SUPPLEMENTAL MATERIALS

TABLE S1 |

Protein-Protein Interaction Network of *Mus musculus* MT3

SI. No	Term ID	Term Description	FDR	Protein Labels
1	GO:0060548	Negative regulation of cell death	1.12E-12	Akt1,Ppp5c,Hspb1,Sod2,Hspa8,Gsk3b, Sod1,Hsp90ab1,Hspd1,Cat,Txn1,Dnaja 1,Bag1,Cdk5,Bag3,Mt3,Mt1,Ptges3,Bag 5,Ar,Pgr,Hsf1,Ahr,Hspa1b
2	GO:0043067	Regulation of programmed cell death	3.01E-11	Akt1,Hspb1,Sod2,Hspa8,Gsk3b,Sod1,H sp90ab1,Hspd1,Cat,Ppid,Dnaja1,Bag1, Vcp,Scp2,Cdk5,Bag3,Mt3,Mt1,Tspo,Ba g5,Ar,Pgr,Hsf1,Nr3c1,Hdac6,Hspa1b
3	GO:0042981	Regulation of apoptotic process	1.69E-10	Akt1,Hspb1,Sod2,Hspa8,Gsk3b,Sod1,H sp90ab1,Hspd1,Cat,Ppid,Dnaja1,Bag1, Vcp,Scp2,Cdk5,Bag3,Mt3,Mt1,Tspo,Ba g5,Ar,Pgr,Hsf1,Nr3c1,Hspa1b
4	GO:0043066	Negative regulation of apoptotic process	2.34E-09	Akt1,Hspb1,Sod2,Hspa8,Gsk3b,Sod1,H sp90ab1,Hspd1,Cat,Dnaja1,Bag1,Bag3, Mt3,Mt1,Bag5,Ar,Pgr,Hsf1,Hspa1b
5	GO:0043068	Positive regulation of programmed cell death	3.25E-08	Akt1,Sod2,Gsk3b,Sod1,Hspd1,Ppid,Dn aja1,Bag1,Vcp,Scp2,Cdk5,Tspo,Hsf1,N r3c1.Hdac6
6	GO:2001242	Regulation of intrinsic apoptotic signaling pathway	0.0011	Hspb1,Sod2,Sod1,Dnaja1,Bag5
7	GO:0032680	Regulation of tumor necrosis factor production	0.0048	Hspb1,Hspd1,Tspo,Hsf1
8	GO:0060334	Regulation of interferon-gamma- mediated signaling pathway	0.0059	Cdc37,Hsp90ab1
9	GO:0060338	Regulation of type I interferon- mediated signaling pathway	0.0083	Cdc37,Hsp90ab1
10	GO:0032496	Response to lipopolysaccharide	0.0107	Akt1,Sod2,Hspd1,Tspo,Hsf1
11	GO:0010508	Positive regulation of autophagy	0.016	Cdc37,Gsk3b,Hdac6
12	GO:0002711	Positive regulation of T cell mediated immunity	0.0237	Hspa8,Hspd1
13	GO:0001817	Regulation of cytokine production	0.0339	Hspb1,Sod1,Hsp90ab1,Hspd1,Tspo,Hsf 1
14	GO:0071222	Cellular response to lipopolysaccharide	0.0376	Akt1,Tspo,Hsf1
15	GO:0071356	Cellular response to tumor necrosis factor	0.0415	Akt1,Bag4,Cfl1

TABLE S1 | See also TABLE 1 and FILES S1 and S2 | Protein-protein interactions network of *Homo sapiens* MT3 with 50 first-shell and 50 second-shell interactors to determine functionally enriched GO BP categories using the STRING database.

FILE S2 |

FILES S1 and S2. See also TABLE 1 and TABLE S1 | Protein-protein interaction network map of *Homo sapiens* and *Mus musculus* MT3. Protein-protein interaction

network map of MT3 in (FILE S1) *Homo sapiens* and (FILE S2) *Mus musculus* with 50 first-shell and 50 second-shell interactors showing functionally enriched gene ontology categories for biological processes (GO BP). See table 1 and table S1 for tabular representation of the GO BP categories identified using the STRING database for MT3 protein-protein network interactions in *Mus musculus* and *Homo sapiens*.

FIGURE S1 | See also FIGURE 1 | Gene expression of *Mt1* and *Mt2* and IL-1 α levels in response to iLPS stimulation. qRT-PCR analysis of (A) *Mt1* and (B) *Mt2* expression over time in WT and *Mt3^{-/-}* BMDM ϕ stimulated with iLPS (2 µg/ml) or vehicle control. Graphs represent data from 4 independent experiments, t-test (two-tailed p-value), data are mean ± SEM. (C, D) IL-1 α measured by ELISA in supernatants of WT and *Mt3^{-/-}* BMDM ϕ stimulated with 2 µg/ml iLPS or vehicle for (C) 24h and (D) 48h, 2-3 independent experiments.

FIGURE S2 | See also FIGURE 2 | Effect of MT3 on Group A Streptococcus elimination and LPS-induced septic shock. Septic shock was induced in mice (n=12) *i.p.* with ultrapure LPS (20 mg/kg). (A) Weight in percentage, (B) MSS scoring of sepsis severity and (C) probability of survival was analyzed at the indicated time points. (D) WT and *Mt3^{-/-}* mice infected *s.q.* with Group A Streptococcus (GAS5448) for 72h. Bacterial growth measured in kidney, spleen, skin and blood. CFUs were log transformed. n = 6 per group, two-tailed t-test. (E) Western blots of pro-caspase-11, active-caspase-11, procaspase-1, active-caspase-1, pro-IL1 β and active-IL-1 β in whole kidney homogenates. Bar graphs represent densitometric analysis of targets normalized to β -actin. n = 6 per group, two-tailed t-test, data are mean ± SEM, *p< 0.05.

FIGURE S3 | See also **FIGURE 3** | Generation of *Casp11^{-/-}Mt3^{-/-}* mice and analysis of caspase-8 during *E. coli* infection *in vivo*. (A) *Mt3^{-/-}* mice crossed to *Casp4^{tm1Yuan/JJ}* (*Casp11^{-/-}*) mice to obtain mice genetically deficient in *Mt3* and *Casp-11* (*Mt3^{-/-}Casp11^{-/-}*). Tail genomic DNA was amplified to confirm the deletion of *Casp-11* and *Mt3* genes by gel electrophoresis. (B) Western blots of pro-caspase-8 and active-caspase-8 in kidney homogenates of WT, *Casp-11^{-/-}*, *Mt3^{-/-}* and *Casp-11^{-/-}Mt3^{-/-}* mice infected *i.p.* with *E. coli* (1 X10⁹ CFUs/mouse) for 6h. Bar graphs represent densitometric analysis of targets normalized to β-actin, n = 3-6 per group, one-way ANOVA, data are mean ± SEM.

A Mt3 external PCR 1199-1202 4378/4330 65 Phusion GC buff 1 min ext 10/20 ul 1,500 1,000 500 Exon 3 deleted

FIGURE S4 | See also **FIGURE 4** | Generation of myeloid-MT3 deficient mice. Genotyping of WT, *Mt3^{-/-}, Lys2Cre*, *Mt3^{fl/fl}* and *Lys2Cre Mt3^{fl/fl}* mice. (A) Amplification of the *Mt3* targeted region showing homogenous *Mt3* deletion and generation of *Mt3^{+/-}* heterozygous genotypes. (B) To confirm 5' loxp, 3' loxp and *Lys2Cre* insertion, tail genomic DNA was amplified and analyzed by gel electrophoresis using the primers detailed in the experimental procedures.

FIGURE S5 | See also FIGURE 5 | IFNAR1 blockade attenuates caspase-11 and caspase-1 activation, but augments pro- and active-IL-1 β levels in BMDM ϕ . WT and *Mt3^{-/-}* BMDM ϕ treated with monoclonal anti-IFNAR1 or IgG antibody 1h prior to and 24h after iLPS (10 µg/ml, 48h) stimulation. Western blots of pSTAT1, STAT1, pro-caspase-11, active-caspase-11, procaspase-1 and pro-IL1 β in cellular extracts and active caspase-1 and active-IL-1 β in the cell-free media supernatants. Bar graphs represent densitometric analysis of targets normalized to β -actin. 3 independent experiments, one-way ANOVA, data are mean ± SEM, *p < 0.05, **p < 0.01, ***p< 0.001.

в

+

÷

FIGURE S6 | See also **FIGURE 6** | Zn²⁺ supplementation suppresses non-canonical inflammasome activation. (A) WT and *Mt3^{-/-}* BMDMφ exposed to the indicated doses of ZnSO₄ for 3h, followed by stimulation with iLPS (10 µg/ml) or vehicle for 48h. Immunoblots of TRIF, pIRF3, pSTAT1, STAT1, pro-caspase-11 and active-caspase-11 in cellular extracts. Bar graphs represent densitometric analysis of targets normalized to β-actin. 3 independent experiments, one-way ANOVA. (B) WT BMDMφ stimulated with iLPS (10 µg/ml) or vehicle for 24h in Zn²⁺-sufficient or Zn²⁺-deficient Opti-MEM media. Immunoblot of TRIF in cellular extracts. Bar graphs represent densitometric analysis of targets normalized to β-actin. 3 EX, *p < 0.05, ***p< 0.001.

.

FIGURE S7 | See also FIGURE 6 | Overexpression of MT3 in *Mt1^{-/-}Mt2^{-/-}***BMDMφ.** *Mt1^{-/-}Mt2^{-/-}***BMDMφ** transfected with the *Mt3* overexpressing vector (pCMV6-Ac-MT3-GFP) or empty vector (pCMV6-Ac-GFP) control for 48 h. SEC-ICP-MS analysis of cell lysates demonstrating an increase in the MT-associated Zn²⁺ signal in cells that were transfected with the pCMV6-Ac-MT3-GFP.