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ABSTRACT Intrinsically disordered proteins and flexible regions in multidomain proteins display substantial conformational
heterogeneity. Characterizing the conformational ensembles of these proteins in solution typically requires combining one or
more biophysical techniques with computational modeling or simulations. Experimental data can either be used to assess
the accuracy of a computational model or to refine the computational model to get a better agreement with the experimental
data. In both cases, one generally needs a so-called forward model (i.e., an algorithm to calculate experimental observables
from individual conformations or ensembles). In many cases, this involves one or more parameters that need to be set, and
it is not always trivial to determine the optimal values or to understand the impact on the choice of parameters. For example,
in the case of small-angle x-ray scattering (SAXS) experiments, many forward models include parameters that describe the
contribution of the hydration layer and displaced solvent to the background-subtracted experimental data. Often, one also needs
to fit a scale factor and a constant background for the SAXS data but across the entire ensemble. Here, we present a protocol to
dissect the effect of the free parameters on the calculated SAXS intensities and to identify a reliable set of values. We have im-
plemented this procedure in our Bayesian/maximum entropy framework for ensemble refinement and demonstrate the results
on four intrinsically disordered proteins and a protein with three domains connected by flexible linkers. Our results show that the
resulting ensembles can depend on the parameters used for solvent effects and suggest that these should be chosen carefully.
We also find a set of parameters that work robustly across all proteins.
SIGNIFICANCE The flexibility of a protein is often key to its biological function, yet understanding and characterizing its
conformational heterogeneity is difficult. Here, we describe a robust protocol for combining small-angle x-ray scattering
experiments with computational modeling to obtain a conformational ensemble. In particular, we focus on the contribution
of protein hydration to the experiments and how this is included in modeling the data. Our resulting algorithm and software
should makemodeling intrinsically disordered proteins and multidomain proteins more robust, thus aiding in understanding
the relationship between protein dynamics and biological function.
INTRODUCTION

Small-angle x-ray scattering (SAXS) experiments are
widely used in the field of integrative structural biology as
a versatile tool to probe conformational ensembles of bio-
molecules in solution. When faced with highly dynamic
and flexible systems, solving a crystallographic structure
may either not be possible or only provide a static image
that does not capture key aspects of the system. SAXS ex-
periments, instead, give a low-to-medium resolution
ensemble-averaged view of the biomolecule. Whereas for
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relatively rigid macromolecules it may be possible to derive
a single averaged shape directly from a SAXS experiment
(1–4), this is generally not possible for very flexible mole-
cules. The possibility to calculate SAXS profiles from
atomic coordinates, however, makes it possible to average
across a distribution of conformations (a ‘‘prior distribu-
tion’’), compare the result with an experiment, and to correct
the prior distribution in case of poor agreement (5,6).

SAXS measurements report on the total scattering of x
rays from all molecules in solution. Thus, the resulting scat-
tering profile represents the entire solution (buffer and so-
lute). For this reason, one also collects scattering data for
the buffer alone, which is then subtracted from the data
from the solution with the macromolecule to get the excess
scattering. Because the density of solvent around the protein
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(the hydration layer) may differ from that of the bulk solvent
(7), the resulting data (colloquially termed SAXS data,
although in practice it is a difference between two SAXS
measurements) represents the signal coming from the pro-
tein together with its hydration envelope and the solvent dis-
placed by the protein.

The calculation of SAXS intensities is done using a so-
called forward model (i.e., an algorithm to predict an
experimental observable from a structural model). Several
forward models for SAXS exist, and a key distinction is
how they treat the scattering contribution from the protein
hydration layer (5). In particular, to account for the hydra-
tion layer contribution, modeling approaches for SAXS
data generally fall into two distinct categories.

In explicit solvent models (8–12), displaced water mole-
cules and perturbed properties of the hydration envelope are
explicitly taken into account in the calculation of scattering
intensities. In particular, the scattering from the solute
(protein) and hydration layer effects is estimated by explicit
subtraction of the scattering calculated from the solvated
protein and the solvent alone.

In contrast, in implicit solvent models (13–16), the contri-
bution of the hydration layer and displaced volume to the
scattering is modeled typically through one or more parame-
ters that need to be set. The effects of the hydration layer can
be modeled by a hydration shell of some width, D, and with
excess density (and thus changed scattering compared to bulk
solvent), dr. Typically, only the productD� dr is important,
thus D is often fixed (e.g., at 3 Å), and only dr needs to be set
(or fit). Similarly, implicit solvent models may include a
parameter for the effective atomic radius (r0), which both af-
fects the overall displaced volume but also to some extent the
contribution of the hydration layer.

Whereas the explicit solvent strategy may provide a more
realistic representation of the hydration layer and its contri-
bution to the scattering data, it can be computationally
expensive and requires a force field and water model that
accurately models protein-water interactions. Although it
has been shown that the calculations on folded proteins
are not particularly sensitive to the choice of water model
(9,17), there is more uncertainty about the best models for
protein-water interactions for disordered proteins (17–20).

In many cases, one would want to use an implicit
solvent strategy to calculate scattering data because of the
smaller computational overhead. On the other hand, and
as described above, these methods may require setting pa-
rameters that describe, for example, the protein’s solvent en-
velope, and it is not always clear how best to determine
these. Here, we note that many forward models, including
implicit solvent-based forward models for SAXS, have
mostly been developed, parametrized, and benchmarked
using globular and folded protein structures. For folded pro-
teins, free parameters in forward models may be determined
using SAXS data for proteins with known structures or fitted
for a given structural model. This approach, however, is
difficult to apply to disordered proteins because for these
there is not a well-defined reference structure from, for
example, crystallography and there is uncertainty in compu-
tational methods for generating distributions of conforma-
tions (17,20–22), both in terms of sampling efficiently all
the possible conformations with the right probabilities or
in terms of parametrization. Similarly, it is not reasonable
to fit these parameters independently to each structure
because of the risk of substantial overfitting (9,17) and
because it is expected that the properties of the hydration
layer will not depend fundamentally on the details of the
structure. Finally, a key problem is that SAXS calculations
are often used to construct or bias conformational ensem-
bles, so that a procedure needs to be able to determine the
free parameters self-consistently together with the confor-
mational ensemble.

Here, we focus our attention on these issues with implicit
solvent calculations of scattering data for heterogeneous en-
sembles of conformations. We illustrate the effect of varying
the parameters describing the hydration layer and displaced
volume on ensemble refinement of intrinsically disordered
proteins (IDPs) and a flexible multidomain protein. We do
so via an iterative and self-consistent strategy to select and
optimize free parameters in SAXS calculations while at
the same time constructing a conformational ensemble to
represent the data.

Our approach is based on a reweighting approach that is
rooted in Bayesian inference (23–31) and the maximum en-
tropy principle (32–37). Although these methods show sim-
ilarities to other approaches based, for example, on genetic
algorithms (6,38,39) or Monte Carlo processes (40,41), they
differ in how they balance prior information (often encoded
in a force field) with the experimental data. This balance can
be particularly important for disordered proteins in which
the solutions are typically severely underdetermined and
in which large ensembles are required to provide a realistic
structural description of the conformations present in solu-
tion (38). Finally, we note that in some cases it is possible
to absorb some effects of protein dynamics into the forward
model rather than to represent it explicitly in the form of a
conformational ensemble, and such modifications exist
both for various types of NMR data (42–45) and x-ray scat-
tering or diffraction data (46–49). Although this may be use-
ful when studying small fluctuations around a well-defined
‘‘average’’ conformation or when the dynamics is of rigid
bodies in a crystal, here we examine systems in which we
explicitly represent a broad conformational ensemble.
MATERIALS AND METHODS

Generating conformational ensembles of IDPs

We generated conformational ensembles for the polypeptide backbones of

four IDPs using flexible-meccano (50). Flexible-meccano implicitly repre-

sents a potential energy function derived from the populations of backbone

dihedrals in loop regions in folded protein structures. The backbone chains
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are built by random sampling these potentials. Other methods exist to effi-

ciently generate conformational ensembles of IDPs, also with the possibil-

ity of taking into account transient secondary structure elements (if part of

the sequence is known to assume these) (51). We chose flexible-meccano

for most of the analyses presented here because it has been shown to

generate conformational ensembles of IDPs that are in good agreement

with both NMR observables and SAXS data (52–55) without the need to

provide any prior knowledge about the system. Because the complexity

of the ensembles may be influenced by the length of the protein, we gener-

ated larger ensembles for the longer proteins, including Hst5 (24 residues,

10,000 conformers), Sic1 (90 residues, 15,000 conformers), a-Synuclein

(140 residues, 20,000 conformers), and Tau (441 residues, 30,000 con-

formers). We added side chains to the backbone structures generated by

flexible-meccano using PULCHRA (56) with default settings.
Iterative Bayesian/maximum entropy reweighting
scheme

In integrative structural modeling, one approach is to use reweighting to

refine probability distributions to improve the agreement between calcu-

lated averages and experimental values (37). Here, we use the Bayesian/

maximum entropy (BME) reweighting procedure (36) that, by minimal

modification of the prior distribution and taking into account the uncer-

tainty in the experimental observable (si), modifies the prior weights u0
j

to minimize the pseudo-free energy functional (24,26,37):

Lðu1/unÞ ¼ m

2
c2
redðu1/unÞ � qSrelðu1/unÞ (1)

Here, m is the number of experimental data points, ðu1/unÞ are the

weights associated with each conformer of the ensemble, the reduced c2

quantifies the agreement of the weighted average forward model predicted

from each conformation xj (F(xj)) with the experimental data FEXP
i as

follows:

c2
redðu1/unÞ ¼ 1

m

Xm
i

�Pn
jujF

�
xj
�� FEXP

i

�2
s2
i

; (2)

and Srel ¼ �Pn
j ujln

uj

u0
j

is the relative entropy that quantifies how much the

reweighted distribution deviates from the prior.

Thus, when minimizing L, we aim to lower c2
red (to improve agreement

with experiment), while not decreasing the relative entropy term too much,

in such a way as to obtain the minimal modification of the prior distribution

that results in a better agreement with the experimental data. The parameter

q is a temperature-like free parameter that effectively sets the balance be-

tween experiments and computation and takes into account various sources

of error, such as inaccuracies in the force field or the forward model (24,37).

In the limit q/N, no confidence is assigned to the experimental data, and

no reweighting is performed. Because q is decreased, more weight is put on

improving agreement with experiments (c2
red) but at the cost of an increased

deviation between the posterior (refined) distribution and the prior distribu-

tion (in this case generated by flexible-meccano or simulations with the

Martini or all-atom force fields). This can also be quantified as feff ¼ ex-

p(Srel), corresponding to the fraction of the original n frames that effectively

contributes to the refined ensemble. For q ¼ 0, the c2 is minimized without

considering the prior distribution, in some cases leading to very low values

of feff, and so very few conformations contribute to the final average. In

methods such as BME, q should be chosen in such a way as to find the bal-

ance between minimizing the c2 and retaining as much information as

possible from the prior, such as, for example, when c2 reaches a plateau

(24,37).

We highlight that, as a consequence of the points above, the prior distri-

bution is an important part of the procedure because the goal of BME and
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related approaches is to perform the minimal modification of the prior to get

a reasonable agreement with the experimental data. The definition of the

prior weights is strictly dependent on the method used to sample conforma-

tions. In case of standard molecular dynamics simulations, in which the

conformations are sampled from a Boltzmann distribution, or flexible-mec-

cano, in which the conformations are sampled from specific backbone dihe-

dral angle potential wells, the weights are uniform because the probability

of a certain conformation is related to its occurrence in the ensemble.

Because the goal of the BME is to decrease the c2, it is important to

ensure, when needed, that the experimental and calculated values are on

the same scale. Whereas SAXS intensities can be measured and calibrated

on an absolute scale, this depends on careful calibration of the instrument

and accurate measurements of the protein concentration. Thus, calculated

SAXS profiles are often rescaled to match the experimental data. Moreover,

experimental SAXS data may contain a small, nonzero background scat-

tering (e.g., from imperfect background subtraction), which sometimes is

dealt with by shifting calculated SAXS profiles to get a better fit.

To account for these issues, we present here the iterative Bayesian/

maximum entropy (iBME) approach, an iterative scheme that we have

developed with the aim of coupling ensemble refinement and optimization

of scale factor and constant background of the calculated SAXS profiles.

The scheme is structured as follows:

1) Given a set of SAXS profiles calculated from each structure in a confor-

mational ensemble, the corresponding ensemble-averaged SAXS profile

is calculated using a set of initial (prior) weights (uniform weights in all

our ensembles). We then perform a weighted least-squares fit between

the ensemble-averaged calculated SAXS profile and the experimental

SAXS profile to get slope and intercept of the resulting linear fit.

Weights for the weighted least-squares fit are defined as 1
ðs2i Þ

.

2) The slope and intercept from 1 are used as scale factor and constant

background to rescale and shift the calculated SAXS profiles.

3) BME is used for optimizing the weights starting from the prior weights.

4) The optimized weights from 3 are used to calculate a new ensemble

average of the SAXS profiles, which in turn is used for a new weighted

least-square fit to the experimental profile.

5) With the new slope and intercept, the calculated SAXS data set used in

the previous BME reweighting is again rescaled and shifted.

6) Repeat 3–5 until the drop of c2
red between consecutive iteration of the

algorithm falls below a predefined threshold or for a fixed number of it-

erations (we used 20 iterations in our analyses).

We initially tested the method using synthetic data to examine how well

it can recover the scale factor and constant background (see Supporting ma-

terials and methods and Figs. S1–S4). We note also that iBME, in part, has

overlap with features in BioEn (26), in which only the scale factor is

adjusted iteratively upon optimizing the weights.

iBME is implemented in an updated version of BME (https://github.com/

KULL-Centre/BME). Data and scripts used for the analyses presented in

this manuscript are available at https://github.com/KULL-Centre/papers/

tree/main/2021/SAXS-pesce-et-al.
Calculation of the radii of gyration

We use two different methods to estimate the (average) radius of gyration

(Rg) of a conformational ensemble, one based on the protein coordinates

and another based on the SAXS data.

From a conformational ensemble, the Rg for each conformer of n atoms

can be calculated as Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i
mi jri�rCOM jPn

i
mi

r
, with ri being the position of

the ith atom, mi its mass, and rCOM ¼
Pn

i
rimiPn

i
mi

the center of mass.

We used MDTraj (57) for these calculations and calculate the ensemble

average hRgi as a linear or weighted average of the Rg-values from each

conformer.
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As an alternative to using the atomic masses to weigh the distances in the

calculation of Rg, we also use the atom contrasts, defined for the ith atom as

dr2i ¼ ðri � rwÞ2, where rw is the density of bulk water (334 e/nm3) and ri
is the density of the ith atom calculated as the ratio between its number of

electrons and its volume (58). We do not, however, observe substantial dif-

ferences between the mass-weighted and contrast-weighted values of Rg

(Fig. S5).

From an experimental SAXS profile, we use the Guinier approximation

to estimate the average Rg in solution (59). We first transform the SAXS

profile as 1n I(q) vs. q2, then obtain hRgi from the slope (a) of a linear fit

in the small-angle region using CRgD ¼ ffiffiffiffiffiffiffiffiffi�3a
p

. The linear fit takes into ac-

count the uncertainty of the intensities (propagated as

����siIi
����) and was per-

formed using the scikit-learn python library (60).
RESULTS AND DISCUSSION

Conformational ensembles and SAXS data

Our aim here is to develop a strategy to model conforma-
tional ensembles of flexible proteins with SAXS data, taking
into account both uncertainty about a scale factor and con-
stant background in the experimental SAXS data as well as
effects of the hydration layer and displaced solvent. As the
object for our analyses, we selected five proteins for which
SAXS profiles had been determined experimentally and pub-
lished. Also, because protein flexibility may exist in multiple
forms and to include different types, we first choose three
IDPs of different lengths and a multidomain protein with
flexible linkers, including Histatin 5 (Hst5) (SAXS data
collected at 323K from (61)), Sic1 (SAXS data from (62)),
full-length (ht40-)Tau (SAXS data from (63)), and the
three-domain protein TIA1 without its flexible low-
complexity domain (SAXS data from (64)). Furthermore,
we also analyze below an additional IDP (a-Synuclein,
with SAXS data from (65)) to examine the robustness of
the analyses done on the four proteins listed above.

Wegeneratedconformational ensemblesof the four IDPsus-
ing flexible-meccano (50). Additionally we also analyzed two
previously performed molecular dynamics simulations of a-
Synuclein (66) produced using either the Amber a99SB-disp
or the Amber ff03ws force field. We also used a previously
generated molecular dynamics simulation of TIA1 (67). The
TIA1 simulations were performed with the Martini force field
(68) after increasing the interaction strength between protein
and water by 6% (67). All structures were converted to all-
atom representation before calculating SAXS data.

We used the implicit solvent SAXS calculation approach
Pepsi-SAXS (Polynomial Expansions of Protein Structures
and Interactions SAXS) (14) to calculate SAXS profiles
from atomic coordinates. We choose this method for its
versatility and computational efficiency, but our approach
will also apply to other similar methods (13,15), and below
we also discuss and show results using FoXS. When no
additional information, other than atomic coordinates and
an experimental SAXS profile, is provided to Pepsi-
SAXS, the software may tune four parameters to optimize
the fit between the calculated and experimental SAXS pro-
file: 1) the intensity of the forward scattering I(0) (i.e., the
scale of the profiles), 2) a constant background cst, 3) the
effective atomic radius r0, and 4) the contrast of the hydra-
tion layer dr. In our calculations, we do not enable direct
parameter fitting within Pepsi-SAXS and, instead, keep
these parameters fixed to the same value for each conformer
of an ensemble. As described in more detail below, we
instead fit I(0) and cst as global ensemble averages and
scan r0 and dr to determine self-consistent ensembles.
Determining self-consistent ensembles and
hydration layer and displaced solvent parameters

By default, Pepsi-SAXS performs a grid search for the com-
bination of r0 and dr that provides the best fit (lowest c

2) be-
tween the SAXS profile calculated from of a specific protein
structure and the experimental data. Although this strategy
may be appropriate to calculate a SAXS profile for globular
proteins with little conformational heterogeneity, it can result
in overfitting if applied to each structure in highly heteroge-
nous conformational ensembles. Default values of r0 and dr

might be determined by fitting SAXS data to known crystal
structures and used without modification on other proteins.
This, however, would amount to making the assumption
that the hydration effects are constant and transferable from
specific globular proteins to, for example, IDPs. We note
here that it has been shown that the surface properties of
the protein affect the hydration contribution (69,70).

Instead, to determine the combination of parameters that
best describes a conformational ensemble, to shed light on
the influence of these two parameters, and to find a single
set of parameters that provides a good description of the
data, here, we want to keep the rationale of a grid search
but add an ensemble perspective. Similar to the standard
grid scan, we calculate SAXS data for a range of values of
r0 and dr. To define the ranges for the grid, we compare the
search ranges for r0 and dr implemented by three of
the most widely used algorithms for SAXS calculations,
CRYSOL (13), FoXS (15), and Pepsi-SAXS (Table S1),
and use thewidest ranges allowed by the three methods. Spe-
cifically, for r0, we use 11 values in the range 1.4–1.8 Å,
whereas for dr, we use 30 values in the range �27.0 to
70.0 e/nm3. We also make the assumption that r0 and dr are
the same for all conformers in the ensemble. Whereas these
might in principle be conformation dependent (70,71), we
do so to decrease the risk of overfitting when varying these
two parameters for each of the thousands of conformations.
Also, because the goal here is to describe the conformational
distribution of the protein in solution, we do not expect a sub-
stantial difference as long as there is not a strong conforma-
tional dependency on the properties of the solvation layer.

Given that the input (‘‘prior’’) ensemble may not be fully
representative of the protein in solution, we do not just
compare the experimental SAXS profiles with each of the
Biophysical Journal 120, 5124–5135, November 16, 2021 5127
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average SAXS profiles calculated with Pepsi-SAXS with
different values of r0 and dr (37,72). Instead, we use the
BME approach to reweight the prior ensembles against the
experimental data (36), using as input (one at a time) the
SAXS calculationswith different values of r0 and dr. In the re-
weighting, it is key that the calculated SAXS profiles match
the intensity of the forward scattering I(0) and the constant
background cst of the experimental signal. To accurately fit
both I(0) and cst upon reweighting, we developed the iBME
scheme (see Materials and methods for detailed description
and Supporting materials and methods for validation). The
iBME method uses iterations of rescaling and shifting the
calculated SAXS profiles and reweighting of the conforma-
tional ensemble to fit a global value of I(0) and cst. The only
requirement is that the same values for both I(0) and cst are
used to calculate the SAXS data for all conformers (I(0) and
cst are ensemble properties related to the experimental
SAXS profile and independent of the single conformation).
We set I(0) and cst ¼ 0 for all conformers in the Pepsi-
SAXS calculations, but because these parameters are adjusted
by iBME, the choice of the starting values is not essential. In
this way, we scan a range of r0 and dr and use iBME to fit
I(0), cst, and the conformational ensemble. To simplify inter-
pretations and analysis, we kept the parameter q constant for
each protein (values specified in Table 1). This was done to
keep the balance between the prior and experiment constant
so as to focus on changes that arise because of differences in
the hydration and displaced solvent parameters. The resulting
reweighted ensembles (at different values of r0 and dr) are
analyzed further below.

We also validated the grid-scanning approach using syn-
thetic SAXS data generated using a specific choice of r0 and
dr to generate the data (see Supporting materials and
methods). The results show that, both with a correct prior
(Fig. S6) and a prior that is different from that used to generate
the synthetic data (Fig. S7), the method is able to recover
values of r0 and drvery close to those used togenerate the data.
A scoring function for the ensembles on the r0 �
dr grid

Once we calculated SAXS profiles and refined (i.e., re-
weighted) the ensembles for each pair of parameters on
the r0 � dr grid, we needed a scoring function to quantify
TABLE 1 Best fitting SAXS parameters, input, and results of

the iBME optimization

Hst5 Sic1 Tau TIA1

r0 (Å) 1.722 1.558 1.640 1.722

dr[e/nm3] 10.02 10.02 0.00 �3.34

q 80 80 50 100

c2
red (before iBME) 3.52 1.39 1.64 0.919

c2
red (after iBME) 1.04 1.02 1.14 0.540

feff 0.911 0.941 0.707 0.884
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the agreement with the experimental data. We already
note here the complication arising from the fact that the en-
sembles have been refined against the experiments.

We first calculated the c2
red after the iBME optimization to

indicate the quality of the ensembles. For Hst5, Sic1, Tau,
and TIA1, this led to a large region with lowc2

red (Fig. 1,
a–j), suggesting that most of the combinations of r0 and
dr tested with r0% 1.722 Å can be fitted to the experimental
data. We note also that, although the c2

red is widely used for
the purpose of comparing SAXS profiles, it has been noticed
that it can be prone to overfitting if the noise is not estimated
correctly (73,74). For this reason, previous studies have
focused, for example, on identifying the amount of informa-
tion in a SAXS profile or in correcting the experimental
noise (74–76). Here, because we are comparing different
fits to the same data and with the same number of degrees
of freedom, we did not use such corrections. In turn, this
means that the calculated values of c2

red cannot easily be
compared across the four systems that we analyzed.

When reweighting an ensemble against experiments, it is
important to monitor the effective fraction of frames (feff)
that, as explained above, quantifies how much the posterior
distribution deviates from the prior. When feff is low, this in-
dicates that the ensemble has to be modified substantially to
achieve the desired agreement with experiments. To ease
comparison across the different ensembles in the grid, we
have chosen to use the same value of q for all combinations
of r0 and dr, where q sets the balance between not deviating
too much from the prior ensemble (maximizing feff) and
fitting the experimental data (minimizing c2

red). Thus, at
fixed values of q, the resulting value of feff is another indi-
cator of the quality of the ensembles (77), and we find a rela-
tively narrow region of the grids with high values of feff

(Fig. 1, b, e, h, and k). Thus, comparing the maps of c2
red

and feff, we find that, whereas it is possible to achieve a rela-
tively good fit at a wider range of values of dr and r0, in
many cases this comes at the cost of a substantial deviation
from the prior (low feff). To combine the balance of

achieving a low c2
red and a high feff, we thus introduce a var-

iable, g ¼ ln

 
c2
red

feff

!
, that combines these two effects in a

single number (Fig. 1, c, f, i, and l). The results show that
it is not possible to obtain a good fit (defined here as giving
rise to a low g) at all values of dr and r0, but that there are
certain regions that appear to give rise to comparable fits.
The parameter sets that give the lowest values of g for
Hst5, Sic1, Tau, and TIA1 are reported in Table 1 together

with the c2
red before and after reweighting and the feff. We

note that the final ensemble may not be optimal and that
further refinement could be obtained by scanning q

(24,36,37).
We observe that, whereas there are some differences be-

tween the four proteins analyzed above, it also appears
that there is a region that gives relatively good fits for all
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FIGURE 1 Reweighting ensembles using SAXS data calculated using different values for the parameters that effect the contribution from for the hydration

layer and displaced solvent. The grids show the results from the iBME ensemble optimization with different combinations of dr and r0. The top row (a–c)

shows Hst5, the second row (d–f) shows Sic1, the third row (g–i) shows Tau, and the last row (j–l) shows results for TIA1. For each protein, we show in the

first column (a, d, g, and j) lnðc2
redÞ, we show in the second column (b, e, h, and k) feff, and we show in the third column (c, f, i, and l) g ¼ ln

 
c2
red

feff

!
. White

spots correspond to ensembles in which the iBME reweighting failed. To see this figure in color, go online.
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proteins (Fig. 1). Because it may be computationally expen-
sive to scan many sets of parameters, we also aimed to find a
set of parameters that provides good scores for these four
proteins. We therefore normalized and averaged the g scores
and found the minimum to be at dr ¼ 3.34 e/nm3 and r0 ¼
1.681 Å.

We note that, in the literature, higher values are generally
reported as default for dr (generally 10% (7) or 6% (17,71)
of the bulk density). In the context of SAXS calculations,
however, we also note that the main quantity that determines
the contribution of the hydration layer is the product be-
tween dr and its width D (13,14). Whereas D is 3 Å in
CRYSOL, it is chosen in a slightly different fashion in
Pepsi-SAXS, and it is 5 Å in most of the cases that we exam-
ined. To demonstrate that different values for the contrast of
the hydration layer alone can lead to the same result when
the width is treated in different ways, we also repeated the
grid scans for Hst5, Sic1, Tau, and TIA1 employing
FoXS. Although the minima for g are different from those
obtained using Pepsi-SAXS (Fig. S8), the reweighted distri-
butions of Rg from these minima are essentially identical
(Fig. S9), reinforcing the observation that dr alone is mean-
ingful only in the context of a specific SAXS calculator. In
addition, by again normalizing and averaging the g score,
we obtain a global minimum for the parameters in FoXS
at r0 ¼1.68 Å (as in Pepsi-SAXS) and dr ¼ �7.07 e/nm3.
We note that this value for dr appears substantially different
from those used for folded proteins and suggest that further
studies are needed to examine better the physical origins of
these effects.

Conversely, the value r0 ¼ 1.681 Å is slightly higher than
the average values used by CRYSOL and FoXS (1.62 Å) and
Pepsi-SAXS (1.64 Å). Although the origin of this observa-
tion is unclear, we note that there are differences in protein
volume, depending onwhether a protein is folded or unfolded
(78,79). Thus, the excluded volume, as described by the
Fraser model (58), might need different parameters for
compact and expanded proteins, and we suggest that this
could be studied further using molecular simulations (9).
Effect of hydration and atomic radius parameters
on the conformational ensemble

The idea of the grid search is to find a combination of r0 and
dr that gives rise to the best agreement with experimental
data, also taking into account that we need to determine
Biophysical Journal 120, 5124–5135, November 16, 2021 5129
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FIGURE 2 Comparing ensembles relative to the

optimum. For each protein (a: Hst5, b: Sic1, c:

Tau and d: TIA1) we calculated the effective frac-

tion of frames (shown here as feff) between the

weights obtained using the parameters in Table 1

and the weights obtained at all other combinations

of r0 and dr. White spots correspond to ensembles

in which the iBME reweighting failed. Purple spots

correspond to the minima for g. To see this figure in

color, go online.
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the parameters and ensemble weights at the same time.
Here, we explore the effect of choosing specific sets of these
parameters on the conformational ensembles.

We first examined how much the individual ensembles
differed from those determined using the r0 and dr parame-
ters that give rise to the lowest value of g (Table 1). We
therefore calculated, as a measure of the difference between
ensembles, feff between the weights optimized using the
different combinations of r0 and dr relative to the weights
obtained using the ‘‘optimal’’ values of r0 and dr (Fig. 2).
As expected, values around the optimum give rise to compa-
rable weights (feff close to 1). For Sic1 and TIA1, we also
note a correlation between r0 and dr, such that increasing
the excess density (dr) and decreasing the radius (r0) appear
to give rise to more comparable ensembles. Nevertheless,
the results also show that, whereas several different combi-
nations of r0 and dr can give rise to a good fit (Fig. 1), the
resulting ensembles differ depending on the choice of pa-
rameters used to calculate the scattering data. In particular,
we find that the ensembles are rather sensitive to the choice
of dr, in particular for the three IDPs analyzed above.

SAXS data are often used to estimate Rg, so we demon-
strate how the different ensembles have different distributions
of Rg. Using Sic1 as an example, we chose the optimal pa-
rameters as well as three other combinations of r0 and dr

and calculated p(Rg) after reweighting (Fig. 3). The results
show that, as long as r0 and dr are chosen within the range
that gives a low value of g, the resulting distribution is rela-
tively similar. On the other hand, if more extreme values for
the r0 and dr parameters are chosen, the average Rg may
differ substantially in the reweighted ensembles (Fig. S10).
FIGURE 3 Effect of the dr and r0 parameters on reweighted probability

distributions of Rg. We use Sic1 as an example and show p(Rg) from both

the optimal (lowest g) parameters (blue) as well as three other choices of

r0 and dr in the low-g region (orange, green, and red). The insert shows

the parameters used in each case and the results of the reweighting on

the Rg distribution. To see this figure in color, go online.
Assessing the influence of the prior on the
parameters search

Because our strategy to determine self-consistent values for
dr and r0 is based on the BME refinement of probability dis-
tributions, it is reasonable to ask how the results depend on
the statistical prior used in the approach. In this context,
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there are two related questions that we address here. First,
as we have also examined previously (65,67), is the question
of how much the distribution of conformations after re-
weighting depends on the prior that is used. Second is the
question of how much the dr and r0 parameters depend on
the prior. The latter is important because the optimal param-
eters may in part compensate for imperfections in the prior.

To examine these questions we applied our protocol to
three different ensembles of a-Synuclein. The first ensemble
was generated using flexible-meccano, whereas the other two
were previously generated by molecular dynamics simula-
tions (66) using either the Amber a99SB-disp or the Amber
ff03ws (a03ws) force field. The distributions of the Rg for
the three priors are relatively different (Fig. 4 a), and conse-
quently, the minima of the g parameter indicate small differ-
ences in the best values of dr and r0 (Fig. 5). The reweighted
distributions of Rg, however, appear very similar (Fig. 4 b).
Notably, for each prior, we obtain essentially indistinguish-
able distributions of Rg whether we use the optimal



a

b

FIGURE 4 Effect of the prior distribution. (a) Distributions of Rg of a-

Synuclein sampled with flexible-meccano (FM), a99SB-disp (disp), and

a03ws. (b) Reweighted Rg distributions, either from the optimal (lowest

g) dr and r0 parameters for each ensemble (solid lines) or using the default

values, we propose (dr¼ 3.34 e/nm3 and r0 ¼ 1.681 Å; dotted lines). To see

this figure in color, go online.
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parameters (for each prior) from the grid search or the set of
parameters that we proposed as default values (Fig. 4 b).

Returning to the original two questions, these results
show that the prior may influence the optimal parameters re-
sulting from the grid search, similar to our observations us-
ing synthetic SAXS data (Figs. S6 and S7). They also show,
in line with previous observations (65,67), that even when
starting from somewhat different priors, the posterior distri-
butions tend to be substantially similar. Noteworthy, the re-
sults are robust to the choice of dr and r0, so that very
similar results are obtained, even when using the global
minimum from our analyses of Hst5, Sic1, Tau, and TIA1.
Comparing ensembles to experimental estimates
of Rg

In the analyses of the Rg described above, we implicitly
referred to the values calculated from the protein coordinates
as the mass-weighted root mean-square distance from the
center of mass of the protein. This is a geometric quantity
that is often used to study protein behavior and biophysics.
Because the ensembles were constructed by fitting to the
experimental SAXS data, the resulting averages and distribu-
tions of Rg represent the experimental system, but exactly
because the hydration effects were included in the SAXS
calculations, this means that these Rg-values only represent
the protein.

Another approach to estimate hRgi from experiment is to
fit the SAXS data directly without resorting to a conforma-
tional ensemble. The most common approach is to use the
Guinier approximation (59), although other approaches
exist (80–82). Because the SAXS data potentially contain
a contribution from the hydration layer, the hRgi estimated
by a Guinier analysis (or similar methods) may, in principle,
contain contributions from this (17). One complication of a
Guinier analysis is to identify the linear part of the curve
(the Guinier region), in particular because the first few
low q points of the scattering curve may often be noisy.
As rule of thumb, the maximal scattering angle that can
be used for the Guinier approximation satisfies the condition
qmaxhRgi < 1.3 (1), but a threshold value of 0.9 has also been
proposed for disordered systems (83).

Because both approaches to estimate hRgi are commonly
used, we here compare the two results. In addition to shed-
ding light on differences, this analysis is also relevant
because it is relatively common to compare hRgi-values
calculated from simulations with values estimated from ex-
periments, although the two might differ because of effects
of the hydration layer. Thus, we performed a Guinier anal-
ysis of the SAXS data for the four proteins, progressively
extending the upper limit of the q-range from 0.9 to 1.3
and plotting Rg vs. qmaxRg (83). We find that the Guinier
fits can show substantial differences in the estimated hRgi
values, depending on the range used. Returning to the ques-
tion of how the Rg-values estimated from the Guinier fit
compare to the average Rg from the conformational ensem-
bles with the lowest g scores (horizontal black line in
Fig. 6), we find that these are in a reasonable agreement
(within 0.2 nm) with the values calculated from Guinier
fits using qmaxRg ¼ 1.3. Looking across the four proteins,
we do not find a unique qmaxRg-value for which the Guinier
fit gives rise to an average Rg that is similar to that obtained
from the conformational ensembles.
CONCLUSIONS

SAXS experiments are widely used as source of structural
information and are often integrated with computational
methods to determine conformational ensembles. Generally,
such approaches rely on a forward model, such as Pepsi-
SAXS (14), to calculate SAXS data from one or more confor-
mations and optimize the structures or weights to improve
agreement with experiments. Although these approaches are
very powerful, they are subject to uncertainty due to the choice
of unknown parameters in the forward model. In principle,
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FIGURE 5 Reweighting a-Synuclein ensembles using SAXS data calculated using different values for the parameters that effect the contribution from the

hydration layer and displaced solvent. The grids show the results from the iBME ensemble optimization with different combinations of dr and r0. The top row

(a–c) shows the results from the flexible-meccano ensemble, the second row (d–f) shows the results using a99SB-disp as the prior, and the third row (g–i)

shows the results from a03ws as the prior. For each ensemble we show in the first column (a, d, and g) lnðc2
redÞ, in the second column we show (b, e, and h)

feff, and in the third column (c, f, and i) we show g ¼ ln

 
c2
red

feff

!
. White spots correspond to ensembles in which the iBME reweighting failed. Purple spots in

the third column correspond to the minima for g. To see this figure in color, go online.
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these parameters can be ‘‘integrated out’’ using Bayesian ap-
proaches (31,84), although this can become computationally
prohibitive for SAXS calculations. Thus, the aim of our
work is to provide a robust protocol that estimates values for
the relevant free parameters. In the context of SAXS, these
include the two parameters that determine the effects of the
hydration layer and displaced volume (dr and r0) as well as
a scale factor and constant background (I(0) and cst) that are
often necessary to estimate.

We have developed and tested iBME as an extension to
BME to include a scale factor and constant background be-
tween experimental and calculated values. Importantly, the
values are estimated as the globally best fitting parameters
a

d e

b c
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and are determined self-consistently with the weights of
the ensembles. Although we have presented iBME here in
the context of SAXS data, other types of data, such as
NMR residual dipolar couplings, solvent paramagnetic relax-
ation enhancement effects, or circular dichroism spectra,
may also involve estimating an overall scale. For small-angle
neutron scattering data, the ability to include (fit) a constant
background can be important because of contributions from
incoherent scattering.

We also present the results from an extensive analysis of
the effect of the r0 and dr parameters on calculated SAXS
data and the resulting ensembles. We have determined
self-consistent ensembles in which the ensembles are
FIGURE 6 Estimating hRgi from experimental

SAXS profiles of (a) Hst5, (b) Sic1, (c) a-Synu-

clein, (d) Tau, and (e) TIA1 using Guinier fitting

and ensemble refinement. We used the Guinier

approximation to estimate Rg by fitting from the

lowest measured value of q (in the case of Hst5

we ignored the first 10 points due to noise) to

different values of qmax, reporting the results as

Rg vs. qmaxRg (black circles). The horizontal black

lines are the ensemble-averaged Rg calculated from

the conformational ensembles (in the case of a-

Synuclein, we used the flexible-meccano prior)

with the chosen optimal r0 and dr parameters

(Table 1).
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reweighted using SAXS data calculated using different
values for these parameters. Such an analysis is, in partic-
ular, important for large ensembles of flexible molecules
because fitting these parameters to each conformation could
lead to substantial overfitting. We also note that the calcula-
tions of SAXS intensities could potentially be improved
further by being able to predict the features and contribution
from the hydration layer for different sequences and confor-
mations rather than relying on fitting parameters.

Combining these two aspects, the approach that we have
described can be summarized as follows: 1) sampling a
conformational ensemble; 2) calculating SAXS profiles
from the conformers of the ensemble, keeping scale and
background parameters fixed (I(0) ¼ 1, cst ¼ 0) and per-
forming a grid scan for dr and r0; 3) for each value of dr
and r0, optimizing the weights, I(0) and cst using iBME
and 4) examining the results by calculating c2

red, feff, and
g, and selecting the ensemble with the lowest value of g.

One complication of the algorithm is that it requires a
large number of calculations of SAXS intensities. In cases
where the prior ensemble already exists or is fast to
generate, the SAXS calculations can quickly become
limiting in terms of computational efficiency. For these rea-
sons we also propose default values for dr and r0 that we
find to provide relatively accurate results for the four pro-
teins that we examined. To test this further, we also used
these default parameters to calculate SAXS intensities
from different conformational ensembles of a-Synuclein
and find that the resulting distributions of Rg are almost
the same as if the parameters are optimized. We also note
that the computational overhead of the grid scans could be
drastically reduced by precomputing partial SAXS inten-
sities once per grid and then adding the contributions from
dr and r0. Although this procedure is already internally
used by several methods to calculate SAXS data, options
to output and process partial intensities for specific scat-
tering angles are, at the moment, not easily accessible.

Finally, we also discuss considerations on the common
practice of comparing the experimentally determined Rg

(calculated with the Guinier approximation) with Rg calcu-
lated from the structural ensemble. Although the results
show good agreement, they also suggest that caution should
be exerted when comparing average Rg-values from simula-
tions and experiments. In particular, we find that both
changing the r0 and dr parameters (Fig. S10) or the region
used for Guinier fitting (Fig. 6) can change the Rg substan-
tially, so generally, we recommend that it is better to
compare the experimental data (in this case SAXS inten-
sities) with values calculated from simulations rather than
comparing parameters estimated from experiments. Never-
theless, even such comparisons contain ambiguities because
one needs to choose parameters in the SAXS calculations.
Thus, we suggest that our work will be useful when bench-
marking molecular simulations against SAXS data by
providing additional insight into the effect of the hydration
layer (17) and suggest default values that can be used as a
starting point.
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SAXS profiles of folded and intrinsically disordered proteins from
computer simulations. J. Mol. Biol. 430:2521–2539.

18. Best, R. B., W. Zheng, and J. Mittal. 2014. Balanced protein – water
interactions improve properties of disordered proteins and non-specific
protein association. J. Chem. Theory Comput. 10:5113–5124.

19. Piana, S., A. G. Donchev, ., D. E. Shaw. 2015. Water dispersion in-
teractions strongly influence simulated structural properties of disor-
dered protein states. J. Phys. Chem. B. 119:5113–5123.

20. Henriques, J., C. Cragnell, and M. Skepö. 2015. Molecular dynamics
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1 Validation of iBME with synthetic SAXS data

We used the Hst5 ensembles generated by Flexible-Meccano to create synthetic
data to test and validate iBME. We calculated SAXS profiles for each structure
in the ensemble using Pepsi-SAXS, using δρ = 13.36 e/nm3 and r0 = 1.722
�A as parameters to describe the hydration layer and displaced solvent volumes.
These SAXS profiles were linearly averaged to give rise to the target SAXS data,
assigning the error associated with the j’th data point as σj =

0.5Ij
100 exp (qj)

We then generated five sets of non-uniform weights for the ensemble, to
define five different prior distributions. Specifically, we generated weights for
each conformer, i, according to:

w′i = exp {1− (20 + 10a) ∗ exp [(0.4b+ 1.2)−Rg(i))4]} (1)

with a and b being random numbers between 0 and 1, and with the final weights
(wi) obtained by normalizing w′i. These weights lead to the SAXS data in
Fig. S1) and Rg distributions shown in Fig. S2.

First we use the standard BME approach with θ = 100 to optimize each
of the five priors against the (synthetic) experimental data by minimizing the
functional

L(ω1 · · ·ωn) =
m

2
χ2

red(ω1 · · ·ωn)− θSrel(ω1 · · ·ωn) (2)

as described in the main text and with χ2
red defined as

χ2
red(ω1 · · ·ωn) =

1

m

m∑
i

(
∑n
j ωjF (xj)− FEXPi )2

σ2
i

(3)

After doing so we keep the resulting weights (ωj) as reference.
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Standard BME assumes that the experimental observable (FEXP ) are on
the same scale as those obtained by applying the forward model to the compu-
tational ensemble (F (xj)). iBME is an approach that deals with cases where
the two are on a different scale, such as for example SAXS data where IEXP

and the calculated I(xj) may differ by a linear transformation I ′(xj) = scale ·
I(xj) + offset.

To generate synthetic data representing this situation, we thus changed each
of the input SAXS curves (for each of the structures) by multiplying by a random
number between 0 and 5 to change the scale, and subsequently adding a random
number between 0 and 1 to change the offset (the same scale and offset was used
for each structure in the ensemble). The average curves are shown in Fig. S3.

We then applied iBME (as described in the main text) to these priors, tar-
geting the unmodified synthetic data (blue line in Figs. S1 and S3). The same
θ as with standard BME (100) was used. The successful outcome of iBME is
demonstrated by comparing the χ2 both before and after reweighting, φeff and
and the weights obtained using BME on the unmodified SAXS data (Fig. S4).

2 Validation of the grid scan with synthetic SAXS
data

We use the same synthetic experimental SAXS data used to test iBME above
(i.e. to fit the scale and offset) to assess the ability of the grid scan procedure to
recover the δρ and r0 used to generate the synthetic experimental SAXS profile.

We first used uniform weights (same as used to generate the synthetic ex-
perimental SAXS profile) as the prior for the iBME optimization. Even when
adding noise to the (synthetic) data, the grid search recovers the correct values
used to generate the synthetic data (δρ = 13.36e/nm3 and r0 = 1.722Å) at the
minimum of γ (determined by a χ2

red ≈ 0 and φeff ≈ 1) (Fig. S6).
We also repeated the grid scan using ‘Prior 1’ (Figs. S2–S3) discussed above

as the prior. In this way, we represent the case where the experimental data
are generated by a different distribution than the prior. In this case we find the
minimum of γ in a grid point adjacent to that used to generate the synthetic
experimental SAXS profile (δρ = 10.02 e/nm3 and r0 = 1.763Å) (Fig. S7).
Thus, while we do not recover exactly the same values, they are very close to
those used to generate the data.
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3 Additional figures and tables

Table S1: Search ranges for fitting parameters
CRYSOL FoXS Pepsi-SAXS

r0 [�A] 1.55 - 1.68 1.40 - 1.80 1.56 - 1.72
δρ [e nm−3] 0 - 70.0 -27.0 - 54.0 0 - 33.4

Figure S1: Synthetic SAXS data used to validate the iBME protocol. Thin grey
lines show SAXS profiles for each of the structures in the Hst5 ensemble. The
uniform average of these curves gives rise to the blue line, which we here term
the (synthetic) ‘experimental’ data. This is the target for the optimization. The
non-uniform weights give rise to five other average SAXS curves, that are the
starting point for optimization.
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Figure S2: Rg distribution from the Flexible-meccano ensemble of Hst5 (with
uniform weights), as well as five ensembles with different sets of non-uniform
weights.

Figure S3: Same SAXS profiles as in Fig. S1, but after perturbations with a
scale and offset.
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Figure S4: Evolution of observables along the iterations of the iBME. Dotted
black lines represent the target values obtained from the standard BME using
the un-scaled and shifted data. The relative entropy Srel is computed between
the weights at each iteration of iBME and those obtained from standard BME.
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Figure S5: Distribution of the mass-weighted Rg and contrast-weighted Rg
calculated as described in the Methods of the main text for the a99SB-disp
ensemble of α-Synuclein.
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Figure S6: Grid scan optimizing a synthetic experimental SAXS profile with
iBME. In this case we used as prior the same distribution as that used to
generate the synthetic data. The minima in χ2

red (a), φeff (b) and γ are shown
in purple.
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Figure S7: Grid scan optimizing a synthetic experimental SAXS profile with
iBME. As prior for iBME we use ‘Prior 1’ (Figs. S2 and S3). Minima in χ2

red

(a), φeff (b) and γ are shown in purple.
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Figure S8: Reweighting ensembles using SAXS data calculated with FoXS using
different values for the parameters that effect the contribution from for the
hydration layer and displaced solvent. The grids show the results from the
iBME ensemble optimization with different combinations of δρ and r0. The
top row (a–c) shows Hst5, the second row (d–f) shows Sic1, the third row (g–i)
shows Tau, and the last row (j–l) shows results for TIA1. For each protein we
show in the first column (a, d, g, j) ln

(
χ2

red

)
, the second column (b, e, h, k)

φeff, and third column (c, f, i, l) γ = ln
(
χ2
red

φeff

)
. White spots correspond to

ensembles where the iBME reweighting failed. The purple spots in the third
column correspond to the minima for γ.
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Figure S9: Reweighted Rg distributions for (a) Hst5, (b) Sic1, (c) Tau and (d)
TIA-1 from the γ minima obtained with either Pepsi-SAXS or FoXS-based grid
scans.
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Figure S10: Reweighted average values of Rg on the part of the grids that gave
reasonable fits for (a) Hst5, (b) Sic1, (c) Tau and (d) TIA-1.
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