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Abstract
Background: The National COVID-19 Chest Imaging Database (NCCID) is a centralised database containing chest X-rays,
Computed Tomography (CT) scans and cardiac Magnetic Resonance Images (MRI) from patients across the UK. The
objective of the initiative is to support a better understanding of the coronavirus SARS-CoV-2 disease (COVID-19) and
the development of machine learning technologies that will improve care for patients hospitalised with a severe
COVID-19 infection. The NCCID is now accumulating data from 20 NHS sites across England and Wales, with a total
contribution of approximately 25,000 imaging studies in the training set (at time of writing) and is actively being used
as a research tool by several organisations. Findings: This paper introduces the training dataset, including a snapshot
analysis covering: the completeness of clinical data, and availability of image data for the various use-cases (diagnosis,
prognosis, longitudinal risk). Findings suggests the NCCID is well suited for developing clinical models, but developers
should take care to mitigate the common model confounders, e.g., equipment type, that are highlighted. In addition, a
cohort analysis was performed to measure the representativeness of the NCCID to the wider COVID-19 affected
population. Three major aspects were included: geographic, demographic and temporal coverage, revealing good
alignment in some categories, e.g., sex, whilst also identifying areas for improvements to data collection methods,
particularly with respect to geographic coverage. Conclusion: The NCCID is a growing resource that provides researchers
with a large, high-quality database that can be leveraged to support the response to the COVID-19 pandemic.
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Background

Radiology has played a significant role during the pandemic, in-
forming our understanding of the COVID-19 disease [1, 2, 3, 4]
and guiding decision making along care pathways. Clinicians
have identified characteristic features of COVID-19 acute res-
piratory distress from thoracic imaging studies; such features
can be used to differentiate COVID-19 patients from those suf-
fering other respiratory conditions [3, 5, 6]. However, these
differences in disease manifestation are often subtle [7] and
may be more quantitatively delineated using computational
methods.

One corollary of the widespread adoption of radiology dur-
ing the pandemic is the accumulation of large volumes of clini-
cal imaging data spread across hospital sites throughout the UK.
The National COVID-19 Chest Imaging Database (NCCID) was
established to collate this mass of X-ray, CT and MRI scans into
an accessible imaging database. The end goal of the NCCID is to
facilitate researchers and technology developers in the creation
of fair, effective and generalisable machine learning (ML) tech-
nologies that can support diagnosis, prognosis and risk strat-
ification of the COVID-affected population, ultimately aiding
clinicians to improve patient outcomes.

The initiative was formed as part of the NHS AI lab’s mis-
sion of enabling the safe adoption of AI technologies in the NHS
[8] and was successfully set up through partnerships with the
Royal Surrey NHS Foundation Trust (RSNFT), the British Soci-
ety of Thoracic Imaging (BSTI) and Faculty, an AI technology
company. This combination of data processing and clinical ex-
pertise has been leveraged to create a data warehouse compris-
ing pseudonymised thoracic imaging and relevant clinical data
points for thousands of patients across the UK. Further infor-
mation on the NCCID’s remit and rationale are described in an
article in the European Respiratory Journal [9].

A portion of the data is transferred to the training set, which
contained 24,465 imaging studies from 7,685 patients at time
of writing (latest figures can be found on the NCCID informa-
tion page). The remaining portion of data is allocated to the
validation set, which is protected as a hold-out set for NHSX to
conduct future performance assessments of COVID-19 chest-
imaging AI technologies, ensuring that they are safe and ef-
fective before testing in a real-world clinical setting. Results
presented in this paper are solely focused on the training data,
in order to maintain the integrity of the validation data as a
hold-out benchmarking tool.

This article aims to describe key characteristics of the data

and indicate its usefulness for developing algorithms that can
support COVID-19 diagnosis and prognosis from chest images.
The work was conducted on pseudonymised data within the
existing NHSE AWS cloud infrastructure for the NCCID. To pre-
serve the privacy of individuals, suppression of small numbers
has been implemented throughout the paper. Suppressed data
is indicated within plots and tables by the presence of an aster-
isk (*) for categories containing less than 7 individuals.

As the data is submitted in two parts - the images them-
selves, and the clinical data separately - the analysis has natu-
rally been structured in this manner with an additional investi-
gation of how the geographic, demographic and temporal cov-
erage of the dataset compares with publicly available datasets
for the wider COVID-affected population. The implications of
these findings for developing algorithms related to COVID-19
is provided in the Discussion, alongside a list of future aims
that have been identified to improve the dataset.

Methods

Database Setup

Figure 1 provides an overview of the data collection pipeline for
the NCCID warehouse, which can be broadly broken down into
the following stages:

i. NCCID participating collection sites (hospitals) are re-
quested to contribute imaging data for patients that have un-
dergone a real-time Reverse Transcription Polymerase Chain
Reaction (RT-PCR) test for COVID-19. In addition to the im-
ages, two spreadsheets with different fields for the positive
and negative cases are populated to capture accompanying
clinical data (see clinical data and supplementary resources
for more information).
ii. The Scientific Computing Team at RSNFT have estab-
lished a dedicated node on Sectra’s Image Exchange Portal
(IEP) for receiving the images. IEP is a widely used net-
work for sharing images between hospitals. The images
are received by a SMART (Secure Medical-Image Anonymiser
Receiver for Trials) box in Random Access Memory (RAM)
and de-identified before writing to disk, ensuring that no
patient identifiable information leaves the sites. The clin-
ical data spreadsheet is also de-identified by means of a
common pseudonym, generated via a one-way hashing al-
gorithm combined with a complex salt and uploaded to a

Figure 1. Diagram of the data collection pipeline for the NCCID warehouse.

https://nhsx.github.io/covid-chest-imaging-database/stats.html
https://nhsx.github.io/covid-chest-imaging-database/stats.html
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web portal. Upon receiving images and clinical information,
RSNFT links the two sources using the pseudonym. Patient’s
unique digital identifiers (NHS number or equivalent for de-
volved nations) are also encrypted using an Advanced Encryp-
tion Standard (AES) algorithm and a complex salt to allow
linkage with other national-level datasets.

iii. The data is transferred to a central NCCID data warehouse
hosted inside NHS England’s (NHSE) Amazon Web Services
(AWS) infrastructure, designed and implemented by Faculty
and NHXS. The warehouse is backed by a single Simple Stor-
age Service (S3) bucket within a separate sub-account under
NHSE’s AWS organisation. All data within the S3 bucket is en-
crypted at rest using AES-256 encryption. Data is regularly
split into training and validation sets based on a randomi-
sation of patients: once a patient has entered the training
or validation set, any new images for that patient are auto-
matically added to the same set. The codebase for warehouse
infrastructure is open-source (see Code Availability).
iv. Data users that have been approved through the DAR pro-
cess can access the training set. Image files are available in
DICOM format, and clinical data is stored as JSON files. AWS
credentials for the S3 bucket are provided to an organisation
via an encrypted communication. Further support, including
guidelines and code for access the data are provided through
the information site

Inclusion Criteria

The inclusion criteria for individuals within the NCCID
database are as follows:
• The person has undergone a COVID-19 swab test (RT-PCR).

The outcome of the test may have been positive or negative.
Some individuals may have undergone multiple swab tests;

• The person has undergone chest imaging in the three weeks
before or after the swab.

The positive cohort consists of the individuals that returned
one or more positive swab tests. All imaging data associated
with a positive patient’s COVID-19 hospital episode have been
requested. To provide insight on longitudinal risk factors, his-
torical images up to January 2017 are also requested.

The negative cohort consists of individuals for whom all ac-
quired swab tests return negative. This may differ from some
clinical databases where the control cohort represents healthy
individuals but was deemed the correct method for curating
a dataset that could train the most useful diagnostic models
that differentiate COVID-19 characteristic features from other
respiratory conditions. Thoracic images acquired within the
six-week window surrounding the test are requested.

Although the status of a patient’s RT-PCR swab test serves
as a proxy for ground truth, users should be aware of the lim-
itations of these labels. In particular, this method of testing
has a relatively low sensitivity score, where estimates range
from 0.71-0.98 [10], this causes the false omission rate to be
quite high. In addition, the probability of having a COVID-19
infection is higher in those attending hospital with respiratory
symptoms, than for the general public. Given these factors,
data users should expect the negative cohort to contain a non-
negligible portion of mislabelled positive patients. Additional
clinical assessment of the images may be required to improve
the accuracy of labels.

Imaging Data

The NCCID is a continually growing asset, as such, all subse-
quent figures and analyses reported in this paper refer to the

training data as of 29 October 2020 (unless otherwise stated).
On this date, the NCCID training dataset contained data for
7,500 patients; Table 1 details how this cohort is split by con-
trol/disease and data availability. There were 1,307 patients
with clinical data only due to the fact that the accompanying
images had not yet been uploaded by the PACS teams.

Table 2 details the image modality breakdown for the pa-
tients that have had their imaging data uploaded to the train-
ing dataset. The majority of the image studies (see glossary in
Appendix A for definition) in the NCCID are X-rays, followed
by CTs. Only a small number of MRIs, 17, have been submit-
ted, therefore MRI data is excluded from further analysis. A
single patient may have multiple studies within the NCCID, for
instance, if multiple diagnostic scans were taken during their
treatment pathway or historic scans were provided (see image
characteristics section for more details).

Clinical Data

The NCCID sites have been asked to provide additional clinical
information alongside imaging data for any patients that have
tested positively for COVID-19 via the RT-PCR swab test. The
intended purpose of this additional information is to provide
researchers with insight into potential causal risk factors, such
as comorbidities, as well as potential variables that indicate
severity of disease. The clinical data can be broken down into
five broad categories:

i. Demographic information - age, sex, ethnicity. This data
is discussed in detail in the demographics section.
ii. Important dates - such as swab dates, image dates and
date of admission.

iii. Patient medical history, specifying any pre-existing condi-
tions, and the current use of some drugs such as blood pres-
sure medications.
iv. Admissionmetrics, detailing the condition of the patient on
admission to hospital i.e., blood pressure, lymphocyte count,
partial pressure of O2 etc.
v. COVID information, pertaining to how the patient was
treated (intubation, admitted to ITU), the results of their RT-
PCR-tests, the severity associated with their chest X-ray [11],
and their ultimate COVID and mortality status.
For patients in the control cohort, only a subset of this infor-

mation was requested: patient pseudonym, submitting centre,
date of RT-PCR, and result of RT-PCR. This decision was made
to reduce the burden on busy ward staff during the pandemic.
Schemas for both spreadsheets are available through the sup-
plementary resources section.

Initial investigation of the clinical data revealed several data
quality issues, as can be expected during a pandemic when re-
sources and time are understandably limited. Issues included:
non-numeric values, such as blank spaces reported for numeric
fields; inconsistency of date/time formats with some entries
in US (month-day-year) versus UK (day-month-year) format;
mismatch in format for reporting categorical data (e.g., M, F
for Male, Female versus 0, 1); different sites using different
unit scales to report clinical metrics, e.g., mg/L versus ng/L.
To address many of these issues a data cleaning pipeline was
created and made publicly available to data users, alongside ad-
ditional details on the data quality issues, and guidance on the
expected format of the clinical data fields (see supplementary
resources section).

Missing values in the demographic data were backfilled us-
ing a segmentation dataset provided by NHS England and Im-
provement (NHSEI) for ethnicity data (internal resource, ci-
tation pending), and DICOM header information for sex and

https://nhsx.github.io/covid-chest-imaging-database/data_access.html
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Table 1. Breakdown of patient cohorts
PCR-RT swab status: Patients with images and clinical data: Patients with clinical data only Totals:
Positive patients 2,881 287 3,168
Negative patients 3,312 1,020 4,332
Totals: 6,193 1,307 7,500

Table 2. Modality breakdown of image studies by patient cohort
PCR-RT swab status No. of X-ray studies No. of CT studies Totals

Positive patients 11,725 1,565 13,294
Negative patients 5,532 1,112 6,651
Totals: 17,257 2,677 19,945

age. Making these sensitive attributes available to users is vi-
tal for measuring and facilitating equality of care, particularly
through bias mitigation of ML models. As such, the additional
source of ethnicity data has also been made available to data
users.

The results that are reported in this paper are based on the
cleaned data for which known errors, such as non-numerical
entries have been removed. Text input has been parsed to ex-
tract embedded numeric values, and categorical values have
been mapped to standard schemas. Issues arising from am-
biguous dates (i.e., 03/04 vs 04/03) and mixed measurement
units have not been fully rectified by the cleaning pipeline and
may persist.

Data Validation

The following analyses are provided to aid data users in under-
standing the suitability of the NCCID training dataset for devel-
oping diagnostic and prognostic algorithms based on COVID-19
chest imaging:

i. Clinical data completeness: assess the completeness and
quality of the clinical data, particularly in relation to perti-
nent information (e.g., comorbidities, disease severity, out-
comes) that can provide additional training variables or la-
bels for ML models.
ii. Imaging characteristics: considers the availability of histor-
ical data for longitudinal studies, the implications of the tim-
ing of image acquisition along care pathways, and potential
model confounders such as the scanner type.

iii. Cohort analysis: to inform NCCID users of any potential
biases in the training dataset that could impede their abil-
ity to develop fair, effective, and generalisable AI models. To
achieve this, we compared the geographic, demographic, and
temporal distributions of patients in the NCCID with publicly
available datasets, measuring how far the data is representa-
tive of the wider population that has been affected by COVID-
19.

The subsequent sections follow the structure of the above three
categories, each containing a description of the methodology
(if applicable) alongside the key results. The implications of
these findings for building ML models are elaborated in the
discussion section.

Clinical data completeness

To understand the utility and limitations of the clinical data
with respect to developing diagnostic or prognostic AI mod-
els, we assessed the completeness of each field in the four cat-
egories: important dates, patient medical history, admission
metrics, and COVID information. Completeness was quantified
in terms of the percentage of null and not-null values submit-

ted for each field across all COVID-positive patients.
Figure 2 A-D show the completeness of the clinical data af-

ter applying the cleaning pipeline (see the clinical data method-
ology section). For each field of the clinical data, the percentage
of entries with non-null values are shown in orange against
the percentage of null values in blue. The data exhibits vary-
ing degrees of completeness with several well-reported fields
present in over 80% of patients, but the majority of fields are
between 0%-50% complete. The subsequent subsections in-
vestigate each plot more closely.
Dates
The date of 1st PCR result, positive COVID swab, latest COVID
swab, admission, and 1st chest X-ray (CXR) were well re-
ported, with 79-97% coverage, whilst dates of subsequent
PCR tests/results, X-rays, ITU admission, intubation and death
were present for just 4-50% of patients. Coverage for date of
death increased from 14.6% to 66% when limiting analysis to
the subset of patients for whom the death status had also been
reported as positive.
Medical history
The presence of cardiovascular disease (CVS) and chronic kid-
ney diseases (CKD) were both reported for approximately 90%
of patients. The presence of other pre-existing conditions, hy-
pertension, type 2 diabetes mellitus, and lung diseases were re-
ported for 66%, 55% and 51% of patients, respectively. The use
of angiotensin receptor blockers, ACE inhibitors (ACEI), and
non-steroidal anti-inflammatory drugs (NSAID) were known
for between 40-43% of patients. The patient’s smoking sta-
tus (never, previous, current) was known for 25% of patients,
with the packs per year history known for 4.4%, increasing to
25% when filtering for patients with current or previous smok-
ing status. Finally, the stage of chronic kidney disease (if CKD,
stage) was available for 7.5% of patients overall, rising to 49%
in the subset in which CKD is reported.

For all of these fields other than pack year history and CKD
stage, the reporting includes the negative status of not having
the condition. Missing values include that the presence of the
condition was marked as unknown or left blank.
Admission metrics
Of the clinical measurements recorded when a patient is ad-
mitted to hospital, blood pressure (systolic and diastolic) was
available for 84% of patients and was by far the most complete
field in this category. The majority of remaining fields were
reported for between 33-48% of patients. However, Ferritin,
FiO2, Troponin I, Fibrinogen, and D-dimer were reported for
10-19% of patients, and Troponin T, APACHE score and O2 sat-
uration for only 1-3% of patients.
COVID information
The most complete COVID information by far was the result
of the 1st PCR test and death status, which were present for
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Figure 2. Completeness of clinical data fields related to (A) dates, (B) patient medical history, (C) symptoms on admissions and (D) COVID-related information.

97% and 94% of patients respectively. Admission to ITU, fi-
nal COVID status and COVID code were reported for 45-49%
of patients, and use of intubation for 36%. Beyond these the
completeness of the fields declined, with chest X-ray severity
data available for 21% of patients, COVID code 2 for 19%, result
of second PCR test for 16% and chest X-ray severity 2 for 11%.

Image characteristics

This section is designed to inform users on general character-
istics of the image data whilst also highlighting potential con-
founders that might hinder the ability to build effective AI mod-

els.
Subsequent sections of the analysis utilise the DICOM

header tags associated with image files, these tags were read
using open-source package Pydicom [12]. MRI images are ex-
cluded from all analyses due to low numbers in the database at
the time of analysis.
Historic and acute

Both acute (related to COVID-19 hospital admission) and his-
toric image studies (up to January 2017) are available for a sub-
set of the NCCID patients. Historic image studies may be used
to infer longitudinal risk factors or decouple the effects of pre-
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Figure 3. Number of historical/acute/total image studies per NCCID COVID-positive patient (n=2,826) for (A) X-rays and (B) CTs.

existing pathologies from COVID-related symptoms.

Figures 3 shows the distributions of the number of histori-
cal/acute/total X-ray (A) and CT (B) studies per COVID-positive
patient. This number was calculated based on the date of ad-
mission and the DICOM StudyDate (0008, 0020), where a study
was considered acute if it occurs on or after the admission
date and historic otherwise. Date of admission was available
through the clinical data for n=2,826 COVID-positive patients;
reported results are based on this sample size. In both sets of
boxplots, outliers are indicated by dots outside the limit of the
plot whiskers and whiskers correspond to Q1 or Q3 +/- 1.5*iqr
(interquartile range).

The total number of CTs per patient was median=1, iqr=1-
2, this was lower than for X-rays (median=3, iqr=1-5). This
consequently resulted in lower availability of acute CT stud-
ies, median=1, iqr=0-1, max=6, and even lower availability of
historic CT studies, median=0, iqr=0-1, but with a handful of
patients having 2-12 studies. For X-rays the median number
of acute studies per patient was 1, similar to CT but the iqr=1-2
is higher, indicating that patients are more likely to have mul-
tiple X-rays taken in the acute setting. There was also more
historic data available for X-rays, with a median=1, iqr=0-2.

Acquisition timing

The timing of imaging acquisition along the patient treatment
pathway was investigated to understand if different modalities
were used for differing purposes in the clinical setting. Two
time lags were compared across X-ray studies and CT studies:

D1 = dateimage – datepositiveSwabTaken (1)

D2 = dayimage – (dateadmission – daysdurationOfSymptoms) (2)
Image dates were established from the StudyDate field of

the DICOM headers and lags were calculated based on the first
image after the admission date of each patient. This limited
analysis to the images taken during the patient’s treatment
for COVID-19 in the acute setting. Box plots are used because
of the skewed nature of timing data. The distributions of these
lags are shown for X-ray (orange) and CT (blue) scans in Figure
4 A and B.

For A), the median offset between swab date and study date
was -1 day for X-rays and +1 day for CT scans. The high number
of -1 day lags for X-ray shows that the majority of X-rays had
been taken before a patient’s COVID-19 status was known. The
overall distribution across X-rays was far narrower, with an
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Figure 4. (A) Number of days between the patient’s RT-PCR swab test and the image acquisition (nXRAY= 2,410, nCT= 507) and (B) Number of days between patient
symptom onset and image acquisition (nXRAY= 803, nCT= 133)

iqr= -2-0 compared to iqr= -1-12 for CTs. This suggests that
the timing of X-rays is very consistent across patients, whereas
longer tails in the CT distribution indicates more variance of
usage between patients.

Both modalities display outliers with large negative offsets.
These negative offsets suggest that some patients had images
taken up to 87 days prior to the positive RT-PCR swab. In prac-
tice, the majority of these cases are likely driven by data quality
issues surrounding ambiguous dates, such as 03/10 vs 10/03.

The delay between onset of symptoms and image dates tell
a similar story to the above. X-rays had a median offset of 7
days (iqr = 3-11 days), whilst CTs had a median offset of 15 days
and a wider iqr = 8 - 34 days. Although calculated on a smaller
subset of studies (936 compared to 2917) for which duration
of symptoms data was available, this analysis corroborates the
hypothesis that X-rays were consistently used earlier in the
care pathway, potentially as diagnostic aids.
Scanner Types
To investigate the variety of medical imaging equipment within
the NCCID database, two analyses were performed:
• Study counts by machine manufacturer were generated us-

ing the Manufacturer attribute (0008, 0070) from the DICOM
headers.

• Study counts for model types available within each man-
ufacturer were generated through the combination of DI-
COM attributes Manufacturer + Manufacturer’s Model Name
(0008, 1090). This combined attribute is hereby referred to
as model. The results for this additional breakdown are pro-
vided in Appendix B.

In both cases, all available DICOM tags were read from each
X-ray image file in a study, but only from the first file of each
CT study, as the DICOM attributes of interest were the same
across all files in a given CT study. Studies for the positive
cohort were filtered to exclude historical data based on DICOM
Acquisition Date (0008, 0022) and date of admission.
Manufacturers

The counts of scanner manufacturers across NCCID posi-
tive (orange) and control (blue) cohorts are displayed in Fig-
ure 5, where ordering of manufacturers is based on the to-
tal counts (positive+negative). The total, non-historic, study
counts across all manufacturers were 11,086 (positive = 5552,
negative = 5534) for X-ray and 1746 (positive = 634, negative =
1112) for CT.

The largest suppliers for X-rays were Fujifilm, Siemens and
Philips Medical Systems, which contributed 2687, 2588 and
2297 studies each. The next largest supplier was Carestream
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Figure 5. Number of COVID-positive and negative (A) X-ray studies by manufacturer and (B) CT studies by manufacturer. In both cases the manufacturers are
ordered by highest to lowest total (positive+negative) number of studies

Health, with 1261 studies, after which the number of studies
steadily declined for the remaining 8 suppliers. In the case of
CT studies, Siemens far outweighed the other 4 providers, ac-
counting for 1518 studies.

All X-ray and CT manufacturers had studies for both
positive and negative patients. However, some manufacturers,
such as Siemens, had significantly more studies in one of the
two groups.
Portable versus stationary

It was suspected that X-ray data in the NCCID originates
from a combination of portable and stationary machines. This
was partly a consequence of operational restrictions caused by
the pandemic, where portable scanners were easier to regu-
larly disinfect and could be transported to dedicated COVID-19
wards as part of infection control procedures [2]. As such, the
use of portable machines was expected to be more prevalent in
the COVID-positive cohort of the NCCID.

The percentage of portable scanners was estimated to inves-
tigate the presence of potential model confounders caused by
e.g., lower image resolution in portable scanners:
• Studies with references to portable, e.g., CHESTPORTABLE in

the Body Part Examined attribute (0018, 0015) were counted.

Different variations were mapped e.g., PORTCHEST to CHEST
PORTABLE. Studies that did not include any reference to
portable in this attribute were assumed to originate from
stationary scanners.

• Counts were then adjusted by taking the unique set of eight
models from the above step (highlighted in Table ?? of the
Appendix) and extrapolating the portable status to all stud-
ies acquired on these models, under the assumption that
operators forgot to indicate portability in these cases.

Table 3 displays estimated portable machine counts within the
NCCID training data, excluding historic images. For positive
patients, there were 78 studies labelled with some reference to
portable in their Body Part Examined DICOM attribute (original
counts), accounting for approximately 1.4% of X-ray studies.
In comparison, the number of portable machines indicated by
this DICOM attribute accounted for 0.9% of negative patient
studies. After extrapolating the portable status to all studies
taken on the models where portability was indicated at least
once, the proportion of X-ray studies taken on portable de-
vices increased to approximately 14.3% for positive patients
and 16.7% for negatives (adjusted counts).
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Table 3. Estimated number of X-ray studies originating from either stationary or portable machines for COVID positive and negativepatients.
Scanner type COVID-positive COVID-negative

original count adjusted count original count adjusted count
stationary 5489 (98.6%) 4770 (85.7%) 5490 (99.1%) 4610 (83.3%)
portable 78 (1.4%) 795 (14.3%) 49 (0.9%) 927 (16.7%)

Figure 6. NCCID positive and negative patients submitted by region, sorted by total contribution.

PHE COVID-19 hospital admissions 
by region

NCCID positive patients submitted 
by region
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Figure 7. Comparison of national COVID-19 admissions at a regional level with NCCID positive cases.

Cohort Analysis

This section explores the geographic, demographic and tem-
poral coverage of the NCCID database. The aim is to measure
if/how the NCCID differs from the general COVID-affected pop-
ulation and how any disparities might limit the generalisability
of AI solutions.
Geographic Coverage
Figure 6 details the number of patients submitted to the NCCID
from each NHS England region [13] and Wales, split by their
confirmed COVID-19 status, as measured via a RT-PCR swab
test (positive = orange, negative = blue). The regional data
were aggregated from the 19 sites that had submitted data by
the analysis cut-off date.

In addition, Figure 7 displays two choropleth maps show-
ing (A) the proportion of COVID-19 hospital admissions, within

each NHS England region and Wales, as reported by Public
Health England [14] and (B) the proportion of COVID-19 posi-
tive patients in the NCCID for the same geographic boundaries.
Boundary data was sourced from the ONS geoportal [15].

The highest proportion of data originated from the East of
England region, which accounted for 2,134 patients in total.
However, the vast majority of these (1,862) were negative pa-
tients, submitted by a single site. The second highest reporting
region was the Midlands, with a combined total of 1,769 pa-
tients in the database. In contrast to the East of England, the
vast majority of patients submitted in the Midlands were pos-
itive cases (1,638), and 1,511 of these originated from a single
site.

Other regions submitted less data overall, but regions in the
South of England (including London) and Wales had compara-
tively even contributions of positive and negative cases. Cov-
erage of positive cases in the North of England and Yorkshire
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was limited, with the North East and Yorkshire region having
only 33 patients in total.

The NCCID’s geographic coverage of COVID-19 patients was
largely concentrated in the Midlands, accounting for 54.8% of
positive patients in the training data. After the Midlands, the
East of England, London, South East and South West of Eng-
land accounted for 41.6% of positive patients in total (9.2%,
10.2%, 10.5%, and 11.7%, respectively). Data from Wales, the
North West, and the North East and Yorkshire regions collec-
tively made up just 3.6% of NCCID positive patients.

This was at odds with COVID-19 hospital admissions (as re-
ported by PHE) which were more evenly spread across England
and Wales. Specifically, London, the Midlands, North East and
Yorkshire and the North West accounted for approximately 15-
18% of admissions each. Wales, the South East, East of England
and South West accounted for smaller proportions of 10.3%,
9.8%, 7.0% and 5.1% of admissions, respectively.
Demographic Coverage
The purpose of this section is to establish how generally repre-
sentative the NCCID cohort is of the population hospitalised due
to COVID-19 and whether good representation carries through
to the most severe outcomes (through the mortality variable).
Understanding the underlying causes of any demographic dif-
ferences in COVID-19 prevalence or outcomes is beyond the
scope of this paper.

Subsequent to applying the cleaning and merging pipeline
(see clinical data methods section), demographic data was
available for sex=85%, ethnicity=69%, and age=86% of pa-
tients in the NCCID (n=3,168). Distributions of these categories
within the NCCID were compared against reference datasets,
where available, or COVID-related statistics reported by the In-
ternational Severe Acute Respiratory and Emerging Infection
Consortium (ISARIC) [16, 17] and the general UK population
reported by the 2011 national census. Equivalent comparative
data was not publicly available for Wales, as such, data from
Welsh health boards is excluded from the subsequent demo-
graphic results. Comparisons were made for both admissions
and mortality rates where the total sample size of patients
with recorded deaths was n=694. In all subsequent compari-
son plots the NCCID is indicated using blue and comparative
datasets are displayed in orange and green.

The NCCID is a subsample of the population that is hos-
pitalised due to COVID-19, and a dynamic resource that will
continue to grow over the coming months. It is sensible to
assume that the sample of NCCID data being scrutinised in this
paper will deviate from the final population of both the NCCID
and general COVID-effected population. To account for some
of this sampling error in the below comparisons, we applied
a bootstrap method to generate confidence intervals for the
NCCID data. The plotted proportions of a given category,
e.g., percentage of patients aged 18-64, represent the median
percentage across 1000 bootstrap samples. Similarly, error
bars on the subsequent plots represent the 95% confidence
interval (ci) of measurements across the bootstrap samples.
In each case, the sample size of the bootstrapped distributions
was equal to the size of the relevant original NCCID sample
(i.e., if the original NCCID sample had n=3000 patients
with sex data available then the bootstrapped samples each
contained n=3000 entries).
Sex

Figure 8A compares the split of male (n = 1, 797) and fe-
male (n = 1, 295) positive cases within the NCCID to that of
the general UK population via the 2011 national census [18]
n = 63, 182, 000, and the COVID-effected population reported
by ISARIC [16], n = 20, 113. At 58% male to 42% female (ci
= 56-60%male:40-44%female), the NCCID was more closely

aligned to the 60:40 ratio reported in COVID-19 admissions
than the 51:49 split of the general UK population.

Figure 8B compares the male:female mortality rates within
the NCCID cohort (n=673) against those reported by NHSE
(n=32,483), up to the cut-off date, 29/10/2020 [19]. The
NHSE mortality data exhibited a male to female ratio of 61:39.
This fell within the 95% confidence interval for the NCCID,
60-67%:33-40%.
Ethnicity

Figure 9A compares the ethnicity proportions (Asian, Black,
Other, White) of NCCID patients, n=2854, against the general
UK population as reported in the 2011 UK census, n=63,182,000,
[18] and the COVID-affected population reported by ISARIC,
n=30,693 [17].

The White group accounted for 83% of individuals in both
the census and ISARIC populations. In contrast, only 72% (ci
= 70-73%) of NCCID COVID-positive patients were from White
ethnic backgrounds. This was counterbalanced by higher pro-
portions of Asian (median=14%, ci=13-16%) and Black (me-
dian=9%, ci=8-10%) people, than observed in either the Cen-
sus (Asian = 9%, Black = 3%) or ISARIC (Asian = 5%, Black
= 4%). In addition, ISARIC reported higher proportions of pa-
tients from Other minority backgrounds (8%) than in NCCID
(median=5%, ci=4-6%), whilst the census data indicated that
approximately 4% of the UK population belonged to this group.

Figure 9B compares the ethnicity proportions within the
subset of NCCID patients that have recorded deaths and ethnic-
ity data (n=633) to the ethnicity proportions reported by NHSE
for COVID-19 in-hospital deaths in England [19], up to the re-
porting cut-off date (n=29,610).

Similar to the admissions data above, the NCCID mortality
data was under-representative of the White ethnic group (me-
dian=78% ci=74-81%), and over-representative of the Asian
(median=11%, ci=9-13%) and Black (median=8%, ci=6-10%)
groups, compared to mortality rates in the broader COVID-
population (White=85%, Asian=8%, Black=5%).
Age

Figure 10 compares the percentage of NCCID patients
within a set of age bands (0-5, 6-17, 18-64, 65-85, 85+) to
the percentages for COVID-19 hospital admissions across Eng-
land, as reported by Public Health England [14]. The compar-
isons are shown at both the national level as well as within
each NHS England region.

As reflected in the geographic analysis, regions in the North
of England had insufficient data to make meaningful compar-
isons. Specifically, data availability was below the suppression
threshold in all age groups for the North East and Yorkshire
and most age groups for the North West. The error bars for the
remaining age groups in the North West, 18-64, and 65-85,
spanned 30-34 percentage points respectively.

Amongst the regions that had enough data to support com-
parisons, most showed no statistically significant differences
between the NCCID and PHE. For London (nPHE = 25,804,
nNCCID = 353) and the South East (nPHE = 15,690, nNCCID = 335)
PHE data fell within the NCCID confidence intervals for all age-
groups. The two data sets were closely aligned in the South
West (nPHE= 26,876, nNCCID= 463), where only the 18-64 and
65-85 age bands fell outside the confidence interval by just 1%
each. Similarly, in the East of England (nPHE= 11,252, nNCCID=
272), the PHE data for the 18-64 age group was again just 1%
outside the upper bound for the NCCID, and all other age bands
fell within the confidence interval.

The single exception was the Midlands, which exhibited a
large difference of 18% (ci=15-20%) between PHE (n=26,661)
records and the NCCID (n=1638) for the 18-64 age band. This
was counterbalanced by smaller proportions of over 65s than
observed by PHE. These deviations can be reasonably attributed
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Figure 8. Comparison of sex split within: (A) the NCCID COVID-19 patients, the general UK population (as reported in the 2011 census) and COVID-19 hospital
admissions (reported by ISARIC); (B) NCCID recorded deaths and NHS England COVID-19 hospital mortality data.

to the fact that data was collected by a single site, located in an
urban area. Furthermore, given that the Midlands contributed
a substantial volume of positive patients to the NCCID, this
overrepresentation of 18-64 year olds extended to the national
level comparison (medianNCCID= 42%, ci = 40-43%, nNCCID=
3088, medianPHE= 33.7%, nPHE= 137,757).

The NCCID had low numbers of patients in the 0-5 group
at a national level, and low numbers for the 6-17 group in all
geographies.

Figure 11 compares age breakdown of NCCID patients with
recorded deaths to age breakdowns of in-hospital COVID-
related deaths reported by NHSE [19]. A different set of age
bands were used to align to the NHSE data: 0 - 19, 20 - 39, 40

- 59, 60- 79, 80+.
Although the age bands used by NHSE (n=32,484) are dif-

ferent to those used in the admissions comparisons above, we
can see a general knock-on effect, where over-representation
of younger people in the dataset resulted in a larger percent-
age of 40-59 year olds with recorded deaths in the NCCID (me-
dian=10%, ci=8-13%, NHSE=7%).
Temporal Coverage

This section investigates the approximate hospital admission
dates of the NCCID patients to identify how well the NCCID has

captured patients across the course of the pandemic. The total
number of NCCID patients with a positive RT-PCR swab test
occurring each week since 1 March 2020 was compared to the
total number of confirmed COVID-19 patients admitted to hos-
pital each week for the same period according to PHE data [14].
This analysis was performed at a national level, including data
across the whole of England and Wales. Given that there were
(at the time of study) no NCCID sites in Scotland and Northern
Ireland, data from these nations was omitted from PHE admis-
sions calculations. The two time-series are displayed in Figure
12.

The peak of both datasets was aligned, occurring on 5 April,
with a gradual decrease in numbers until the summer period,
July to September 2020. From September onwards the national
COVID-19 admissions began to rise again, however this was
not (up to the analysis cut-off 29/10/20) reflected by a rise in
positive patients admitted into the NCCID database.

Re-use Potential

Findings of data completeness analysis

Clinical information is an important complement to the chest
images. Gaps in the clinical information can deprive re-



12 | GigaScience, 2021, Vol. 0, No. 0

Figure 9. Comparison of ethnicity proportions within (A) the NCCID COVID-19 patients, the UK population (as reported in the 2011 national census) and COVID-19
hospital admissions (reported by ISARIC); (B) the NCCID recorded deaths and NHS England COVID-19 hospital mortality data.

searchers of contextual data on the patient’s health for inclu-
sion in analyses and ML models. For instance, incompleteness
of the FiO2 data may hinder the development of mortality or
deterioration risk scores that take this field into account. Anal-
ogously, since clinical information may be used to control for
confounders, missing entries can reduce a researcher’s ability
to draw firm conclusions from the data.

The overall availability of clinical data varies by each field in
the dataset. Key dates including when the RT-PCR swab was
taken and when a patient was admitted to hospital are well
covered, and can provide useful insight into the timelines of
image acquisition during the patient care pathway (e.g., Figure
4).

The occurrence of pre-existing conditions is also relatively
well characterised, particularly for cardiovascular and kidney
diseases. This information should allow data users to account
for the effects of comorbidities in their analyses, which have
been shown to play a significant role in disease outcomes for
COVID-19 patients [20, 21, 22, 23].

Information relating to the patients’ conditions upon hospi-
tal admission (e.g., blood pressure and white-cell count) were
the least well reported, with a mean of 65% null values in this
category compared to 49% for dates, 53% for medical history,
and 56% for COVID-19 fields. Data users should also be aware

that the reporting units for these metrics may vary between
sites, making it difficult to disambiguate overlapping values,
and causing artificially high variances for some metrics (Ap-
pendix C). To remedy this, we plan to make site-specific unit
information available to users once collated, even though it is
unlikely that all participating sites will be able to provide such
information. It should also be noted that some of the missing
data originates from the fact that specific hospitals do not com-
monly measure all of the listed metrics. For example, several
sites report that they do not routinely measure Troponin T on
admission. Furthermore, some fields such as O2 saturation are
obsolete and no longer requested in the data collection spread-
sheet.

Overall, the causes of missing information in the NCCID
are difficult to identify because of their number and diversity.
It is nevertheless known that the following factors have con-
tributed to incompleteness of clinical data across the different
categories:
• Staff at data-collection sites may have been unable to fill

in certain fields due to time pressure and the emergency
situation.

• Depending on the site, data has been gathered by staff (re-
search nurses, radiologists, etc.,) with access to different
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Figure 10. Comparison of age proportions between COVID-19 hospital admissions (reported by PHE) and NCCID positive patients for (A) England, (B) East of
England, (C) London, (D) Midlands, (E) North East and Yorkshire, (F) North West (G) South East and (H) South West.

Figure 11. Comparison of age distributions between recorded COVID-19 deaths (as reported by NHSE) and the NCCID (England only).

clinical information systems and records. Therefore, the
person collecting and uploading data to the NCCID may have

been unable to get hold of specific clinical information.
• Certain fields could only be present in a relevant subset of
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Figure 12. Comparison of COVID-19 admissions to NCCID positive cases by week.

patients, and were otherwise left empty. For example, a
few fields referred to secondary RT-PCR swab tests (date
of acquisition, date of result, result) and secondary chest X-
rays (date, severity), which were only required, and conse-
quently filled in for some patients. Additionally, the report-
ing of date of death, and stage of chronic kidney disease
were much higher when selecting the subset of patients
for whom death or presence of kidney disease had been re-
ported. Similar effects are likely to be the underlying cause
of the relatively high occurrence of missing values in COVID-
19 fields such as ITU admission, intubation and severity of dis-
ease in secondary images[11].

• Information such as medical history may not have been pro-
vided by the patient, for example because they were incapac-
itated.

• Data may not have been gathered as part of routine clinical
practice, see the above remarks.

Plans are in place to establish a link between the NCCID and
ISARIC-4C [24] that will automatically populate clinical infor-
mation for patients included in both datasets. This link aims
to improve the availability of clinical data in the NCCID whilst
relieving the burden on clinical staff to provide additional in-
formation.
Findings of image characteristics analysis
Historic and acute

The number of total, acute or historic image studies var-
ied across COVID-positive patients. In general, patients were
less likely to have historic CT data available (median=0 studies),
compared to X-ray (median=1 study). This is likely driven by
the general disparities in availability between the two modal-
ities, given that X-rays are faster and cheaper to acquire,
and are therefore more frequently used in the UK clinical set-
ting. Investigators that wish to incorporate historical data as
a means of accounting for pre-existing pathologies or under-
standing longitudinal risk factors should possibly focus on X-
ray studies.

Both X-ray and CT had a median of 1 study per patient,
but there were many more X-ray studies available overall (ap-
proximately 12,000 compared to 1,500). It is sensible that re-
searchers building diagnostic tools should focus on X-ray data,
as these are also likely to be most useful in the UK clinical
setting. However, given that CTs are likely to be used in the
more severe/difficult cases, those wishing to analyse disease

severity/prognosis can utilise CT data. One advantage of the CT
data is that it provides much richer imaging information, en-
coded into a 3D volume where different view planes and slices
through the relevant anatomy can be probed. In comparison,
X-ray image resolution tends to be higher but only a single
projection is possible.

The total number of MRI studies is currently too low (17
studies) to be useful in the machine learning setting. This
is likely to remain true even as the database grows, as low
numbers are caused by the rarer adoption of MRI in the
treatment of COVID-19 patients, which in turn, limits the
clinical relevance of this modality.
Acquisition Timing

Analysis of image timings with respect to patient PCR-RT
swab dates and onset of symptom dates revealed that X-rays
were predominantly used at the early stages of a patient’s care
pathway. Interestingly we identified the median offset be-
tween swab date and X-ray was -1 day, which suggests that
X-rays were commonly being used as diagnostic aids. This
is likely a result of limited testing capacity during the earlier
stages of the pandemic. In contrast, CT images were generally
used later in the care pathway, with greater variance between
patients on the specific timing of scans. These findings reflect
BSTI clinical guidelines for the UK, which stipulated that CT
should be used sparingly as a diagnostic tool, to preserve ca-
pacity for normal operation [11].

Concentrating on the response to COVID-19 in the UK
and the NCCID, data users may want to focus on building
diagnostic tools using X-ray images, and could potentially use
CT scans to study disease severity, progression and prognosis.
It remains to be seen whether improved testing capacity or
other factors will modify the timings for either modality in
the later stages of the pandemic, and therefore change the
technological needs of the response to COVID-19 in the UK.
Scanner types

X-ray and CT images present in the NCCID were captured
on a range of systems from multiple manufacturers, provid-
ing variability in the type of images available. This was true
for both positive and negative patients, although the ratio of
positive to negative varied somewhat by manufacturer. Users
of NCCID should take into account the relative frequencies of
imaging across the different manufacturers (and models) to
minimise unwanted bias. For instance, Siemens is the dom-
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inant manufacturer for CT, but large amounts of X-ray data
was available for a number of providers, which could help pro-
duce generalisable models.

Due to limitations imposed by the pandemic, it was sus-
pected that imaging data in the NCCID would originate from
a combination of portable and stationary X-ray machines.
Portable machines are easier to quickly sanitise between ses-
sions and could more readily be moved to quarantine wards as
part of hospital infection control measures, making it possi-
ble that there would be a higher prevalence of such machines
in the patient cohort [2]. Exploration of the DICOM headers
initially identified a small proportion of positive scans (1.4%)
acquired on portable devices, with just over half of this this per-
centage negative scans (0.9%). This was then extended to all
studies taken on the same scanner models, such that 14.3% of
positive X-rays and 16.7% of negative X-rays were estimated
to come from portable machines. These preliminary findings
do not suggest a large imbalance in the ratio of portable and
non-portable scanners between the positive and control co-
horts. However, in lieu of a more definitive method for identify-
ing portable machines from DICOM information we estimated
prevalence based on notes in the Body Part Examined attribute.
It is plausible that this method under-estimates the true num-
ber of portable scanners, as such, further investigation of this
issue is recommended. Examining a sample of images from the
various devices may provide a more robust measure of porta-
bility for data users but the above analysis serves to highlight
this aspect of the NCCID data.

Awareness of potential model confounders is crucial to
ensure efficacy of ML models, particularly with respect to
how performance generalises beyond the training data. For
instance, significant disparities in the prevalence of certain
equipment types between the positive and control cohorts
could produce an ML model that successfully differentiates the
two groups. However, is it conceivable that the decision bound-
aries in such a model are based on attributes of the medical
imaging machinery (e.g., resolution, projection etc.) rather
than disease related attributes [25]. Data users should take
care to balance their training samples, ensuring a good variety
of scanner types within both cohorts, to build models that gen-
eralise well to the variety of clinical imaging equipment used
in the UK. Indeed, there are many additional confounders to be
aware of including but not limited to (see Appendix B):
• Digital radiography (DR) vs computed radiography (CR)

which are different techniques for digitising the X-ray sig-
nal, either directly from the panel (DR) or by scanning
cassette-based phosphor storage plates into digital format
(CR).

• Photometric interpretation, which refers to the image con-
trast such that MONOCHROME1 scans should be inverted to
match MONOCHROME2 scans or vice versa.

• View positions, e.g., Anterior-Posterior (AP), Posterior-
Anterior (PA), Lateral (LL), etc.

By collecting data from multiple Trusts and Health Boards
across the UK, the NCCID strives to provide a training database
that can cover many of these confounding factors, and improve
the efficacy of any resulting machine learning models in the
clinical setting.
Findings of cohort analysis
Geographic Coverage

At time of analysis, the NCCID was not evenly sampled
across the participating regions. We observed that COVID-19
positive-patients in the database largely originated from the
Midlands, and very few patients originated from Wales and
Northern England (Figure 6).

Several factors may underpin these disparities, including:
1) the number of NCCID sites within each region 2) the size
and population coverage at each hospital site; 3) the number of
positive COVID-19 cases recorded at each site; 4) the duration
of time the site has been contributing to the NCCID for; and
5) the availability of research coordinators and PACS teams to
upload all cases. Reason 3, is unlikely to be the driving factor,
as indicated by Figure 7 in which PHE reported a more equal
distribution of COVID-19 hospital admissions.

Low submissions from the North of England reflect the rel-
atively small number of participating NCCID sites in these re-
gions. The fact that the uptake of the programme has been un-
even across different regions can be attributed to factors such
as the reach of our professional network, constrained availabil-
ity of staff to support our database, and variable responsiveness
of local sites to national initiatives.

Regional disparities in the number of positive and negative
cases submitted are more likely to be driven by factor 5, the
capacity of PACS teams. The guidance given to hospital sites
was to submit all positive cases with images taken in the acute
setting, and a smaller sample of negative cases with acute
imaging (approximately 100 per week if available). Due to
the request for accompanying clinical data in positive cases,
it is much easier for sites to submit negative cases, for whom
only the images and a small number of clinical data points are
required.
Demographic Coverage

The NCCID aims to be a UK-wide initiative assembling a
database that is as representative as possible of the entire pop-
ulation. Nevertheless, the present geographical coverage of
the NCCID is partially skewed, which, if additional data cu-
ration is not applied rigorously, may produce biases in ML
models trained on this resource. For example, issues may oc-
cur because of the incorrect representation of specific demo-
graphic groups and clinical risk factors such as pre-existing
conditions [16, 26]. Indeed, we observed some of these down-
stream effects in the population analysis, particularly in the
regional proportions of age-groups within the NCCID, which
deviated most significantly from PHE data in the Midlands and
Northern England. These effects accumulated in a general over-
representation of younger adult patients compared to more el-
derly patients in the NCCID for both admissions and mortality.

In addition, the NCCID contains very low numbers of pa-
tients in the 0-5 and 6-17 age groups, partly because of the
active omission of under-11s due to small counts, where the
underlying cause is the low prevalence of symptomatic COVID-
19 in children [27, 28]. Reduced availability of data for under-
18s limits the use of the NCCID to adult diagnostic/prognostic
models for the time being. This may change as the database
grows, particularly as the exclusion of data from under-11s will
be stopped once sufficiently high numbers are available.

The ethnic composition of the NCCID deviated from the
2011 UK census data. Whilst establishing the causes of this
discrepancy would require additional investigation, the over-
representation of Asian and Black groups for the admission
data may, to some extent, be due to differences in the inci-
dence of COVID-19. As a matter of fact, several studies have
indicated higher corrected hospitalisation odds ratios for mi-
nority ethnic groups compared to people of white backgrounds
[29, 30, 17, 16]. The reliability of the comparison between the
NCCID and the census, however, is diminished by the fact that
the latter is a decade old, so that more recent estimates (includ-
ing the imminent 2021 national census) could exhibit a signifi-
cant demographic shift in the benchmark for the UK population
as a whole.

The comparison with ISARIC data was crucial for under-
standing how representative the NCCID is of the COVID-19 pa-
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tient population that it is sampled from. Again, the NCCID
displayed higher percentages of Asian and Black patients and
lower percentages of White patients than the hospital admis-
sions data from ISARIC. A similar effect was seen in the com-
parison with mortality data from NHSE.

The reasons why the NCCID diverges from other datasets
in relation to ethnicity are not fully understood. Nevertheless,
we believe that the most likely issue is the uneven geographical
representation of the NCCID. This would be consistent with the
fact that the Asian and Black groups are overrepresented, and
the White group is underrepresented in every comparison of the
NCCID with other nationwide datasets (UK census, NHSE and
ISARIC). It is clear from the literature that the distribution of
ethnicities in COVID related hospital admissions varies consid-
erably between different regions [14, 26]. For example, Sapey
et al. [31], which looked specifically at COVID positive hospital
admissions from around Birmingham saw a much higher pro-
portion (18.5%) of patients of South Asian ethnicity. Apea et
al. [32], which carried out a similar analysis looking at COVID
positive hospital admissions from around East London, saw a
much higher proportion of patients of both South Asian and
Black ethnicity (31% and 20% respectively). In an analogous
way, the fact that a large fraction of the data in the NCCID
has been collected in an urban area of the Midlands may have
increased the representation of Asian and Black groups, and
reduced that of the White group.

The male to female ratio of NCCID patients was found to
closely align with the 60:40 split reported for COVID-patients
by ISARIC. This is a departure from the approximately 50:50
split expected in the general population, as measured by the
2011 census data (where sex ratios are less likely to significantly
vary over time, making the age of the census less of a limiting
factor), and reflects findings of other COVID-19 studies [33, 34,
23]. A similar increased hazard ratio was observed in the male
to female mortality rates, where the NCCID was well aligned to
NHSE in hospital deaths data. Data users should be aware that
there is a class imbalance (as is common in clinical studies) but
unlikely to be severe enough to prevent the training of models
that will generalise.

Overall, data users should keep in mind that, owing to the
variable incidence of COVID-19, the NCCID is expected to have
slightly different demographic composition to the general
population. Several studies have reported different COVID-19
prevalence rates between men and women, ethnic groups and
age groups [35, 16, 23, 33, 34, 17, 31, 30]. As more sites are
on-boarded and the database grows, we expect the compo-
sition of the NCCID to more closely reflect the populations
reported by e.g., PHE, ISARIC, and NHSE. For the meantime,
data users should be aware of these differences, and how
underrepresentation of certain groups might affect model
performance for those individuals. Whilst the risk of model
unfairness relating to demographic disparities is less obvious
in medical imaging than for other ML applications (e.g., facial
recognition for law enforcement [36]), it is probable that
disease manifestation differs across age groups and ethnicities,
or that the prevalence of comorbidities varies across ethnicities
and between urban and non-urban populations. Therefore,
these characteristics may still have negative effects on the
fairness of ML models. Furthermore, disease-related class
imbalances play a relevant role in quantifying algorithmic
bias, where fairness definitions based on pure demographic
parity [37, 38] may provide misleading measures of success
and failure in this problem space, unless corrected to the
relevant ratios.
Temporal Coverage

The low numbers of positive cases uploaded to the NCCID
training dataset since September 2020 suggest that the data

capture pipelines were (up to the analysis cut-off in October)
still processing the large backlog of patients from the first wave
of the pandemic. Users should note that ML models built from
the training data will capture the characteristics of the first
peak, and may not generalise completely to patients admitted
during the subsequent winter peaks, particularly in view of the
emergence of a new strain of SARS-CoV-2, lineage B.1.1.7 [39].
Failures to generalise over time could arise from several factors,
including:
• potential changes to disease manifestation associated with

the new strain of SARS-CoV-2 that has dominated preva-
lence in the UK starting from December 2020 [40, 41],
though such effects are speculative at the time of publish-
ing;

• the prevalence of flu-related comorbidities, expected to be
more common in winter months;

• any changes in the use of imaging for diagnostic/prognostic
purposes between the early stages and later stages of the
pandemic;

• changes to treatment policies over time (such as the in-
troduction of dexamethasone) and how these affect disease
severity;

• the roll-out of the COVID-19 vaccination programme, which
in the UK has begun on 8 December 2020 [42], and has deliv-
ered almost 18 million first doses [14] at the time of writing;

• changes to non-pharmaceutical interventions (behavioural
restrictions like lockdowns) and the down-stream effects
these have on which members of the population are exposed
to the virus.
It is noteworthy that COVID-19 admissions for the general

population peaked at approximately 20,000 per week (for the
period and regions studied in this article), whilst the peak of
positive patients in the NCCID was orders of magnitude lower,
at just under 400. Any statistics or models derived from the NC-
CID database are therefore likely to suffer from sampling error,
which should be considered when reporting such analyses.
Next Steps

The NCCID has made significant progress within the space of a
few months to collect a sizable dataset to support research into
COVID-19. However, there are a number of next steps, sum-
marised below, which the NCCID initiative aims to implement
in the short-to-medium term in order to better support data
users:

i. We will re-engage with existing hospital sites to under-
stand the reasons behind a decline in submission of recent
cases and implement mitigating actions (see point 5).
ii. We will engage new sites across the UK, focusing on rural
and other underrepresented geographies, such as the North
of England, Wales, Northern Ireland (point iv) and Scotland
(point iii) to expand the geographic and demographic cover-
age of the NCCID.

iii. We will implement a linkage with the Scottish National
PACS and Safe Haven Network.
iv. In Northern Ireland we will start by establishing a linkage
with the Northern Trust PACS team.
v. We will implement a connection with the ISARIC-4C [24]
dataset to improve the completeness of the clinical data fields
while reducing the burden on hospital staff, since the data
is linked across as opposed to collected afresh. It is hoped
that lighter data-gathering processes will attract new sites,
and motivate existing ones to contribute even more to the
database.
vi. We will carry out investigative work beyond clinical vari-
ables and metadata into the quality of the images themselves
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so as to assess their utility for algorithmic development.
vii. We will implement automation pilots in a selection of

sites to establish a continuous feed of images for positive
and negative patients. Clinical data for these sites will be
provided through the ISARIC-4C linkage.

Conclusion

This paper aimed to provide further detail on the content of
the NCCID’s training dataset, in order to support existing data
users with their research efforts, raise awareness for the NC-
CID as a valuable resource that others may want to access, and
inform both existing and potential data users of improvements
we aim to make in future. The decision to publish this paper
now, rather than after the improvements have been made, re-
flects the iterative nature of this particular initiative, and the
urgency presented by the pandemic to ensure information is
made available as quickly, transparently and securely as possi-
ble. The NCCID initiative has collected a large volume of imag-
ing and clinical data within a short period of time; this has
been achieved through the expertise of NCCID partners, lean
agile delivery methods, and the prioritisation of COVID-19 re-
sponse work. However, there are a number of considerations
in the NCCID training dataset to be aware of, namely: 1) the
limitations of its geographic and, consequently, demographic
representation; 2) issues with clinical data quality and com-
pleteness. We have identified a number of improvements to
address these considerations, and will continue to expand and
refine the quality of the NCCID training dataset. Despite these
limitations the NCCID provides a valuable resource to the med-
ical imaging community, addressing many of the common pit-
falls highlighted in a recent meta-analysis of COVID-19 imag-
ing models [25]. In particular, as a centralised resource, hous-
ing high quality DICOM imaging data and clinical attributes for
thousands of patients, across a variety of imaging machinery,
the NCCID is large enough to mitigate many of the data qual-
ity/bias concerns of smaller fragmented resources, making it
an important tool in supporting the response to the COVID-19
pandemic.

Data Availability

The NCCID training data is available to any users, including
software vendors, academics and clinicians, via a rigorous Data
Access Request (DAR) process. Applications are adjudicated by
an independent committee based on several factors including
but not limited to relevance to COVID-19 and compliance with
information governance regulations. The required paperwork
and additional instructions are detailed on the website.

Availability of source code

The codebase for the data warehouse is open source and avail-
able through the NHSX github:
• Project: covid-chest-imaging-database
• Operating system(s): e.g. Platform independent
• Programming language: Python
• License: MIT

The open-source data ingestion and cleaning pipeline can be
found on NHSX github:
• Project: nccid-cleaning
• Operating system(s): e.g. Platform independent
• Programming language: Python
• License: MIT

Availability of supporting materials

Additional information on the NCCID, including an overview of
participating sites, existing data processors, live updates on the
size of the training data and instructions for requesting access
are all available through the main webpage.

More information on guidelines and data schemas for the
clinical data are available through RSNFT, further detail is also
provided through the HDRUK portal.

Additional Files

Appendix

Declarations

Ethical Approval and Consent for publication

The legal basis for the NCCID is provided by the notice under
regulation 3(4) of the UK National Health Service (Control of
Patient Information) Regulations 2002 (COPI Notice), and eth-
ical approval was obtained for the NCCID to operate as a re-
search database by the UK Health Research Authority. The ini-
tiative has received Ethics approval by both the Health Research
Authority (HRA) and the Scottish Public Benefit Privacy Panel
(PBPP). As the NCCID only contains pseudonymised informa-
tion, individual consent to publish is not required.

Competing Interests

No conflicts of interest to declare.

Funding

The NCCID is publicly funded by NHSX. Joseph Jacob was sup-
ported by a Wellcome Trust Clinical Research Career Develop-
ment Fellowship (209553/Z/17/Z) and by the NIHR BRC at UCL.

Author’s Contributions

D.C. provided supervision, project administration and sup-
port on funding acquisition. Ot.B., S.D, F.L, E.J, provided
project administration and supported the reviewing and edit-
ing of the manuscript. Os.B and R.B contributed to the liter-
ature review and sections of the manuscript, in addition R.B
provided project administration, and helped conceptualise the
analysis. T.G. performed/supervised the data analysis, drafted
the manuscript, contributed to software and helped conceptu-
alise the analysis. D.S. performed parts of the data analysis
and contributed to the manuscript, helped conceptualise the
analysis and contributed to software. A.C. helped conceptu-
alise/support parts of the data analysis and contributed to soft-
ware. G.I. provided conceptual input, implemented the data
warehouse and contributed to software, parts of the data anal-
ysis and manuscript. J.J and A.F provided project supervision,
conceptual input, project administration and reviewed/edited
the manuscript. M.H-B. provided conceptual input, imple-
mented the data collection infrastructure, contributed to soft-
ware, project administration, and other resources. J.C.W pro-
vided conceptual input and reviewed/edited the manuscript.
The NCCID collective is responsible for curating and providing
the data at participating hospital sites.

https://nhsx.github.io/covid-chest-imaging-database/index.html#how-to-request-access-to-data
https://github.com/nhsx/covid-chest-imaging-database
https://github.com/nhsx/nccid-cleaning
https://nhsx.github.io/covid-chest-imaging-database/
https://medphys.royalsurrey.nhs.uk/nccid/guidance.php
https://web.www.healthdatagateway.org/dataset/31f0148b-f965-4136-ab39-6c5bbbf8c2d9


18 | GigaScience, 2021, Vol. 0, No. 0

Acknowledgements

The authors would like to thank the following individuals for
their contributions to this work: Ayub Bhayat, Hena Aziz, Zain
Eisa, Rob Howieson, Alison Lowe, Aliya Rafique, Anastasios
Sarellas and Giuseppe Sollazzo.

References

1. Hosseiny M, Kooraki S, Gholamrezanezhad A, Reddy S, My-
ers L. Radiology perspective of coronavirus disease 2019
(COVID-19): lessons from severe acute respiratory syn-
drome and Middle East respiratory syndrome. American
Journal of Roentgenology 2020;214(5):1078–1082.

2. Kooraki S, Hosseiny M, Myers L, Gholamrezanezhad A.
Coronavirus (COVID-19) outbreak: what the department
of radiology should know. Journal of the American college
of radiology 2020;17(4):447–451.

3. Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, et al. Ra-
diological findings from 81 patients with COVID-19 pneu-
monia in Wuhan, China: a descriptive study. The Lancet
infectious diseases 2020;20(4):425–434.

4. Lee EY, Ng MY, Khong PL. COVID-19 pneumonia: what
has CT taught us? The Lancet Infectious Diseases
2020;20(4):384–385.

5. Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng
X, et al. CT imaging features of 2019 novel coronavirus
(2019-nCoV). Radiology 2020;295(1):202–207.

6. Kanne JP, Chest CT findings in 2019 novel coronavirus
(2019-nCoV) infections from Wuhan, China: key points
for the radiologist. Radiological Society of North America;
2020.

7. Cleverley J, Piper J, Jones MM. The role of chest radiogra-
phy in confirming covid-19 pneumonia. bmj 2020;370.

8. NHSX AI Lab;. Accessed: 2021-03-23. https://www.nhsx.
nhs.uk/ai-lab/about-nhs-ai-lab/.

9. Jacob J, Alexander D, Baillie JK, Berka R, Bertolli O, Black-
wood J, et al. Using imaging to combat a pandemic: ratio-
nale for developing the UK National COVID-19 Chest Imag-
ing Database. European Respiratory Journal 2020;56(2).

10. Watson J, Whiting PF, Brush JE. Interpreting a covid-19
test result. Bmj 2020;369.

11. BSTI: Thoracic Imaging in COVID-19 Infection.;. Accessed:
2021-03-23. https://www.bsti.org.uk/media/resources/
files/BSTI_COVID-19_Radiology_Guidance_version_2_16.03.
20.pdf.

12. Pydicom;. Accessed: 2021-03-23. https://pydicom.github.
io/.

13. NHS Regional Teams;. Accessed: 2021-03-23. https://www.
england.nhs.uk/about/regional-area-teams/.

14. Public Health England: coronavirus dashboard;. Accessed:
2021-03-23. https://coronavirus.data.gov.uk/.

15. ONS geography portal: NHS England Regions (April
2020) Boundaries EN BFE;. Accessed: 2021-03-
23. https://geoportal.statistics.gov.uk/datasets/
nhs-england-regions-april-2020-boundaries-en-bfe.

16. Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R,
Norman L, et al. Features of 20 133 UK patients in hospital
with covid-19 using the ISARIC WHO Clinical Characterisa-
tion Protocol: prospective observational cohort study. bmj
2020;369.

17. Harrison EM, Docherty AB, Barr B, Buchan I, Carson G,
Drake TM, et al. Ethnicity and outcomes from COVID-19:
the ISARIC CCP-UK prospective observational cohort study
of hospitalised patients 2020;.

18. 2011 Census: Population Estimates for the United
Kingdom, March 2011;. Accessed: 2021-03-23.

https://www.ons.gov.uk/peoplepopulationandcommunity/
populationandmigration/populationestimates/bulletins/
2011censuspopulationestimatesfortheunitedkingdom/
2012-12-17.

19. NHS COVID-19 Daily Deaths;. Accessed: 2021-
03-23. https://www.england.nhs.uk/statistics/
statistical-work-areas/covid-19-daily-deaths/.

20. Guan Wj, Liang Wh, Zhao Y, Liang Hr, Chen Zs, Li Ym, et al.
Comorbidity and its impact on 1590 patients with COVID-
19 in China: a nationwide analysis. European Respiratory
Journal 2020;55(5).

21. Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase
the risk of patients with COVID-19: evidence from meta-
analysis. Aging (Albany NY) 2020;12(7):6049.

22. de Lucena TMC, da Silva Santos AF, de Lima BR, de Albu-
querque Borborema ME, de Azevêdo Silva J. Mechanism
of inflammatory response in associated comorbidities in
COVID-19. Diabetes & Metabolic Syndrome: Clinical Re-
search & Reviews 2020;14(4):597–600.

23. Petrilli CM, Jones SA, Yang J, Rajagopalan H, O’Donnell L,
Chernyak Y, et al. Factors associated with hospital admis-
sion and critical illness among 5279 people with coron-
avirus disease 2019 in New York City: prospective cohort
study. Bmj 2020;369.

24. ISARIC 4c;. Accessed: 2021-03-23. https://isaric4c.net/.
25. Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M, Ur-

sprung S, et al. Common pitfalls and recommendations
for using machine learning to detect and prognosticate for
COVID-19 using chest radiographs and CT scans. Nature
Machine Intelligence 2021;3(3):199–217.

26. Pollán M, Pérez-Gómez B, Pastor-Barriuso R, Oteo
J, Hernán MA, Pérez-Olmeda M, et al. Prevalence
of SARS-CoV-2 in Spain (ENE-COVID): a nationwide,
population-based seroepidemiological study. The Lancet
2020;396(10250):535–544.

27. Ludvigsson JF. Systematic review of COVID-19 in children
shows milder cases and a better prognosis than adults.
Acta paediatrica 2020;109(6):1088–1095.

28. Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z, et al. Epidemi-
ology of COVID-19 among children in China. Pediatrics
2020;145(6).

29. Martin CA, Jenkins DR, Minhas JS, Gray LJ, Tang J,
Williams C, et al. Socio-demographic heterogeneity in
the prevalence of COVID-19 during lockdown is associated
with ethnicity and household size: Results from an obser-
vational cohort study. EClinicalMedicine 2020;25:100466.

30. Sze S, Pan D, Nevill CR, Gray LJ, Martin CA, Nazareth J, et al.
Ethnicity and clinical outcomes in COVID-19: a system-
atic Review and Meta-analysis. EClinicalMedicine 2020;p.
100630.

31. Sapey E, Gallier S, Mainey C, Nightingale P, McNulty D,
Crothers H, et al. Ethnicity and risk of death in patients
hospitalised for COVID-19 infection in the UK: an observa-
tional cohort study in an urban catchment area. BMJ open
respiratory research 2020;7(1):e000644.

32. Apea VJ, Wan YI, Dhairyawan R, Puthucheary ZA, Pearse
RM, Orkin CM, et al. Ethnicity and outcomes in patients
hospitalised with COVID-19 infection in East London: an
observational cohort study. BMJ open 2021;11(1):e042140.

33. Gebhard C, Regitz-Zagrosek V, Neuhauser HK, Morgan R,
Klein SL. Impact of sex and gender on COVID-19 outcomes
in Europe. Biology of sex differences 2020;11:1–13.

34. Klein SL, Dhakal S, Ursin RL, Deshpande S, Sandberg K,
Mauvais-Jarvis F. Biological sex impacts COVID-19 out-
comes. PLoS pathogens 2020;16(6):e1008570.

35. Public Health England: Disparities in the risk and
outcomes of COVID-19;. Accessed: 2021-03-23.
https://assets.publishing.service.gov.uk/government/

https://www.nhsx.nhs.uk/ai-lab/about-nhs-ai-lab/
https://www.nhsx.nhs.uk/ai-lab/about-nhs-ai-lab/
https://www.bsti.org.uk/media/resources/files/BSTI_COVID-19_Radiology_Guidance_version_2_16.03.20.pdf
https://www.bsti.org.uk/media/resources/files/BSTI_COVID-19_Radiology_Guidance_version_2_16.03.20.pdf
https://www.bsti.org.uk/media/resources/files/BSTI_COVID-19_Radiology_Guidance_version_2_16.03.20.pdf
https://pydicom.github.io/
https://pydicom.github.io/
https://www.england.nhs.uk/about/regional-area-teams/
https://www.england.nhs.uk/about/regional-area-teams/
https://coronavirus.data.gov.uk/
https://geoportal.statistics.gov.uk/datasets/nhs-england-regions-april-2020-boundaries-en-bfe
https://geoportal.statistics.gov.uk/datasets/nhs-england-regions-april-2020-boundaries-en-bfe
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/2011censuspopulationestimatesfortheunitedkingdom/2012-12-17
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/2011censuspopulationestimatesfortheunitedkingdom/2012-12-17
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/2011censuspopulationestimatesfortheunitedkingdom/2012-12-17
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/2011censuspopulationestimatesfortheunitedkingdom/2012-12-17
https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-daily-deaths/
https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-daily-deaths/
 https://isaric4c.net/
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/908434/Disparities_in_the_risk_and_outcomes_of_COVID_August_2020_update.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/908434/Disparities_in_the_risk_and_outcomes_of_COVID_August_2020_update.pdf


Cushnan et al. | 19

uploads/system/uploads/attachment_data/file/908434/
Disparities_in_the_risk_and_outcomes_of_COVID_August_
2020_update.pdf.

36. Independent report on the London Metropolitan Police Ser-
vice’s trial of live facial recognition technology.;. Accessed:
2021-03-23. http://repository.essex.ac.uk/24946/1/.

37. Begley T, Schwedes T, Frye C, Feige I. Explainability for
fair machine learning. arXiv preprint arXiv:201007389
2020;.

38. Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A.
A survey on bias and fairness in machine learning. arXiv
preprint arXiv:190809635 2019;.

39. Rambaut A. et. al, Preliminary genomic characterisation
of an emergent SARS-CoV-2 lineage in the UK defined by
a novel set of spike mutations;. Accessed: 2021-03-23.
https:https://virological.org/t/.

40. Kirby T. New variant of SARS-CoV-2 in UK causes
surge of COVID-19. The Lancet Respiratory Medicine
2021;9(2):e20–e21.

41. Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidel-
berg L, et al. Transmission of SARS-CoV-2 Lineage B. 1.1.
7 in England: Insights from linking epidemiological and
genetic data. medRxiv 2021;p. 2020–12.

42. BBC: First COVID vaccine UK.;. Accessed: 2021-03-23.
https://www.bbc.co.uk/news/uk-55227325.

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/908434/Disparities_in_the_risk_and_outcomes_of_COVID_August_2020_update.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/908434/Disparities_in_the_risk_and_outcomes_of_COVID_August_2020_update.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/908434/Disparities_in_the_risk_and_outcomes_of_COVID_August_2020_update.pdf
http://repository.essex.ac.uk/24946/1/London-Met-Police-Trial-of-Facial-Recognition-Tech-Report-2.pdf
https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
https://www.bbc.co.uk/news/uk-55227325


manuscript figure Click here to access/download;Figure;fig1-nccid-ifra5.png

https://www.editorialmanager.com/giga/download.aspx?id=113081&guid=e9b905e6-3735-4c68-b2ed-7bab5af2d50b&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=113081&guid=e9b905e6-3735-4c68-b2ed-7bab5af2d50b&scheme=1


manuscript figure Click here to access/download;Figure;fig2-completeness.png

https://www.editorialmanager.com/giga/download.aspx?id=113082&guid=8bfde094-24d0-4c4d-b539-97b85d8a1c16&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=113082&guid=8bfde094-24d0-4c4d-b539-97b85d8a1c16&scheme=1


manuscript figure Click here to access/download;Figure;fig3-historic.png

https://www.editorialmanager.com/giga/download.aspx?id=113083&guid=d1e53c33-90e9-4fd0-988f-66e18b3f4411&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=113083&guid=d1e53c33-90e9-4fd0-988f-66e18b3f4411&scheme=1


manuscript figure Click here to access/download;Figure;fig4-imagetiming.png

https://www.editorialmanager.com/giga/download.aspx?id=113084&guid=ae7ecf45-00b8-4c0c-b87f-75e425ddf439&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=113084&guid=ae7ecf45-00b8-4c0c-b87f-75e425ddf439&scheme=1


manuscript figure Click here to access/download;Figure;fig5-manufacturers.png

https://www.editorialmanager.com/giga/download.aspx?id=113085&guid=0dab7f63-d03f-4f20-af09-433699bf2590&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=113085&guid=0dab7f63-d03f-4f20-af09-433699bf2590&scheme=1


PHE COVID-19 hospital admissions 
by region

NCCID positive patients submitted 
by region

9.2

10.511.7

2.6

54.8

<1

<1

10.517.5

14.8

14.3

18.5

7.4

5.9 12.4

9.2

manuscript figure Click here to access/download;Figure;fig6-maps.pdf

https://www.editorialmanager.com/giga/download.aspx?id=113086&guid=a2b4dffd-ba8c-48fb-ac2b-75a900ce03bd&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=113086&guid=a2b4dffd-ba8c-48fb-ac2b-75a900ce03bd&scheme=1


manuscript figure Click here to access/download;Figure;fig6-regional.png

https://www.editorialmanager.com/giga/download.aspx?id=113087&guid=2af90a5d-4b88-4e23-bbde-17359cd956a9&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=113087&guid=2af90a5d-4b88-4e23-bbde-17359cd956a9&scheme=1


manuscript figure Click here to access/download;Figure;fig7-sex.png

https://www.editorialmanager.com/giga/download.aspx?id=113088&guid=5f9b3e63-aef1-4a25-8a80-dcbc5c6c35a1&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=113088&guid=5f9b3e63-aef1-4a25-8a80-dcbc5c6c35a1&scheme=1


manuscript figure Click here to access/download;Figure;fig8-ethnicity.png

https://www.editorialmanager.com/giga/download.aspx?id=113089&guid=5f2b5f28-1cff-452f-a7a8-ce7ae003bbc1&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=113089&guid=5f2b5f28-1cff-452f-a7a8-ce7ae003bbc1&scheme=1


Manuscript Click here to access/download;Figure;fig9-age1.png

https://www.editorialmanager.com/giga/download.aspx?id=113090&guid=40f47da0-b6ef-42b3-90f5-bbae4d3d1f1d&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=113090&guid=40f47da0-b6ef-42b3-90f5-bbae4d3d1f1d&scheme=1


manuscript figure Click here to access/download;Figure;fig10-age2.png

https://www.editorialmanager.com/giga/download.aspx?id=113091&guid=65e5f6fe-ed2d-4a69-9ba9-ecebca9bbf31&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=113091&guid=65e5f6fe-ed2d-4a69-9ba9-ecebca9bbf31&scheme=1


manuscript figure Click here to access/download;Figure;fig11-temporal.png

https://www.editorialmanager.com/giga/download.aspx?id=113092&guid=96047e82-14da-436f-8f5e-54173b4e799b&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=113092&guid=96047e82-14da-436f-8f5e-54173b4e799b&scheme=1


  

appendix

Click here to access/download
Supplementary Material

Appendix.pdf

https://www.editorialmanager.com/giga/download.aspx?id=113080&guid=72782010-9763-42be-b1a5-8e979c752e99&scheme=1

