
 

 

Supplementary Materials 

Early Medicaid Expansion and Cancer Mortality 

 

SUPPLEMENTARY METHODS 

Covariates 

Covariates were selected a priori due to associations with cancer mortality and/or access 

to care. When available, we obtained county-level covariates corresponding to the beginning and 

end of the study period (2007 for the pre-early expansion period, and 2016 for the post-early 

expansion period). Intercensal estimates from the United States Census Bureau were obtained for 

county-level age (% elderly), race (% nonwhite, % black), ethnicity (% Hispanic), and sex (% 

female) data in 2007 and 2016.1,2 County-level poverty (% of individuals living in poverty based 

on the federal poverty level definition) in 2007 and 2016 were obtained using US Census Bureau 

Small Area Income and Poverty Estimates.3 U.S. Department of Agriculture Economic Research 

Service (USDA ERS) databases were utilized to obtain county-level education (% without at 

least a high school education) based on 2000 (pre-early expansion) and the 2013-17 average 

(post-early expansion) data.4 Finally, metropolitan residence status (metropolitan or 

nonmetropolitan, based on rural-urban continuum codes) for 2003 and 2013 were also derived 

from USDA ERS databases.4  

We obtained the variables % black and % Hispanic for the purpose of comparing county 

characteristics. The variable % Black was excluded from our regression models because of high 

collinearity with % nonwhite. The variable % Hispanic was excluded from our regression models 

due to a complex interplay between ethnicity and cancer outcomes; Hispanics have a lower 

cancer mortality rate than non-Hispanic whites, but Hispanics are more likely to experience 



 

 

socioeconomic deprivation and thereby experience barriers to healthcare and subsequently 

poorer outcomes.5 However, a sensitivity analysis including % Hispanic gave nearly identical 

results (data not shown). 

 

Unadjusted Analyses 

The DID estimate is defined as  

DID = (RateEarly expansion,2012-16 - RateEarly expansion,2007-09)  

– (RateNon-expansion,2012-16 - RateNon-expansion,2007-09).  

To account for the variance of the age-adjusted mortality rates (which are based on the rate and 

population size) and correlation between observations from the same state group, variances of 

the estimates were calculated based on the statistical property of random variables X and Y that 

Variance(X-Y) = Variance(X) + Variance(Y) – 2 * Covariance(X,Y). Specifically, variances for 

the different estimates were as follows: 

V1 = Variance(RateEarly expansion,2012-16 - RateEarly expansion,2007-09) = Variance(RateEarly 

expansion,2012-16) + Variance(RateEarly expansion,2007-09) - 2 * Covariance(RateEarly expansion,2012-16, 

RateEarly expansion,2007-09) 

 

V2 = Variance(RateNon-expansion,2012-16 - RateNon-expansion,2007-09) = Variance(RateNon-

expansion,2012-16) + Variance(RateNon-expansion,2007-09) - 2 * Covariance(RateNon-expansion,2012-16, 

RateNon-expansion,2007-09) 

 

Variance(DID) = V1 + V2 - 0 



 

 

The covariance between mortality rates from expansion and non-expansion states was defined to 

be 0 (i.e. we assumed that observations from different state groups were independent). However, 

we assumed that observations from the same state group would be correlated. 

The covariance between mortality rates over time from state group k  (early Medicaid 

expansion, non-expansion) was derived from approximations of correlation(RateState group k, 2007-09, 

RateState group k, 2012-16). This correlation was approximated by simulation study, calculating the 

correlation between vectors Ratepre,state group k and Ratepost, state group k, with element Ratepre, state 

group k,i and Ratepost, state group k,i equal to two randomly selected single-year rates from state group k 

(with replacement), defining the earlier year as the “pre-“ year and the later year as the “post-“ 

year, for i  (1,2,…,500). The resultant variances were used to derive standard errors, which 

were then used for confidence interval creation (estimate +/- 1.959964* SE(estimate)) and for 

calculating Z statistics (estimate / SE(estimate)), which were used to obtain P-values. 

 The unadjusted triple differences (DDD) estimates were according to: 

 DDDBlack  = DIDBlack – DIDWhite 

DDDOther  = DIDOther - DIDWhite, 

where the DID for a given race was calculated using the DID formulation described above, the 

variance for the estimates was again calculated based on the properties of variance(X-Y), and the 

resultant variances were used to create confidence intervals and calculate Z statistics. 

 

Testing of the parallel trends assumption 

 The parallel trends assumption of difference-in-differences analyses requires that the 

trends in the outcome (mortality rates, in this case) would have been parallel between the 

comparison groups (early Medicaid expansion vs. non-expansion states, in this case) in the 



 

 

absence of the exposure (in this case, early Medicaid expansion). While this cannot be fully 

established, one can examine trends in the mortality rate prior to the Medicaid expansions; if the 

trends are parallel prior to the expansions, it may be reasonable to conclude that the trends would 

have continued to remain parallel in the absence of the expansions. Our tests of the parallel 

trends assumption have two components: visual inspection and formal hypothesis testing.  

Yearly cancer mortality rate data for the early Medicaid expansion and non-expansion 

states were collected. Note that more granular mortality data (i.e. monthly, quarterly, etc.) were 

not available for download. First, we visually inspected the trajectories of the yearly mortality 

rates in early Medicaid expansion and non-expansion states to examine for diverging trends prior 

to 2010 (see Figures 1 and 3 and Supplementary Figures 3 and 4). For the visual assessment, 

in order to detect potentially diverging trends over time, we evaluated mortality rates from 2002 

to 2009 (or, for the analyses of the 2014 Medicaid expansions, 2005 to 2013). Second, we 

formally tested year-to-year changes in mortality rates in the expansion vs. non-expansion states 

using the same methodology utilized in the unadjusted DID analyses. For these formal tests, we 

focused on the pre-expansion period from the DID analyses, 2007 to 2009 (i.e. 2007 to 2008, 

2008 to 2009). For example, the test of parallel trends from 2007 to 2008 was as follows: 

Parallel trends2007-2008 =    (RateEarly expansion,2008 - RateEarly expansion,2007)  

                                – (RateNon-expansion,2008 - RateNon-expansion,2007).  

The variance, confidence intervals, and p-values for this test were calculated with the same 

methodology used with the DID estimates. For the analyses of the 2014 Medicaid expansions, 

we conducted formal testing of the mortality rate trends in 2011 to 2012 and in 2012 to 2013. 

This flexible year-by-year approach for the formal testing was selected given that it is not subject 

to further assumptions that would be required in a single model/test (e.g. linear relationship 



 

 

between mortality rate and time). The parallel trends assumption was considered satisfied if (1) 

there were no abnormal patterns visually that would imply non-parallel trends and (2) the P-

values from both formal tests were greater than 0.05. 

  Note that this method of testing for parallel trends is statistically underpowered. 

Specifically, the formal tests compare only two years of mortality rates whereas a number of 

additional years are included in the DID analyses. In addition, the judgement of whether the 

year-to-year trends were parallel was based on a test of the null hypothesis that there was no 

significant difference in the mortality rate change between state groups.6–8 A more statistically 

rigorous approach could, for example, include tests of non-inferiority (see articles by Bilinski 

and Hatfield, Khan-Lang and Lang, and Roth for additional insights and discussion).7–9 While we 

were able to identify some deviations from parallel trends in our visual assessments that were not 

detected in the formal tests, potentially overcoming some of the issues arising from limited 

statistical power, there may be other parallel trend violations that were missed. Finally, even if 

we find perfectly parallel trends in the pre-expansion period, pre-expansion parallel trends does 

not guarantee that the trends would have remained parallel afterwards, which is assumed though 

unobserved.9  

 

Adjusted Analyses: Bayesian Hierarchical Model 

For our adjusted analyses, we wanted a regression model that would (1) enable adjusted 

difference-in-differences analyses, which are typically done with a class of multivariable linear 

regression models, (2) be capable of handling “repeated measures” given that the observational 

unit was the mortality rate of a county in a given time period (2007-2009 or 2012-2016), (3) 

account for correlation between observations in the same state, and (4) be able to explicitly 



 

 

model the variability of the mortality rates, which differs from county to county based on 

population size and the number of observed events. The model that seemed most appropriate 

based on these criteria was a hierarchical (multilevel) Bayesian regression model. Note a fully 

Bayesian framework in the setting of this study is also advantageous given its ability to 

simultaneously impute missing (or, in this case, suppressed) values. The model was defined as 

follows: 

 

With observed mortality rate yit and its associated estimated variance sit
2 for county i within state 

j and for year group t, mortality rate average for the national population of interest m, and 

covariates k=1, …, K, we developed a hierarchical model such that: 

yit ~ N( + Xit *  + i + j, sit
2) T[0, *) 

 ~ N(m, a=100)  

 ~ N(0, K),   K=diag(1
2, …, K

2) 

k~ Cauchy(0, 2.5) T(0, Infinity)  

i ~ N(0, ) 

 ~ Cauchy(0, 2.5) T(0, Infinity) 

j ~ N(0, ) 

 ~ Cauchy(0, 2.5) T(0, Infinity)  

* T[0,*) denotes that the distribution of yit was truncated. A lower bound of 0 was used. An upper bound of infinity 

was used except in the case of suppressed data, where the distribution for the imputed value was constrained by an 

upper limit of 9 divided by the population size of county i (note that, by definition, data are suppressed when the 

number of events in the county is less than 10). 

 



 

 

Mortality rates were assumed to follow a normal distribution by the central limit theorem, as the 

rate can be viewed as a mean.10 However, the variance for the mortality rates were not be equal 

across counties given the vast differences in population and number of observed events (where in 

other regressions it may be reasonable to assume the same variance for all observations). For the 

case of the variance for suppressed mortality rates, we estimated the variance of a proportion p, 

where var = (p*(1-p)/N), both for p = 1 / Population and for p = m/100,000, and selected the 

larger variance. A prior was not placed and imputation was not performed for these values given 

that the estimated variance is simply a function of other values. The prior for  was selected to 

be centered roughly around the corresponding cancer mortality rate for the nation over the study 

period, however with much greater variance. For mortality due to all cancers, we set m=100; for 

breast and lung cancer, we set m=20; for colorectal, cervix, liver, prostate, and pancreas cancer, 

we set m=5; for whites, we set m=80; for Blacks, we set m=110; for other races, we set m=50. 

The variance for the prior for  was set to a=100 (corresponding to standard deviation of 10) for 

all analyses. The prior for  is typical for regression analyses. The prior for k was a half Cauchy 

distribution, as  recommended by Gelman et al.,11 given its precision with standard deviations 

closer to 0 and its ability to accommodate much larger standard deviations should the need arise. 

Note that the prior distribution for the k (assuming the null, as specified incorporating the k) 

has ~75% of its density between -5 and 5, over 10% of its density with values more extreme than 

10 (or -10), and still over 1% of its density for values more extreme than 100 (or -100), which 

was deemed appropriate for the effect sizes expected with the present data. The rationale for the 

selection of priors for random effects was similar. Bayesian regression models resembling mixed 

models are frequently applied in spatiotemporal modeling of mortality rates and as such often 

include random effects for space and time.10,12,13 Given that the primary purpose of this study 



 

 

was to examine changes by state Medicaid expansion status, which was primarily political rather 

than based on geographic location, we created a simpler and more parsimonious Bayesian model 

by only including county and state random effects rather than a full spatiotemporal 

parameterization. The effect for county i was denoted by i, and the effect for state j was denoted 

by j. 

To facilitate modeling and avoid unstable parameter estimates, the covariates (including 

% unemployed, % high school education, % poverty, % non-White, % elderly, and % female) 

were scaled to have a mean of 0 and a standard deviation of 1. As a sensitivity analysis, these 

covariates were transformed into categorical variables based on quartiles. Results with this less 

parsimonious model parameterization were extremely similar to those presented in the main 

manuscript (data not shown). 

While “observation weights” are an abstract notion in the Bayesian paradigm, we 

conducted a sensitivity analysis where the estimates were weighted by county population. Prior 

to modeling, each trio (yit, sit, and Xit) was replicated by a factor of the population of county i 

divided by 35,000, rounded up to the next integer (correlation with actual population number > 

0.9999). To maintain the variance estimates associated with each county-year group unit, the 

variance was also increased by the same factor. Results with this model parameterization were 

similar to non-weighted estimates (data not shown). 

Draws from the posterior distribution were obtained with Gibbs sampling via R2jags. We 

obtained 30,000 draws and discarded the first 2,000 as burn in. Convergence of the draws were 

assessed visually and with the Geweke, Raftery and Lewis, and Heidelberger and Welch 

diagnostics. Additional draws were discarded as burn in if necessary based on chain diagnostic 

criteria. A summary of those tests for the posterior distribution of the DID estimator (the 



 

 

interaction between time period and early Medicaid expansion status) are given in 

Supplementary Table 2 and Supplementary Figure 1. Note that the halfwidth mean test, 

where the ratio of the halfwidth (half of the width of a 95% CI about the chain mean) to the chain 

mean is supposed to be less than a specified value (0.1 in this case) has little meaning when the 

chain mean (or DID estimate in this case) is essentially 0, especially in comparison to a relatively 

large variance. After these considerations, there were no chains with concerning convergence 

statistics. However, some analyses required additional iterations of the MCMC algorithm, and a 

few analyses required priors that were more non-informative (the half Cauchy hyperprior for the 

standard deviation parameters was modified to have scale 25 instead of 2.5). Note that a 

sensitivity analysis using these minimally informative half Cauchy(0, 25) priors resulted in 

extremely similar estimates (and did not affect convergence diagnostics for other analyses). 

Chain diagnostics for the sensitivity analyses were also satisfactory (data not shown). 

 

Estimating Number of Cancer Deaths Averted 

The number of deaths averted was calculated by multiplying the DID estimates (1.38 / 100000 

unadjusted, or 3.07 / 100000 adjusted) by the at risk population (ie the denominator used in 

estimating the cancer mortality rate of the time period), given in the table below. 

 

Years 

No. 

Cancer 

Deaths 

No. 

Population 

Early Medicaid 

Expansion 

2007-2009 89,673 111,219,801 

2012-2016 149,440 194,609,695  

Non-expansion 2007-2009 200,902 204,680,111 

2012-2016 348,028 361,309,898 

 

In this case, the number of cancer deaths averted in EEXP states from 2012-16 was calculated as 

DID estimate * 194,609,695 = 2,686. Due to a slightly different population in the adjusted, 



 

 

county-level analyses (limited to 25-64 rather than 20-64), the number was calculated as DID 

estimate * 171,849,340 = 5,276. 
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SUPPLEMENTARY TABLES 

 

Supplementary Table 1: Formal tests of the parallel trends assumption, early Medicaid 

expansiona 

Subgroup 

2007 to 2008 2008 to 2009 

Estimateb (95% CI) Pc Estimateb (95% CI) Pc 

All Malignancies 

-0.83 (-1.86, 0.2) 0.11 1.04 (-0.03, 2.12) 0.057 

Breastd 

0.84 (0.16, 1.52) 0.016 -0.08 (-0.76, 0.61) 0.83 

Cervix 

0.03 (-0.35, 0.4) 0.89 0.23 (-0.15, 0.61) 0.23 

Colorectal 
0.02 (-0.4, 0.44) 0.94 0.22 (-0.19, 0.62) 0.29 

Liverd 

0.01 (-0.25, 0.26) 0.97 -0.34 (-0.6, -0.08) 0.01 

Lung 

-0.06 (-0.57, 0.46) 0.83 -0.1 (-0.6, 0.4) 0.7 

Pancreas -0.23 (-0.55, 0.1) 0.17 0.21 (-0.12, 0.53) 0.21 

Prostate 
0.01 (-0.32, 0.33) 0.97 0.03 (-0.28, 0.35) 0.84 

Whited 

-1.24 (-2.41, -0.07) 0.037 1.08 (-0.02, 2.18) 0.055 

Black 
2.73 (-1.74, 7.19) 0.23 -0.48 (-4.5, 3.52) 0.81 

Other 

-0.79 (-4.63, 3.05) 0.69 1.34 (-2.56, 5.23) 0.50 
a Please refer to Figure 1 and Supplementary Figure 3 for depictions of the year-by-year trends in cancer 

mortality. Visually, the trends in mortality rates were largely similar between early Medicaid expansion and non-

expansion states, with the exception of liver cancer mortality, where the rates increased more rapidly in non-

expansion states than in expansion states during the pre-expansion period. 
bEstimates shown are the difference-in-differences estimators for the changes in mortality rates between early and 

not early Medicaid expansion states over the (pre-expansion) time period given. 
cP = two-tailed p-value from Z test of the null hypothesis that the difference-in-differences estimate is equal to 0. 

See Supplementary Methods for details. 
dThe parallel trends assumption was violated due to diverging trends in our formal testing from 2007-2009. 

  



 

 

Supplementary Table 2: MCMC diagnostics for hierarchical Bayesian model 

Subgroup 

Geweke 

Diagnostic 
Heidelberger-Welch Diagnostic Raftery-Lewis Diagnostic 

Z score Stationary Start, p Halfwidth Test, mean (halfwidth) Nchain (Dependence Factor) 

All Malignancies 0.14 0.64 -3.066 (0.022) 26140 (6.98) 

Breasta,b 

-1.61 0.33 -0.185 (0.0093) 28164 (7.52) 

Cervixb 1.05 0.14 -0.314 (.0098) 26799 (7.15) 

Colorectal 
1.72 0.24 0.013 (0.0059) c 19476 (5.20) 

Liver -0.09 0.94 -0.465 (0.0065) 24198 (6.46) 

Lunga,b 
0.65 0.12 -0.364 (0.014) 23856 (6.37) 

Pancreas -1.35 0.49 -0.465 (0.0056) 20343 (5.43) 

Prostate 
-1.21 0.63 -0.162 (0.010) 27204 (7.26) 

Whiteb 

0.99 0.12 -3.81 (0.024) 26605 (7.10) 

Blackb 
1.93 0.46 -0.58 (0.0363) 27480 (7.34) 

Othera,b -0.01 0.25 -0.474 (0.031) 56772 (15.20) 

Black relative to Whiteb 
0.88 0.93 0.188 (0.054) c 11076 (2.96) 

Other relative to Whiteb -1.28 0.14 0.1043 (0.0256)c 16860 (4.50) 
aThe dependence factor from the Raftery-Lewis diagnostic for these chains was high enough that >30,000 draws were needed. For these analyses, 40,000 

(60,000, Other) draws were obtained. 
bThe initial chains were unsatisfactory. Analyses were repeated with more noninformative priors (scale of the Cauchy hyperprior for the standard deviation 

parameters was set to 25 instead of 2.5) with satisfactory results, as seen above. 
cIndicates the chain failed the given test based on the standard criteria. Note that failing the halfwidth Heidelberger-Welch test when the estimated mean is near 0 

has little meaning; all failures above occurred when the effect size was small (especially relative to the variance of the estimate). 

 

  



 

 

Supplementary Table 3: Medicaida coverage rates for adults ages 19-64 years by state, 2008b,c 

State Medicaid Coverage Rate 

Early Expansion Statesd: Median (range) 0.08 (0.06-0.17) 

Not early expansion states: Median (range) 0.07 (0.03-0.16) 

United States, Total 0.08 

Alabama 0.07 

Alaska 0.05 

Arizona 0.1 

Arkansas 0.08 

Californiad 0.09 

Colorado 0.05 

Connecticutd 0.08 

Delaware 0.1 

District of Columbiad 0.17 

Florida 0.05 

Georgia 0.05 

Hawaii 0.07 

Idaho 0.04 

Illinois 0.08 

Indiana 0.07 

Iowa 0.07 

Kansas 0.04 

Kentucky 0.09 

Louisiana 0.08 

Maine 0.16 

Maryland 0.05 

Massachusetts 0.13 

Michigan 0.1 

Minnesotad 0.08 

Mississippi 0.09 

Missouri 0.07 

Montana 0.05 

Nebraska 0.05 

Nevada 0.03 

New Hampshire 0.04 

New Jerseyd 0.06 

New Mexico 0.09 

New York 0.13 

North Carolina 0.07 



 

 

North Dakota 0.05 

Ohio 0.08 

Oklahoma 0.06 

Oregon 0.05 

Pennsylvania 0.08 

Rhode Island 0.09 

South Carolina 0.07 

South Dakota 0.05 

Tennessee 0.09 

Texas 0.05 

Utah 0.04 

Vermont 0.15 

Virginia 0.04 

Washingtond 0.07 

West Virginia 0.09 

Wisconsin 0.09 

Wyoming 0.04 

aMedicaid in this table includes those covered by Medicaid, Medical Assistance, Children's Health Insurance Plan 

(CHIP) or any kind of government-assistance plan for those with low incomes or a disability, as well as those who 

have both Medicaid and another type of coverage, such as dual eligibles who are also covered by Medicare. 

Rate is the proportion of the population or subpopulation with Medicaid. 
bThe data are Kaiser Family Foundation estimates based on the Census Bureau's American Community Survey 

(ACS), 2008-2018. See KFF website: https://www.kff.org/medicaid/state-indicator/rate-by-age-3/ 

ACS includes a 1% sample of the US population and allows for precise state-level estimates. The ACS asks 

respondents about their health insurance coverage at the time of the survey. Respondents may report having more 

than one type of coverage; however, individuals are sorted into only one category of insurance coverage. A person 

reporting having Medicaid coverage and another type of coverage would be categorized as having Medicaid 

coverage in this analysis. 
cData may not sum to totals due to rounding. 
d Indicates the early Medicaid expansion states 
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Supplementary Table 4: Sensitivity Analyses (adjusted difference-in-differences analyses) 

Subgroup 

Difference-in-differences analysis Triple differences analysis 

California vs. NEXP states Excluding California 
Alternate years: 2002-

2007 to 2012-2016a 

Including 2014-2016 

expansion statesb with 

other states that did not 

expand in 2010-2011 

By county poverty level (% 

poverty) 

Estimate  

(95% CrI) 
Prc Estimate  

(95% CrI) 
Prc 

Estimate  

(95% CrI) 
Prc 

Estimate  

(95% CrI) 
Prc 

Estimate  

(95% CrI) 
Prc 

All Malignancies -4.02 (-5.21, -2.82) <.001 -2.18 (-3.27, -1.1) <.001 -2.07 (-2.74, -1.39) <.001 -2.5 (-3.26, -1.72) <.001 -0.11 (-0.23, 0.05) 0.072 

Breast -0.78 (-1.58, -0.03) 0.02 0.03 (-0.55, 0.62) 0.454 0.06 (-0.31, 0.46) 0.38 -0.08 (-0.53, 0.35) 0.355 -0.03 (-0.12, 0.05) 0.264 

Cervix -0.43 (-0.99, 0.02) 0.033 -0.16 (-0.49, 0.11) 0.148 -0.15 (-0.38, 0.06) 0.086 -0.18 (-0.47, 0.12) 0.118 -0.01 (-0.06, 0.05) 0.322 

Colorectal -0.26 (-0.64, 0.08) 0.074 0.17 (-0.12, 0.48) 0.132 -0.16 (-0.37, 0.03) 0.054 0.06 (-0.17, 0.3) 0.298 0.01 (-0.04, 0.06) 0.318 

Liver -0.51 (-0.81, -0.21) <.001 -0.41 (-0.69, -0.14) 0.002 -0.51 (-0.67, -0.34) <.001 -0.27 (-0.47, -0.07) 0.003 0 (-0.05, 0.05) 0.415 

Lung -1.01 (-1.59, -0.43) <.001 -0.18 (-0.6, 0.19) 0.183 0.05 (-0.22, 0.34) 0.36 -0.35 (-0.69, -0.02) 0.019 -0.03 (-0.1, 0.04) 0.213 

Pancreas -0.42 (-0.74, -0.1) 0.005 -0.47 (-0.74, -0.2) <.001 -0.35 (-0.52, -0.19) <.001 -0.32 (-0.51, -0.12) 0.001 -0.02 (-0.06, 0.03) 0.214 

Prostate -0.27 (-0.72, 0.13) 0.11 -0.09 (-0.41, 0.22) 0.29 -0.18 (-0.4, 0.03) 0.046 -0.12 (-0.38, 0.12) 0.163 0 (-0.06, 0.06) 0.488 

White -4.23 (-5.56, -2.89) <.001 -3.36 (-4.57, -2.11) <.001 -2.78 (-3.52, -2.02) <.001 -3.13 (-4.01, -2.24) <.001 -0.15 (-0.28, 0.08) 0.06 

Black -0.38 (-2.84, 1.05) 0.349 -0.34 (-2.6, 1.08) 0.36 -0.26 (-1.82, 0.91) 0.35 -0.46 (-2.65, 0.81) 0.29 -0.08 (-0.38, 0.19) 0.277 

Other -2.38 (-8.18, 0.24) 0.154 -0.13 (-1.12, 0.36) 0.374 -5.83 (-8, -2.23) <.001 -0.44 (-2.46, 0.22) 0.22 -0.26 (-0.5, -0.05) 0.007 

aThe analysis examining 2002-2007 to 2012-2016 included 20-64 year old patients at time of death, since we were able to utilize data from SEER*Stat due to the 

year ranges of interest. Other analyses (based on CDC WONDER compressed mortality data) were limited to 25-64 year old patients at time of death due to 

differences in estimating age-adjusted mortality rates (the CDC compressed mortality data adjust for 15-24 year olds as a group). CrI = Credible Interval 

(Bayesian), 
b2014-2016 expansion states included AK, AZ, AR, CO, DE, HI, IL, IN, IA, KY, LA, MA, MD, MI, MT, NV, NH, NM, NY, ND, OH, OR, PA, RI, VT, and 

WV. 
c One-tailed probability of Bayesian estimate being null. As Pr is one-sided, Pr<0.025 is required for statistical significance. 

  



 

 

Supplementary Table 5: Formal tests of the parallel trends assumption, 2014 Medicaid 

expansiona 

Subgroup 

2011-2012 2012-2013 

Estimateb (95% CI) Pc Estimateb (95% CI) Pc 

All Malignancies 0.48 (-0.34, 1.31) 0.25 0.05 (-0.74, 0.85) 0.9 

Breast 0.1 (-0.43, 0.63) 0.71 0.22 (-0.31, 0.75) 0.41 

Cervixd -0.28 (-0.56, 0) 0.048 0.05 (-0.24, 0.34) 0.74 

Colorectald 0.34 (0.02, 0.66) 0.036 -0.08 (-0.39, 0.22) 0.59 

Livere -0.05 (-0.24, 0.13) 0.58 -0.13 (-0.32, 0.07) 0.2 

Lungf 0.28 (-0.09, 0.66) 0.14 -0.23 (-0.59, 0.14) 0.23 

Pancreasg -0.1 (-0.35, 0.15) 0.44 0.22 (-0.02, 0.45) 0.076 

Prostateh -0.07 (-0.29, 0.16) 0.56 -0.17 (-0.4, 0.06) 0.15 

Whitei 0.67 (-0.21, 1.55) 0.13 -0.13 (-0.97, 0.71) 0.76 

Blackj -1.9 (-4.39, 0.59) 0.13 1.47 (-1.11, 4.06) 0.26 

Other 0.72 (-2.5, 3.93) 0.66 -1.62 (-4.76, 1.52) 0.31 

aPlease refer to Figure 3 and Supplementary Figure 4 for depictions of the year-by-year trends in cancer mortality. 
bEstimates shown are the difference-in-differences estimators for the changes in mortality rates between Medicaid 

expansion and non-expansion states over the (pre-expansion) time period given. 

See below for descriptions of visually diverging mortality rate trends. 
cP = two-tailed p-value from Z test of the null hypothesis that the difference-in-differences estimate is equal to 0. 

See Supplementary Methods for details. 
dAnalyses failed to satisfy the parallel trends assumption due to diverging trends in mortality rates between 

expansion and non-expansion states in formal testing during the pre-expansion period (2011-2013). 
eWhile there were no statistically significant differences in our formal testing from 2011-2013, visual assessment 

suggested that mortality rates increased more rapidly in non-expansion states than in expansion states during the pre-

expansion period. Hence, the parallel trends assumption was violated. Note that this would be expected to lead to 

bias favoring expansion states. 
fWhile there were no statistically significant differences in the trends in mortality rates in Medicaid expansion vs. 

non-expansion states in formal testing, on visual inspection, the mortality rate appeared to decline more rapidly in 

non-expansion states than expansion states over the study period. Hence, the parallel trends assumption was 

violated. Note that the more rapidly declining rates in non-expansion states will lead to bias favoring non-expansion 

states.  
gWhile the analyses satisfied the parallel trends assumption per our definition, the slightly lower-than-expected 

mortality rates in non-expansion states from 2010-12 may lead to a slightly biased result, favoring Medicaid 

expansion states. 
hWhile there was no statistical evidence of non-parallel trends from 2011-2013, visual inspection suggested that the 

mortality rate trends in expansion and non-expansion rates diverged from 2011-2014 (decrease in expansion states), 

with a return to baseline after 2015. Hence, the parallel trends assumption was violated. Note that due to the 

(incidentally) low mortality rates in 2011-13 in Medicaid expansion states in the pre-expansion period (and perhaps 

also an incidentally higher mortality rate in non-expansion states in 2013) leads to bias favoring non-expansion 

states. 
iWhile there were no statistically significant differences in our formal testing from 2011-2013, visual assessment 

suggested that mortality rates decreased more rapidly in expansion states than in non-expansion states during the 

pre-expansion period. Hence, the parallel trends assumption was violated. Note that this would be expected to lead 

to bias favoring expansion states. 
jDespite no statistical evidence of non-parallel trends, visual inspection suggested that the mortality rate in non-

expansion states declined more rapidly than in expansion states during the pre-expansion period (as well as in the 

post-expansion period). As such, the parallel trends assumption was violated. Note that the more rapidly declining 

rates in non-expansion states will lead to bias favoring non-expansion states.  



 

 

Supplementary Table 6: Changes in smoking rates by state Medicaid expansion statusa 

State group 

% of current smokers 

1992-1993 2006-2007 Change 

Early Expansionb 23.07 16.29 -6.78 

2014 Expansionc 26.6 20.41 -6.18 

Non-expansiond 28.13 21.28 -6.85 

aData were derived from state-level smoking rates reported by Jemal et al., which were based on data from the 

Tobacco Use Supplement to the Current Population Survey.14 
bEarly Medicaid expansion states include CA, CT, DC, MN, NJ, and WA.  
c2014 expansion states included AZ, AR, CO, DE, HI, IL, IA, KY, MA, MD, MI, NV, NH, NM, NY, ND, OH, OR, 

RI, VT, and WV (note early expansion states were excluded from this group). 
dNon-expansion states are those that had not implemented Medicaid expansion as of 12/31/2016; includes AL, FL, 

GA, ID, KS, ME, MS, MO, NE, NC, OK, SC, SD, TN, TX, UT, VA, WI, WY.  

  



 

 

SUPPLEMENTAY FIGURES 

 

Supplementary Figure 1: Draws from the posterior distribution. The panels show the 28,000+ draws, 

excluding burn-in, from each of the marginal posterior distributions of the difference-in-differences estimates (A-K) 

or triple differences estimates (L-M) based on the MCMC algorithm. The parameter spaces are well-explored and 

the chains appear to have converged. 

  



 

 

Supplementary Figure 2: CONSORT Diagram for county-level analyses 

 
 

  



 

 

Supplementary Figure 3: Temporal trends in cancer mortality rate for various subgroups by early 

Medicaid expansion status. Mortality rates shown are from breast (A), cervix (B), colorectal (C), liver (D), 

lung (E), and prostate (F) cancers, and by racial subgroups for White (G), Black (H), and Other (I) patients. The 

dashed line for “trend comparison,” for easier visual comparison of temporal trends, is equal to the trends of the not 

early expansion states translated up or down such that the comparison mortality rates at the end of the pre-expansion 

study period (2007) are equal to the rate in the early expansion group. Mortality Rate is per 100,000 population. 
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Supplementary Figure 4: Temporal trends in cancer mortality rate for various subgroups by 2014 

Medicaid expansion status. Mortality rates shown are from breast (A), cervix (B), colorectal (C), liver (D), 

lung (E), and prostate (F) cancers, and by racial subgroups for White (G), Black (H), and Other (I) patients. The 

dashed line for “trend comparison,” for easier visual comparison of temporal trends, is equal to the trends of the 

non-expansion states translated up or down such that the comparison mortality rates at the end of the pre-expansion 

study period (2013) are equal to the rate in the expansion group. Mortality Rate is per 100,000 population. 
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