hz). ¹⁹F NMR (376 Hz, CDCl₃) -130.30. HRMS (ESI) m/z: calcd. for C₁₂H₁₇FN (M+H)⁺ 194.1340, found 194.1339.

(E)-3-Fluoro-5-(1-(trimethylsilyl)prop-1-en-2-yl)pyridine (4i)

Purification via column chromatography on silica gel (*n*-hexane/EA = 20/1, v/v, $R_f = 0.2$) afforded **4i** as yellow oil (65.2 mg, 0.312 mmol, 78% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.37 (d, J = 2.6 Hz, 1H), 8.32 (d, J = 4.6 Hz, 1H), 7.23 – 7.09 (m, 1H), 5.86 (s, 1H), 2.17 (s, 3H), 0.2 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 155.6 (d, J = 255.6 Hz), 146.0, 145.7 (d, J = 4.7 Hz), 140.6 (d, J = 11.7 Hz), 138.6 (d, J = 25.9 Hz), 135.1 (d, J = 0.8 Hz), 123.21, 21.5 (d, J = 3.5 Hz), -0.2. ¹⁹**F NMR** (376 Hz, CDCl₃) -129.87. **HRMS** (ESI) m/z: calcd. for C₁₁H₁₇FNSi (M+H)⁺ 210.1109, found 210.1108.

(Z)-3-(1,4-Bis(trimethylsilyl)but-2-en-2-yl)-5-fluoropyridine (4j)

Purification via column chromatography on silica gel (*n*-hexane/EA = 20/1, v/v, $R_f = 0.2$) afforded **4j** as yellow oil (112.1 mg, 0.380 mmol, 95% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 2.6 Hz, 1H), 8.28 (d, J = 4.8 Hz, 1H), 7.13 (dd, J = 6.6, 5.0 Hz, 1H), 5.64 (t, J = 8.6 Hz, 1H), 1.93 (s, 2H), 1.59 (d, J = 8.6 Hz, 2H), 0.04 (s, 9H), -0.13 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 157.0 (d, J = 253.4 Hz), 145.6 (d, J = 4.8 Hz), 140.8 (d, J = 11.2 Hz), 138.5 (d, J = 26.4 Hz), 128.7, 128.4 (d, J = 2.4 Hz), 124.1, 20.5, -0.9, -1.5. ¹⁹F NMR (376 Hz, CDCl₃) -119.77. HRMS (ESI) m/z: calcd. for C₁₅H₂₇FNSi₂ (M+H)⁺ 296.1661, found 296.1660.

(*E*)-3-Fluoro-5-(2,2,3,3,12,12,13,13-octamethyl-4,11-dioxa-3,12-disilatetradec-7-e n-7-yl)pyridine (4k)

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, R_f = 0.2) afforded **4k** as yellow oil (126.4 mg, 0.288 mmol, 72% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 2.0 Hz, 1H), 8.30 (d, *J* = 4.7 Hz, 1H), 7.20 – 7.08 (m, 1H), 5.80 (t, *J* = 7.2 Hz, 1H), 3.70 (t, *J* = 6.6 Hz, 2H), 3.55 (t, *J* = 6.8 Hz, 2H), 2.72 (t, *J* = 6.8 Hz, 2H), 2.46 (q, *J* = 6.8 Hz, 2H), 0.88 (s, 9H), 0.81 (s, 9H), 0.05 (s, 6H), -0.06 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 156.8 (d, *J* = 254.4 Hz), 145.6 (d, *J* = 4.7 Hz), 138.7 (d, *J* = 11.2 Hz), 138.3 (d, *J* = 26.0 Hz), 132.8 (d, *J* = 2.1 Hz), 132.5, 124.3, 62.4, 61.5, 33.5 (d, *J* = 2.2 Hz), 32.2, 25.9, 25.8, 18.3, 18.2, -5.3, -5.5. ¹⁹F NMR (376 Hz, CDCl₃) -129.87. HRMS (ESI) m/z: calcd. for C₂₃H₄₃FNO₂Si₂ (M+H)⁺ 440.2811, found 440.2809.

(E)-3-(1,8-Dimethoxyoct-4-en-4-yl)-5-fluoropyridine (4l)

Purification via column chromatography on silica gel (*n*-hexane/EA = 1/1, v/v, $R_f = 0.3$) afforded **4l** as yellow oil (82.2 mg, 0.308 mmol, 77% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.37 (br s, 1H), 8.31 (d, J = 4.4 Hz, 1H), 7.13 (t, J = 5.6 Hz, 1H), 5.70 (t, J = 7.2 Hz, 1H), 3.40 (t, J = 6.4 Hz, 2H), 3.33 (s, 3H), 3.29 (t, J = 6.4 Hz, 2H), 3.26 (s, 3H), 2.55 (t, J = 7.6 Hz, 2H), 2.30 (q, J = 7.4 Hz, 2H), 1.77 – 1.66 (m, 2H), 1.60 – 1.48 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156.9 (d, J = 253.9 Hz), 145.6 (d, J = 4.7 Hz), 138.6 (d, J = 11.8 Hz), 138.3, 134.5 (d, J = 2.1 Hz), 133.7, 124.1, 71.9, 71.8,

58.6, 58.4, 29.3, 28.2, 26.2 (d, J = 2.1 Hz), 24.9. ¹⁹F NMR (376 Hz, CDCl₃) -130.10. HRMS (ESI) m/z: calcd. for C₁₅H₂₃FNO₂ (M+H)⁺ 268.1707, found 268.1704.

(*E*)-3-Fluoro-5-(2,2,3,3,14,14,15,15-octamethyl-4,13-dioxa-3,14-disilahexadec-8-e n-8-yl)pyridine (4m)

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, R_f = 0.2) afforded **4m** as yellow oil (175.6 mg, 0.376 mmol, 94% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.31 (d, J = 2.4 Hz, 1H), 8.25 (d, J = 4.6 Hz, 1H), 7.16 – 6.96 (m, 1H), 5.67 (t, J = 7.2 Hz, 1H), 3.60 (t, J = 6.2 Hz, 2H), 3.49 (t, J = 6.2 Hz, 2H), 2.56 – 2.42 (m, 2H), 2.24 (q, J = 7.4 Hz, 2H), 1.69 – 1.53 (m, 2H), 1.51 – 1.38 (m, 2H), 0.84 (s, 9H), 0.81 (s, 9H), -0.00 (s, 6H), -0.05 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 156.9 (d, J = 254.1 Hz), 145.6 (d, J = 4.9 Hz), 138.7 (d, J = 11.2 Hz), 138.4 (d, J = 26.1 Hz), 134.6 (d, J = 2.5 Hz), 133.7 (d, J = 1.2 Hz), 124.1, 62.4, 62.3, 32.5, 31.5, 26.0 (d, J = 2.3 Hz), 25.9, 25.9, 24.7, 18.3, 18.2, -5.3, -5.4. ¹⁹F NMR (376 Hz, CDCl₃) -130.19. **HRMS** (ESI) m/z: calcd. for C₂₅H₄₇FNO₂Si₂ (M+H)⁺ 468.3124, found 468.3124.

(*S*,*E*)-3-(5-((*tert*-Butyldimethylsilyl)oxy)-4-methylpent-2-en-2-yl)-5-fluoropyridin e (4n)

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, R_f = 0.2) afforded **4n** as yellow oil (93.9 mg, 0.304 mmol, 76% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.34 (br s, 1H), 8.29 (br s, 1H), 7.23 – 7.01 (m, 1H), 5.58 (d, *J* = 9.4 Hz, 1H), 3.49 (d, *J* = 6.6 Hz, 2H), 2.81 – 2.66 (m, 1H), 2.02 (s, 3H), 1.01 (d, *J* = 6.6 Hz, 3H), 0.86 (s, 9H), 0.01 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 156.8 (d, *J* = 256.8 Hz), 145.6 (d, *J* = 3.3 Hz), 139.5 (d, *J* = 10.8 Hz), 138.4 (d, *J* = 25.2 Hz), 137.8 (d, *J* = 2.8 Hz), 129.2, 123.3, 67.5, 36.0, 25.8, 18.3, 16.7, 16.4 (d, *J* = 3.2 Hz), -5.4. ¹⁹F NMR (376 Hz, CDCl₃) -129.79. HRMS (ESI) m/z: calcd. for C₁₇H₂₉FNOSi (M+H)⁺ 310.1997, found 310.1993.

(*E*)-3-(6-((*tert*-Butyldimethylsilyl)oxy)-4,4-dimethylpent-2-en-2-yl)-5-fluoropyridi ne (40)

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, $R_f = 0.2$) afforded **40** as yellow oil (71.4 mg, 0.212 mmol, 53% yield). ¹H NMR (400 MHz,

CDCl₃) δ 8.36 (s, 1H), 8.30 (d, J = 4.8 Hz, 1H), 7.10 (t, J = 5.6 Hz, 1H), 5.62 (s, 1H), 3.70 (t, J = 7.6 Hz, 2H), 2.09 (s, 3H), 1.77 (t, J = 7.6 Hz, 2H), 1.22 (s, 6H), 0.88 (s, 9H), 0.04 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156.8 (d, J = 251.0 Hz), 145.7 (d, J= 5.2 Hz), 143.0, 141.6 (d, J = 11.8 Hz), 138.5 (d, J = 25.9Hz), 129.0, 123.8, 60.6, 46.1, 35.6, 29.2, 26.1, 18.4, 17.7 (d, J = 2.5 Hz), -5.2. ¹⁹**F NMR** (376 Hz, CDCl₃) -130.38. **HRMS** (ESI) m/z: calcd. for C₁₉H₃₃FNOSi (M+H)⁺ 338.2310, found 338.2305.

(1*R*,2*S*,5*R*)-2-Isopropyl-5-methylcyclohexyl 5-((*E*)-oct-4-en-4-yl)nicotinate (5a) Purification via column chromatography on silica gel (*n*-hexane/EA = 8/1, v/v, $R_f = 0.2$) afforded 5a as yellow oil (111.3 mg, 0.298 mmol, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.03 (d, *J* = 1.4 Hz, 1H), 8.71 (d, *J* = 2.0 Hz, 1H), 8.22 – 8.16 (m, 1H), 5.74 (t, *J* = 7.4 Hz, 1H), 5.02 – 4.90 (m, 1H), 2.50 (q, *J* = 7.6 Hz, 2H), 2.20 (q, *J* = 7.6 Hz, 2H), 2.16 – 2.08 (m, 1H), 1.98 – 1.88 (m, 1H), 1.78 – 1.68 (m, 2H), 1.63 – 1.52 (m, 2H), 1.52 – 1.42 (m, 2H), 1.40 – 1.28(m, 2H), 1.21 – 1.07 (m, 2H), 1.02 – 0.85 (m, 13H), 0.82 – 0.76 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 151.4, 148.7, 138.7, 136.4, 134.5, 132.3, 126.2, 75.6, 47.3, 41.0, 34.3, 31.6, 31.4, 30.8, 26.7, 23.8, 23.0, 22.1, 21.7, 20.8, 16.7, 14.0, 13.9. HRMS (ESI) m/z: calcd. for C₂₄H₃₈NO₂ (M+H)⁺ 372.2897, found 372.2893.

(1*S*,2*S*,4*R*)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl5-((*E*)-oct-4-en-4-yl)nicotinat e (5b)

Purification via column chromatography on silica gel (*n*-hexane/EA = 8/1, v/v, $R_f = 0.2$) afforded **5b** as yellow oil (113.7 mg, 0.306 mmol, 77% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.06 (d, J = 1.8 Hz, 1H), 8.72 (d, J = 2.2 Hz, 1H), 8.19 (t, J = 2.0 Hz, 1H), 5.74 (t, J = 7.4 Hz, 1H), 5.20 – 5.03 (m, 1H), 2.55 – 2.41 (m, 3H), 2.19 (q, J = 7.3 Hz, 2H), 2.14 – 2.02 (m, 1H), 1.86 – 1.75 (m, 1H), 1.75 – 1.70 (m, 1H), 1.53 – 1.43 (m, 2H), 1.38 – 1.26 (m, 3H), 1.11 (dd, J = 13.8, 3.4 Hz, 1H), 0.98 – 0.93 (m, 6H), 0.93 – 0.80 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 151.4, 148.6, 138.7, 136.3, 134.4, 132.3, 126.2, 81.2, 49.2, 48.0, 45.0, 37.0, 31.4, 30.8, 28.1, 27.4, 22.9, 21.7, 19.8, 19.0, 14.0, 13.9, 13.7. HRMS (ESI) m/z: calcd. for C₂₄H₃₆NO₂ (M+H)⁺ 370.2741, found 370.2736.

((3*aS*,5*aR*,8*aR*,8*bS*)-2,2,7,7-Tetramethyltetrahydro-3*aH*-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-yl)methyl 5-((*E*)-oct-4-en-4-yl)nicotinate (5c)

Purification via column chromatography on silica gel (*n*-hexane/EA = 8/1, v/v, $R_f = 0.2$) afforded **5c** as yellow oil (79.8 mg, 0.166 mmol, 42% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 9.07 (d, J = 2.0 Hz, 1H), 8.72 (d, J = 2.2 Hz, 1H), 8.22 (t, J = 2.2 Hz, 1H), 5.72 (t, J = 7.4 Hz, 1H), 4.69 – 4.61 (m, 2H), 4.44 (d, J = 2.6 Hz, 1H), 4.37 (d, J = 11.8 Hz, 1H), 4.25 (dd, J = 8.0, 1.2 Hz, 1H), 3.95 (dd, J = 13.0, 1.8 Hz, 1H), 3.84 – 3.76 (m, 1H), 2.52 – 2.41 (m, 2H), 2.19 (q, J = 7.4 Hz, 2H), 1.54 (s, 3H), 1.51 – 1.41 (m, 5H), 1.37(s, 3H), 1.35 – 1.26 (m, 5H), 0.95 (t, J = 7.4 Hz, 3H), 0.86 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 151.7, 148.7, 138.8, 136.2, 134.7, 132.6, 125.3, 109.3, 109.0, 101.6, 70.8, 70.6, 70.1, 65.6, 61.5, 31.3, 30.8, 26.6, 26.0, 25.6, 24.1, 22.9, 21.7, 14.0, 13.9. **HRMS** (ESI) m/z: calcd. for C₂₆H₃₈NO₇ (M+H)⁺ 476.2643, found 476.2639.

(3*aS*,4*R*,5*S*,6*aR*)-4-(((*tert*-Butyldimethylsilyl)oxy)methyl)-2-oxohexahydro-2*H*-cyc lopenta[b]furan-5-yl 5-((*E*)-oct-4-en-4-yl)nicotinate (5d)

Purification via column chromatography on silica gel (*n*-hexane/EA = 4/1, v/v, $R_f = 0.2$) afforded **5b** as yellow oil (122.2 mg, 0.242 mmol, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.01 (d, J = 1.8 Hz, 1H), 8.72 (d, J = 2.2 Hz, 1H), 8.14 (t, J = 2.2 Hz, 1H), 5.76 (t, J = 7.4 Hz, 1H), 5.35 (dt, J = 6.2, 3.2 Hz, 1H), 5.06 (t, J = 5.8 Hz, 1H), 3.74 (dd, J = 10.2, 4.8 Hz, 1H), 3.68 (dd, J = 10.2, 4.6 Hz, 1H), 2.96 – 2.84 (m, 2H), 2.59 – 2.44 (m, 4H), 2.40 – 2.25 (m, 2H), 2.20 (q, J = 7.43 Hz, 2H), 1.55 – 1.44 (m, 2H), 1.40 – 1.28 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H), 0.91 – 0.85 (m, 12H), 0.05 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 176.6, 165.3, 151.9, 148.8, 138.8, 136.3, 134.4, 132.6, 125.2, 85.1, 79.1, 63.3, 54.9, 40.5, 39.0, 36.2, 31.2, 30.9, 25.9, 22.9, 21.7, 18.3, 14.1, 13.9, -5.5. HRMS (ESI) m/z: calcd. for C₂₈H₄₄NO₅Si (M+H)⁺ 502.2983, found 502.2982.

(3*S*,8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-10,13-Dimethyl-17-((*R*)-6-methylheptan-2-yl)-2,3,4,7 ,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 5-((*E*)-oct-4-en-4-yl)nicotinate (5e)

Purification via column chromatography on silica gel (*n*-hexane/EA = 10/1, v/v, $R_f = 0.2$) afforded **5f** as yellow oil (149.1 mg, 0.247 mmol, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.03 (d, J = 1.6 Hz, 1H), 8.70 (d, J = 2.0 Hz, 1H), 8.25 – 8.15 (m, 1H), 5.74 (t, J = 7.4 Hz, 1H), 5.46 – 5.38 (m, 1H), 4.95 – 4.80 (m, 1H), 2.58 – 2.40 (m, 4H), 2.20 (q, J = 7.3 Hz, 2H), 2.04 – 1.92(m, 4H), 1.87 – 1.70 (m, 2H), 1.61 – 1.44 (m, 8H), 1.39 – 1.30 (m, 5H), 1.25 – 1.06 (m, 11H), 1.04 – 0.99 (m, 6H), 0.93 – 0.89 (m, 4H), 0.88 – 0.83 (m, 8H), 0.68 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 151.4, 148.7, 139.6, 138.7, 136.4, 134.5, 132.3, 126.1, 123.1, 75.3, 56.8, 56.2, 50.1, 42.4, 39.8, 39.6, 38.3, 37.1, 36.7, 36.3, 35.9, 32.0, 32.0, 31.4, 30.8, 28.3, 28.1, 27.9, 24.4, 23.9, 23.0, 22.9, 22.7, 21.7, 21.2, 19.5, 18.8, 14.0, 13.9, 12.0. HRMS (ESI) m/z: calcd. for $C_{41}H_{64}NO_2$ (M+H)⁺ 602.4932, found 602.4929.

(3a*S*,6a*R*)-*tert*-Butyl 5-(5-((*E*)-oct-4-en-4-yl)pyridin-3-yl)-3,3a,6,6a-tetrahydrocyclopenta[c]pyrrole-2(1H)-carboxylate (5f)

Purification via column chromatography on silica gel (*n*-hexane/EA = 1/1, v/v, $R_f = 0.2$) afforded **5e** as yellow oil (91.9 mg, 0.231 mmol, 58% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.50 (s, 1H), 8.44 (s, 1H), 7.60 (s, 1H), 6.12 (s, 1H), 5.68 (t, J = 7.2 Hz, 1H), 3.85 – 3.63 (m, 1H), 3.62 – 3.39 (m, 3H), 3.21 – 2.91 (m, 3H), 2.71 – 2.55 (m, 1H), 2.48 (t, J = 7.6 Hz, 2H), 2.20 (q, J = 7.4 Hz, 2H), 1.56 – 1.46 (m, 2H), 1.44 (s, 9H), 1.35 (q, J = 7.4 Hz, 2H), 0.97 (t, J = 7.4 Hz, 3H), 0.89 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 148.4, 148.4, 146.9, 145.3, 138.6, 137.1, 131.4, 130.9, 130.6, 79.3, 31.6, 30.7, 28.6, 23.0, 21.7, 14.0, 14.0. HRMS (ESI) m/z: calcd. for C₂₅H₃₇N₂O₂ (M+H)⁺ 397.2850, found 397.2847.

3-((3*S*,8*R*,9*S*,10*R*,13*S*,14*S*)-3-((*tert*-Butyldimethylsilyl)oxy)-10,13-dimethyl-2,3,4,7 ,8,9,10,11,12,13,14,15-dodecahydro-1*H*-cyclopenta[a]phenanthren-17-yl)-5-((*E*)-o ct-4-en-4-yl)pyridine (5g)

Purification via column chromatography on silica gel (*n*-hexane/EA = 8/1, v/v, $R_f = 0.2$) afforded **5i** as yellow oil (144.5 mg, 0.253 mmol, 63% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 1.8 Hz, 1H), 8.43 (d, J = 1.8 Hz, 1H), 7.63 – 7.46 (t, J = 2.0 Hz, 1H), 6.03 – 5.95 (m, 1H), 5.68 (t, J = 7.2 Hz, 1H), 5.41 – 5.31 (m, 1H), 3.57 – 3.42 (m, 1H), 2.53 – 2.40 (m, 2H), 2.34 – 2.15 (m, 5H), 2.10 – 1.99 (m, 3H), 1.83 – 1.44 (m, 11H), 1.41 – 1.30 (m, 2H), 1.12 – 1.00 (m, 8H), 0.96 (t, J = 7.4 Hz, 3H), 0.89 (s, 12H), 0.06 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 146.2, 145.9, 142.0, 138.2, 137.2, 132.3, 131.4, 131.0, 129.1, 120.9, 72.7, 57.7, 50.6, 47.5, 43.0, 37.4, 36.9, 35.4, 32.2, 31.9, 31.7, 31.6, 30.8, 30.6, 26.0, 23.1, 21.8, 21.0, 19.5, 18.4, 16.7, 14.0, 14.0, -4.5. HRMS (ESI) m/z: calcd. for C₃₈H₆₀NOSi (M+H)⁺ 574.4439, found 574.4440.

3-((8*R*,9*S*,13*S*,14*S*)-13-Methyl-6,7,8,9,11,12,13,14,15,16-decahydrospiro[cyclopen ta[a]phenanthrene-17,2'-[1,3]dioxolan]-3-yl)-5-((*E*)-oct-4-en-4-yl)pyridine (5h)

Purification via column chromatography on silica gel (*n*-hexane/EA = 8/1, v/v, $R_f = 0.2$) afforded **5g** as yellow oil (164.9 mg, 0.320 mmol, 85% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, J = 2.0 Hz, 1H), 8.53 (d, J = 2.0 Hz, 1H), 7.75 (t, J = 2.0 Hz, 1H), 7.48 – 7.33 (m, 2H), 7.31 (br s, 1H), 5.75 (t, J = 7.2 Hz, 1H), 4.01 – 3.86 (m, 4H), 3.02 – 2.90 (m, 2H), 2.57 – 2.48 (m, 2H), 2.44 – 2.29 (m, 2H), 2.21 (q, J = 7.4 Hz, 2H), 2.10 – 2.01 (m, 1H), 2.00 – 1.92 (m, 1H), 1.89 – 1.76 (m, 3H), 1.72 – 1.63 (m, 1H), 1.62 – 1.55 (m, 2H), 1.53 – 1.44 (m, 4H), 1.44 – 1.35 (m, 3H), 0.98 (t, J = 7.4 Hz, 3H), 0.93 – 0.86 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 146.5, 146.2, 140.6, 138.7, 137.7, 137.2, 136.1, 135.5, 132.0, 131.3, 127.9, 126.2, 124.6, 119.5, 65.4, 64.7, 49.5, 46.2, 44.1, 38.9, 34.3, 31.6, 30.8, 30.8, 29.7, 27.0, 26.1, 23.0, 22.5, 21.8, 14.4, 14.0, 14.0. HRMS (ESI) m/z: calcd. for C₃₃H₄₄NO₂ (M+H)⁺ 486.3367, found 486.3363.

3-((8*R*,9*S*,13*S*,14*S*,17*R*)-17-((*tert*-Butyldimethylsilyl)oxy)-13-methyl-7,8,9,11,12,13 ,14,15,16,17-decahydro-6*H*-cyclopenta[a]phenanthren-3-yl)-5-((*E*)-oct-4-en-4-yl) pyridine (5i)

Purification via column chromatography on silica gel (*n*-hexane/EA = 8/1, v/v, R_f = 0.2) afforded **5h** as yellow oil (185.1 mg, 0.334 mmol, 83% yield). ¹H NMR (400

MHz, CDCl₃) δ 8.66 (d, J = 2.0 Hz, 1H), 8.53 (d, J = 2.0 Hz, 1H), 7.75 (t, J = 2.0 Hz, 1H), 7.46 – 7.36 (m, 2H), 7.33 – 7.28 (m, 1H), 5.75 (t, J = 7.4 Hz, 1H), 3.67 (t, J = 8.2 Hz, 1H), 2.96 (dd, J = 8.6, 3.8 Hz, 2H), 2.60 – 2.45 (m, 2H), 2.41 – 2.32 (m, 1H), 2.29 – 2.28 (m, 1H), 2.25 – 2.15 (m, 2H), 1.99 – 1.90 (m, 3H), 1.75 – 1.63 (m, 1H), 1.62 – 1.54 (m, 1H), 1.53 – 1.44 (dt, J = 7.1, 5.2 Hz, 4H), 1.43 – 1.33 (m, 4H), 1.29 – 1.14 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H), 0.93 – 0.88 (m, 12H), 0.77 (s, 3H), 0.08 – 0.01 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 146.5, 146.2, 140.8, 138.8, 137.7, 137.2, 136.1, 135.5, 132.0, 131.4, 127.9, 126.3, 124.6, 81.8, 49.9, 44.6, 43.7, 38.8, 37.3, 31.6, 31.1, 30.8, 29.8, 27.3, 26.4, 26.0, 23.4, 23.1, 21.8, 18.2, 14.1, 14.0, 11.5, -4.5 (J = 33.8 Hz). HRMS (ESI) m/z: calcd. for C₃₇H₅₆NOSi (M+H)⁺ 558.4126, found 558.4117.

7. Reference

- 1 Wolf, J.; Labande, A.; Natella, M.; Daran, J.-C.; Poli, R. J. Mol. Catal. A 2006, 259, 205.
- 2. Prühs, S.; Lehmann, C. W.; Fürstner, A. Organometallics 2004, 23, 280.
- 3. Nakao, Y.; Yamada, Y.; Kashihara, N.; Hiyama, T. J. Am. Chem. Soc. 2010, 132, 13666.
- 4. Tsai, C.-C.; Shih, W.-C.; Fang, C.-H.; Li, C.-Y.; Ong, T.-G.; Yap, G. P. A. J. Am. Chem. Soc. 2010, 132, 11887.
- 5. Deguest, G.; Devineau, A.; Bischoff, L.; Fruit, C.; Marsais, F. Org. Lett. 2006, 8, 5889.

8. NMR Spectra

Parameter	Value
1 Origin	Bruker BioSpin GmbH
2 Solvent	CDCI3
3 Temperature	298.0
4 Spectrometer Frequency 400.13	
5 Nucleus	1H

- 821 - 821 - 825 - 816 - 725 - 726

8.38 8.38 8.38 8.39 8.31 <li

Parameter	Value
1 Origin	Bruker BioSpin GmbH
2 Solvent	CDCI3
3 Temperature	298.0
4 Spectrometer Frequency 400.13	
5 Nucleus	1H

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 fl (ppm)

8.73 8.73 8.74 8.71 8.75 8.75 8.73 8.74 8.75 8.75 8.75 8.75 8.74 8.75</l

Parameter	Value	
1 Origin	Bruker BioSpin GmbH	
2 Solvent	CDCI3	
3 Temperature	298.0	
4 Spectrometer Frequency 400.13		
5 Nucleus	1H	

3i

9105 (1912) (191

Parameter	Value	
1 Origin	Bruker BioSpin GmbH	
2 Solvent	CDCI3	
3 Temperature	298.0	
4 Spectrometer Frequency 400.13		
5 Nucleus	1H	

S57 / 101

ker BioSpin GmbH		
1.8		
4 Spectrometer Frequency 376.59		

fl (ppm)

-130.16 -130.48

0.96H

8.0

0.93H

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

3.01-]

9.07-

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.| fl (ppm)

S91 / 101

$\begin{array}{c} 9.01\\ 9.02\\ 9.03\\ 9.03\\ 9.04\\ 9.05\\ 9.04\\ 9.05\\$

	1.1					1 1 1 1 1 1 1 1				
Parameter	Value									
1 Origin	Bruker BioSpin GmbH									
2 Solvent	CDCI3									
3 Temperature	298.1									
4 Spectrometer Freque	ncy 100.61									
5 Nucleus	13C									
	5e		ⁿ Pr ⁿ Pr H							
210 200 190 1	180 170 160 150	140 130 120 11	0 100 90 f1 (ppm)	80 70	60 50	40 3	30 20	10	0	-10

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

