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We give proofs of the main results and additional simulations in this
supplementary material. For simplicity, we use C' to represent some generic
positive constant, which does not change with (n,p) and may represent
different values from place to place.

APPENDIX A: PROOFS AND SUPPLEMENTARY RESULTS

A.1. Proof of Proposition 2.1. To prove U(a) in (2.3) is location
invariant, we examine the equivalent form,

a
-1
Ula) = (P3) Z Z H(xi2k—lvjlxi2k—lvj2 - $i2k71,j1$i2k7j2>'

1<j1#52<p 1<i1 £ iz <n k=1

We consider A = (Ay,...,A,)T € RP, and examine a = 1 first. For each
(71, J2), since

(xil,ﬁ + Aj1)(xi1,j2 + Ajz) - (xilajl + Aj1)(xi2,j2 + Aj2)
= (:L‘i1>jlm7:17j2 - $i1,j1$i27j2) + Ajl (xil,jz - l‘iz,jz)v

then it follows that

Z [(xil,jl + Ajl)(xil,h + Ajz) - (xil,jl + Ajl)(xiz,h + Aj2)]

1<ii#ia<n
- E (:Eilyjll‘il’jZ - xil,jlximjz)
1<ir#i2<n
n
= A (@i gy — Tings) + YAy (Tigy — Tigy)
1<i1#i2<n =1
n n
= A]i E E (xil,jQ - $i2,j2)
i1=112=1

= 0.
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That is, U(1) is location invariant. For a = 2, given (ji,j2), following a
similar analysis to ¢(1), we have

(A.1.1)

> {[(fcz'l,jl + 85) (@i gy + Dgp) = (@i g1 + B51) @iz o + Ajo)]
1<ins. #is<n

X [(xia,ﬁ + Aj1)(xi3,j2 + AJé) - ($i3,j1 + Aj1)(xi4,j2 + AjQ)]}
- Z {(xilvjlxih]é - xilyjlxi27j2)

1<ir ... #ia<n
X [(Tig gy + D) (Tig jo + Djy) = (Tig gy + Agy )iy o + Ah)]}
= 0.

Similarly, we also have

(A.1.2) Z {(xil,jlxih]é - $i1,j1$i2,j2)
1<i1#..#i4<n

X [(xis,jl + Ajl)(xi37j2 + Aj2) - (xis,jl + Ajl)(xi4,j2 + Aj2)]}

- Z [(xil,j1$i17j2 - wil,jlxizdz)(xi37j1xi37j2 - $i3,j155i4,j2)]
1<iy#...#ia<n
= 0.

Combining (A.1.1) and (A.1.2), we know U(2) is location invariant. Fol-
lowing the argument above similarly, by induction, we obtain that U(a) is
location invariant for a general integer a > 3.

A.2. Proof of Theorem 2.1. For the covariance testing example in
Section 2, U(a) is location invariant by Proposition 2.1, and U(o0) is also lo-
cation invariant straightforwardly by its expression in (2.8). Then we assume
without loss of generality that E(x) = 0 in this section. To prove Theorem
2.1, we first derive the variances and the covariances of the U-statistics, and
then prove the asymptotic joint normality of the U-statistics.

In particular, the next Lemma A.2.1 derives the asymptotic form of vari-
ance o2(a) in (2.7).

LEMMA A.2.1. Under the conditions of Theorem 2.1, for any finite in-
teger a, following the notation in (2.2),

a!
@)= x> W) {1 +o()},
¢ 1<ji1#ja<p;
1<js#ja<p
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which is of order O(p?>n~%). In addition, for ~Z:{(a) defined in (2.5) and
U*(a) == U(?)—U(a), we have Var{ulga)} = var{U(a) H{1+o(1)}, var{U/*(a)} =
o(1) x var{U(a)}, and U*(a)/o(a) — 0.

PROOF. See Section B.1.1 on Page 36. O

Moreover, the following Lemma A.2.2 shows that the covariances between
different U (a)’s asymptotically converge to 0.

LEMMA A.2.2.  Under the conditions of Theorem 2.1, for finite integers
a#b, covid(a)/o(a),U(D)/o(b)} — 0, as n,p — oo.

PROOF. See Section B.1.2 on Page 50. O

Lemmas A.2.1 and A.2.2 together show that the covariance matrix of
U(ar)/o(ar),...,U(am)/o(am)]T converges to I, asymptotically. To finish
the proof of Theorem 2.1, it remains to show that the joint limiting distri-
bution of the U-statistics is normal.

For finite integers aq,...,a;,, to obtain the joint asymptotic normal-
ity of [U(a1)/o(a1),...,U(am)/o(amn)]T, by the Cramér-Wold theorem, it
is equivalent to prove that any fixed linear combination of [(a1)/o(a1),
...,U(am)/o(am)]T converges to normal. Recall that Lemma A.2.1 shows

that U*(a)/o(a) 2,0 for any finite integer a. Thus by Slutsky’s theorem,

it suffices to prove that any fixed linear combination of [U(a1)/o(a1),...,
U(am)/o(am)]T converges to normal. To be specific, we show that for con-
stants t1,. .., ¢, satisfying > 2 =1,

m

~ D

(A.2.1) Zn =Y tU(a,)/o(ar) = N(0,1).

r=1

To prove (A.2.1), we apply the martingale central limit theorem in Heyde

and Brown [14] (similar arguments can date back to Bai and Saranadasa
[1]). Let Fo = {0,Q}, Fr, = o{x1, -+ ,xx}, and E(-) denote the conditional
expectation given Fy for k = 1,--- ,n. Define D, = (Ey — Ex_1)Z,, and
7T72L’k = Ek—l(D%k)- Note that Eo(-) = E(+), and E(Z,) = 0 as E(x) = 0. It
follows that Z, = > _,_; D, . By martingale central limit theorem, to prove
(A.2.1), it is sufficient to show

(A.2.2) Soadyvar(Za) D1, S E(DL ) var?(Z,) = 0.
k=1 k=1

r=1"%r

var(Z,) by the following Lemma A.2.3.

Here var(Z,) — Y./* | t2 = 1 by Lemmas A.2.1 and A.2.2, and E(}_}_; W%k) =



LEMMA A.2.3. Under the conditions of Theorem 2.1, E(>"}_, ”zk) =
var(Zy,).

PROOF. See Section B.1.3 on Page 51. O

Therefore to prove (A.2.2), it suffices to show

A.2.3 var 2. | -0 and E(D* ) — 0.
n,k n,k
k=1 k=1

Note that Dy, and 72 , in (A.2.3) can be written as Dy, = > rey trApkan
and W?L’k = lerhrzém Ek—l(An,k,arl An,k,aw), where we define A4, ., =
(Er — Ex—1){U(a)/o(a)} for each finite integer a. The following Lemma
A.2.4 gives the explicit form of A, 1 4.

LEMMA A.2.4.  For finite integer a, when k < a, Ay i = 0; when k > a,

a—1
a
An,k,a = U(CL)P” Z Z (xk,hxk,jz) X H(l’it,jll'it,jg)'
4 1<y A Fia_1<k—1 1<j1#£j2<p t=1
PROOF. See Section B.1.4 on Page 51. O

With the form of A, , in Lemma A.2.4, the forms of D, and Trfhk can be
obtained, and we can prove the next two Lemmas A.2.5 and A.2.6, which
suggest that (A.2.3) holds.

LEMMA A.2.5.  Under the conditions of Theorem 2.1, var(d_;_, ﬂik) —
0. In particular, under Condition 2.2, var(d>_;_, 71'7217,{) = O(p~'log® p); under
Condition 2.2, var(d_,_, ﬁ%k) =0(nt+p?).

PROOF. See Section B.1.5 on Page 53. O

LEMMA A.2.6. Under the conditions of Theorem 2.1, Y E(thk) =
O(1/n).

PROOF. See Section B.1.6 on Page 67. O

Finally, by Heyde and Brown [14], we have as n,p — oo,

(A.2.4) sup ‘P(Zn <) - @(t)‘
S By ] SE (D)
= C{E var(Zy,) B 1] - var2(Z,)

— 0,



6 HE ET AL.
which proves (A.2.1). In summary, Theorem 2.1 is proved.

A.3. Proof of Theorem 2.3. In this section, we first introduce some
notation, and then present the proof.

Notation. For U(a) in (2.3), by the symmetricity of covariance matrix, we
can replace ) ;. j1£ja<p DY 2X doi< j1<ja<p - Lhis implies that the summation
over {(j1,72) : 1 < j1 # ja2 < p} is equivalent to the summation over
{(j1,72) : 1 < j1 < j2 < p} up to a constant. Without loss of generality, we
consider j; < jo below. We rewrite the index set {(j1,72) : 1 < j1 < j2 < p}
as

(A.3.1) L= {(j,l,j?):1gzgq: (g)}

. . . . il—1
where ]ll = arg mlnlgkgp,l{zle(p—t) > [} and jlz = l—i—jl1 — glzl (p—t).
For each (j},j?) € L, define

a
1<iy#... #ig<n k=1

Then U(a) = 2(P2)~1 30, Up following the definition in (2.5). Further-
more, we define

n
Li gt Li,57

2 ,
g;1 .1 g;2 ;2
=1 \/ J1d; \/ Ji597
M, = max (G})?,
1<i<q
n
€T: o1 €T. -2 €T. 1 €T. .o
A [2¥) [2¥} [2¥} [2¥)
G=> Lo {2 x| <)
g:1 ;1 g2 2 g:1 ;1 ;2 ;2
i=1 \/ 1597 \/ 1597 \/ IR \/ VIR
n
€T. 1 . g €T. 1 . .o
2¥) 2,J 2y 2y
I Y Ml S N Tn}]
g:1 ;1 g2 2 g:1 ;1 g;2 ;2
i=1 \/ D13 \/ Ji9; Ji3; \/ 21531

M, = )2
n lrrglg(Gz)v

(A.3.3) Gy

T x

- E

where we define 1 ;1 = Var(:z:l-J}), Oj2 52 = Val“(l’i,le), Tn, = T log(p+n) with
7 being a sufficiently large positive constant and 1{-} represents an indicator

function. In addition, we define |a|min = minj<;<p |a;| for a € RP, and

(A.3.4) yp = 4logp —loglogp + y.
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Proof. Similarly to Section A.2, since U(a) in (2.3) and U(c0) in (2.8) are
location invariant, we assume without loss of generality that E(x) = 0.

To prove Theorem 2.3, we first establish the asymptotic independence
between M, /n and U(a)/o(a,) for r = 1,...,m, and then we show that
nid?(c0) and U(a,) are close to M, /n and U(a,), respectively. Specifically,
the following Lemma A.3.1 shows that M, /n and U(a,)/o(a,)’s are asymp-
totically independent.

LEMMA A.3.1. Under the conditions of Theorem 2.3, when T > 0 in
(A.3.3) is a sufficiently large constant,

M, Ulay) U(am)
P(T > Yp, 0‘(@11) < Zlyenny U(am)

(o) fr(led <)

PROOF. See Section B.2.1 on Page 75. O

To show that M, /n and nid (c0)? are close, we use M,, /n defined in (A.3.3)
as an intermediate variable. We next prove that M, /n and M,/n have
small difference in the sense that the conclusion in Lemma A.3.1 still holds

by replacing M,, with M, This is formally stated in the following Lemma
A.3.2.

LEMMA A.3.2. Under the conditions of Theorem 2.3,

N
=
S

Z;l(al
o(ar) =7 o(am)

M,
P(—" > Yp,
n

- P(% > yp> ﬁP<U(ar) < Zr)

o(ay)

PROOF. See Section B.2.5 on Page 9. O

Given Lemma A.3.2, we further prove that M,,/n and U (a)/o(a,) are close
to nUd?(c0) and U(a,), respectively. In particular, by the proof of Theorem
3 in Cai and Jiang [4], we know {n?U?(c0) — M, }/n L, 0. In addition,
Lemma A.2.1 proves that {U(a,)—U(a,)} /o (a,) L, 0. Based on these results
and Lemma A.3.2, the following Lemma A.3.3 shows that the conclusion in
Lemma A.3.2 still holds by replacing M, /n with nif?(cc) and replacing

U(a,) with U(a,).
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LEMMA A.3.3.  Under the conditions of Theorem 2.3,

U(ar) U(am)
2 < 2,... < zm
‘P(nu (00) > Yp, o Zlyeee, ) = z )
—P(nZ/l2 >yp)H ( ) 50
PROOF. See Section B.2.6 on Page 96. O

Lemma A.3.3 then proves Theorem 2.3.

A.4. Proof of Theorem 2.4. As both U(a) and V,(a) are location
invariant in the sense of Proposition 2.1, we assume E(x) = 0. To prove
Theorem 2.4, we decompose V,(a) =V, 1(a) + V, 2(a), where we define

2a! T2 2
Vyi(a) = (P2 Z Z H Liy 1P, g2o

7 1< Aje<p 1<ir#.. . Fig<nt=1

and V,2(a) = Vy(a) — Vy 1(a). The next Lemma A.4.1 shows that V, 1(a)
is of a larger order than Vu 2(a), and thus it is the leading term in V,(a).

LeEMMA A.4.1.  Under the conditions of Theorem 2.4, Vy, 1(a)/E{V,. 1(a)}
1 and Vy(a) /E{V,1(a)} 2 0.

PROOF. See Section B.3 on Page 99. O

Lemma A.4.1 implies that V,(a)/E{V, 1(a)} L1l As Vu(a) > 0 with
probability 1, E{V, 1(a)}/V,(a) L, 1. In addition, note that E{Vy1(a)} =
20N P) ™ Y 1<), 2 <p B(27 j, 27 )} By (B.1.20) and (B.1.29) in Section
B.1.1.2, we have var{U(a)}/E{V, 1(a)} — 1. Therefore,

Vu(a) _ Vu(a) XE{Vul( }P 1
var{(a)}  E{Vyi(a)} = var{U(a)} '

A.5. Proof of Theorem 2.5. We first present Condition A.1 in The-
orem 2.5, which is a generalized version of Condition 2.2* under H4.

CONDITION A.1.  Following the central moment notation in (2.2), fort <
8, we assume that there exists constant &y such that 1L, j, = ReE([They 250)s
where 1 < j1,...,5: <p and (z1,...,2)T ~ N(0,24).
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Condition A.1 generalizes Condition 2.2* to the alternative setting. Similarly
to Condition 2.2*, Condition A.1l is satisfied when x follows an elliptical
distribution with certain moment conditions [see 10, 23]. To be consistent
with the notation in Condition 2.2*, we let k1 = k4 below.

We next introduce some notation, and then provide the proof.

Notation. For each given j; € {1,...,p}, we define

Jj1 = {(j17j2) 2 041,52 7& 0,1<j1#J2< p}>
J;l = {(j17j2) * 041,50 = 07 1 S jl 7é j? S p}

Then Jy = U _,Jj,, and we correspondingly define J§ = UY _, Jf,, which

is the set difference of {(ji,j2) : 1 < j1 # jo < p} and J4. Moreover, we
define F(a,c) = (—1)¢(%) /Py, and

a—c a a+c
K(c, j1,J2) = F(a,c) E H(wit,jlximh) H Liy,j1 H Lig,ja-
1<i1#. Figrc<n t=1 t=a—c+1 t=a+1

We decompose U(a) = Ty a1,1 + Tvan,2 + Tu,a2, Where

a
(A51) Tyain= Y K0,1,42), Tarz= > > Klc i1 i),

(41,92)€JG (J1,g2)€Jg =1

a
Taz= Y, Y K(ci1,j2).

(J1,42)€J4 =0

Proof. Similarly to Section A.2, we first derive the variances and the covari-
ances of the U-statistics, and then prove the asymptotic joint normality of
the U-statistics. Particularly, the next Lemma A.5.1 derives the asymptotic
form of var{{/(a)}, and additionally shows that among the three terms in
(A.5.1), Tyg1,1 is the leading one.

LEMMA A.5.1.  Under the conditions of Theorem 2.5, 0%(a) = var{U(a)} ~
var(Ty,q,1,1), where

~ a, —a a a
var(Tyq,1,1) =~ 2alkin E O 105 as
1<j1#752<p

which is ©(p*n=*). Moreover, var(Tya1.2) = o(p?*n=?), var(Tya2) = o(p?n~=%)

and {U(a) — Tya11}/0(a) 2 0.

PROOF. See Section B.4.1 on Page 101. O
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The following Lemma A.5.2 shows that the covariance between two different
U-statistics asymptotically converges to 0.

LEMMA A.5.2. Under the conditions of Theorem 2.5, for two integers
a#b, cov{td(a)/o(a),U(b)/c(b)} — 0.

PRrROOF. See Section B.4.2 on Page 112. O

To finish the proof, it remains to obtain the joint asymptotic normal-
ity of [U(ar)/o(ar),...,U(am)/o(am)]T. By the Cramér-Wold theorem, it
is equivalent to prove that any fixed linear combination of [U(a1)/o(a1),
...,U(am)/o(am)]T converges to a normal distribution. By Lemma A.5.1,

{U(a)-Tya,1,1}/0(a) EiR 0, thus by the Slutsky’s theorem, it suffices to prove
that any fixed linear combination of [Ty e, 1.1/0(a1), ..., Tu.am1,1/0(am)]T
converges to a normal distribution. Similarly to Section A.2, we redefine Z,
as below with -7 ¢2 = 1, and prove that

r=1"r

(A.5.2) Zn =Y 6Ty 11/0(ar) 25 N(0,1).

r=1

We next prove (A.5.2) by the martingale central limit theorem, similarly
to Section A.2. In particular, we define Ei(-) in the same way as in Section
A.2, and still define D), j, = (Ex —Ep_1)Z, and Wg,k = Ek—l(DTQL,k)- It follows
that Dy, = 217"11 trAn k,a, and 7r72L7k = Z1§r1,r2§m lrytry Ekfl(An,k,arl An,k,aTQ )
where we redefine A, , o, = (B —Ex—1){Tv,a,,1,1/0(ar)}. Note that o;, ;, =
0 when (j1,72) € JG, and Ty q1,1 is a summation over (ji,j2) € J4. Thus
the proof of Lemma A.2.4 in Section B.1.4 applies similarly, and we obtain
the explicit form of A, ;. . Specifically, for each finite integer a, when k < a,
Ap ko = 0; when k£ > a,

a a—1
Anka= o(a)Pr § E (Th,j1 Th,jo) H(xiuﬁa?it,h)-
@ 1<iy £ Fia—1<k—1 (j1,j2)€JT4 =1

With the form of A, ;. ,, we can obtain the explicit forms of D,, ;, and 7521,1«
Then we can prove the following two Lemmas A.5.3 and A.5.4, which sug-
gests that (A.5.2) holds.

LEMMA A.5.3.  Under the conditions of Theorem 2.5, var(} _, W%k) —

PROOF. See Section B.4.3 on Page 113. O
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LEMMA A.5.4.  Under the conditions of Theorem 2.5, > }_, E(Di,k) —

PROOF. See Section B.4.4 on Page 121. [
By Lemmas A.5.3 and A.5.4, (A.5.2) holds and thus Theorem 2.5 is proved.

A.6. Proof of Proposition 2.3. Consider the setting when n,p and
|J4| are given and the value of M is fixed as ©(1). We next examine p, in
(2.13) as a function of integer a in the following two cases.

(i) |Ja| > Mp. When Mp/|Ja| < 1, both (Mp/|Ja[)/* and (a!)'/(*) are
increasing functions of integer a. Thus p, is an increasing function of a. Since
a € Z*, p, reaches the minimum value at a = 1.

(i) |J4| < Mp. Define M = Mp/|.J 4|, and f(a) = (a!)*/@®)(M)Y*. Note
that p, and f(a) only differs by a constant. To find the minimum of p,, it
suffices to examine the minimum of f(a).

In the following, we show that when f(a) starts to not decrease at some
value, it will strictly increase afterwards. Specifically, we prove that f(a +

2)/fla+1)>1if f(a+1)/f(a) > 1. Note that

fla+1) _ {(at 1))7erm (an)z
f(a) (al)3a (V1) %
{(a+1)!}aM2a m

— — T2\ (T
- (a!)a—i-lM?(a-i-l) = {d(a) x M™7}pzelern,

where d(a) = (a + 1)%(a!)~L. Tt follows that f(a +1)/f(a) > 1 and f(a +
1)/f(a) = 1 are equivalent to d(a) > M? and d(a) = M?, respectively. We
next show that d(a) is a strictly increasing function of a. In particular,

dla+1)  (a+2)"Tal  ra+2yetl
dla) — (a+1)*a+1)! (a + 1)

Therefore we have d(a+1) > M? if d(a) > M?, and equivalently this implies
that f(a+2)/f(a+1)>11if f(a+1)/f(a) > 1.

Suppose ag is the first integer such that d(ag) > M?, i.e., for any integer
1 < a < ag, d(a) < M2. By the analysis above, we know f(a) is decreasing
when a < ag, and f(a) is strictly increasing when a > ag. Thus ag achieves
the minimum of f(a), and ag increases as M increases. Therefore the second
part of proposition 2.3 is proved.
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A.7. Proof of Proposition 2.4.

PRrooF. Consider the simplified test statistic given in (2.15). We assume
E(x;;) = 0 and Var(x%j) =1,Vj =1,...,p without loss of generality. It is
then equivalent to examine U (00) = maxi<j,<jo<p |2 pe1 Thjr Th,jo/1|. We
next prove (i) and (ii) of Proposition 2.4 in the following Sections A.7.1 and
A.7.2, respectively.

A.7.1. Proof of (1). Under the alternative, we consider n i.i.d. observa-
tions (zx,1, 2 2), satisfying E(xy 1252) = p, for k =1,...,n. Then by Con-
dition 2.2*, var(z12k2) = E(27 127 ,) — [E(vk1782)]* = r1(1 + 2p%) — p2.

The power of U(c0) satisfies that

(AT.1) P(|U(c) | > 1,)
n
= f’(lg§ﬁgggp‘gg;kalwkgz/n’Eitp)
n
> P(‘Z ﬂfk,ﬂm/n‘ > tp)
k=1
n
> P(Z T Tp2/n > tp)
k=1
p 21 @ratez —p) o Valty—p) |
\/ﬁ\/var(xk,la:k’g) - \/var($k,1xk,2)
We apply the central limit theorem on w122, k = 1,...,n, and obtain

Ezzl(xk,lxm—,o) D N(O, 1)‘

_%
Vny/var(zg 12 2)

Suppose Z follows a standard Gaussian distribution. Aslogp — oo, logp/n =
o(1), and by Berry-Esseen Theorem, we have

(A.7.1) > P<2> Vilty = p) )_ CE|zgizpa|®
B —Vvar(@pi k) [Var(xklxm)]%\/ﬁ

Valn 2 VAlogp —pl\ _ Cv/Elep [Elzza[f
> P(ZZ | 1) - 2

VEL(1+2p?) — p? [var(zr17x2)]2 /1

> P(Z>C(2—c1)\/logp) — 55

— 140(1),
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where the second inequality uses ¢, < n~1/2,/4Tog p when p is sufficiently
large; the third inequality uses p > c¢;+/log p/n; and the last step of conver-
gence holds when ¢; > 2.

A.7.2. Proof of (ii). Recall the notation J4 and J§ in Section A.5. Under
the considered alternative, when (ji,j2) € Ja, E(xy j, 21 j,) = p; and when
(43, J4) € JG, E(xk jy2k,5,) = 0. We have

(A72) P(U(0) | > 1)
= Z P(’Zxk’,jl:v’ﬁjz/n‘ 2 tp)
1<j1<j2<p k=1
1 n
< LS (S et 2 )
(J1,92)€Ja k=1
1 n
—}—5 | Z P()Zxk,j3a:k,j4/n‘ > tp>.
(j3.J4)€TG k=1

Next we show that under the conditions of Proposition 2.4,

(A.7.3) Z P(‘ka,jlxhp/n‘ > tp> — 0,

(J1,92)€J 4 k=1

and

1 = _
(A.7.4) 5 > P(}Zxk,jgmk7j4/n‘ > tp) <log(1 —a)~".
(J3,J4)€JTG k=1

A.7.2.1. Proof of (A.7.3). To prove (A.7.3), we derive an upper bound of
P(|>p_q Tk ji Tk jo /1| > tp) for each (j1,j2) € Ja by Lemma 6.8 in Cai and
Jiang [4]. In the following, we consider a fixed index pair (j1, j2), and for easy
presentation, we write mg = \/var(zy j, x j,) and & = (T j, Tk j, — p)/Mo-
When (j1, j2) € Ja, we have E(§) = 0, var(§;) = 1, and by Condition 2.2*,
m2 = k1(1+2p?) — p?. It follows that

- > pe1
P( . . > ¢ > — P( k=1Sk > >’
];_1: xk,]lka/n —lp ' 1oo b Togp — Yn

where y,, = \/n/logpmal(tp—p). We next show that y, and &, k=1,...,n
satisfy the conditions of Lemma 6.8 in [4]. First note that y, - y = (2 —
co)mgt, and y > 0 as ca < 2. We then show that E{exp(fo|¢|”)} < oo for
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some g > 0 and 0 < ¥ < 1. In particular, given ¢ and ¢y in Proposition 2.4,

we take ¥ = ¢/2 € (0,1] and o = to(2mg)?/2 > 0. By Lemma B.0.4,
|=’13k,j1923k,j2 - /;lﬁ < ([ gingol + 1) < longizn|” + (ol
R Y R P R

It follows that

(A.7.5) EeXp(f()‘fle)

< Eexp [

to t~0
W(Wk,ﬁ219 + |33k,j2|219) + WU’W]
0
= Elexp(2 to|zp,, %) x exp(27 om0 [*)] % exp(t02”~p]”)

< \/E[exp(tolfk,jll"”)] x Elexp(tolz,j, )] x exp(to2”~|o]”),

where the last inequality follows from the Holder’s inequality. By the condi-
tions in Proposition 2.4, we know max;, j,)e.s, E(fo|zr,j ) X E(tolwg 4 |*) <
oo and p < cgy/logp/n = o(1). Therefore, (A.7.5) < oco. In summary, y,
and &, k = 1,...,n satisfy the conditions of Lemma 6.8 in [4].

By Lemma 6.8 in [4], as logp = o(n®) and B =9/(2+9) = /(4 + ),

2 =16k ¥/ (logp)~!/2
AT, Pl==—=—== >y, | ~ .
(A.7.6) (\/nlogp =Y ) V2my

Let 29 = — log(87)—2loglog(1—a)~!, then we can write t, = n~'/2{4log p—
loglogp + 20}'/? and
1

Va‘r(ka mk,h)
1

var(xy, j, T j, )

2 n 2
= —(t — pP X
yn 1 (p )

n
— 10gp(t§ — 2pt, + p*) X

1
A
var(zj, Thy,)  Llogp
2¢cov/log py/4log p — loglogp + 2o N c3 logp}
log p logp J’

Y

(4 logp — loglogp + zo)
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where the last inequality holds when p < ¢a4/logp/n and cp < 2. Then

p—y%/2
= exp(—(logp)y2/2)
1 1
< - = (4logp —loglogp —1 —2loglog(1l —a)~!
< exp{ var(xk,jlxm)b( ogp — loglogp — log(8m) oglog(l — ) )

21
_CQ\/Ing\/4lng—loglng+ZO+ c5 ;)gp}}

C2
= {p_zx/logp x v/8mlog(l — )™t x p_72

X exp <02\/logp\/4 logp — loglogp + 2o

) }1/{Var(33k,j11’k,j2)}
By Condition 2.2*, var(zy j, Tk j,) = k1 + (2k1 —1)p?, and as p = o(1), there
exists a constant m > 0 such that var(xy j, xy j,) < k1 +m. Thus

p ¥/ (log p) ™12

C2
< (logp)~'/? {p’Q\/logp x V87 (log(1 — o) 1)p~ %
)}1/{"3?(%1%2)}

X exXp (C2 \/logp\/4 log p — loglogp + zg
2
< (logp)~'”? [x/@logu —a)"1/logp x p—z—gmcz}

Recall that y = (2 — co)[var(zy, j, 7k j,)] "/, Then by (A.7.6),

1/(k1+m)

(A.7.7) % Z P(Zxk,jlxhh/nztp)

(J1,J2)€J A k=1

-3, 2, MG zv)

ey Vrloer
1 —1/2 2 ﬁ
< JQA’ ( ng)2 <\/877rlog(1 —a)™! /log p x p_2_72+202) 1+
yv2am

(1—cy+c3/4)

= C,exp (2 log [piW{M(logp)m% H) ’

where Cq = 23”ﬁ[\/ 8mlog(1l — o)~V (s1+m) Thus, (A.7.7) — 0 when

_(1-c9/2)?

(A=cg/2)? 11
p it/ Jal(log p) Hritm) 4 — 0.
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Similarly, we have

(A.7.8) Z P(ZZ=1 st,jlxk,h < —tp>
(J1,J2)€Ja
Z P<ZZ:1(—xk,j1$k,j2 +0) N ty+p >’
(j1,j2)€J 4 ny/var(zy g, wrgy)  \/Var(Th g, T y)

and (A.7.8) — 0 following the similar arguments as above. In summary,
2(1—cq/2)2

1 1
(A.7.3) holds when J4 = o(1)p =1tm (logp)? 2¢1+m for some m > 0.

A.7.2.2. Proof of (A.7.4). Similarly to Section A.7.2.1, we derive an upper
bound of P37}, x jyxk . /1 > tp) for each (j3,74) € J§ by Lemma 6.8
in [4]. In the following, we consider a fixed index pair (js, js); and for easy
presentation, we write &, = Tk jsThja//F1, k= 1,...,n. When (j3, ja) € J§,
E(2k sk j,) = 0 and var(zy j,2k.4,) = E{(¥kj57k,)%} = k1, then we have
E(&) = 0 and var(&;) = 1. To prove (A.7.4), we write

- St §
—1 Sk ~
P(Z Tk js Thjs /10 > tp) = P(’“‘il > yn)
k=1

vnlogp
where 7, = \/n/logp x t,/\/k1 — § = 2//k1. Similarly to Section A.7.2.1,
we know g, and &, k = 1,...,n also satisfy the conditions of Lemma 6.8 in

[4]‘ Thus by Lemma 6.8 in [4]’ for zg = —log(Sﬂ') — 210g10g(1 — a)_l and
t, = n~1/2\/4logp — loglog p + o,

P(ZZ:1 gk > §n>

vnlogp —
. P (logp) 12
B V2
= p /" (logp)t/ G712 eXp(—\/Z%Z(fm))
< 8 1/(%{1)& —2/kK1 1 1/(2k1)—1/2 1 1—a)! 1//11'
< (8m) 2\/%19 (logp) {log(1 — )1}

Then for k1 <1 and a small o > 0,

1 n
(A79) 5 > P(Y agyng/n = ty)
(Jr.j2)€dy k=1
L plp—1)—|J4 1/(261) VL —1\1/k1
§p2/'*1(10gp)*1/(2“1)+1/2 (87) ﬁ{bg(l —a)
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which attains the maximum order at k1 = 1, when k1 < 1 and n,p — oo.
Therefore asymptotically, (A.7.9) < 27 !log(1—a)~!. By similar arguments,
we know when n,p — oo,

1 " 1 _
3 > P(Z Th,jsTh,ja /10 < —tp) < 5 log(1 —a) g
(j3.ja)Etg k=1

In summary, we have (A.7.4) holds.
Combining (A.7.3) and (A.7.4), we obtain (A.7.2) < log(l — )% O

A.8. Conditions of Theorems 4.1-4.5. The conditions of Theorem
4.1 are listed in the following Condition A.2.

CONDITION A.2.

(1) limp_mo maxi<j;<p E(:cj—uj)4 < ooy limp_,oo minlgjgp E(a;j—uj)2 > 0.
(2) x is a-mizing with ag(s) < M§°, where § € (0,1) and M > 0 are
0 p _
some constants. In addition, > % . ;0% ;. = ©(p).

Condition A.2 is similar to Conditions 2.1 and 2.2 of Theorem 2.1. As the
mean is a lower order moment function than the covariance, Condition A.2
(1) is weaker than Condition 2.1 in that only the fourth moments are needed
to be uniformly bounded instead of the eighth moments. Condition A.2 (2)
is a regularization condition of the structure of the covariance matrix.

The conditions of Theorem 4.2 are list in the following Condition A.3.

CONDITION A.3.

(1) There erxists constant B such that B~ < A\pin(8) < Anax(2) < B,
where Amin(X) and Apax(X) denote the minimum and mazimum eigen-
values of the covariance matriz 3; and all correlations are bounded
away from —1 and 1, i.e., maxi<j,£j,<p |01 ja|/ (Tir j2Tinjn) /2 < 1=
for some n > 0.

(2) logp = o(n'/*); max, <<, Elexp(h(x;j—p;)?)] < oo, for h € [~My, My],
where M7 > 0 is some constant.

(3) {(zij,i=1,...,n) : 1 < j <p}is a-mizing with ay(s) < C6*, where
5 €(0,1) and C > 0 is some constant, and Z§1,j2=1 o i, = O(p)-

In Condition A.3, (1) and (2) are assumed to establish the extreme value

distribution of #(00), as in Cai et al. [6] and Xu et al. [28]. Furthermore, the
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mixing condition in Condition (3) is used to establish the joint independence
of finite order U-statistics and U(c0), following the argument in Hsing [16].

The conditions of Theorems 4.3-4.5 are listed in the Condition A.4 below.

CONDITION A 4.

(1) There exists constant B such that B~ < Apin(Z2) < Anax(Z2) < B,
where Amin(Xz) and Apax(Xy) denote the minimum and mazimum
etgenvalues of X.; and all correlations are bounded away from —1
and 1, i.e., maxi<j, 4j,<p |‘7567j1,j2‘/(Ux,j17j2‘7$7j27j2)1/2 < 1—n for some
n > 0. In addition, we assume the same assumptions hold for 3.

(2) n,p — oo, logp = o(1)n** and ny/n — v € (0,1). In addition,
maxi <j<p Elexp(h(z;—p7)?)] < 0o and maxi<j<p Elexp(h(y;—v5)?)] <
00, for h € [=M, M|, where M is a positive constant.

(3) {(ziji=1,...,n): 1 <35 <p}and{(yij,i =1,...,n): 1 < j <p}
are a-mizing with ag(s) < CO05 and oy(s) < Cé,, where 0,0y €
(0,1) and C is some constant. We also assume Z?l,p:l{ax,jhjz/fy +
Oyrgz/ (1 =)} = O(p).

Condition A.4 is similar to Condition A.3. They are assumed to establish
both the limiting distributions and asymptotic independence properties of
U(a) and U(o0) for testing two-sample mean.

A.9. Proof of Theorems 4.1 and 4.2.

PrOOF. Under Hy, for U(a) in (4.1), we assume without loss of generality
that pg = 0, and then write U(a) = ?Zl(P(f)*l Do1<is o tin<n L Lb=1 Tig,j-

We start with the proof of Theorem 4.1. Similarly to Section A.2, we
first derive the variances and the covariances of the U-statistics; and then
prove the asymptotic joint normality of the U-statistics. In particular, for
var{U(a)} in Theorem 4.1, as E{U(a)} = 0 under Hy,

a
var(@} = Bl@y =P 2 Y Y B([Lwwati,):
1<1<p, 1<ii#—#ia<n, k=1
1<j2<p 1<ii#-#ia<n

Note that E([[j_; %y, 7;, ;,) = 0 when {i1,... 0} # {i1,...,ia}; and

E([Tyo1 Tipn7;, 4,) = 05, j, When {i1, ... iq} = {i1,...,14}. Then

(A.9.1) var{t(a)} = (P > alof, .

1<j1,52<p



By Condition A.2, 37 <, 05 ;, = O(p). Thus var{t/(a)} = ©(pn~*).
Second, we show that cov{U(a),U(b)} = 0. Note that cov{U(a),U(b)} =
E{U(a)U(b)} under Hyp, and

BU@ue)} = (Rre) Y3 (H%Jlnuﬁjz)_

1<j1<p, 1<ii##ia<n, t=1
1<j2<p 1<iz##ia<n

Since a # b, {i1,...,ia} # {i1,...,0}. Suppose there exists an index i €
{i1,...,iq} and i & {i1,...,7}. Then under Hy,

( H Ty gy H $“7j2> = E(x;,;)E(all the remaining terms) = 0.

Therefore, E{U(a)U(b)} = 0.

In summary, the covariance matrix of [U(a1)/o(a1),...,U(am)/o(am)]T
asymptotically converges to I,,. To finish the proof of Theorem 4.1, it re-
mains to show that the joint limiting distribution of the U-statistics is nor-
mal. By the Cramér-Wold theorem, it is sufficient to prove that any fixed
linear combination of these U-statistics converges to a normal distribution.
Similarly to Section A.2, we use the martingale central limit theorem [2,
p.476]. Specifically, we redefine Z,, as below with Y /", t2 = 1, and prove
that

m
(A.9.2) Zn =Y tU(a,)/o(ar) 2 N(0,1).

r=1
With the redefined Z,,, we define Eg(-) in the same way as in Section A.2,
and still define D, x = (Ex — Ex_1)Z, and 72 nk = B 1( i) Similarly
to Section A.2, we have D, = (E; — Ej_ 1)Zn = >t An,k,ar» where
we redefine A, 1, = (BEx — Ex—1){U(a,)/o(ar)}. In addition, similarly to
Lemma A.2.4, we obtain that when k < a,, Ay 14, = 0; and when £k > a,,

ar—1

Amk,ar = Z E Th,j X H Lig,j5-
t=1

aT] 1 1<iy#Hig, —1<k—1

Given the form of A, 1., we can obtain the forms of D, ; and 71’7% w 1o
prove (A.5.2), by the martingale central limit theorem, it suffices to prove
the following Lemma A.9.1.

LEMMA A.9.1.  Under the conditions of Theorem 4.1, var(} _, W?Lk) —
0 and Y p_ E(Dy, ;) — 0.



20 HE ET AL.

PROOF. See Section B.5 on Page 123. O

With Lemma A.9.1, the asymptotic joint normality in Theorem 4.1 is ob-
tained by the martingale central limit theorem. For Theorem 4.2, the limiting
distribution of U(c0) follows from Cai et al. [6]. In addition, the asymptotic
independence between U (a)/o(a) and nid(co) — 7, can be obtained similarly
as the proof of Theorem 4.4. We defer the details to Section A.11.

A.10. Proof of Theorem 4.3. By the following Proposition A.1, we
assume that under Hy, p = v = 0, without loss of generality.

PROPOSITION A.1. U(a) constructed in (4.2) and (4.3) are location in-
variant; that is, for any vector A € RP, the U-statistic constructed based on
the transformed data {x; + A:i=1,...,n,} and {y; + A:i=1,...,ny}
is still U(a).

Proposition A.1 can be obtained straightforwardly from the definitions U(a) =
V(P Py )T X Y sk £ banes [1m) (ke i — sy ) 10 (4.2), and U(oo) =

1<s1#...#sa<ny

maxi<;<p a;j.l x (Z; — 9;)? in (4.3). The proof is thus skipped.

The following proof proceeds by deriving the variances, covariances and
asymptotic joint normality of the U-statistics. Particularly, the next Lemma
A.10.1 derives the asymptotic form of o(a) in Theorem 4.3.

LEMMA A.10.1. Under the conditions of Theorem 4.3,

var{U(a)} ~ Z a!<0-x7j1,j2 + Oy,j1.52 )a — 0.

1<jri<p 0 ® "
When 04415, = Oyjija = Ojija, We have varfld(a)] =~ Zh o= 1al(ng +
ny) 31,]2/(?%5”?!) ’
PROOF. See Section B.6.1 on Page 127. O

In addition, the following Lemma A.10.2 shows that different /(a)’s of finite
a are uncorrelated.

LEMMA A.10.2. Under the conditions of Theorem 4.3, for finite integers
a#b, covid(a),U(b)} = 0.

PROOF. See Section B.6.2 on Page 128. O
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We then know cov{U(ai)/o(a1),...,U(am)/o(am)} = L, by Lemmas A.10.1
and A.10.2. The next Lemma A.10.3 further proves the asymptotic joint
normality of the U-statistics.

LEMMA A.10.3. Under the conditions of Theorem 4.3, for finite integers
ar,. . am, {Ular)/o(ar), .., U(am)/o(am)} 2 N (0, I,).

PROOF. See Section B.6.3 on Page 129. O
Combining Lemmas A.10.1-A.10.3, we finish the proof of Theorem 4.3.

A.11. Proof of Theorem 4.4. For (o) in (4.3), the limiting distri-
bution of (o) is established in Cai et al. [6] and [28]. We next prove the
asymptotic independence between U (oo) and U(a) by a similar argument to
that in Hsing [16], see also [28]. In this proof, we reserve the notation P for
the probability measure on which x; ; and y; ; are defined, and the expecta-
tion with respect to P is denoted as E. Define U.(a)/o(a) on the conditional
probability measure P, given the event ngn,U(c0)/(ng +ny) — 7, < u such
that

P{z)c(a) Jo(a) < u}
- P{U(a) Jo(a) < o'

Mgy }
—=U < .
- (00) <1p+u

The expectation with respect to P is denoted by E. To show the asymptotic
independence, it is sufficient to prove the following Lemma A.11.1.

LemMA A.11.1.  Under the conditions of Theorem 4.4, U.(a)/o(a) L,
N(0,1) on the conditional measure P.

PROOF. See Section B.7 on Page 133. 0

A.12. Proof of Theorem 4.5. By Proposition A.1, we assume E(y) =
v = 0, without loss of generality. Then under the considered alternative €4,
Ex)=p={pj=p:5=1,...;kospj =0:j5 =ky+1,...,p}. Define
Pjrge = Tjuga T Mjrbjp- We have E(zijixij,) = ¢jj,, and under v = 0,
E(yi,ﬁyi,jz) = Oj1,j2-

Similarly to the proof of Theorem 2.5 in Section A.5, we decompose
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U(a) =Tu1 + Ty 2, where

ko a c a—c
(A121)  Ta=3Y 3 G(a, ) [T zres [T voma
t=1 m=1

J=1c¢=0 1<k1#-#kc<ng,
1§517£“'7£5a7c§ny

P a & a—c
Ta,2 = E E E G(a7 C) H$kt,j H Ysm.jo
j=ko+1 c=0 1<ki#-#kc<ng, t=1 m=1

1§317é“'7ésa—c§ny

with G(a, c) = (—1)*¢(%) (P2 P,) 1. Then E(Tu1) = YK, (i — 7)* =
kopa and E(Ta’g) = Z?:k(ﬂrl(uj - l/j)a =0.

To prove Theorem 4.5, we derive the variances, covariances, and asymp-
totic joint normality of the U-statistics. Particularly, the next Lemma A.12.1
gives the asymptotic form of o2(a) = var{Ud(a)}, and shows that T}, o is the
leading component.

LEMMA A.12.1.  Under the conditions of Theorem 4.5,

O in s O i s a
A12.2 Uu ~ !< ,J1,J2 y,thz) ‘
( ) var{l(a)} ) Z al(Z .
0+1<71,j2<p
var(T,2) = O(pn~*) and var(Ty 1) = o(1)var(T,2). It follows that {T,1 —
E(To1)}/o(a) o,

PROOF. See Section B.8.1 on Page 135. O

In addition, the following Lemma A.12.2 shows that the covariance between
two U-statistics asymptotically converges to 0.

LEMMA A.12.2. Under the conditions of Theorem /.5, for two finite
integers a # b, {o(a)o(b)} Lecov{U(a),U(b)} — 0.

PROOF. See Section B.8.2 on Page 138. O

By the analysis above, we know that the covariance matrix of [{U(a1) —
EU(ar)]}/o(ar),...,{U(am)—EU(am)]}/o(am)]T asymptotically converges
to I,,. To prove Theorem 4.5, it remains to show that the joint limit-
ing distribution of the U-statistics is normal. By the Cramér-Wold theo-
rem, it is equivalent to prove that any fixed linear combination of these
U-statistics converges to a normal distribution. By Lemma A.12.1 and the
Slutsky’s theorem, it suffices to show that any fixed linear combination of
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[To,2//var(Ty, 2), ..., T, 2/+/var(1y,, 2)]7 converges to a normal distribu-

tion for any finite m. Since p; = v; for j € {ko +1,...,p}, and each Tg, 2
is a summation over j € {ko+ 1,...,p}, we know the analysis under Hy in
Section A.10 can be applied to Ty, 2 similarly. Given ko = o(p), we know

[To,2//var(Ty, 2), ..., T, 2//var(1y,, 2)]7 has the joint asymptotic nor-

mality. In summary, Theorem 4.5 is proved.

A.13. Proof of Theorem 4.6. We first provide the details of the con-
ditions of Theorem 4.6 in Section A.13.1 and then prove Theorem 4.6 in
Section A.13.2.

A.13.1. Conditions of Theorem 4.6. Theorem 4.6 can be proved by the
following Condition A.5 or Condition A.6. Note that Conditions A.5 and
A.6 are assumed under Hy, where ¥, =3, =3 = (0, jo)pxp-

CONDITION A.5.

(1) n,p — o0, and ny/n — v € (0,1).

(2) limp—yo0 maxi<j<p B(z; — 115)° < 00; limp oo miny<j<p B(z; — p15)* >
0, limp_mo maxi<;<p E(yy — Vj)8 < 00; and limp_>oo minlgjgp E(y] —

)2
vj)® > 0.

(3) {(zij,i=1,...,n):1 <7 <p}and {(yi;,i=1,...,n): 1 <j <p}
are a-mizing with az(s) < C65 and ay(s) < Cdy, where 05,6, € (0,1)
and C' is some constant.

(4) For any finite integer a, 3 1< i, o i <p( 01 3o )" = o(p?).

Condition A.5 (2) is similar to Condition 2.1. Condition A.5 (3) assumes
a-mixing on the two samples, which is similar to Condition 2.2. Condition
A5 (4) is a regularity condition on the covariance structure, and it is natu-
rally satisfied for even a, given Condition A.5 (3).

Alternatively, we introduce another set of conditions similar to Condi-
tion 2.2*. We define some notation. Suppose (z1,...,2,)T ~ N (0, X). Given
indexes 1 < j1,...,7: < p, define H%,...,jt = E(HL:1 2j,.). Moreover, we
define 112, = B{TT,_, (vj, — )} and I, = B{IToe, (v — v3)}-
In addition, for given integers a and b, let G,; be a collection of tuples
G = (91,92, > Ga(a+b)—1> Ga(asb)) € {1,...,8}4e+b)  which satisfies that
g2t—1 # gor for t = 1,...,2(a + b), and the number of g’s equal to m

is a for m € {1,2,3,4} and is b for m € {5,6,7,8}. For any G € Ggp,

we define Vopg = > 1< i<y ;“Sj”) Ojone_1rdon,» a0d let Sg denote the

number of distinct sets among the 2(a + b) number of sets, {gai—1, 92},
for t = 1,...,2(a + b), induced by G. Note that generally Sg > 4, and
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when Sg = 4, by the symmetricity of j indexes, V,,6 = Vg0 where
o a a b
Vab0 7= 21<,o s <p 211 is<p T2 5,147 Garie O s

CONDITION A.6.

(1) n,p — oo, and ny/n — v € (0,1).

(2) limy o0 maxy<j<p B(w; — 41)° < 007 limy o0 minyjcp Bz — p15)?
0; limy, o0 maxi<j<p E(y; — I/j)S < 00; and limy o min<j<p E(y; —

2

vj)? > 0.

(3) Fort=13,4,6,8, there exist constants kg ¢, Ky > 1 such that I, =

0 y _ 0

Koglly g, and 105 5 =y elly G-

(4) For a,b e {ai,...,am}, and any G € G, define above, if Sg > 4, we
assume Vo pg = 0(1)Vg 0.

V

We note that Condition A.6 (3) and (4) are alternative dependence as-
sumptions to Condition A.5 (3) and (4). Condition A.6 (3) is an extension
from Condition 2.2*%, and is also satisfied when the distributions of x and
y follow elliptical distributions [19]. Condition A.6 (4) implies some weak
dependence structure in covariance matrix 3. To better illustrate the con-
dition, we consider the case when ¢ = b = 2 as an example. We note that

2 2\ 4
Vapo = > (0452055uCssTirgs)” = {tr(E?)},
1<j1,js <p

and Vg 0=V, when G =(1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8) with Sg =
4. Moreover, if G = (1,3,2,4,1,2,3,4,5,6,7,8,5,6,7,8) with Sg = 6,

Va,b,g = Z (O-jl,jSO-jQ,.M)(0-]'1,]'20-]'3,]'4)(O-j57j6o-j77j8)2 = tr(24){tr(22)}2;
1<1,..,8<p
if G =(1,3,2,4,1,2,3,4,5,7,6,8,5,6,7,8) with Sg = 8,
4
Vasg = O (0525505.50) (051520555 ) (s s Tis.is ) (s o Tir ) = {tr(SH)};
1<41,....58<p

if G =(1,6,2,5,3,7,4,8,1,3,2,4,5,7,6,8) with Sg = 8,

Vasg = D (05056Ts) (i 520500 ) (O s o) (T T ) = t1(Z°).
1<g1,.,98<p

In this case, Condition A.6 (4) is equivalent to tr(X*) = o[{tr(¥?)}?] and
tr(X8) = o[{tr(x2)}4], which are similarly assumed in [22]. In addition, we
consider another example where the p X p covariance matrix X is of banded
structure with bandwidth s and has the nonzero entries being positive con-
stants. It follows that V, ;0 = O(p*s?) and V, g = O(p®s®) when Sg > 4.
Therefore, in this example, Condition A.6 (4) is satisfied when s = o(p).
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A.13.2. Proof of Theorem 4.6. Since U(a) is location invariant, we as-
sume E(x) = 0 and E(y) = 0, without loss of generality, in this section. We
decompose U(a) = U(a) +U*(a), where we redefine

- 1 a
Ula) = Z Pre piv Z H(xihjl‘ritaj? — Ywrjr Ywe gz )

1<j1,j2a<p = & 7% 1<iy#..Aig<ng; t=1
1<wi#.. . Fwa<ny

and U*(a) = U(a) — U(a). To prove Theorem 4.6, we derive the variances,
covariances, and asymptotic joint normality of the U-statistics. Particularly,
the following Lemma A.13.1 derives the asymptotic form of var{l/(a)}, and
shows that U/(a) is the leading term.

LEMMA A.13.1. Under the conditions of Theorem 4.6, var{t*(a)} =
o(Lvar{ll(a)}, U*(a)/o(a) 2> 0, and

var{U(a)}

1 1 a
~ Yy a!{n*(ﬂﬁ,ja,jm = O %gga) F (U gy oy — Ujl,j2ffj3,j4)} :
1<j1,52,43,J4<p N Y
In particular, under Condition A.5, var{t(a)} = O(p*n=?); under Condi-
tion A.6, var{U(a)} = ©O(n™%) Zlgjl,jg,j37j4§p(o-j1:j30j2:j4)a'

PROOF. See Section B.9.1 on Page 138. O

Given Lemma A.13.1, the next Lemma A.13.2 shows that the covariance
between two U-statistics asymptotically converges to 0.

LEMMA A.13.2. Under the conditions of Theorem 4.6, for finite integers
a#b, covid(a)/o(a),U(D)/o(b)} — 0 as n,p — co.

PROOF. See Section B.9.2 on Page 144. O

To finish the proof, it remains to obtain the joint asymptotic normality of
U(ar)/o(ar),...,U(am)/o(am)]T for different finite integers ai, ..., am. By
Cramér-Wold theorem, it is equivalent to prove that any of their fixed linear
combination converges to normal. In addition, by Lemma A.13.1 and the
Slutsky’s theorem, it suffices to prove that any fixed linear combination of

[U(ar)/o(ar),...,U(am)/o(am)]T converges to normal. Specifically, similarly
to Section A.2, we redefine Z,, as below with > /", t2 = 1, and prove that
(A.13.1) Zn =Y tU(a,)/o(ar) 2 N(0,1).

r=1
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We next prove (A.13.1) following the proof of Theorem 2.1 in Section A.2
and apply the martingale central limit theorem [2, p.476].

To construct a martingale difference, we write x; = (2;1,...,ip)T and
Yi = (¥i1,---,¥ip)T; and define a new random vector

Ri=x; fori=1,2,... ny; Ry, +j=y; forj=12,...,n,.

We then define Fy = {0, 2} and F, = o{Ry,..., R} for k=1,2,...,n, +
ny; and let Eg(-) denote the conditional expectation given Fj for k =
1,--,ng + ny. Define D,y = (Ex — Ex_1)Z, and 72, = Ex_1(D?,). It
follows that Z, =Y ;_ Dy as Eo(Z,) = E(Z,) = 0. To prove (A.13.i), by
the martingale central limit theorem, it suffices to prove

(A13.2) Y w2 var(Z,) D1 and Y E(DL,)/var’(Zy) — 0.
k=1 k=1

To prove (A.13.2), we derive the explicit forms of D, ;, and 7T721’ 5 in Section
B.9.3. Similarly to Section A.2, the following Lemma A.13.3 and Lemma
A.13.4 suggest that (A.13.2) holds.

LEMMA A.13.3.  Under the conditions of Theorem 4.6, var( Zg—ny ) =

PRrROOF. See Section B.9.4 on Page 147. 0

LEMMA A.13.4.  Under the conditions of Theorem 4.6, ZZ;?”J E(thk) —

PROOF. See Section B.9.5 on Page 15/. O
In summary, Theorem 4.6 is proved.

A.14. Proof of Theorem 4.7. In this section, we first provide the
conditions of Theorem 4.7 in Section A.14.1 and then prove Theorem 4.7 in
Section A.14.2.

A.14.1. Conditions. Theorem 4.7 is established under the following Con-
ditions A.7 and A.8, where Condition A.7 is the same as Condition A.6

(1)-(3).
CONDITION A.7.

(1) n,p — o0, and ny/n — v € (0,1).
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(2) limyyo0 maxy<j<p B(zj — 41)° < 007 limy 00 mini<j<p B — p15)* >
0; limy_ 00 maxi<j<p B(y; — v4)® < 00; and limy_yo ming<j<p E(y; —

I/j)2 > 0.
(3) Fort :y 3,4,6,8, thege exist kg t, Kyt > 1 such that H}”h“”jt = ’i%tHg‘)l,...,jt
and I g = foyally -

To provide Condition A.8, we first define some notation. The difference
between X, and X, is defined as D, = 3, — 3y = (D}, j,)pxp- Let Jo C
{1,...,p} be the largest set such that for any ji,jo € Jo, 0z j1.jo = Oy.j1.jo-
Define Jop = {(j1,72) : j1 or jo & Jo}. Given Jy and a,b € {ai,...,an},
we define Va,b,O,O = Z‘jl,.‘.,jgé,ﬂo (Uﬂwi,jzUﬂv,j37j4)a(al‘,j&jesax»j?,js)bv which also
equals to Zjh._"jsejo(Jy,jl7j20y7j3,j4)“(Jy,jmﬁay,j?,jg)b by the definition of Jy.
In addition, for any tuple G = (91,92, - - - ; 9a(a+b)—1, Ya(a+b)) € Gap specified

. s b

in Condition A.6, we define Vg0 = >, ey ?iafr )O'jg%il,jg%. Note
that V500 and Vg g o are defined similarly to V, 5 o and Vg in Condition
A.6 by changing the range of j indexes from {1,...,p} to Jo. Moreover, let
H = {(h1, h2), (hs, hs)} € H, where H includes {(1,2),(3,4)}, {(1,3),(2,4)}

and {(1,4),(2,3)}. For any a € {a1,...,an} and given H € H, define

(A141) Va,?—[,x,l = Z ‘O-xyjhlmjhg O2,jhg:dhy |(l
(91,32)+(d3,Ja)€Jo,D

Va,?—[,x,Q = Z ‘Djhlmjhz O, jhgsdhy |ll’
(41,42),(33,J4)€Jo,D

Vau,n3 = Z 1Dy iy Ding ing |

(41,92),(43,J4)€Jo, D

Similarly, we also define V,,,1 and V, 4,2 by replacing o,’s with o,’s.
We next present Condition A.8 of Theorem 4.7.

ConDITION A.8. For any a,b € {a1,...,am}, G € Gqp, and H € H,
we assume (A1) V60 =01)Vgp00; (A2) Vop,p3 = O(n_“)VCIL’/iO’O; and
(A8) Voot = 0(1)V(117/57070, fort=1,2.

Equivalently we can also replace (A3) in Condition A.8 by (A3)* Vi, 314 =
0(1)V(1l7/3070, for ¢ = 1,2. This is because by Dj, j, = 0z j1,jo — Oy,j1,jo and
Hélder’s inequality, we know (A2) and (A3) induce (A3)*; and (A2) and
(A3)* also induce (A3). Thus it is equivalent to assume (A3) or (A3)" in
Condition A.8.

We next discuss Condition A.8. Let X¢ = {04, : Jj1,d2 € Jo} =
{oyj1.js * J1,J2 € Jo}, which is the common submatrix of 3, and X,
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by the definition of Jy. In Condition A.8, (A1) implies some weak de-
pendence structure of ¥ similar to Condition A.6 (4). We consider an
example where 3, has the banded structure with the bandwidth s and
the entries being positive constants. Then (A1) holds if s = o(p). More-
over, under the considered example, Vif’op = (224, jacTo ol 5,)° = Cllol!
and Vy 3.1 < ClJopl? = Ca(p — |Jo|)*. Then (A3) for t = 1 holds when
p — |Jo| = o(p), which implies that the number of entries that are different
in ¥, and £, is o(p?). In addition, (42) and (A3) for t = 2 are regularity
conditions on the difference matrix D, ,. For illustration, we consider an
example where Dj, ;, = p > 0 for any (ji,52) € Jo,p, and X, = I,. Then
thz,/aQ,O,O = |Jol?, Va2 < |Joplpp, and Va3 p3 < |Jo.p|?p**. Under this
example, (A2) and (A8) of t = 2 hold if |Jy p|p® = O(n~%?p) and |Jo| =~ p,
which are similar to the assumption in Theorem 2.5.

A.14.2. Proof. In this section, we prove Theorem 4.7 under Conditions
A.7 and A.8. Recall that we decompose U(a) = U(a) + U*(a) in Section
A.13. We further decompose U(a) = Tpa1 + Ip a2, Where

1 a
Tpa1 = E : pre piy Z H(l'it»]ixit,h ~ Ywrjr Yuwe gz )

J1,J2€00 T @ T 1<inA Fig<ng; t=1
1<wi#...Fwa<ny

1 a
Tpaz2 = 2 : pre ply § : H(xityjlxitva ~ Ywe,j1 Ywr o )-
t=1

(G1g2)€dop = ¢ T 1<ii# . Fia<ng; t=
1<wi #.. . Fwa <ny

It follows that U(a) = Tpa1 + Tpaz2 + Z/Nl*(a). To prove Theorem 4.7, we
derive the variances, covariances and asymptotic joint normality of the U-
statistics. In particular, next Lemma A.14.1 derives the asymptotic form of
var{U(a)}, and shows that Tp 41 is the leading component.

LEMMA A.14.1.  Under the conditions of Theorem 4.7,
var{U(a)} ~ Z alcﬁ,ao‘?hho-?s,ju
1<j1,52,53,J4€Jo

where Cy o = {(Kz — 1) /na+ (ky — 1) /0y }* +2(kg /10 + Ky /0y)*. In addition,
var(Tpq2) = o(l)var(Tp 1) and var{{*(a)} = o(1)var{U(a)}. It follows

that {Tp.a2 — B(Tp.a2)}/o(a) 2> 0 and [ (a) — E{U*(a)}]/o(a) > 0.

PRrROOF. See Section B.10.1 on Page 156. 0
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Lemma A.14.1 gives that {Tp 2 — E(Tp.e2)}/0(a) L, 0 and U*(a) —

E{U*(a)}]/o(a) L. 0. Thus by Slutsky’s theorem, to prove Theorem 4.7, it
suffices to prove

T T
(A.14.2) [ Dat . _ZDanl | Dy pzrg 1)
var(Tp,a, 1) var(Tp,a,,,1)

Note that T)p 4,1 is a summation over j indexes in Jo, and by the definition
of Jo, 0z,j1jo = Oy,j1,j» fOr any ji,j2 € Jo. Therefore the analysis under Hy
can be similarly applied to Tp 1. Given Condition A.7 and Condition A.8
(A1), we can obtain (A.14.2) similarly as in Section A.13.2. In summary,
Theorem 4.7 is proved.

A.15. Proof of Proposition 4.2. In this section, we prove Propo-
sition 4.2. Under the considered example, as p — |[Jo| = o(p), we have

D it aania€lo TaniaTinania = APV2* + 23501 hi(p — )}?. Then by Lemma
A.14.1, when n; = n, =n/2,

(A.15.1) var{U(a)} =~ (n/2) “a!(2k] + H%){pl/2a +2 Z hi(p — t)}Q,
t=1

where k1 = kg + Ky and kg = kg + Ky — 2.
Recall that p, is defined to be the value such that when p = p, under

the alternative, E{U(a)}/+/var{U(a)} ~ M for given M. By (A.15.1), pa
satisfies

[Tp|2p2 = Aﬂmmr%m@+«9@ﬁwnﬁiww—wf.
We next obtain
o= R () e () Y e () (- DY

Let M = Mp/|Jpl|, hs = he/v?, U = \/r1v, and &, = ka/k1. It follows that

pa = Pal)2a (n/2) "2 (W1)7 (2 + )2 {1+2§:M(177)}

Similarly to Section A.6, we study p, as a function of integer a and show
that if p, starts to not decrease at some value, it will increase afterwards.
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Specifically, we show that when p,11/pa > 1, pa+2/pa+1 > 1. Note that

Pa+1
Pa

1

1 ~o, 2 - 1 ~ 2(14
@y oy {1 e (1 1)}

— {D(a) )70,

~ ~ 2
(a + )IM2(2 + gg+1){1 +2y ot (1 _ ;))} ] T
)

where D(a) = Dy(a) x Da(a) x D3(a) with Dy(a) = (a + 1)%/al, Dy(a) =
(2+REHH*/(2+ /7)™ and

Dy(a) = {1 +2§:ﬁg+1(1 - ;>}2a/{1 +2ZS:B?(1 - ;)}2(
t=1 t=1

It follows that pay1/pe > 1 and pay1/pe = 1 are equivalent to D(a) > M?
and D(a) = M?, respectively.

We next show that D(a) is a strictly increasing functions of a as D;(a +
1)/Di(a) > 1, Dy(a+ 1)/De(a) > 1 and D3(a + 1)/D3(a) > 1. Particularly,

a+1)

Di(a+1)  (a+2)*"t  al ( 1 )a+1 o1

Di(a) @+ (@+De T ax1

Dy(a+1) _ (2+AFH) (2+FD { (2+ A2+ &D) }aﬂ

= X
(2 4 R?—FI)Q

= = >1
Ds(a) 2+ RET)et2 T (24 gEth)a

- )

where we use 2&2T! < 92 4 2 by the inequality of arithmetic and geo-
metric means; and

{rosima-pi{re2yt, m-p}rw
{1425 bt - %)}2

where we use 25, W21~ t/p) + 5, Be(1—t/p) = 2375, e+ (1—t/p)
by the inequality of arithmetic and geometric means and {)_;_, ho2(1 —
D) Hy B~ t/p)} = {35, W (1~ t/p)}? by Holder's iequality. In
summary, D(a+1)/D(a) > 1, and thus D(a) is a strictly increasing function
of a.

Given the monotonicity of D(a), we know that if D(a) > M2, D(a+ 1) >
M?; equivalently this implies that if Pat+l = Pas Pat2 > Patl- SUppose ag
is the first integer such that D(ag) > M2, ie., for any integer 1 < a < ag,
D(a) < M?. By the analysis above, we know p, is decreasing when a < ay,

D3(a+1)
D3(a)

>1

e I
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and p, is strictly increasing when a > ag. Thus a¢ achieves the minimum of
pa- Since D(a) is strictly increasing in a, we know ag < oo given M, and ay

increases as M increases.
Moreover, as s = o(p), there exists some constant C' such that

Dy = 2R 2T - yp))
(2+R)% {14+ 2300 (1 —t/p)}

0,

where
2+ A} « {1+257, h7)?
2+R)2 T {1+23 bt
and we have Dy = ©(1/s?). Therefore, when Dy > M?, i.e., |Jp| > Mp//D,

we know D(1) > M? and the minimum of D(a) is achieved at ag = 1. This
indicates that the minimum of p, is achieved at ag = 1.

DOICX

A.16. Results on the Generalized Linear Model in Section 4.3.

A.16.1. Limiting results and power analysis. We have shown that the U-
statistics framework can be used to test means and covariance matrices. Here
we give an example of generalized linear models to show that the framework
can be extended to other testing problems.

Consider a response variable y and covariates x = (z1,--- ,z,)7 following
a generalized linear model
(A.16.1) E(ylx) = g~ (x78),

where ¢ is the canonical link function and 3 is the regression coefficients
of interest. We are interested in testing: Hy : B3 = B versus Ha : B # (.
We define the score vector S = (Si,...,Sp)T for B in (A.16.1), where S; =
(y — po)xj, 1 < j < p with pg = g1 (x73;). Given that E(S;) = 0 under
Hy, the target parameters can be considered as £ = {E(S;):j =1,...,p}.

Suppose that (x;,y;), i = 1,...,n, are n i.i.d. observations. Many existing
tests for generalized linear models [see, e.g., 11, 27] are based on the score
vectors S; = (Sj1,...,9p)7, where S; ; = (y; — po,i)x;,j. Note that S;’s are
i.i.d. copies of S with mean (E(S1),...,E(Sp))T and the covariance matrix
denoted by ¥ = {0}, j, : 1 < ji,j2 < p}. Therefore, K;(x;,v:i) = Si; =
(yi — to,i)xi; provides a simple kernel function. Following (1.1), U(a) =
Z?ZI(PQ)*l D 1<int. Fia<n [15—q Siy,j» which is an unbiased estimator of
€8 = §:1{E(Sj)}a for finite integers a. Moreover, we define U(c0) =
mMaxi<;<p aj_’jl(zzlzl S;.j/n)?, which corresponds to the €| s-

Asymptotic results of the U-statistics are stated below, where we assume
the conditions similar to that of Theorem 4.1.
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CONDITION A.9.

(1) There exists constant B such that B~ < A\pin(8) < Anax(2) < B,
where Amin(X) and Apax(X) denote the minimum and mazximum eigen-
values of the covariance matriz 3; and all correlations are bounded
away from —1 and 1, i.e., maxi<j,£j,<p |01 ja|/ (Tir j2Tinjn) /> < 1=
for some n > 0.

(2) logp = o(1)n'/* and max; <;<, Elexp{h(S; — E(S;))?}] < oo, for h €
[—M, M], where M is a positive constant.

(3) Similarly to Condition 2.2, {(S;j,i = 1...,n) : 1 < j < p} is a-
mixing with ag(s) < C§*, where § € (0,1) and C is some constant. In
addition, for finite integer a, Z§1,j2=1 o i, = O(p).

1,J2

THEOREM A.16.1. Under Condition A.9 and Hy: B = By, for any finite

integers (a1,...,am), as n,p — oo, [U(ar)/o(ar),...,.U(am)/o(am)]T L,
N(0,1,,), where o2(a) = Y P, Z§:1 o i/ Py, which is of order ©(pn~?).
Besides, P(nU(o0) — 1, < u) — exp{—n"Y2exp(—u/2)}, Vu € R, where
7, = 2logp — loglogp. In addition, for any finite integer a, {U(a)/o(a)}
and {nU(oco) — 1,} are asymptotically independent.

Next we compare the power of U(a)’s under alternatives with different
sparsity levels. Similarly to the mean testing problems, we consider the
alternative £4 = {E(S;) = p > 0forj = 1,...,kop; E(S;) = Ofor j =
ko+1,---,p}, where ko denotes the number of nonzero entries.

THEOREM A.16.2. Assume Condition A.9 and ko = o(p). For any finite
integers {a1,...,am}, if p in E4 satisfies p = O(ko_l/atpl/@at)n_l/z) fort =
1,....m, then U(ar)~E{U(a1)})/o(ar), .., U (am)—E{U(am)})/o(am)]T 2>
N(0,1,), as n,p — co. In addition, EU(a)] = ||Ea||% = kop® and

p

p
02(a): Z Z a!a?hh/Pg,

Ji=ko+1 jo=ko+1
which is ©(alpn™®).

Theorem A.16.2 shows that under the considered local alternatives, the
asymptotic power of U (a) mainly depends on E{U(a)}/+/var{U(a)}. There-
fore, for a given constant M > 0, if p = p, defined as p, = Ml/“ko_l/aall/(za) X
( §1=k0+1 Z%:koﬂ o, 7j2)1/(2a)n—1/2’ we know that different U(a)’s asymp-
totically have the same power. For illustration, we further assume that o; ; =
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1 when j € {ko +1,...,p}, and 0j, j, = 0 when j; # jo € {ko +1,...,p},
then

(A.16.2) pa = (M\/p/ko)aalzan"2.

Therefore, following the analysis in Section 4.1, to find the “best” U(a), it
suffices to find the order, denoted by ag, that gives the smallest p, value
in (A.16.2). Since (A.16.2) is only different from (4.4) by a constant that
does not depend on the order a, Proposition 4.1 still holds. Consider ag > 1
as specified in Proposition 4.1; then, similar to results in the two-sample
mean testing, we know when ko > /Mp, ap = 1 and U(1) is “better” than
U(o0); when kg < C’l\/ﬁ/loga(’ﬂp for some Cp, U(oco) is the “best”; and
when Cg\/fa/log“oﬂp < ko < /Mp for some Cy, U(ap) is the “best”. In
addition, given the similar results obtained in Theorem A.16.1 and power
analysis, we can also develop adaptive testing procedure similar to that in
Section 2.3.

N

REMARK A.1. More generally, if the generalized linear model also has
covariates z that we want to adjust for, the corresponding generalized linear
model becomes E(y|x) = ¢~ 1(xT8 + zTat), where a denote the regression
coefficients for z. To test Hy : B = By v.s. Ha : B # By, we can replace
to,; by fio; = g_l(xgﬂo +z] &) where & is an estimator of a. For instance,
when z is low dimensional, we can take & as the mazximum likelihood esti-
mator under Hy. Then similar conclusion to Theorem A.16.1 can be derived
under certain reqularity conditions. We present simulation studies on gener-
alized linear model in Supplementary Material Section C.3.1 to illustrate the
good performance of the U-statistics and we leave the details of theoretical
developments with nuisance parameters for future study.

A.16.2. Proof of Theorems A.16.1 and A.16.2 (on Page 32). Theorem
A.16.1 is proved following the proof of Theorem 4.1 in Section A.9. Specif-
ically, the arguments in Section A.9 can be applied to proving Theorem
A.16.1 by replacing x; j’s with S; ;’s, and therefore the details are skipped.

The proof of Theorem A.16.2 is similar to the proof of Theorem 4.5 in

Section A.12. In particular, we decompose U(a) = Ty 1 + T2, where we
redefine
ko 1 a P 1 a
5 3= D SN | CREE PSS Sl |
J=1" ¢ 1<iy##ig<n k=1 Jj=ko+1 ¢ 1<ii#-#ia<nk=1

Note that T, 2 is a summation over j € {ky + 1,...,p} and E(S;) = 0 for
j €{ko+1,...,p}. Thus the conclusions similar to that in Theorem A.16.1
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hold for T 2. Specifically, we have var(Ty2) = O{(p — ko)n™*} and
(A.16.3) [ w2/ /var(Ta, ), - . T, 2/ var(Tamg)} By N(0, I).

When var(T, 1) = o(1)var(T,,2), which will be proved later, we have 02(a) ~
var(T,2) and {T,1 — E(Ty1)}/o(a) Zoo. By the Slutsky’s theorem and
(A.16.3), Theorem A.16.2 is proved.

To finish the proof of Theorem A.16.2, it remains to prove var(Tg 1) =
o(1)var(T5 2). The analysis above gives that var(T,2) = O{(p —ko)n"*}. As
ko = o(p), to prove var(T, ) = 0(1)Var(T 9), it suffices to show var(T, 1) =
o(pn~"). Note that var(T,,1) = E(T} ) — {E( w1) 2y E(Th 1) = kop®, and

1 a
2
E(Ta,l) = (Pn)2 Z Z E{ H(Sik"jlszk,h)}'
1<j1,d2<ko 1<i1 #+#ia <n; k=1
1<i1##ia<n

For 0 < b < a, define an event Bgy = {{i1,...,iq} N{i1,...,ia} is of size b}
and correspondingly

a

GS,a,2,b = (Pg)72 Z Z E{ H(Sik,jlsfk,p) X ]‘BS,b}'

1<j1,j2<ko 1<i1#F#ia<n; P
1<iy##ia<n

Then E(T7 ) = >3y Gs,a,2- To prove B(T2 ) — {E(T4,1)}* = o(pn™), we
show Gga20 — {E(T,1)}? = o(pn™?) and szl Gsa2p = o(pn~®), respec-
tively.

When b = 0, {i1,...,ia} N {i1,...,ia} = 0, and it follows that Ggg00 =
(PM)~2k3PY, 2“ .By E(Ta 1) = kop® and k2p?* = O(pn=2), we have |Gg 420~
{E(T, 1)}2| = 0(/@2 p*%) = o(pn=?). When b > 1,

GS,a,27b - C(P;l)—2 Z PZZ—b(U]’l,jQ + ,02)b;02(a_b).
1<71,J2<ko

The maximum order of G542 is bounded by the following two quantities:

P2 b b b

(A.16.4) Z (P?L)Q Tj1.42P 2ast),
1<j1,j2<ko * ¢
Pn

2a—b 2a

(A.16.5) >

n)2
1<51,52<ko ( a)
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For (A.16.4), as b > 1, by Condition A.9 (3) and Lemma B.0.1, (A.16.4) =
O{kon=p?(@=9Y As kg = o(p) and p = O(ko_l/apl/@“)n*lﬂ), we know
(A.16.4) = o(pn~®). For (A.16.5), when b > 1, (A.16.5) = O(kZn="p%?) =
o(kZp**) = o(pn=?). In summary, we have |var(T, 1)| < {E(T,1)}*—Gsa20/+
> o11Gsa,2] = o(pn~®). Therefore, Theorem A.16.2 is proved.

APPENDIX B: ASSISTED LEMMAS

In the following Sections B.1-B.10, we provide the proofs of all the as-
sisted lemmas used in Section A. The proofs of Remark 2.4 and Corollary
4.1 are provided in Sections B.11 and B.12, respectively. To facilitate the
presentation of the proofs, we first introduce some notation and then provide
four technical Lemmas B.0.1-B.0.4.

Notation. We define some notation to simplify the representation of sum-
mations in the following proofs. For a < n, P(n,a) denotes the collection of
a-tuples i = (i1,...,1,) satisfying 1 < iy # ... # iy, < n. Given i € P(n,a),
we define {i} as the corresponding set containing the elements of i without
order, that is, {i} = {i1,...,i,}. We apply usual set operations on the corre-
sponding set of {i}. For example, |{i}| denotes the size of the set {i1,...,i4},
which is a in this case. In addition, for any two integers a,b < n, and two
tuples i € P(n,a) and m € P(n,b), the operations {i} U{m} and {i} N {m}
give the sets that equal to the union {i1,...,i,}U{m1,...,mp} and intersec-
tion {i1,...,iq} N{mi, ..., mp} respectively. Moreover, we write {i} = {m}
and {i} # {m} to indicate that the two sets {i1,...,i.} and {mq,...,mp}
contain the same elements or not respectively.

In addition, let C(n,a) denote the collection of a-tuples i = (i1, ...,1i4)
satisfying 1 <i1,...,1, < n without constraining the elements to be differ-
ent. Similarly, we define {i} as the set containing the elements of i without
order, and the set operations also apply similarly as above. Note that |{i}|
may be smaller than a under this case.

We next list four technical lemmas which shall be used in the proofs later.

LeEmMMA B.0.1. [12, Eq. (3.5)] Under the mizing assumption in Condi-
tion 2.2, suppose Zy and Zy are Zi-measurable and ZX n-measurable ran-
dom wvariables respectively. When E(|Z1|*7¢) < oo and E(|Z]**€) < oo, for
some constants C' and € > 0,

[cov(Z1, Zo)| < C{a(m)} 2 {B( 20y 7 {B( 2o ) y 2.

The lemma above can also be obtained from Lemma 2.4 in [20] by taking
p=q=2+¢e
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LEMMA B.0.2. [9, Lemma 3.4.3] When |a;| < A and |b;| < A, then

q

[ 1T

=1 i=1

q
< |ai—bi|Aq_1.
=1

LEMMA B.0.3. [5, Eq. (24)] for two series of numbers A; and Bj for
j=1...,p.

max A? — max B?

< . -y _ B2
i<j<p 7 1<i<p Y _2112?%\3”112?%@4] BJH@%‘A] Bil

LEMMA B.0.4. When u,v >0 and 0 <9 <1, (u+v)? <u’ + Y.

PrOOF. When v > 0 and 0 < 9 < 1, f(u) = u” is concave function
with f(0) = 0. By the subadditivity property of concave function, we have

flutv) < f(u) + f(v). =

B.1. Lemmas for the proof of Theorem 2.1. In this section, we
prove the lemmas for the proof of Theorem 2.1 in Section A.2. We still
assume without loss of generality that E(x) = 0 as in Section A.2.

B.1.1. Proof of Lemma A.2.1 (on Page 3, Section A.2). To illustrate the
main idea of the proof of Lemma A.2.1, we first consider a setting where
x;;'s are all independent, and under this independence case we prove Lemma
A.2.1 in Section B.1.1.1. Next in Section B.1.1.2, we prove Lemma A.2.1
under the dependence case with Condition 2.2. Last in Section B.1.1.3, we
present the proof under Condition 2.2*

B.1.1.1. Proof illustration. In this section, we present the proof of Lemma
A.2.1 by only replacing Condition 2.2 with the assumption that x;;’s are

independent. Recall ¢ (a) defined in (2.5) and U*(a) = U(a) — U(a). Then
var{l(a)} < var{ld(a)} + 2\/var{L~{(a)}var{L~l*(a)} + var{U{*(a)}. To prove
Lemma A.2.1, we derive var{U(a)} and show var{i{*(a)} = o(1)var{U(a)}.

We derive var{U(a)} first. Under Ho, E(z;j 2ij,) = 0 when ji # ja. It
follows that E{U(a)} = 0 and var{U(a)} = E[{t(a)}?], and then

a

~ 1
Var{u(a)}:(Pn)2 > > E{H($ik7j1xikaj2)(‘T%k,jzﬂx%kvj‘l)}’
@7 1< #g2<p i,ieP(n,a) k=1
15534 <p

where following the notation defined at the beginning of Section B, i and i
represent some tuples i = (i, ...,14,) satisfying 1 < i3 # ... # i, < n; and
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i= (i1,...,0q) satisfying 1 <y # ... # i < n. When the corresponding
two sets {i} # {i}, for example, when index i; € {i} but iy & {i},

(B.1.1) E{ H(mimjlximjz)(xzmjsxzk»ﬂ)}

k=1
=E(zi, j, 24, j,) x E(all the remaining terms) = 0.

Therefore, (B.1.1) # 0 only when {i} = i}, ie., {ir, ... ia} = {i1, ..., ia}.
In particular, when {i} = {i},

a

E{ H(ximhxik,jz)(‘Tik,jg,x%k,jél)} = {E($17j1$17j2$1,j3-771,j4)}a'

k=1
It follows that

Var{Z/{( Z Z {E(z1,, 71 j,21,j3%1,54) }*
167’(n a) 1<31 #j2<p
1<js#ja<p
a!
= P > {E@121571571,50) "

@ 1<1#j2<p; 1<3#ja<p

When z; ;’s are independent, as ji # j2 and js # ja, E(z15, 21,5, %1,j5T1,5,) 7#
0 only when {ji1, j2} = {js, ja}, which gives E(z1 j, 71 j,71,,71,j,) = E(z? 31)X
E(x? j»)- Therefore, var{U(a)} = 2a!(P})~! D 1< i1 tia<p E(azijl)E(:vl p)- By
Condition 2.1, we have var{i/(a)} = O(p*n=%).

We next show var{t*(a)} = o(1)var{U(a)}. As E{U*(a)} = 0, var{U*(a)} =
E[{U4*(a)}?]. Recall the definition of U*(a), then we have

) (=D (5) () :
Var{U*(a)} = Z Z Z pn PT(Z: 62 Q(i)jlaj27i)j3aj4))
1<ji#ja<pl<er,ca<aieP(nate)  oTe ate
1<j3#ja<p ieP(n,a+c2)

where we correspondingly define

a—c1 a a-+cy

Qi j1, jo, 7]3;]4 szkjlxzkv.]Q H Lig,j1 H Lig,jo

k=a—ci1+1 k=a+1

a—cg a a-+cg

X H x%;;7j3$5,;,j4 H x%,;,j:% H x%gyjél )
k=1

E:a—cz—‘rl l;:a—l—l

To evaluate var{U/*(a)}, we examine the value of Q(i, 1, jo, 1, j3, ja). We
first note that if Q(i, j1, j2, 1, j3, j4) # 0, the following two claims hold:
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Claim 1: {j1, 72} = {j3,ja}; Claim 2: {i} = {i} and ¢; = ¢3.

To prove Clazm 17 we show that if {jlu.jQ} 7& {j37j4}7 Q(i7j17j27i7j37j4) = 0.
We consider j1 & {j3,74} as an example. When j; & {j3,ja}, as j1 # j2, we
further know ji1 & {j2,j3,J4} and we can write

a
Q(i,jl,jg,i, J3,j4) = E( H xik,jl) x E(other terms with subscripts ja2, j3, ja)
k=1
where we use E(T[5_; @i, ;1) = {E(z1;,)}* = 0 as E(z1;,) = 0. In addi-
tion, to prove Claim 2, we show that if {i} # {i}, Q(i,jl,jg,i Js,ja) = 0.
If {i} # {i}, similarly to (B.1.1), suppose an index i € {i} but i ¢ {i}.
Then we can write Q(i, j1,j2,1, 71, j2) = E(zij,) x E(other terms) = 0 or
Q(i, 1, j2, 1, j1, j2) = E(xijy i j,) x E(other terms) = 0. As {i} and {i} are
of sizes a + ¢; and a + ¢y respectively, {i} = {i} induces ¢; = co.
Given Claim 1 and Claim 2, we write ¢; = ¢2 = ¢ and decompose {i} and
{i} into three disjoint subsets respectively as follows:

{i}(l) = {ila e 7/L-a—c}7 {i}(2) = {ia—c—i-la sty 7;CL}) {i}(3) = {ia+17 s 7ia+c}7
{i}(l) - {517 LI 7%(1—6}7 {i}(Q) - {%a—c—i-la LI 7za}7 {i}(3) - {za-‘rlv L) 7%a+c}7

which satisfies that {i} = U}_,{i}) and {i} = U?:l{i}(l). We next prove the
following Claim 3: if Q(i, j1, j2,1, j3, ja) # 0, one of the following two cases
hold:

L. g1 =Js, j2 = ja, {itq) = {i}(l)a {ite) = {i}(z)a {it@) = {i}(g)?

2. j1=Ja, J2 = Js, {itq) = {itq), {ite) = {i}), {}e) = {i})
To prove Claim 8, we note that Claim 1 suggests that if Q(i, j1, j2, 1, j3, ja) #
0, either {j1 = 73,72 = ja} or {j1 = ja,J2 = j3} holds. We consider j; = js
and j» = js4 as an example. Suppose that there exists an index i € {i} ().
Since z; ;’s are independent with mean 0, if i € {i}), Q(i, j1,j2,1,j1,72) =
E(mijlejQ) x E(other terms) = 0; or if i € {i}(3), Q(i, j1, jo, 1, j1, j2) =
E(x; 4, 2i j,) x E(other terms) = 0. Symmetrically, if Q(i, j1, jo, 1, j1, j2) # 0,
we know {i} ) = {i}(l) for | = 1,2, 3 under this case. The similar analysis also
applies to the second case in Claim 3. Moreover, under the two cases in Claim

3, we have Q(i’jlvj%i’ j37j4) = {E(l‘%,jlx%,jg)}a_c{E(xijl)}C{E(‘T%,jg)}c'
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In summary,

a

var{U{*(a)} = Z Z Z M{E(x%ﬁ)E(fU%p)}a

(Pn+ )2
1<1#j2<p c=1 ieP(n,a+c) atc

C Y D o THE] B ;)

1<j1#£j2<p c=1

IN

which is of order 0(13271*(““)). Since we have obtained that var{U(a)} =
O(p*n~—?), then var{t*(a)} = o(1)var{lU(a)} is proved.

B.1.1.2. Proof under Condition 2.2. Section B.1.1.1 considers the case
where z; ;’s are independent. In this section, we further prove Lemma A.2.1
under Condition 2.2. We first explain the proof idea intuitively. Under Con-
dition 2.2, x; ;’s may be no longer independent, but the dependence between
x; 5, and z; j, degenerates exponentially with their distance |j; — j2|. We ex-
pect that when |j; — jo| is large enough, ; ;, and z; ;, are “asymptotically
independent”. Specifically, we will introduce a threshold Ky to be defined
in (B.1.9) below. Then we will show that the majority of (z;,,x;;,) pairs
satisfy |j1 — jo| > Ko, and when |j; — j2| > Ko, z; and z;;, are weakly
dependent with similar properties to those under the independence case.

We next present the detailed proof under Condition 2.2. Under Hp, sim-
ilarly to Section B.1.1.1, we have E{U(a)} = 0 and var{U(a)} = E{U?(a)}.
Then

(B12) E{UQ(G’)} = Z Z F(Cl,CQ,(]) X Q(i7j17j27ia j37j4)7
1<j1#j2<p; 0<ci,c2<a;
1<j3#ja<p i€P(n,atc1);
iEP(n,a+c2)

where we define F(cy,co,a) = (—1)1+¢ (:1) (52) (P2, Pihe,) ™", and recall
(B]_S) Q(i7j17j27i7j37j4)
a—cy a a+cy
- E{ H $ik7jlxik7j2 H xik’-jl H xik’jQ
k=1 k=a—ci1+1 k=a+1
a—ca a a+ca

X <. <. <. <. .
II L s Tiz ga I I Lir s II Lir da
k=1

k=a—co+1 k=a+1

Similarly to Section B.1.1.1, to evaluate var{l{(a)}, we next examine the
value of Q(i, j1, j2, 1, j3, j4) under different cases.
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When {i} # {i}, we show (B.1.3) = 0, that is, Claim 2 in Section B.1.1.1
also holds here. To see this, we assume without loss of generality that an
index 7 € {i} and 7 ¢ {i}. Then (B.1.3) takes one of the two following forms:

(B.1.3) = E(x;,5,) x E(all the remaining terms) (j1 =1,...,p),
(B.1.3) = E(x; ,%4,,) x E(all the remaining terms) (1 < j1 # jo < p).

Since E(; j,) = 0 and E(w; j, i 4,) = 0 under Hy, we know (B.1.3) = 0 when
{i} # {i}. It follows that

<B14) Z Z F(Cl7627a)Q(iajlva')i7j37j4)1{{i}7é{i}} = 07
1<j1#j2<p; 0<ci,c2<a;
1<j3#ja<p i€P(n,a+c1);
ieP(n,a+co)

where 1 represents an indicator function.

When {i} = {i}, we know ¢; = ¢z and we write ¢; = ¢ = ¢. If ¢ = 0,

a

QUi v 23, 3 Ja) L3y 3y, cm0y = (B i jo i gy 7i.32) 1

Then we have

(B15) Z Z F(C, ¢, a)Q(i7j17j27i7j37j4)1{{i}:{i}7c:0}

1<ji#j2<p; _0<c<a;
1<j3#ja<p iieP(n,a+c)
1

= e a0 B mi g
@7 ieP(n,a)  1<j1#£52<p;

1<j3#ja<p
= a(P)™ Y AB@iigami g -

1<g1#52<p;
1<js#ja<p

If ¢ > 1, for given i,i € P(n,a + ¢), we decompose the sets {i} and {i} into
three disjoint sets respectively, defined as:
{i}(l) = {ila DRI iafc}a {i}(2) = {Z.afc+1a DRI ia}7 {i}(3) — {ia+17 cee 7ia+c}a
iy = (1 faeh (b = laertsoiahs (i = Gasts. o Taseh
which satisfy that {i} = U}_{i}() and {i} = U?Zl{i}(l). The definitions are

similarly used in Section B.1.1.1. We next examine the value of (B.1.3) by
further discussing different cases.
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Case 1. We consider the cases where {i} = {i}, 1 < ¢ <a—1 and {itgy =
{i}(1)- Then we have {i} @) U{i}@) = {i}(2) U {i}(3). Note that here {i}) =
{i}(1) is assumed, and {i}(9), {i}(3), {i}(2) and {i}s) are all nonempty as ¢ >
1. Similarly to Claim & in Section B.1.1.1, we next prove that if (B.1.3) # 0,
one of the following two cases holds:

(B.1.6) {i}s) = {i}e) lite) = {i} )i = ds.j2 = jus
{ita) = {ito), {i}2) = {i}kz): 1 = Ja, J2 = Js.
We prove (B.1.6) by contradiction.
If {i}2) N{i}(2) # 0 and {i} ) N {i}() # 0, it means that {i} ) intersects

with both {}}(2) and {i}(3) Suppose i1 € {i}(g)ﬂ{i}(g) and io € {1}(2)0{1}(3)
It follows that

(B.1.3) = E(x4, j,%i, j3) % E(xiy j1 Ty j,) x E(all the remaining terms).

As j3 # ja, E(xiy ji i, jy) X E(24y,5, %iy j,) = 0 under Hy. Therefore (B.1.3) =
0. Similarly if {1}(3) D{I}(Q) # () and {l}(3) ﬂ{]}(g) # (), we know (B.1.3) = 0.
The analysis shows that when (B.1.3) # 0, {i}(9) only intersects with one
of {i}(z) and {i}(?)). Symmetrically, {i}s) only intersects with another one
of {i}() and {i}s). Since [{i}z)| = {i}(s)| = i}l = {i}); it remains
to consider two cases {{i}) = {i}) and {i}3) = {i}@)} or {{i}2) =
{i}(3) and {i} ) = {i}@)}. To obtain (B.1.6), we next examine the two cases
respectively. }

If {i}(g) = {l (2) and {l}(3) = {1}(3), suppose i1 € {1}(2) and iy € {l}(3)
Then as {i} ) N {i}) =0,

(B.1.3) = E(x4, 1 4y js) X E(4y,jo%iy,5,) X E(all the remaining terms),

which is nonzero only when ji = j3 and jo = js4. Similarly, if {i}) =

{i}(g)) and {1}(3) = {i}(Q), (Blg) 7'5 0 only when jl = j4 and jg = j3. In
summary, if (B.1.3) # 0, (B.1.6) is obtained, and

Q. j1, 42,8 73, J4) X Ly 5y 1) 0 = () 1y d<e<a—1)
= Q51,528,335 3y () 1) 1<e<a1)

x| 1 {i}2)={i}(2), J1=J3, +1 {i}2)={it @), 51=da,\ |"
{ b )

{i}(5)={i}3), J2=1a {i}3)={i}(2), J2=73
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In addition, under the two cases in (B.1.6), we have Q(i,j1,j2,1, j3, ja) =
{E(x?’jlwim)}a*C{E(x%jl)E(xip)}c. Therefore,

(B17) Z Z F(Cv ) a)Q(i7j17j27§7j37j4)1 {i}:{i}7

1<ji#j2<p;  0<c<g; {{i}(l):{i}(l)»}
1<j3#ja<p iieP(n,a+c) 1<c<a—1

)2 a—c)lcle!
DR L N e

c
pn
1<c<a—1; ( a+c)
ieP(n,a+c);
1<j1 #J2<p

— ZO 2 —a—l—c

where the last equation uses Condition 2.1.

Case 2. We consider the cases when {i} = {i}, 1 < ¢ < a—1, {ita) # {i}(l)
and {i} )N {i}1) # 0. Suppose that there exists an index i1 € {i}1)N{i}n)
Since {i}(1) # {i}) and [{i}(1)] = {i}()l|, there exists another index iy €
{itq) and iy & {i}(l). As {i} = {i}, we know iy € {}}(2) U {i}(g). Without
loss of generality, we assume iz € {i}(2), then

(B.1.8) (B.1.3) = E($i17]'1$i1,j2xi1,j3$i1,j4)E($i2,j1xi2712xi2,j3)E(Other terms).

As j1 # j2 and j3 # j4 in summation, it suffices to discuss four sub-cases
{j1 = js and jo = ja}, {j1 = jaand jo = js}, {1 # js and j1 # js} and
{j2 # js and ja # ja} under Case 2.

Case 2.1 If j1 = js and jo = j4, (B.1.8) gives

(B.1.3) = E(a? ) x B(2, j1Tiz.gp) X E(all the remaining terms).

'Ll J1 Zl 2J2

When z; ;’s are independent as in Section B.1.1.1, we know E(x? T iy Tig,ga) =
E(mfwl)E(mmm) = 0 and thus (B.1.3) = 0. Alternatively, under Condition

2, (B.1.3) may no longer be 0 due to the dependence of xz;;’s. But as
discussed at the beginning of Section B.1.1.2, we expect that z; ;, and z; j,
are “asymptotically independent” as |j; — j2| increases, and thus we expect
that (B.1.3) is close to 0 when |j; — j2| is large. To quantitatively evaluate
(B.1.3) based on |j; — ja|, we introduce a threshold Ky below, and discuss
the value of (B.1.3) when |j1 — ja| > Ko and |j; — jo| < Ko, respectively.

Specifically, given ¢ in Condition 2.2 and positive constants p and e, we
define

(B.1.9) Ko=—(2+¢€)(4+ p)(logp)/(elogd).
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When |71 — jo| > Ko, by Conditions 2.1 and 2.2, we have
(B.1.3)| < C x |E(x122,j137i27j2)‘ =Cx |C0V(x122,j17xi2,j2)|

< Cote = O(1)p~ ),

Kpe
where |cov(:v%27 i1 Tin,ga)| < CO 2t holds by the a-mixing inequality in Lemma
B.0.1. When |j; — j2| < Ky, by the uniform boundedness of moments from
Condition 2.1, we have (B.1.3) = O(1). To summarize, we define an event

Spem = {{i} = {i, 1 < c <a—1,{i}q) # {ita), {itq) N {ita) # 0}. Then

Q(i7 jla j27 i7 j3a .74) X 1{Snem,j1=j3:j2:j4}

= Q(i7jlaj27 i7j37j4)>< (1{Snem,j1=j3,j2=j4,} + 1{Snem,j1:j37j2:j4y}) .
[71—32]>Ko l71—j2|<Ko
The analysis above gives Q(i,jl,jg,i,jg,j4)1{5n6m7j1:j37j2:j47|j1_j2‘>KO} =
O(]‘)p_(4+,u) a’nd Q(i7j17j2’i7j37j4)1{Snem7j1:j37j2:j47|j1_jZ‘SKO} — 0(1)7 re-
spectively. Moreover, the total number of (ji, j2) pairs satisfying |j; — ja| <
Ko and |1 — ja| > Ko are O(p?) and O(pKy), respectively. Therefore,

(BllO) Z Z F(Ca c, a)Q(ivjijv:iv j37j4)1{57L€77L7j1:j37j2:j4}

1<ji#j2<p; _0<c<a;
1<j37#ja<p iieP(n,a+c)

S Z Z ‘F(C’ s CL)’ X 1{Snem7j1:j3’j2:j4}
1<ji#j2<p; _0<c<a;
1<j3#ja<p iicP(n,a+c)

{0 N sy + €% Lgir }

a—1
= Y e Loy 4 O(UpEy ) = o(pn ).
1

o
Il

Case 2.2 If j1 = j4 and jo = j3, similarly to Case 2.1, we have

(Blll) Z Z F(Cv ¢, G)Q(ivjl)j?aivj3>j4)1{5nem,j1:j4,j2:j3}
1<ji#j2<p; _0<c<g;
1<j3#Ja<p i,ieP(n,a+c)
= o(p*n™?).

Case 2.3 We discuss the cases where ji # j3 and j1 # ja. If ;s
are independent as in Section B.1.1.1, we know E(x;, j, i, joTi, jsTiy ja) =
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E(x;, j,)E(other terms) = 0; thus by (B.1.8), (B.1.3) = 0 under this setting.
Similarly to Case 2.1, under Condition 2.2, (B.1.3) may be no longer 0, and
we will discuss the value of (B.1.3) using the threshold K in (B.1.9).

To evaluate (B.1.3), by (B.1.8), we examine E(z;, j, %, jo®i; j3 i1 5, )- Let
(j1, 72,73, 74) be the ordered version of (j1, jo,j3,74) satisfying j; < jo <
j3 < j4, then E(xil7j1$i1,j21‘i1’j31'i17j4) = E(xi1,31xil,izxil,jgxh,ﬂ)' Under
the considered cases where j; # j3 and j; # js4, at least one of the two

equations, E(z; =z, =) = 0 and E(z; >, =) = 0, holds. It follows that
E(xi1731$i1,32xi1Jsxil,ﬁ - Cov(xiljlxihb ’ xil’33x11754)' We thus can write
(B.1.12) E(Zi1,51 @1 jo Tir s Tin o )| = [E(@y, 5,25 5,25 5.2 5)]

= |C0V(xi1,j1xi1,32 ’ xil:j3xi1’j4)|

= |cov(x x

i1,01 i152xi1,53 xi1,34) ’

- ‘Cov(xiljlxithxilJB ’ xi1y34)|'
We next discuss the value of (B.1.12) based on the the maximum distance
between the indexes in (j1, j2, j3, j4), which is defined as

(B.1.13) tom = max{|ja — 1|, |73 — Jal, |72 — Ja|}-

We evaluate (B.1.12) when k,, > Ky and k,, < Ky, respectively. First, if
km > Ko, by E(x) = 0, Conditions 2.1, 2.2, and Lemma B.0.1, we have

Kpe
(B.1.12) < €52t = O(p~“+m). If k,,, < Ko, by Condition 2.1, (B.1.12) =

O(1). It fOHOWS~that Q(i’jl’]é’}’ j3’j4)1{Snem,j1¢j3,j17éj4ﬁm>Ko} = O(p—(4+u))7
and Q(1, 71, J2, 1, 73, J4) 1{Spem.ji£isuji £iasrm <Ko} = O(1), where the event Syem
is defined in Case 2.1. Note that the total number of (ji, j2,j3,j4) tuples
satisfying k,, > Ko and k., < Ko are O(p*) and O(pK3), respectively. Thus

(B-1-14)’ > > Fle,¢,a)QG 1, g2 1, 3, ) 1(Spum i i is a)

1</ #j2<p; _0<c<q;
1<j3#ja<p i,ieP(n,a+c)

> Yo |F(ee,a)l X Lis, jiis i)

1<j1#j2<p; _0<c<q;
1<33#ja<p i,ieP(n,a+c)

IN

X {O(p*(4+“))1{nm>Ko} + C x 1{Nm§KO}:|

a—1
= Y n NPPo(pm M) + O(1)pKE} = o(p®n ).
c=1
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Case 2.4 If jo # j3 and jo # j4, similarly to Case 2.3, we have

(B115) ’ Z Z F(Ca C, a)Q(iajlaj%ia j37j4)1{5nem7j27£j37j27éj4}

1<ji#j2<p; _0<c<q;
1<j3#ja<p i,ieP(n,a+c)

= o(p’n™).
By (B.1.10), (B.1.11), (B.1.14), (B.1.15), and the definition of Sy, we

obtain

<B116) Z Z F(C, ¢, a)Q(iﬂjlan')ij?):j‘l)

1<ji1#j2<p; _0<c<q;
1<j37#7a<p i,ieP(n,a+c)

XL i) i) Ao 1) 20 e i) i oy 20} = O
Case 3. We consider {i} = {i}, 1 <c¢<a—1, and {ifayN {i}(l) = (). Here
{i}) and {i}(l) are not empty as ¢ < a — 1. Suppose there exist i1 € {i}(
and ip € {i}(1) with 41 # da. Since {i} = {i} and {i})N{i}1) = 0, we know
i1 € {i}(2) U{i}@) and ig € {i}(9) U {i}3). Without loss of generality, we
assume i1 € {i}(2) and iz € {i}(2), then

(Bl?)) = E<$il,j1xi1,j2xi1,j3) X E($127j3$2‘27j4.%'i2,j1) X E(other terms).

To evaluate (B.1.3), we examine E(z;, j, @i, jo @iy js ) E(Tig, js Tig,juTig g1 ). As
E(x) = 0, we can write

E(xilyjlxil»j?xilyjs) = COV(xil,jl ) xil,jzxihjs) = COV(xil,Jé ’ xihjlxil,js)
= Cov(xl'l»ji’) > x11,j1$11,j2)>
and similarly,
E(xi2,j3xi27j4xi27j1) = Cov(xizu's ) xi27j437i27j1) = Cov(xiz,h ) xiz,j3xi27j1)
= Cov(xizm ) xiz,j3wi27j4)‘

Recall ky, in (B.1.13) and Ky in (B.1.9). If k., > K, by Conditions 2.1 and
2.2, and Lemma B.0.1, we have

Ko )
(BLAT) (B, jy iy o i s ) B (Wi s T ja i g1 )| < C62oe = O(1)p~ ),

If k,, < Ky, by Condition 2.1, E(m’il,jlxil,jgxil,jg)E(xiQ,j3$i2,j4$i2,j1) = O(l)
Note that the total number of (j1, jo,J3,ja) tuples satisfying k,, > Ky and
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km < Ko are O(p*) and O(pK3), respectively. Therefore,

B.118)| Y Y Flee,d)QG, 1o kg3 )l gy

1< Aja<pi 0c<a; { 1Se<ai; }
1<j37#j4<p i,ieP(n,a+c) {i}yn{it)=0

< Z Z ‘F(Ca ¢, a)‘ X 1{{i}{i};1§c§a—1;}
1<j1#j2<p; 0<c<a; i}y {i})=0
1<73#7a<p i ieP(n,a+c) . .

X [Cp7(4+u)1{,{m>[(o} + Cl{ﬂmgKo}]

a—1
= S 0@ty + O(1)pKE} = ofpPn ).
c=1
{i} and ¢ = a, we know {itey = {i}(l) = () and
(i

I}(3). Then similarly Case 1, we have

Case 4. When {i} =
{it Ulils = {i}p U

(Bllg) ‘ Z F(Ca C, a)Q(iujlvaaia j37j4)1{{i}:{§},c:a}

1<51#725p; i,ieP(n,a+c)
1<j3#ja<p

= o(p’n).
In summary, by (B.1.2), (B.1.4)-(B.1.7), (B.1.16), (B.1.18), and (B.1.19),

!
(B.1.20)  var{id(a)} = % Y AE@ijmigmigewig) ) + opPn ).
@ 1<j1#42<p
1<j3#7ja<p
Note that we assume E(x) = 0. For the general case with E(x) = u, by
Proposition 2.1, it is equivalent to replace z; ; by x; ; — p; in (B.1.20).

We next show that var{i/(a)} = (B.1.5) and var[d*(a)] = o(p*n—?). First
note that E{/(a)} = E{U*(a)} = 0 under Hy as E(x) = 0. Then it suffices to
show E{{U(a)}?} = (B.1.5) and E{{U*(a)}?} = o(p?’n~*). By the definition
of U(a) in (2.5), we know

(B.1.21) E{U*(a)}
== Z Z F(Clyc?aa)Q(i7j17j27i7j37j4) X 1{0126220}'

1<s1#j2<p 0<ci1,c2<a;
1<j3#ja<pi€P(n,a+c1);
ieP(n,a+c2)
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Therefore, E{U%(a)} = (B.1.5) from previous discussion. Moreover, as U*(a) =
U(a) —U(a), we know

(B.1.22) Ua) =) Ly D (_1)C<Z> P1 2
c=0

n
ate ieP(n,a+c)

1<j1#j2<p
a—c a a-+c
X H(xikmxik,h) H Lig,g1 H Lig,jo-
k=1 k=a—c+1 k=a+1

It follows that

(B.1.23)  E[{U*(a)}?]
= Z Z F(Cl,CQ,Q)Q(i,jl,jQ,i,j37j4) X 1{0121,0221}‘

1<j1#j2<p 0<ci,c2<a;
1<j3#ja<pi€P(n,a+c1);
ieP(n,a+c2)
Also by previous discussion, we know E[{/*(a)}?] = o(p*n~2). )
To finish the proof of Lemma A.2.1, it remains to show var{l{(a)} =
(B.1.5) = O(p*n~?), and it suffices to prove

(B.1.24) > AE@ijwipvi i)}t = 007

1<j17#52<p;

1<j3#ja<p
To prove (B.1.24), we examine E(z; ;2 j,%i jy%ij,). Similarly to Case 2
above, as j1 # jo and j3 # j4 in summation, it suffices to discuss four
cases {j1 = j3 and jo = ja}, {j1 = ja and jo = j3}, {j1 # js and ji # ja},
and {jo # j3 and ja # ja}.

If j1 = js, j2 = ja, and |j1 — j2| > Ko, then by Conditions 2.1, 2.2, and

Lemma B.0.1, we have

2 9 2 2 2 2
(B (i j, Ti o Ti js i g )| =BE(x5 5,77 5,) = cov(zi ;w7 5,) + Bz, ) E(x7 )

>0(1) — cov(a? 2. )| > O(1) — Co7E — O(1).

1,917 71,52

Ifj1 = jg, j2 = j4, and |j1—j2‘ < KQ, by Condition 2.1, E(:Ei7j1xi,j2$i7j3xi,j4) =
O(1). Note that (j1, j2) pairs satisfying |71 — j2| > Ko and |j; — jo| < Ky are
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O(p?) and O(pKy), respectively. Thus,

(B.1.25) > B g Ti g i g i )" i o}
1<j1#j2<p;
1<j3#ja<p

4 a
= Z [E( H xi,jt)} 1 j;:j?,,} [1{|j1—j2\>K0} + 1{|j1—j2|§K0}]
1<j1#j2<p; t=1 J2704
1<js#ja<p

= 0(p) + O(pKo) = O (p?).

If j1 = ja and jo = js, similarly to (B.1.25), we have

2
(B.1.26) E [E(xiﬂjlximmngi’j‘l)]al{j1:j47j2:j3} = @(p )
1<j1#52<p
1<js#ja<p

If j1 # j3 and j1 # ja, we know (B.1.12) holds. Recall Ky in (B.1.9) and &,
in (B.1.13). Similarly to the analysis of (B.1.14), we have

(B.1.27) > B g gy i) gL s e}
1<j1#52<p
1<j3#ja<p

4 a

= > [E(Hfrutﬂ Lijitgsgitiat | Mm>HKo} T s <o}

L<jiAjesp; b=l
1<j3#ja<p

= o(p?).
If jo # j3 and ja # ja, similarly to (B.1.27), we have
(B.1.28) > B@i i gs i) s isgartisy = 00°).
1<j1#j2<p

1<js#ja<p

In summary, combining (B.1.25)—(B.1.28), we have

4
a
(B.1.29) S [E(TTwa)] =2 > (BGad,ed)
1<j17#72<p; t=1 1<j1#52<p
1<js#ja<p

Combining (B.1.20), (B.1.21) and (B.1.29), Lemma A.2.1 is proved.
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B.1.1.3. Proof under Condition 2.2°. In this section, we prove Lemma
A.2.1 by substituting Condition 2.2 with Condition 2.2*. Following the no-
tation in Section B.1.1.2, we have

Var{L{(a)} = Z Z F(017627a) X Q(iaj1>j2aiaj3aj4)‘
1<j1#j2<p; 0<c1,c2<aq;
1<js#ja<p i€P(n,a+c1);
ieP(n,a+c2)

When {i} # {I}J under Hy, we know (B.1.3) = 0 and (B.1.4) holds simi-
larly. As {i} and {i} are of sizes a+c; and a+cy respectively, in the following
we consider {i} = {i}, which induces ¢; = c2 and we write ¢1 = c2 = c.

When {i} = {i} and ¢ = 0, we know (B.1.5) also holds similarly, and
var{U(a)} = (B.1.5) by (B.1.21). By Condition 2.2*,

(B.1.30) B2 2i,32i,35Ti51)
= K1 {E(l’ml i ) B s i a) + B2 gy T gy ) B (23 g 2454)

+ E(ﬂﬁi,jlin,j4)E(:Ez',j2$i,js)}~

Since ji # j2 and js # ja, we know under Hy, (B.1.30) # 0 only when {j; =
J3,J2 = j4} or {jl = 4,72 = jg}; and then (B.1.30) = I€1E(:U127j1)E(xij2).
Thus

BL5) = 2P Y (B, B} = OpPn ),
1<j1#52<p

where the second equation follows from Condition 2.1.

When {i} = {i} and ¢ > 1, [{i}g)| = Hi}3)| = {i}p| = {i}g| > 0.
Without loss of generality, we first consider an index i € {i}(g), and discuss

four cases. .
Case 1.1 If i & {i}, since E(x) = 0, we know

(B.1.3) = E(x;,,) x E(all the remaining terms) = 0.
Case 1.2 1f i € {i}(g),
(B.1.3) = E(x; j,xi j,) x E(all the remaining terms),

which is nonzero when j; = js.
Case 1.8 If i € {i}(3),

(B.1.3) = E(x; j, i j,) x E(all the remaining terms) = 0,
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which is nonzero when j1 = js.
Case 1.4 If i € {i}(y), this suggests {i}) # 0 and thus ¢ < a — 1. By
Condition 2.2*,

(B.1.31)  (B.1.3) = E(w;, 24 j, 5,) x E[all the remaining terms| = 0.

When {i} = {i} and ¢ < a — 1, we have {i}q) # 0. We assume without
loss of generality that an index ¢ € {i}(l), and then discuss two cases.

Case 2.11fi {i}(z) U{i}(3), symmetrically, (B.1.3) takes a form similarly
to that in (B.1.31), which is 0 under Hy by Condition 2.2*.
Case 2.2 1f i & {i}, by j1 # j2, we know under Hy,

(B.1.3) = E(x; j,%i j,) x E(all the remaining terms) = 0.

In summary, (B.1.3) # 0 only when one of the following two cases holds:

Lojv = js, 2 = ja, {it) = {it), {ite) = {i} @), {i}e) = {i}we);

2. 1 = Ja, J2 = js, {it) = {it), {ite) = {ite). {ite) = {ite-
Under these two cases, (B.1.3) = {/ﬂE(a:?’jlm%m)}“_C{E(:cl%jl)}C{E(a:ih)}c.
It follows that when {i} = {i} and ¢ > 1,

(B132) Z Z F(C, C, a)Q(i7j17j27i7j37j4)1{{i}:{§}7021}
1<j1#j2<p; 0<c<g;
1<j3#ja<p i,ieP(n,a+c)

a 2 2
= X (0) et T BN

1<c<a;
1<j1#752<p

— Zo(pan(a+c)) _ O(pnia),

c=1

where the last two equations use Condition 2.1. Similarly to Section B.1.1,
by (B.1.4) and (B.1.23), we know var{U/*(a)} = (B.1.32) = o(pn™¢) =
o(1)var{U(a)}.

REMARK B.1. k1 is assumed to be a constant in Condition 2.2*. But the
similar arguments apply in the proof if k1 changes with n,p but converges to
a constant.

B.1.2. Proof of Lemma A.2.2 (on Page 4, Section A.2). Note that for
two integers a # b, cov{ld(a)/o(a),U(b)/o(b)} = E[U(a)U(b)/{o(a)o(b)}],
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and by Lemma A 2.1, var{U/*(a)} = o(1)var{lU(a)}. Recall 6%(a) = var{i(a)}
from definition. Then by Cauchy-Schwarz inequality, we have

cov{U(a)/o(a), U(b)/a(b)} = E{U(a)U(b)}/{o(a)a(b)} + o(1).
In addition,

b

E{Z;{(a)d(b)}z Z Z E{ kl_Il(xik,jlxikJQ H Lir s lk,J4 }

1<j17#j2<p, i€P(n,a), k=1
1<G37J4<P {eP(n,b)

Since a # b, we know the two sets {i1,...,i,} and {iy,...,4,} can not be the
same. Following similar analysis to that of (B.1.1), as E(z; j, z; j,) = 0 under
Hy, we have E{t(a)d(b)} = 0, and thus cov{l(a)/o(a),U(D)/o(b)} = o(1).

In particular, we note that given Lemma A.2.1, the argument does not
depend on whether Condition 2.2 or 2.2* is specified.

B.1.3. Proof of Lemma A.2.3 (on Page 5, Section A.2). We first show
for 1 < k1 # ky < n, E(Dp i, Dnk,) = 0. Without loss of generality, we
consider k1 < ky. Then Eg, Z,, € Fy,, and

E(Dn,k1 Dn,k2)
=B [(Ex, Zn — By —17Z0) (B Zn — Biy—120)]
=E[Ex, Zn X By Zn — By 120 X By Zy — Ejy, Zn X Byy_17Zn
+ B, —1Zn X Byy_1Zy]
=E[(Ex, Zn)Zn] — E[(Ex,-12n) Zn] — E[(Ek, Zn) Zn] + E[(Ek,—12n) Z0]
=0.

It follows that

() g -o{§n.) ot
k=1

where the last equation uses the fact that E(D,, ;) =0and Z, =Y ;_; D
from construction.

In particular, we note that the argument does not depend on whether
Condition 2.2 or 2.2* is specified.

B.1.4. Proof of Lemma A.2.4 (on Page 5, Section A.2). For given finite
integer a, we derive the expression of (Ex — Ex_1)[U(a)/o(a)]. The form of
Ap k.a, for a general finite integer a, in Lemma A.2.4 follows similarly.
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By the definition in (2.5), we know
B a
(B.1.33) (Ex — Ex_1)U(a) = (P;)_l Z (Ex — Eg—1) |:H:Eit,j1xit,j2:| .

1<j1#j2<p; t=1
ieP(n,a)

To derive (B.1.33), we next examine the value of

a
(B.1.34) (B = Bre1) | T T @i wivsa
t=1
We claim (B.1.34) # 0 only when k € {i1,...,ia}. If k& & {i1,...,i4}, we
assume without loss of generality that i1,...,4,, < k and 441, ...,04 > k.
Then

a
(Er —Ex—1) [H int,jlxz'm}

t=1
0.

s

a a
xit,jlﬂfz‘t,jg)[Ek( 11 xitvjlxihﬁ)_Ek—l( 1T %,jll“z‘t,jgﬂ

t=1 t=m+1 t=m+1

Thus if (B.1.34) # 0, we know k € {i1,...,i,}. In addition, we next show
(B.1.34) # 0 only when i1,...,7, < k. Suppose that if there exist some
indexes in {i1,...,i,} that are greater than k, we assume without loss of
generality that i, =k, i1,...,4m—1 < k, and 4;m41,...,%¢ > k. Then

a m a
Ek(Hxit,jlxihh) = (Hmimjlxitdz)Ek( H xitmxit,jz)
t=1 t=1

t=m+1
m a
= <Hzit7j1xit,j2>E( H mit:jlziujz) =0,
t=1 t=m+1
and
a m—1 a
Ekz—l(HfUit,jlxit,jz) = ( H xit,jlxit7j2>Ek2—1 (fﬂk,jll‘k,jg H 5Uit,j1xiz,jz)
t=1 t=1 t=m+1

—_

3

a
xitvjlmih]é)E(xk’jlxkvjé) H E(zi, 1T, 50) = 0.
t=m+1

(

Therefore, we know (B.1.34) # 0 when k € {i1,...,i,} and i1,...,iq < k.

~
I
—
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When k < a, there exist some indexes in {i1,...,7,} > k. Thus (B.1.34) =
0, and (B.1.33) = 0. When k£ > a, assume without loss of generality that
iqo =k and i1, -+ ,iq-1 < k — 1, then

a—1 a—1
Ey1 [( 11 ifit,jlwit,jz)fﬁk,jlxk,jz} = ( 11 wit,jlxim)E(l‘k,ﬁ%‘k,jz) =0,
t=1 t=1
and
a—1 a—1
Eg [( H xiujlxitdé)xkdlka] = ( H xit,jlxit,jz)xk,j1$k7j2'
t=1 t=1
In summary, for k£ > a,
U(a)
(Er, — Eg-1)
o(a)

a—1

“wm,, 2 () B [(Tesms)s)

@ 1<iy e Fig_1<k—1; t=1

1<j1#j2<p
a a—1
- O'(CL)P” Z Z (‘Tkyjlxk,]é) X H(xit,jlxit,jg)'
@ 1<y ig 1 <h—1 1< )1 £j2<p =1

In particular, we note that the argument does not depend on whether Con-
dition 2.2 or 2.2* is specified.

B.1.5. Proof of Lemma A.2.5 (on Page 5, Section A.2). By Lemma
A.2.4, we know the explicit form of Dy, = > " t,Ap kq,, and it follows
that Wik = Elgrl,mgm trltrzEk,l(Aanr1 An7k7ar2). Note that by Cauchy-
Schwarz inequality, for some constant C,

n
2 2
var g T ) <Cn max var(Tyg
(kl n,k 1<k<n; 1<r1,r0<m ( yarq ,ar2)7

where we define c(n,a,) = [a, x {o(a,)P }~'? and

Tk,(le arg = Ek—l (An,k,arl An,k,aTz )

= Z Z {e(n, ah)c(n7a7“2)}1/2

ieP(k—1,ar —1), 1<j1#j2<p,
ieP(k—1,a,,—1) 1SI87145P

ary — ary -1

4 1
<B( T ) < ( IT wenwis) < (11 #iosis)-
t=1 t=1

t=1
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Therefore to prove Lemma A.2.5, it suffices to prove var(T.a,, a,,) = o(n™?)
forevery 1 <k <nand1<ri,ro <m.

Without loss of generality, we prove var(T.q,.q4,) = 0o(n~2) for any fixed
constants a1 and ao and 1 < k < n. Similarly to Section B.1.1, for illus-
tration, we first consider a simple setting where z; ;’s are independent in
Section B.1.5.1. Next in Section B.1.5.2, we prove that under Condition 2.2,
var(Tg gy 0,) = O(n2p~log® p) = o(n~2). Last in Section B.1.5.3, we prove
that under Condition 2.2*, var(T 4, .a,) = O(n"2p~2+n"3) = o(n"?). Then
Lemma A.2.5 is proved.

B.1.5.1. Proof illustration. In this section, we assume x;;’s are indepen-
dent and prove Ty q, 4, = 0(n"2).

When z; ;’s are independent, since j; # jo and j3 # js4, we know that
E(xk j, Tk jy Tk j3 Tk j,) 7 0 only when {ji,j2} = {j3,ja}; and it follows that
E(Tk gy T jo Th.jsThjs) = B2t ; )E(2] ,). Thus T oy 0, = 2¢(n,@) X Thay a5,
where we define

2 a1—1 as—1
T, = E(z? ) Ti, i1 Tiy g i . T3
k.ai,az = 1,5t it,J10 0,92 it,51 " ie,52 )
ieP(k—1,a1-1), 1< #j2<pt=1 t=1 t=1

ieP(k—1,a2—1)

We note that c(n,a) is of order ©(p~2n~%) by Lemma A.2.1. To prove
var(Tkq.q) = o(n™2), it suffices to show that var(Tj 4, 4y) = 0o(n®T2272pt).
If ag = a2 = 1, T} 4,4, is not random and thus var(Tj g, 4,) = 0. It re-
mains to consider a1 > 1 or as > 1 below. To examine var(T} 4, q4,), We will

first consider E(T} q,.q,) and E(T7? then var(Ty q,.00) = E(Tk%ahaz) —
{E(Tk,al,az)}2' ai—1 an—1

For E(Tk,alm),Nnote that B{([T" @i, %15 )( ti} xit,ﬁw%ﬁ,p)} £0
only when {i} = {i} for givenie P(k—1,a1 —1) and i€ P(k —1,a2 — 1).
Therefore, if a1 # a2, E(Tk,qy,0,) = 0. If a1 = az = a for some a, we have

ka1, ag)

(B.1.35) E(Tka.a,) = Z 1{{1}:{5}} Z {E( ‘Tl ]1 (xl ]2)}a7
ieP(k—1,a—1), 1<j1#j2<p
ieP(k—1,a—1)

where 1,4, 5, represents an indicator such that the two sets {i} = {i};
and we write

4
BT = Y > Y=g, tmy=my LTEGT}
t=1

i,meP(k—1,a—1), 1<j1#j2<p,
i, meP(k—1,a—1) 1<i37#ja<p
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where 1y () Tepresents an indicator such that {i} = {i} and
{m} = {m} hold at the same time.
For E(T? ), we have

k,a1,as

(B.1.36) E(TR 0, .0y) = > > QG,i,m,m,j),

i,meP(k—1,a1—1), 1<j1#52<p,
i, meP(k—1,ay—1) 1SJ37ja<p

where for the simplicity of notation, we define

a—1 4
i § o3 = . . ) g 2
Q(i,i,m,m,j) = E( H xlt,]lxlz,]2$it,j1xit7j2xmt;]3xmzd4$mtyj3xmt,]4) H E(:Uth).
t=1 t=1

We decompose E(T} ara) = E(T7,, )1 + E(T} 01,03 (2) Where

E(Tk27al:a2)(1) = Z Z 1{ {i :{7}’ }Q(ivimv ﬁl:.i))
i, meP(k—1la1-1), 1<j1#52<p, | {
i,meP(k—1,a,—1) 1<I3774<p

E(Tl€24117a2)(2) = Z Z 1{{1}7é o }Q(i’Ia m, ﬁl,j),

i meP(k—1,a1-1), 1<j17#j2<p,
L, meP(k—1l,as—1) 15737Ja<p

where the two indicNators 1{{i}:{§}7{m}:{ﬁ1}} and 1{{i};£{i} or {m}#£{rn}} TeP-
resent that {i} = {i} and {m} = {m} hold at the same time or not, re-
spectively. To prove var(Tya,a,) = 0o(n®+%272p%)  since |va1r(T/1€ anas)|] <
‘E( k,a1, ag) (1 — {E(Tk,a1,a2>}2’ + ’E(Tk,a1,a2)(2)‘7 we show ’E( k,a1, ag)(l)
{E(Tha100) | = o(n®Vp?) and E(Tjay0,)2) = o(n® 72 7%p"), respec-
tively below.

Part I: [B(T{ , 0,)(1) = {E(Tha1.05)}?| = o(n®79272pt). By the analysis
above, E(T.4,.0,) = 0 if a1 # az. Also we know E(T7 ) () = 0if a1 #
as, since {i} = {i} and {m} = {m} will not happen. Thus it remains to
consider a; = ag = a for some a below. By the forms of E(T,f’alm)(l) and

{E(T}.a,.0,)}, we consider {i} = {i} and {m} = {m}. If {i} N {m} = 0,

(B.1.37) Q(i,i, m, m, j) H{E 215,01,

where we use the independence between w;;’s and j1 # j2 and j3 # js.
If {j1, 2} N {js, ja} = 0, (B.1.37) also holds similarly by the independence
between z; ;’s. In summary, when {i} = {i} and {m} = {m}, we know that
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[E{Q,1,m, i, j)} — [T {E(f )} = 0, if {i} N {m} = 0 or {ji,j2} N
{js,ja} = 0. It follows that

(B.1.38)  [B(TP4, 0) 1) — {E(Tharas)

< ~.

a Z Z 1{{i}={i}, {m}={mj}, {i}ﬂ{m};ﬁ@),}
LmeP(k-1.a1-1), 1Sn7722p, {i.d2 107} 20
i, theP(k—1,as—1) 1<d37#7a<p

4
X ‘Q(lai m, ﬁlv.]) - tl_[l{E(l.ijt)}a

S Cna1+a2—3p4—1 — O(na1+a2—2p4)’

where we use the boundedness of moments in Condition 2.1 and the facts:

) ai+a2—3
Z 1{{i}:{i},{m}:{ﬁ1}7{i}m{mbg@} < Cn*mez—s,

i, meP(k—1,a;—1);1, meP(k—1,a2—1)

Z 1{{j1,j2}ﬂ{j37j4}75@} <Cp
1<1#£52<p; 1<js#ja<p

4—1

Part IT: E(Tay.05)(2) = o(n®+272pt). We claim that Q(i, i, m,m,j) =0
when |{i} U {i} U {m} U {m}| > a1 + az — 2, that is, one of the index only
appears once in the four index sets. To see this, we assume, without loss of
generality, 7, € {i} but i; ¢ {i} U {m} U {rh}, then

(B.1.39)  Q(i,i, m, m, j) = E(x;, ;,2i, j,) X E(the remaining terms) = 0.
Thus when Q(i,i, m,m,j) # 0, the union of the four sets satisfies
(B.1.40) Hidu{ilu{m}u{m}| <a; +ag—2.

In addition, note that we need to consider {i} # {i} or {m} # {m} when an-
alyzing E(T,? ar, a2)(2). Assume, without loss of generality, that there exists an

index 4; € {i} but i, ¢ {i}. Similarly to (B.1.39), we have Q(i, i, m,m, j) # 0
only when 47 € {m} U {m}. If iy € {m} and i; € {m},

Q(i,i,m,m,j) = E(z1,21 j5714,) ¥ E(all the remaining terms) = 0,

as j3 # ja and x;;’s are independent; if 41 is only in one of {m} and {m},
for example, i1 € {m} but i; ¢ {m}, then

Q(i,i,m,m,j) = E(z1,21,) x E(all the remaining terms),
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which is nonzero only when j; = j3. By analyzing the indexes in {I} sym-

metrically, we further know Q(i, i, m,m, j) # 0 only when {j1, jo} = {Js, ja}.
Therefore,

(B141) |{]17]27]37]4}’ =2

Combining (B.1.40) and (B.1.41), and by the boundedness of moments in
Condition 2.1, we have

(B.1.42) B(TE o) 00) ()| = O(n® 4927 2p?).
In summary, combining (B.1.38) and (B.1.42), we have

var(Thaya5)| = [B(Thray,05) = {E(Tha1,02)}]
< |E(Tk2,a1,a2)(1) - {E(Tk7a17az)}2‘ + ‘E(Tlg,al,ag)(2)|
— O(na1+a2—3p3) + O(na1+a2—2p2>.

which is o(n®+a2=2pt),
B.1.5.2. Proof under Condition 2.2.

Proof idea. Section B.1.5.1 assumes that z;;’s are independent. In this
section, we further prove Lemma A.2.5 under Condition 2.2. Similarly to
Section B.1.1.2, we know that under Condition 2.2, z; ;’s may be no longer
independent, but the dependence between x; j, and x; j, degenerates expo-
nentially with their distance [j; — j2|. To quantitatively examine |j; — jal,
we will introduce a threshold of distance Dy to be defined in (B.1.46) be-
low, which is similar to K¢ in (B.1.9). Intuitively, when |j; — ja| > Do, x; j,
and x; j, are “asymptotically independent” with similar properties to those
under the independence case in Section B.1.5.1. The following proof will
provide comprehensive discussions based on Dy.

Recall that as argued at the beginning of Section B.1.5, to prove Lemma
A.2.5, it suffices to show var(Ty. q,.q,) = O(n~2p~!log® p) = o(n=2) for any
fixed integers a; and as. To facilitate the discussion, we define some notation
to be used in the proof.

Notation. For given tuples i) = (iy,...,i4_1) € P(k —1,a; — 1) with [ =
1,2, we define (i, i®) = i1, ... i) i@ ) and let S0, 1)
)

be a collection of tuples (iM),i®)) where i) € P(k —1,a; — 1) for [ = 1,2.
Moreover, we define J = {(j1,J2) : 1 < j1 # j2 < p). Then

T/ﬂ,al,aQ = Z {Hc(n,al)}l/Z X X(kai(l)anl—ijl = 132)’

S @), =1
(91,32),(d3,J4) €T
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where we recall that c(n,a) = [a x {o(a)P?}71]? and we define

2 a;—1

;i
X(k, 1%, jor—1,j2 1 1 =1,2) (Hfﬁkgt)ﬂ I1¢ T g T )

=1 t=1

In addition, for easy representation, we define a3 = a1 and a4 = ao. Then
for given tuples i) e Pk —1,a; — 1) with [ = 1,2, 3,4, we define the tuple

(AW, 1@ 10y = a0 P B ),

and let S(i(M,i® i® i®) be a collection of (iV,i?i®) i®) where i) €
P(k—1,a; — 1) with [ = 1,2,3,4. Then we can write
2

T%,al,ag - Z HC(TL,Q[)X(]{?, i(l)7j2l717j21 = 1727374)7
S(i(1>,i(2),i<3),i(4>); =1
(91,32),(33,34),(35,76), (47,98 ) €T

where we define

X(k,iY, goy1, gor 1 1=1,2,3, 4)

4
= E(Exk,jt> <H$k7]t>H H ) jai—1 Zt Vg

Recall the definitions at the beginning of Section B. {iV} = {i®} rep-
resents that the two tuples have the same elements without order. We next
decompose S(i(l),i(2)) into two parts: the collection S(i(l),i(2), 1) contains
the tuples (i1, i?) satisfying {i"} # {i®}, and the collection S(i(V),i(?),2)
contains the tuples (i1),i®) satisfying {i)} = {i(®}. Then we can write
Tk,al,ag = 212]:1 Tk,al,ag,va Where

2 1/2
Thavaw = 9 { [Letman} " xXki®, jarr,jor: 1= 1,2).
S3EMW 12 ); =1
(41,92),(J3,J4) €T

In addition, for v = 1,2, we let the collection S(i (1),1(2),i(3),i(4),v,v) con-
tain the tuples (il ),i(z),i(?’),i( )Y such that (iM,i®) e S(GHM,i® v) and
(i(3), i(4)) € S(i(3), i(4),v). It follows that for v = 1,2, we can write

2
(B.1.43) T} a1.an0 = > [1etna)
S(i(1>,i(2),i<3),i(4),v,v); =1
(41,92),(93,J4),(F5.J6), (37,78 ) €T

XX(k7i(l)7j21717j2l = 1727374)'
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We next define some notation on the j indexes. Given a tuple (jz,, jt,, Jts, Jta )
we write its corresponding ordered version as

(B.1.44) (jtujtzajtgvjm) satisfying jtl < 5::2 < jtg < 31:4-

Given the ordered indexes, we define the maximum distance between indexes

in the given tuple as DM(jtujtmjts:jtcl) = max{jtz = Jt1>Jts = Jta> Jta — jts}'

For the simplicity of presentation later, for tuples (j1, j2), (43, 74), (Js, J6), (47, J8) €
J, we further define

(B145) K1 = DM(jlan’j3aj4)7 R = ]D)M(j57j67j77j8)7
k3 = Dpr(J1, J2, Js, J6)  ka = D, Jo, Jr, Js)-

In the following discussion, to quantitatively evaluate the distances in (B.1.45),
we introduce a threshold Dy below. In particular, given small positive con-
stants 1 and €, and § in Condition 2.2, we define

—(2+¢€)(8+ u)logp
B.14 Dy =
( 6) 0 elogd ’

which will be used as discussed at the beginning of this section on Page 57.

Proof. We present the proof of var(Tk.q, 4,) = O(n 2p~! log® p) based on
the notation above. Note that we can write Ty 4, 4, = 212):1 Tk,a1,a2,0- By
the Cauchy-Schwarz inequality, we know it suffices to show var(Ty 4, a0.0) =
O(n~2p~'log?®p) for v = 1,2 respectively.

Step I var(Tr q, 001) = O(n~2p~'log®p). By the definition of Th.a1,a0,15
we have {i)} # {i®} for (i1,i®) e S(iM,i®1). Suppose, without loss
of generality, that index i € {i'} but i ¢ {i®}. Then under Hy,

(B147) E{X(kai(l)ajﬂ—laj% = 1525354)}
= E(ij i) < E(other terms) = 0.
Therefore E(Tj g, a,,1) = 0 and var(Ty 4, 4,1) = E(']I%aha?’l).
By (B.1.43), we have
2

Tz,al,az,l = Z H C(?’L, al)

SEM @@ W 1), =1
(91,52),(33,74),(J5,6),(37,38) ET

xX(k,iY, oy 1, jor 1 1 =1,2,3,4).
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To prove var(Tk.qy.a51) = O(n " 2p~! log® p), we will next show that for given
(j17j2)7 (j37j4)7 (j57j6>7 (j77j8) S \77

(B.1.48)

E{ 3 X(k,i0, oy 1, joy + 1 = 1,2,3,4)} = O(nm+a2-2);
S(IM i) i) §(4) 11)

and for given (i1,i®,i® i®) e 5GM i® i®) i® 1 1),

<B149) E{ Z X(k7i(l)7j21717.j2l = 1727374)} = O(p3 10g3p)

(j17j2)a(j3aj4)»
(J5.6),(J7.38) €T

Given (B.1.48) and (B.1.49), since c(n,a;) = O(p~2n~%), we can obtain
E(Tz’aha%l) = O(n~?p~'log®p). Thus to finish the proof, it remains to
prove (B.1.48) and (B.1.49).

To prove (B.1.48), we claim that E{X(k,i), jo_1,jo : 1 =1,2,3,4)} =0
when | U, {i®}] > a1 + az — 2, i.e., there exists one index only appears
once in the four index sets {i(l>}, I =1,...,4. Too see this, suppose an
index i € {iV} but i ¢ {i®}, i ¢ {i®} and i ¢ {i¥}, then (B.1.47) holds.
Therefore, E{X(k,iV), jo_1,jo : 1 = 1,2,3,4)} # 0 only when

(B.1.50) ‘ UL, {i(l)}‘ <ai+as—2.

By the boundedness of moments from Condition 2.1, we know (B.1.48) holds.

We next prove (B.1.49). For (iM,i®,i® i) ¢ (M i) i®) i) 1 1),
we know {i)} # {i®} and {i®} # {i¥}. Suppose, without loss of general-
ity, there exists an index i € {i®} and i ¢ {i®}. If i ¢ {iD} and i ¢ {i?P},
similarly, (B.1.47) holds. Then we consider i € {i)} or i € {i®} in the
following three cases.

Case 1: When i € {iV} and i ¢ {i®}, we know

(B.1.51) E{X(k,i@,jm,hm = 1,2,3,4)}

= E<f[1xk’jt) X E<f[5xk’jt) X E( H afm-t) x E(other terms).

t=1,2,5,6

If z; ;’s are independent as in Section B.1.5.1, we know (B.1.51) # 0 only
when {j1,ja} = {Jjs,ja} = {Js, Je} = {J7, js}, which induces [{j1, ..., js}| =
2 and Z(jl7j2)’(j3,j4),(j5,j6)7(j7,j8)€s7E{X(k’i(l)’jm_l’jm Pl = 1,234)) =
O(p?), i.e., (B.1.49) is obtained. Under Condition 2.2, z; ;’s may be no longer
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independent, but as discussed at the beginning of Section B.1.5.2, we can
still prove (B.1.49) similarly to the independence case. In particular, based
on Dy in (B.1.46), we evaluate (B.1.51) by discussing the following three
sub-cases (a)—(c).

(a) When both (j1,j2,73,74) and (Js5, J6, j7,Js) contain only two distinct

indexes within each tuple, i.e., [{j1,j2,73,J4}| = 75,76, 77,798} = 2,
we consider without loss of generality that j1 = js, jo = j4, j5 = j7,
and jﬁ = jg. Then

(B.1.51) = E(xz’jlx%h)E(:U%J\Exz’jﬁ)E(wk,jlxmzxk,jsxk%)E(other terms).

(a.1) If (1, Jo, Js, jo) contains two distinct indexes, i.e., |{j1, j2, J5, J6 }| =
2, we assume without loss of generality that j; = js and jo = jg. Then
I{j1,-.-,J8}] = 2 and in this case, the total number of distinct j in-
dexes is O(p?).

(a.2) If (41,72, j5,J6) contains at least three distinct indexes, that is,
|{j17j2aj57j6}’ > 37 we have |{j17j2’j5aj6}| > 37 where (jlaj?vjf)ajﬁ)
denotes the ordered version of (j1, j2, j5, js) following the notation in
(B.1.44). Then we have E(z, 5 x, = )E(z 5z =) = 0. Together with
E(x) = 0, we can write
(B.1.52) 1E(21,5,21,5,21,5521,56)| = [cov(@y 5,25, Ty 52 5)]

- |COV($1€,31 ) xkaxk,ﬁxk,ja)’

- |C0V(mk,31xk,32xk755 ) xk,}G)"
Recall that k3 in (B.1.45) represents the maximum distance between

(J1, 72, 35, J6)- If k3 > Dy, by Conditions 2.1 and 2.2, and the a-mixing
inequality in Lemma B.0.1, we know

(B.1.51)] < C x (B.L52) < C8%5 = O(p~ &),

If k3 < Dy, the total number of distinct j indexes is O(pD}).

(b) When both (j1, jo, js, ja) and (Js, J6, j7, Js) have at least 3 distinct el-
ements, i'e'a ’{jlaj27j37j4}| > 3 and |{j57j6aj7aj8}‘ > 3, fOHOWing the
notation in (B.1.44), similarly to (B.1.52), we can write
(B.1.53) 1B (k1 Th,jo Tk js Thyja )| = |cov(@y 5 @y 5, 2y 5,205,

- |COV(Q§le ) xk752xk7;3xk,34)|

= |COV($k731ka2xk53 ) $k,34)|’
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and

(B.1.54) |E(xk7j5xk,j6xk,j7wk7js)’ = ‘Cov(xk:ﬁ:EkJG ’ xk’37xk’38)|
= loov(@s, s @y 5,5, 5,)]
== ‘COV(CL‘kJS.’L'kJG-TkJ7 ) xk,js)"

When max{k1,k2} > Dy in this case, by Conditions 2.1 and 2.2, and
the a-mixing inequality,

(B.1.55) |(B.L51)] < C x (B.1.53) x (B.1.54) < 067 = O(p~+#).

When max{r1, k2} < Dy, by the definitions in (B.1.45), we know under
this case, the indexes in (j1,j2,J3,j4) are close to each other within
the distance Dy, and the indexes in (Js, jg, j7,Js) are also close to
each other within the distance Dy. Then the total number of distinct
indexes is O(pD3 x pD3) = O(p*D}).

(c) If only one of (j1,jo2,j3,74) and (js, js, J7, jg) contains at least 3 dis-
tinct indexes, without loss of generality, we assume |{j1, jo, j3, 4} > 3
and |{Jjs, j6, 47, js}| = 2. When k; < Dy, the indexes in (j1,j2, 3, j4)
are close within distance Dy. As (Js, je, j7,Js) only contains 2 dis-
tinct indexes, the total number of distinct j indexes is O(p3Dg). When
k1 > Dy, by Conditions 2.1 and 2.2, and the a-mixing inequality, we
know

(B.1.56) (B.1.51)| < C x (B.1.53) < C§ 7% — O(p~B+#).

Case 2: When i ¢ {i(V} and i € {i®®}, we know similar conclusion holds
by symmetricity.
Case 3: When i € {i)} and i € {i®}, we have

(B.1.57) E{X(k, O oy 1 gl =1,2, 3,4)}

4 8 6
= E(H:v;w-t) X E(Hmwt) X E(ka?,jt) x E(other terms)
t=1 t=5 t=1

Similarly to Case 1 above, to evaluate (B.1.57), we next discuss two sub-
cases with Dy in (B.1.46).

(a) When both (41, j2, j3,74) and (js, je, j7, js) only contain 2 distinct in-
dexes within each tuple, i.e., [{j1, j2,j3,Ja}| = {J5, J6, Jr, Js}| = 2, we
assume ji1 = js, jo = j4, j5 = j7 and jg = jg without loss of generality.
Then

(B.1.57) = E(xz’jlxz@)E(:U%ji,)xz,jﬁ)E(x%ﬁm?’hxi’jsxi,jﬁ)E(other terms).
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Following the notation in (B.1.44), when l;:; := min{jy — j1, J5 — Jo, J6 —
js} < Do, the total number of distinct j indexes is O(p*Dg). When
k3 > Do, by Conditions 2.1, 2.2, and the a-mixing inequality,
2 2
‘E(x1,31x1,52x1755x1736)‘

2 2 2 2
= [eov(ays )5 @ 5.0 5) + Ble] 5 Jeov(ay s, @y 52, 5)

+ (B} )Peov(z, 5, )]
< osae = O(p~B+m),

(b) If at least one of (j1,J2,73,74) and (Jjs,J6,J7,Js) has at least 3 dis-
tinct indexes within the tuple, it means that [{j1,j2,73,74}] > 3 or
{75, 76, 77, 78 }| > 3. Similarly to (B.1.55) and (B.1.56), we know that
when max{#1, Ko} > Do, |(B.1.57)| = O(p~®+#)); when max{xy, xa} <
Dy, the total number of distinct j indexes is O(p> D).

Combining Cases 1-3 discussed above, we obtain

Bl > X juongu=1,2,3,4)]
(J1,92),(ds,74),

(J5,76),(J7,J8) €T

= 0(p*D}) + > O(p~ 1)
(491,32),(33,34),(J5,46),(J7,98) ET

= O(p*log® p) + p*O(p~ ™) = O(p*log® p),

where we use p > 0 and Dy = O(logp) by (B.1.46). Thus (B.1.49) is proved.

Step II: var(Tkq, 40,2) = O(n_Qp_llog?’p). Recall that Ty 4, 4,2 is con-
structed from (i1,i®) € S(iM,i®),2), where {i} = {i@}. As {iV} =
{i(2)} happens only when a; = a9, so it remains to consider a; = a2 = a
for some integer a below. It follows that E{X(k,i), jo;_1,jo : 1 = 1,2)} =
{E(ITL, 1,4}, and then

4

1/2 a
E(Tk,a1,a2,2) = Z {HC(”, al)} X {E(Hmlm)} R
S(i(l),i(2>,2); =1 t=1
(d1,J2),(J3,a) €T
and
4 8 o
{E(Tk,al,a2,2)}2 = Z HC(n7al){E(Hxl,jt)E(Hijt)} :
S(i(l),i(2>,i(3),i(4),2,2); =1 t=1 t=5

(91,92),(J3,J4), (35,36 ), (47,98 ) ET
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Moreover, by (B.1.43), we know Tz,al,az,Q is a summation over (i"),i® i) i%) ¢
SGEMW i 1B i 2 2) where {i)} = {i®} and {i®} = {i¥} by the con-
struction. We further define S(i"),i®,i®) i® 2 2, ¢) to be the collection of
tuples (iV,i®,i0) i) such that [{iV} N {i®}| = ¢, where 0 < g < a —1.

o 2 _ ya—lm2
Then we write T ,, ., 0= >0 T a1,a2,2,(g): Where we define

2

Ti,al,ag,Z,(q) = Z H c(n, ar)

S(i(l)»i(Q)zi(B)’i(Ll)7272)(1); =1
(91,32),(33,74),(J5,96),(37,38) ET
XX(kv i(l)vaZ—l)jQZ = 17 27 37 4)

In particular, when \{i(l)} a {i(3)}| =q,

4 8 8
. . . a—q q
E{X<k7 l(l)a]2l717j2l = 17 27 37 4)} = {E<Hx1:]t)E<H ijt) } { Hxlyjt} .
t=1 t=5 t=1
Therefore, for a1 = as = a,

var(Trara02) = E(TRaya02) — {B(Thara0,2)}

a—1
2
= E(Tk7a17a2,27(11)) - {E(Tkaalva2»2)}2
q=0
a—1 2
- > [ ¢ a) x Di a2,
7=1 5(i(1) i i® (4 22 q) I=1

where we define

4 3 _
Dk,a,0,2,¢ = Z {E(l_[lxlvjt)E(ll)xl’jt)} q
t= t=

(jlsz)v(j37j4)7
(J5.d6),(J7.38) €T

(B( M)}~ (o) o( ) |

and use Dg 44,24 = 0 when ¢ = 0. By the construction, we know the total
number of tuples in the collection S(i(l), i® i) i@ 2 9 q) is bounded by
Cn2(@=1=4 that is, for some constant C,

X

(B.1.58) > 1< O,
S(EM i) 13) i(4) 2.2,q)
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Since c(n,a) = O(p~2n~%), to prove Var(']I‘z’ahaﬂ) = O(n?p~log?p), it

suffices to show for given tuple (iM),i®,i(® i), Di.ay.a0.2.4 = OP? log® p)
forl1<g<a-—1.
By Condition 2.1 and Lemma B.0.2 (on Page 36), for 1 < ¢ <a—1,

|Dk,a,a,2,q| < C Z

(j17j2)7(j37j4)1
(45.d6),(37,J8)ET

4 8 8
E(H{L‘th> X E(H:Elvjt) — E(Hxl,jt> .
t=1 t=> t=1

E(ﬁxlﬂﬂ X

t=1

8
E ( H xl,jt)
t=>5

To evaluate Dy, 4 4,24, We next discuss several cases, based on the notation

Rly.-.

(a)

,kq in (B.1.45), and Dy in (B.1.46).

When both tuples (j1,j2,73,74) and (Js, je, j7,jg) contain only two
distinct indexes, i.e., [{j1, j2, 43, Ja}| = {75, J6, J7, Js }| = 2, we assume
without loss of generality that j1 = js3, jo = j4, js = j7 and jg =
js- Then E(HZ1 121g) = B(ad 2 ), B[l s @1) = E(af jaf )
and E(Ht 1%15,) = E(a;1 ]la:% ]233% ]5:1:% jo)- Following the notation in
(B.1.44), let (jl < 32 <js < jG) be the ordered version of (j1, jo, j5, J6)-
When min{js — j1,j5 — J2, j6 — J5} < Dy, the total number of distinct
j§ indexes is O(p®Dp). When min{js — j1,J5 — j2, 76 — js} > Do, by
Conditions 2.1 and 2.2, and the a-mixing inequality in Lemma B.0.1,

B(IT)e([Ts) - B( [T

2 2 2 2 2 2 2 2
= ’E(xl,jlxl,j2)E(x17j5x1:j6) — B(21,5,21,,1,55%1,56)

< O§57E = O(p~ 1),

When both (51, jo, j3, j4) and (js, Js, j7, jg) contain at least 3 distinct
indexes, i.e., ‘{jl,jg,jg,j4}| > 3 and |{j5,j6,j7,jg}’ > 3, we know
similarly (B.1.53) and (B.1.54) hold. When max{ri,k2} > Dg, by
Conditions 2.1 and 2.2, and the a-mixing inequality in Lemma B.0.1,
we obtain

Dge
Dk ay.a9.2.4] < C(B.1.53) x (B.1.54) < €674 = Ofp~Bt1},

When max{r1, k2} < Dy, by the definitions in (B.1.45), we know under
this case, the indexes in (ji, j2, j3,j4) are close to each other within
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the distance Dy, and the indexes in (Js, jg, j7, js) are also close to each
other within the distance Dg. Then the total number of distinct j
indexes is O(pD3 x pD}) = O(p* D).

(c) When only one of (41, j2, 73, j4) and (Js, J6, j7, Jjs) contains at least 3 dis-
tinct indexes, without loss of generality, we assume |{j1, jo, j3,Ja}| > 3
and {75, J6, 77, Js }| = 2. Recall k1 defined in (B.1.45). When 1 < Dy,
the indexes in (j1, j2, J3, ja) are close within distance Dy. As (75, J6, j7, j3)
only contains 2 distinct indexes, the total number of distinct j indexes
is O(p3Dy). When k1 > Dy, by Conditions 2.1 and 2.2, and the a-
mixing inequality in Lemma B.0.1, we know similarly (B.1.53) holds,
and

Dge
D0y ap2.ql < C(B.1.53) < Co7e = O(p~ ).
In summary,
(B1.59) [ Dgayan24l =1° x O(p~ ™) + O’ DF) = O(p* log? p).

Thus we obtain that for given (iV),i®,i® i(4)) Dy, 1,820 = = O(p®log®p).

Combined with (B.1.58), var(T% aran2) = O(n2p~'log?p) follows.
Combining the results in Step I and Step II above, we obtain var(T. 4, 4,) =

O(n~%p~log®p), and thus Lemma A.2.5 is proved under Condition 2.2.

B.1.5.3. Proof under Condition 2.2*. In this section, we prove Lemma
A.2.5 by substituting Condition 2.2 with Condition 2.2*. Note that although
the independence between z; ;’s is assumed in Section B.1.5.1, it is only used
to specify certain joint moments of x; ;’s. Alternatively, Condition 2.2* is
assumed to obtain similar properties on the joint moments, and the proof
follows similarly to that in Section B.1.5.1.

In particular, we will prove that var(Tga,q,) = O(n™> + n=2p~2) for
two given finite integers a; and ao below. Under Hy and given Condition
2.2%, as j1 # j2 and j3 # ja, we have E(z1 j, 21 j,%1,5214,) # 0 only when
{71,J2} = {J3,Ja}, and then E(xl,ﬁxl,hxl,]gxl,ﬂ) = riB(a7 ;)E(27 ;). Tt
follows that T}, 4, 4, = 2¢(n,a) X Ty, \a1,a2, Where Tk aa =K1 Tk aq With T q 4
defined in Section B.1.5.1. To prove var(’]l"k’a a) = o(n 2), it suffices to show
that var(Ty ay.a,) = n® %27 2p*0(n~1 4 p~2) as argued in Section B.1.5.1.

Similarly to Section B.1.5.1, to show V&I‘(Tk araz) = n T2 2pt0(n~ T +
p~2), we examine {E(Tj.q,, a2)}2 and E(T? 01.a,) TeSPectively. For E(Th.ay.05)5

under Condition 2.2*, similarly to (B.1.35), we know E{(H?1 1 ! Tiy 1 Tiy o) X
(TTe2 7t 7, %7, j,)} # 0 only when {i} = {i}. When {i} = {i}, we write a; =

az = a for some a and then E{( ?111% 1% ga) X ( ?illxzt’jl ztij)} -
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{/{1E(:L‘ij1)E(:Uij2)}“_l. We thus have {E(T;,wwz)}2 = {K{E(Tk.ay.05)}>
with T}, 4,4, defined in Section B.1.5.1. Moreover, following (B.1.36) in Sec-
tion B.1.5.1, we have

2 § : 2: S0 T - .
E(Tk,al,ag) - Q(1717 m, ma.])-
i, meP(k—1,a1—1); 1<j177j2<p;
i, meP(k—1,a0—1) 1SJ37Ja<p

We further decompose E(T? nan) = E(T? ) (D) T E(T? a1.a2)(2), Where
E(Tk ar.a)(1) and E(T? 01,02 (2) are defined with the same forms as E(T,? ar.az) (1)

and E(T? ar.a,)(2) 0 Section B.1.5.1, respectively. To prove var(Tk aras) =
n@te2=2pQ(p=t4p=2), similarly to Section B.1.5.1, we derive |E(T? anian) (1)
{E(Th.ay.0,) }?| and E(T? fra1.a0)(2) Tespectively.

Step I [E(TZ . o)) 1) — {E(Thay,a2)}?|. By the forms of E(T2, ) and
E(T@,al,@), we consider {i} = {i} and {m} = {m} below. If {i} N {m} =0,
IE{Q(i,i,m,m,j)} — k3] {E(z? G = O by Condition 2.2%; if {i} N
{m} # 0, {i}u{m}| < a1 +as—2-1, thus |[E(T7,, ,,) ) —{B(Tha,0:) ] =
O(n@1ta2=3p1) by Condition 2.1.

Step II: E(T,?a1 a)(2)-  We note that for ji # j2, E(21,5,71,5,) = 0, and for
any additional index js, we have E(x1 j, 21 j,21 ;) = 0 under Condition 2.2*.
Thus (B.1.41) and (B.1.42) still hold here, and we obtain E(T7 w122 =
O(na1+a272p2).

In summary,

’V&I‘(Tk,al’wﬂ < |E(Tk2,a1,a2)(1) - {E(Tk7a1,a2)}2| + ‘E(Tl?,al,ag)(2)|
— na1+a272p40(n71 +p72).

It follows that var(> p_;m2,) = O(n~! 4+ p~2) by the argument at the
beginning of Section B.1.5. Therefore Lemma A.2.5 is proved.

B.1.6. Proof of Lemma A.2.6 (on Page 5, Section A.2). By Lemma
A2.4,

n
(B.1.60) Y E(Di,) Z 3 Htm X E(HAM%).
k=1 k=1 1<ri,ro,r3,ra<mli=1

To prove Lemma A.2.6, it suffices to show that for given 1 < k£ < n and
1 <r1,19,73,74 < M, We have E(H?:1 Ankar,) = O(n=2).
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Similarly to Sections B.1.1 and B.1.5 above, we first illustrate the proof
of Lemma A.2.6, when z; ;’s are independent. Then in Section B.1.6.2, we
prove Lemma A.2.6 under Condition 2.2. Last in Section B.1.6.3, we prove
Lemma A.2.6 under Condition 2.2%.

B.1.6.1. Proof illustration. In this section, we assume that z;;’s are in-
dependent and prove E(H?zl Anka) = O(n™?) for given integers a;, | =
1,...,4. By Lemma A.2.4, when k < a;, Apraq = 0. We next focus on
maxi<i<4a; < k <n. By Lemma A.2.4, we have

4 4 1/2
(B.1.61) E(ll_[lAn,k,al) = {Hc (n,ar) } Z

=1 iWeP(k—1,a;—1),1=1,...,4;
(91,32),(33534),(35,76),(47.98) €T

Q (i, i i® i¥ jg),

where i) = ( gl), ey lel) 1), L =1,...,4 represent the tuples satisfying 1 <
O]

(1 . . .
it #d < T = {(yl,m 1 < ji # j2 < p); Js represents the
tuple (31,J2,33,34,J5,36,J7,Js) and we define

a;—1 4

Q*(i(l)vi(z) (3) (H xk’JT) ( H Hxl(l) J21—1 % ,J2l).

t=1 I=1
We claim that E([]5_, Zk,j,.) 7 0 only when
(B.1.62) {je:t=1,...,8} < 4.

If {j: : t = 1,...,8} > 5, it implies that one of the j index in {j; :
t=1,...,8} only appears once. We assume without loss of generality that
J1 only appears once, ie., ji € {j; : t = 2,...,8}. Since x};’s are in-
dependent, E(HT 1 k) = E(xg;, )E(all the remaining terms) = 0. Thus
(B.1.62) is proved. Similarly to (B.1.39) and (B.1.40), we further know
Q*(i™M,i® i® i js) £ 0 only when

(B.1.63) ‘ U{1 ”}) al —1)/2.

In summary, combining (B.1.62) and (B.1.63), we have

4
E(J] Anka) = O~ a3 Eim atps Sin @Dyt — 0(n~2),
=1
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B.1.6.2. Proof under Condition 2.2. Section B.1.6.1 proves Lemma A.2.6
when z; ;’s are independent. In this section, we further prove Lemma A.2.6
under Condition 2.2. We first illustrate the proof idea intuitively, which is
similar to Sections B.1.1.2 and B.1.5.2. Under Condition 2.2, ; ;’s may be no
longer independent, but the dependence between z; j, and z; ;, degenerates
exponentially with their distance |j; —j2|. To quantitatively examine |j; —7ja|,
we use the threshold of distance Dy defined in (B.1.46). Intuitively, when
|71 — 2| > Do, x;;, and x; j, are “asymptotically independent” with similar
properties to those under the independence case in Section B.1.6.1. The
following proof will provide comprehensive discussions based on Djy.

We next present the detailed proof of Lemma A.2.6. Note that to prove
Lemma A.2.6, by the analysis at the beginning of Section B.1.6, it suffices
to show E([T/—; Anka) = O(n~2). Recall that we can write (B.1.61) and

we have H;lzl 2 (n,a;) = @(p‘4n_% i @). Tt remains to show

(B.1.64) Z O (i1,i® i® i@ 35) = O(p*n? z;;l(alfl))_

iOeP(k—1,a,-1),1=1,...,4;
(91,52),(3374),(35,76), (37,98 ET

To prove (B.1.64), we show the order of (B.1.64) in n and p respectively in
the following two steps.

St@p I: order Of’l’l. We show for any fixed j8 = (j17j27j37j4aj5aj6)j7aj8))
(B.1.65) Z O*(iW,i® i® i@ j0)| = O(nz Tia(@=D),
iOeP(k—1,a;—1),1=1,....4

We note that Q*(iV),i®i®) i® jg) # 0 only if (B.1.63) holds. Too see this,
suppose one index i; only appears once in the four sets {i(M}, {i®}, {i®}, {i®}.
For example i1 € {iV}, but i1 ¢ UL ,{i)}. Then

Q*(iM,i® i®) i 54y = E(z4, j, %4, j,) X E(the remaining terms) = 0,
Therefore by (B.1.63) and Condition 2.1,

(B.1.66) (B.1.65) = O(n2 Zic1(@=1)y,

Step II: order of p. To prove (B.1.64), it remains to show that for given
(1(1)7 i@ i), 1(4))7

(B.1.67) > Q*(iM,i® 1% 1% j5) = O(p").
(41,42),(J3,44),(J5,d6),(J7.J8) ET
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Let 4 be a positive constant same as in (B.1.46). Define an event B =
{Q*(iM,i® i) i jg) = O(p~®+#)} and let B represent the comple-
ment set of BS correspondingly. Note that

> Q* (i1, i® i 1™ jg) x 15; = O(p*p~ 1) = o(1).
(41,52),(43,74),(F5,76),(J7,38) ET

Moreover by Condition 2.1, Q*(i(l),i(2),i(3),i(4),j8) = O(1) always holds.
Thus to prove (B.1.67), it remains to show

(B.1.68) > 15, = O(p").

(91,32),(73,44),(J5,76),(J7.98 ) ET

We write the ordered version of jg = (jl,jQ,jg,j4,]5,]6,j7,j8) as js = (j1, ]2,
J3:Jas J5+ J6; 7, js), which satisfies j1 < j» < js < ja < J5 < jo < Jr < Jjs-
To facilitate the proof, we first introduce three claims below, which will
be proved later. In particular, for given js, if 15, = 1, the corresponding
ordered tuple js of js satisfies the following three claims with Dy defined in
(B.1.46).

Claim 1 : For any index jj, € js, if it has two neighbors Jre—1 and Jpa1,
its distances with the two neighbors j,_; and Jk+1 can not be bigger
than Dy together. That is, at least one of ljk—1 — jx| < Do and |j; —
]k+1‘ < Dy is true. For ]1 and ]8 with only one neighbor, they satisfy
lj1 — j2| < Do and [j7 — js| < Do.

Claim 2 : For a palr of mdexes (]k 1,]k) in Jg, when jk 1# ]k, if it has
two neighbors jp_o and Jk+1, the distances of the pair with the two
nelghbors can not be blgger than Dy together. That is, at least one of
|]k 2~ Jk— 1l < Dy and \jk _Jk+1’ < Dy holds For the _pairs. (]1 jg)
and (]7,]8) with only one neighbor, when j; # jo and j; # Jjg, they
satisfy |jo — j3| < Do and |js — j7| < Do.

Claim 3 :

(a) For any given {34755756>37738}>

_ 2 _ 2
~Z~ lBJm{j'l:;z} = 0(p%), ~~Z~ 1310{317532} - O(pDO)'

J1,J2,93 J1,J2,93
(b) For any given {51732733734735}7

— 2 o 9
~ Z~ 1BJQ{57:58} - O(p )7 _ Z~ 1BJﬂ{j7;£j8} - O(pDO)

76,J7,J8 J6,J7:98



71

Given three claims above, we show (B.1.68) by discussing different cases.

1. When both ]1 %+ j2 and j7 # jg, by Claim 3, we know the summation
over indexes ( J1, J2, jg) is of order pD3 and the summation over indexes
(_]6,]7,jg) is also of order pD3. Then we consider (J4,J5). When |j4 —
g5 < Dy, the summation is of order (pD3) x pDg % pD2 =p*Dj = p*.
When | Ja — ]5| > Dy, applymg Claim 1 on j4 and js respectlvely, we
know |j3 —ja4| < Dy and |5 — js| < Do hold. Therefore, the summation
is of order pD(z) X Do X p x Dy X ng = p3D8 = p*. In summary,

_ 4
Z 1BJQ{317532,37¢38} =0(p").
(J1,92),(J3,44),(Js.J6),(J7.J8) ET

2. When only one of j; # jo and j; # jg holds, without loss of generality,
we consider j; = jo and j7 # jg.

(a) When |jo — j3| > Dy, applying Claim 1 on 73, we know 73 —
j4] < Dy. Then consider the pair (j3, j4). f ]3 = ju, by Claim 1,
|j5 —]4| < Dg or ]35 —]6| < Dy holds. As j7 = jg, by Claim 3, the
summation over (j6, 77, jg) is of order pD2 Therefore, the total
summation order is O(p X p x Dy x pD3) = O(p*). If J3 # Ja,
applying Claim 2 on the pair (J3, 1), we know |74 — J5| < Do
as we discuss |j — j3| > Dy. Also, as j7 # Js, by Claim 3, the
summation order over (jg, j7, jg) is O(pD2) Thus the total order
of summation is O(pDypD3pD?) = O(p*). In summary,

_ 4
Do Lnnoncotiighorjrtis s> Dot} = OWY):
(j17j2)7(j31j4)1
(J5,76),(J7,08)ET

(b) When |jo — 73] < Do, the summation over 91,72, J3 is of order
pDy. Then we cons1der 34, 35 If | 4 — ]5| < Dy, the summatlon
over ji, ja,j3,Ja, Js is of order pDopDo = p*D3. As jr # js, by
Claim 3, we know the summation order of jg, j7, js is pD0 Then
the total summation order of this case is O(1)p 2D2pD2 O(p*).
If |4 — js5| > Do, applying Claim 1 on J4 and J5 respectively, we
have |3 — j4| < Do and |j5 — jg| < Dy. Also, as j7 # js, by Claim
3, we know the summation order of jg, j7, js is O(pD3). Then the
total summation order is O(1)pDg x DopDg x pDZ = O(p*). In
summary,

(A
Y. LYsinfoncotiitirorrtislin—isi<boy} = O0").
(jl:j2)7(j37j4)7
(45.36),(47,8) €T
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3. When both j; = j» and j; = js, then we consider (Jjs, j4, j5, J6)-

(a)

If the number of distinct elements in {]3, ]4,]5,]6} is smaller and
equal to 2, the order of summation over js, ja, j5, jo is O(p?). We
use |{]3,]4,]5,]6}| < 2 to represent this case, then

_ 4
Z 1{3}“{31:327;7:;& ‘{337;4,55,36}‘§2}} =0(p).
(j17j2)7(j37j4)7
(45.96),(d7,J8) €T

If the number of distinct elements in {Js, j4, j5,j6} is 3, we use
|{33,j4,j5,36}] = 3 to represent this case. Then two of g3 £ ja,
Ja # Js and js # J6 hold. We consider without loss of generality
J3 7& Ja, ja # js and j5 = j6. We apply Claim 2 on the pair
(j3,74) and Claim 1 on j3. Then at least two of |jo — j3| < Do,
|73 — ja| < Do and |j4 — j5| < Do holds. Thus the summation
order is O(pD2p?) = O(p*). In summary,

_ 4
Z 1{BJO{312327;7:;87 [{J3,Ja-ds-d6 =3} } — o).
(J1,42),(d8,74),
(45.96),(d7,J8) €T

If the number of distinct elements in {Js, j4, j5, 6} is 4, _we use
|{]3,j4,j5,36}] = 4 to represent this case, and we know ]3 £ Ja,
Ja # js and Jjs # js. Applying Claim 2 on _the pair (j3,J4), and
applying Claim 1 on the two smgle indexes j3 and Ja respectively,
we know at least two of |jo — j3| < Dy, |j3 — j4| < Dy and
|74—J5| < Dg hold. Therefore the summation over (j1, ja, J3, j, j5)
is of order O(p x pD3) = O( 2D2) Then applying Claim 1 on je,
we know at least one of ]j5 — ]6\ < Dy and |]6 — j7| < Dy holds.
Then the total order of summation for this part is O(p?D3 x
pDg) = O(p*), that is,

o o _ 4
Z 1BJﬂ{j1=j27j7:j87‘{j37j47j5yj6}‘:4} = 0(p").
(j17j2)7(j37j4)7
(45,76),(J7,8)ET

Combining the results obtained, we know (B.1.68) is proved. Thus to prove
(B.1.67), it remains to prove the three claims above.

By the definition of Q*(iV),i®,i®) i) jg) in Section B.1.6.1,

Q0,525,503 | < C‘E<ﬁfﬂm) |
t=1
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Then it is sufficient to show that for given js, when the ordered version jg
of jg does not follow the three claims,

(B.1.69) B (Hmkﬂ)‘ = O(p~®*),

Proof of Claim 1.

(1) When the index J& has two neighbors, we give the proof by an example
of k = 3. All the other cases can be obtained following similar analysis
without loss of generality. Suppose js’s distances between its neighbors ja
and j4 are both bigger than Dy, i.e., |j2 — j3| > Do and |j3 — j4| > Do. Then
by Conditions 2.1, 2.2, and the a-mixing inequality in Lemma B.0.1,

(1T

t=1
3 8 3 8
= |eov(TTos, L) + B(TL#s) < B(TT o)
t=1 t=4 t=1 t=4

Dge
< Core + O xfeov(wy 5,75, 5 @y 5,) T By 5,2, 5,)E(7,5,)]

O(p~ B+ 4 C x lcov(@y, 5 5, 5 T3 5,)
- O(p—(8+u)).
Thus (B.1.69) holds.

(2) For j; and jg with only one neighbor, we give the proof on j;, while
js can be proved similarly. By Conditions 2.1, 2.2, and Lemma B.0.1,

8 8 8
’E(Hmkjt)’ = ‘COV(.CCkJI , Hwk,3t> + E(l’k’;l) X E(ka,3t>’
t=1

t=2 t=2
Co7% 10 (E(zy;)=0)
O(p—(8+u))'

IN

Thus (B.1.69) also holds.

Proof of Claim 2:.

(1) When the pair (js_1, j) has two neighbors, we give the proof by the
example when k = 5, i.e., we consider the pair (j4,J5). The other cases
can be proved similarly Wlthout loss of generality. Suppose js # js with
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173 — ja| > Do and |j5 — jg| > Do. As E(z) 5,2y 5) = 0 under Ho, by
Conditions 2.1 and 2.2, and Lemma B.0.1, we have

8
E(Tee)
t=1
3 8 3 8
- ‘cov(Hl‘th, ka,it) +E(H$k73t) X E<Hl‘kﬁ)
t=1 t=4 t=1 t=4
Dge 3 5 8 i 8
< Coze + ‘E(kaﬁt) x {COV(kaJt ’ HkaJ +E<iji)E<kaJt)H
t=1 t=4 t=6 t=4 t=6

Doge
= OO 4 [y 5,m,5,15,) % {0V (@505, 5 T, m,) + 0}

D,

Tre — O(p_(8+”)).

< C)

Thus (B.1.69) holds.

(2) For the pairs (ji,j2) and (j7,jg) with only one neighbor, we give the
proof on (j1,j2), while the proof on (j7,js) can be obtained similarly. If
J1 # Jo and \32 —33\ > Dy, as E(xkjlacka) = 0 under Hy, by Conditions 2.1
and 2.2, and the a-mixing inequality in Lemma B.0.1, we have

8 2 8 2 8
E(Tes)| = |eov(Ts - TTs) + B(TLoes)B(TL2)]
t=1 t=3 t=1

t=3

< s = O(Cp M),
Thus (B.1.69) holds.

Proof of Claim 3:. The Claim 3 (a) is obtained by applying Claim 1 on the
71 and Claim 2 on the pair (ji,j2) when j; # jo. The Claim 3 (b) is also
obtained similarly.

B.1.6.3. Proof under Condition 2.2°. In this section, we prove Lemma
A.2.6 by substituting Condition 2.2 with Condition 2.2*. Similarly to Sec-
tion B.1.5.3, the proof under Condition 2.2* follows similarly to the proof
under the independence case in Section B.1.6.1. In particular, we note that
Condition 2.2* implies that if one of the indexes in {ji, ..., js} only appears
once, E([T3_; zj,) = 0. Therefore when E([T5_, xrj.) 7 0, (B.1.62) holds.
Also following similar analysis, we know (B.1.63) holds by Condition 2.2*
and E(z1 j,21,5,) = 0 for j; # j2. Combining (B.1.62) and (B.1.63), Lemma
A.2.6 is proved.

B.2. Lemmas for the proof of Theorem 2.3.
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B.2.1. Proof of Lemma A.3.1 (on Page 7, Section A.3). For easy illus-
tration, we first prove Lemma A.3.1 when m = 1 in Section B.2.1.1, and
next present the proof for m > 1 in Section B.2.1.2.

B.2.1.1. Proof for m = 1. Specifically, in this section, we prove

~ ~ ~ ~

‘P(% Sy 28 2) - P(% > yp)P(u(“) <2:)| =0,

o(a) n o(a)

Note that by definitions in (A.3.2) and (A.3.3),

(B.2.1) P(% > yp, Ua) 2z)

_ P({ UL, (G)? > nyp}} N {(a(a)ng)ﬂ g Up < z})

Define the events E; = {(G1)? > ny,} N {(o(a)P)~1 329 _ US < 2}, and
then we have

(B.2.2) (B.2.1) = P(UL_, Ey).

We next examine the upper and lower bounds of (B.2.2). Particularly, using
the Bonferroni’s inequality, for any even number d < [¢/2], we obtain

d
(B.2.3) Z:(—l)sf1 Z P(Ni=1Ey,) < P(UL B )
s=1 1<l <..<ls<q
d—1
< St Y P B
s=1 1<li<..<ls<q

We consider d = O(logl/ °p) below. The following proof proceeds by exam-
ining the upper and lower bounds of P(N;_, E},) first and combining them
based on (B.2.3).

To facilitate the discussion, we define some notation. Let

Hyo=) (1" > P0{(GL)* > nyp)).

s=1 1< <. <l <q
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By the Bonferroni’s inequality, we have

(B.2.4) Hy < P(UL {(G)? > nyp} ) < Hyy.

Given ly,...,ls, we define two index sets: I, = {(jllt,jlzt),l <t < s} and
correspondingly

(B25) Li, = {(j1.j2) : (jn,j2) 0 (ust) # 0, (u,t) € I, and (ju, ja) € L},

where L is defined in (A.3.1). (B.2.5) suggests that L, contains all the index
pairs that have overlap with the index pairs in I;. Note that the definitions
of I; and Lj, depend on the given indexes [,...,ls; for the simplicity of
notation, we write I, and Ly, in this proof without ambiguity. It follows
that

q
m=1 (4} .3)elr, (4} .32)eL\L,

The cardinality of Lj, is no greater than 2ps by construction. Furthermore,
2ps < 2pd as s < d. Note that the indexes in I; and L\L;, have no intersec-
tion. By this construction and the independence assumption in Condition
2.3, for any finite integers a1, as > 1, we know

(U™, (3l,47) € I} and {U2, (ji,4i) € L\L1,}

are independent.
We next examine the upper bound of P(N;_; Ej,). By the definition of Ej
and (B.2.6),

(B.2.7)  P(N_,E,)

Let T, represent a number of order ©{(logp)~'/2} and we have
{c@pn™( > v+ > U<z}
(G} 37 )EL1, (3 JP)EL\LL,

c{e@rn™ Y vz jU{e@rn™ > orsn, 4z

(jll»jlz)eLls (JZI’JZQ)GL\LIS




7

Thus (B.2.7) has the following upper bound,

B:27) < P({ i {(G)? > N {e@pn™| Y ur
J2)eLr,

-1,)
(s

+P({ o (G > N {e@pn™ > tr =T, 42},

(3} 37 )EL\L1,

In addition, we note that {Gy, (j},57) € I} and {U?, (jl,5%) € L\L;.}
are independent, because of Iy N (L\L;,) = 0 by the construction and the
independence assumption in Condition 2.3. It follows that

(B.2.8) (B.2.7) < Py + Py Py,

where for simplicity we define

(B2.9) P, = p({(o—(a)Pg)*lj S

(]llvjlz)ELIg

{(G)? > nyy}).

>Ty}),

DX

Py = P(

-
I

1

P, = P( (cl@PH™ Y Uﬁgrp+z}).
(437 )EL\L1,

Note that although the notation P, P,, and Ps in (B.2.9) suppress their
dependence on the specific choice of (I1,...,[s), this will not influence the
proof due to the i.i.d. assumption in Condition 2.3.

Similarly we examine the lower bound of P(N;_; Ej,). In particular,

{e@Pn™ > Ur<a-T,)

c {e@en] ¥ v

() 37)ELr,

q

> rp} U {(a(a)Pgb)*l S ug < z}.
m=1

Then (B.2.7) has the following lower bound,

B:27) > - P({ N (G > b N {e@P) ] Y vp| 2 1,})
(G} d)eLr,

+P({ (G > N {e@en™ Y ur<z-n}).

(3} 37 )EL\L1,
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Similarly to (B.2.8), by the independence between {Gl, (jt,j%) € Is} and
{U, (4, j}) € L\Lz,}, we obtain

(B.2.10) (B.2.7) > Py x P_, — P,

where Py, and Py are defined same as in (B.2.9), and we define

P = P((o—(a)Pg)*l S Ur<z- rp).
(i Jf)EL\L1,
We have obtained the upper and lower bounds of P(N;_,E},) in (B.2.8)

and (B.2.10) respectively. We next prove that Py, in (B.2.8) and P_, in
(B.2.10) are close in the sense that there exists some constant C' > 0,

(B.2.11) |Pi.—P.|<CxT, and |P_.—P.|<CxT,,

where we define P, = P((o(a)P?)~1 Y9 _, U4 < z). To obtain (B.2.11), we
note that Z(jll J2)ELL U is a summation over index pairsin Ly, , and Ly, is of
size 2ps, which is o(p?) as s < d and d = O(log® p). Following similar analysis
of U*(a) /o (a) L, 0in Lemma A.2.1, we know (o(a)P?)~1 Z(jlle?)eLI uf T
0. Moreover, by U(a) = 2(P?)~' 0, U in (A.3.2), T, = ©(log /% p) and
the convergence result in (A.2.4), we have for given z,

|Pyp.— ®(22428,)| < CTy, [P —®(22—2T,)| < CT,, |P.—®(22)| < CT,.

As |®(2z 4 2T')) — ®(22)| < CT, for given z, |Py, — P;| < [Py, — ®(22 +
2Ip)| + |@(22 + 2T)) — ®(22)| + |P. — ®(22)| < CT)p. Similarly, as [®(2z —
2I'y) — ®(22)| < CTy, |P-, — P,| < CT,,. Therefore (B.2.11) is obtained.

In summary, given (B.2.8), (B.2.10) and (B.2.11), we have

|P(Ni_1El,) — Pys X P,| < P+ C x T, x Pys.

Given the above property of P(N{_, E},), we next derive an upper bound of
(B.2.2) based on the relationship in (B.2.3). Specifically,

P(U?ZlEl)
d—1
<SEDt Y PGB
s=1 1<hi<...<ls<q
d—1
< Z(—l)s_l Z {Pys P> + (=1)>"! x [CT, x Pys + P}
s=1 1<l <...<ls<q

d—1
(B212) <Hgy xP.+Y Y (CxTyxPyu+P),
s=1 1<l <...<ls<q
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where the last inequality uses the notation in (B.2.4), that is,

d—1
(B.2.13) Hyy =) (-1 Y P,
s=1 1<l <...<ls<q
and the fact that P, does not depend on li,...,ls in summation. From

B.2.4), we know Hy_1 < P, + |Hy_1 — Hy|, where we define
y

(B.2.14) P, = P( J{(@? > nyp}>.

=1
As a result, we have

d—1
(B212) < Pyx P+ |Hyoy — Hg| x P.+Y > (CT,Py+ Py).
s=11<]1<...<ls<q

d—1
Next we prove |Hg1 — Hg| x P, — 0, > .7, Zl§h<m<15§q I'y x Pys = 0

and Z;l;% > i<h<..<l,<q Ps = 0 by the following three Lemmas B.2.1-B.2.3,
respectively.

LEMMA B.2.1.  Under the conditions of Theorem 2.3, when s = O(logl/5 D),

Z P(ﬂ{(@lt)Q/n24logp—loglogp+y}>
t=1

1<l1<...<1s<q

_ ;(zj%e—’;)su +o(1)) + o(1).

PROOF. See Section B.2.2 on Page 83. O

LEMMA B.2.2.  Under the conditions of Theorem 2.8, when d = O(log1/5 D),

d—1 s
Z P(ﬂ{(@lt)Q/n2410gp—10g10gp+3/})

s=11<)1<..<ls<q t=1

1 —y/2\*
= 2 layae) (o o).

PROOF. See Section B.2.3 on Page 89. O

w
I
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LEMMA B.2.3.  Under the conditions of Theorem 2.3,

DS P({@rn| Y ur

s=11<1<...<ls<q (jzlvj?)eLls

>T,}) =0,

where Ly is defined in (B.2.5), d = O(log"/® p), ¢ = () and T, = O(log™'/2 p).
PROOF. See Section B.2.4 on Page 89. O

First, we show |Hy—1 — Hg| X P, — 0. By Lemma B.2.1, when d — oo,

d
Hoa—Hd = > P(((G0)? > ny))

1<l <...<lg<q t=1

1—y/2
< C;!(z\/lﬂe_ymy < Ce x (26\/;Td>d -0,

where the last inequality follows from d! > e(d/e)?. Second, we show that
Zg;i > i<h<. <l.<qLpPys — 0. By the definition of Py in (B.2.9), and

d-1 d-1 _
Lemma B.2.1, 5501 > 01 <py < ct,<q UoPus = Tp 2o i(g\}ge U2)sto(1) —

0, where we use I'), = O(log~ /2 p) — 0 and Zg;% 5(2\}%6_3’/2)3 < oo from

sl > e(s/e)®. Third, we obtain Zg;% di<h<..<l,<q Ps — 0 directly from
Lemma B.2.3 following the notation P in (B.2.9).

In summary, the analysis above shows that P(UL,E;) < Py x P, + o(1).
On the other hand, following similar arguments, we can obtain P(Ul_, E}) >
P, x P, 4 o(1). Therefore, |P(UL,E;) — P, x P;| — 0 is obtained, that is,

P(UI ) = POUIL {(G)? > b )P ({(0(a) P! Eq: vs <2} =0
m=1

Recall the notation in (B.2.1) and (B.2.2). We then know Lemma A.3.1 is
proved for m = 1.

B.2.1.2. Proof form > 1. We still use the notation defined in Section A.3,
where U and U(a,) for r =1,...,m follow the definitions in (A.3.2) and
(2.5) respectively. To prove Lemma A.3.1 for m > 1, we note that similarly
to (B.2.2), we can write

~ ~

(B.2.15) P(% > ypZ((le)) <92,... Z((Z:))

< 22m> = P(UL,E),
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where we redefine the events

m q
E = {(a(ar)P;‘T)_l S U< z} N{(G)? > nyp}-
v=1

r=1

It follows that (B.2.3) and (B.2.4) still hold. For given 1,...,ls, we define

I, and Ly, same as in (B.2.5). Then for r = 1,...,m, we write
q
Yoo Y oue Yo
v=l (G JP)ELL, (G JP)EL\ L1,

By the construction of L;, and the independence assumption in Condition
2.3, we know

UL U, (i gf) € Iy oand - UL (U, (Gi407) € L\L1}

are independent.
Similarly to (B.2.7), given ly,...,ls, we have

(B.2.16) P(Mi_,E;,)

_ p( ﬁ {<a<aT>p;>—1[ oo Y Uﬁv} < z}

r=1 (.]117]12)61115 (]117‘712)EL\LIS
A (G2 > nyp}}).

We take T, same as in Section B.2.1.1 with T', = ©{(logp)~'/2}. Then for
each r =1,...,m, we have

lor) [ X e Y v <)
GeL,  GHDEL,

c{wern™ Y vrlznfU{eern™ Y v, ta),

(i 3P)ELL, ()9 EL\L1,

and

{arn™ Y U <n-1,)

(137 )EL\L1,

c{e@rn™ Y urzrnfU{eernt Y ur<x).

(jllvj?)eLls v=1




82 HE ET AL.

Therefore similarly to (B.2.8) and (B.2.10), we know

m

m
(B.2.17) (B.2.16) < PyPis + > Py, (B.2.16) > PP, — (ZPST),

r=1 r=1

where Py, is defined in (B.2.9), and we further define

Pe = P(N{e@r™ Y ursain)),

r=1 (G ) EL\L1
P, = P()P)] > ur|z1,),

(jllzjf)ELIS

{ep)™ Y v <a-1,}).

1 (Gt g)EeL\L1,

IDE

P, — P(

T

We note that the cardinality of Lj, is no greater than 2ps, which is o(p?).
Similarly to Section B.2.1.1, we know (c(a,) P2 )~ ! x Z(j},j?)GL\Lzs U o
for 7 = 1,...,m. Combined with Theorem 2.1, we know {(c(a,)P}")~" x
Z(jll’jZZ)GL\LIS U« r = 1,...,m} converges to N(0,I,) and thus are
asymptotically independent. We then have

— 0,

m m
(B.2.18) ’P+Z ~I[ 7| o ‘P_Z -1 P--
r=1 r=1

where we define

P :P((a(aT)PC’;)’l Y U< +rp),
()37 )EL\L1,

P, :P((a(a,)P;;)—l Y U< rp).
(Gt )EL\Ls,

Similarly to (B.2.11), for each r = 1,...,m, we have
(B.2.19) |Py., — P, |<CT, and |P_. —P,|<CT,,

where we define P,, = P((o(a,)P) "' >0_, Udr < 2,). Combining (B.2.18)
and (B.2.19), we have

m
‘P+z ~-II~. - 0.
r=1

m
0 and ‘P_Z ~-TI~.
r=1
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By (B.2.17) and (B.2.19),

m m
(B.2.20) (B.2.16) — Py [[ Po| < 0(1)Pys + Y _ P,
r=1

Given (B.2.20), similarly to (B.2.12), we have

P(UlqzlEl)
d—1

IN

DR | GRS PRI SR )
r=1

s=1 1<l1< <ls<q r=1

< H, 1HPZNLZ > {0(1)Pys+§:Psr}

s=1 1<l <...<ls<q

m
<PyHPZT+‘Hd 1_Hd|HPZr+Z Z {O(l)Pys—I_ZPST}’
r=1

s=11<1<...<ls<q

where H,;_; follows the definition in (B.2.13) and we use (B.2.4) and the
definition (B.2.14) in the last inequality. By Lemma B.2.1, |Hg—1 — Hy| —
0; by Lemma B.2.2, o(l)zg;i > i<i<. <ls<q Pys = 0; by Lemma B.2.3,
Zyinzl Zf;% Zl§l1<...<l3§q P, =—0.

In summary, we have shown that P(U/_, E;) < Pyx ][, P..+o(1). More-
over, following similar arguments, we have P(U{_, E;) > P, <[]~ P, +o(1).
Therefore, |P(Ul_, E;) — Py x [["; P.,| — 0 is obtained, that is,

m

q
P(UL, Ey) — PUL{(G)? > nyp}) [ ] P((o(an) P2) ™'Y U™ < 2)| =0
v=1

r=1

Since (B.2.15) = P(UL,E)), {M,/n > y,} = UL {(G)? > ny,} and
U(a,) =2(Pr)~ 1371 Usr, we know Lemma A.3.1 is proved for m > 1.

B.2.2. Proof of Lemma B.2.1 (on Page 79, Section B.2.1). In this sec-
tion, we prove Lemma B.2.1. The proof will use Lemmas B.2.2.1 and B.2.2.2,
which will be presented and proved in Sections B.2.2.1 and B.2.2.2, respec-
tively.

PROOF. Following the definitions in (A.3.3), G, will not change if T j
is scaled by its standard deviation o; ;. Thus in the discussion below, we
assume without loss of generality that o;; = 1, 7 = 1,..., p for the simplicity
of representation.
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Given i and 1 < [; < ... < Iy < q, we define X, 1 2 = z; 12,2 X
Jlt’jlt Jlt ’]lt
.. .. p— N — .. . o . . T
1{‘3;%]11,5%’]12,5‘ <t} fort=1,...,5, W; (Xl7jl117]l21,...,Xw}sdlzs) , and let

W |min denote the minimum absolute value of the entries in the vector W;.
It follows that P(N;_, {(G},)?/n > 4log p—loglog pt+y}) = P(| 0, Wilmin >
\/ﬁy,l,/2), where y,, is defined in (A.3.4).

We prove Lemma B.2.1 through examining W,, ¢ = 1,...,n. Since W;’s
are independent and identically distributed random vectors, cov(d 1" | W;) =
n x cov(Wy). We apply Theorem 1.1 in [30] and obtain

(B.2.21) P(’ f:Wi > \/ﬁy;,ﬂ)
=1

(N2 v )

n1/2€

5/2 )
c28%/ 21, (logp)t/2/)’

c15°“ exp ( —

where ¢; and ¢ are positive constants; € — 0, which will be specified later;
and Ny = (V,,..., N, )T follows multivariate normal distribution with

E(N;) = 0 and cov(Ny) = cov(}_i; W;) = n x cov(W1). Moreover, we
apply Theorem 1.1 in [30] in terms of lower bound and obtain

P(’Zn:wi
=1

> P(!Ns!min > V2 + Eﬁ(logp)’m) — 15”2 eXp< -

mi

> \/ﬁyé/2>

n

1/2,
0235/27-n(10gp)1/2 '

As s = O(log'/® p), logp = o(n'/7), and 7, = 7log(p + n), when ¢ — 0
sufficiently slow, there exists a constant M > 0 such that
1/2

5/2 €n

c15”/ % exp ( - ) = O(l)e_M”S/M.

c285/%7, (log p)1/?

Therefore, for s = O(log'/® p),

1/2
(B.2.22) Z c1s exp( D )

1/2
1<l <...<ls<q n(log p)Y/

= O(1)g° x e M = O(1)e MM 2slogp — (1),

In summary, by (B.2.22) and Lemma B.2.4 in Section B.2.2.1 below, Lemma
B.2.1 is proved. O
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B.2.2.1. Lemma B.2./ and its proof.

LEMMA B.2.4.  For s = O(log"/® p) and N in (B.2.21),

> P[Nubuin > Va{y/? £ cllogp) /)] ~ ;{2\/1% exp (- 5)}

1<l <...<ls<q

Proor. We write v, = y}/Q + e(logp)_l/z, which represents two numbers
in this proof. Since the proof below will be the same for the two numbers
respectively, we abuse the use of notation v, below.

We define Uy = cov(W1), where W is defined in Section B.2.2. By the
density of multivariate normal,

P(INeluin > V(g + e(log p) /%))

1
= P(\/H|Ns|m1n = /2:t6 logp 1/2

1 / 1
= —— exp —y"(Us) 'y )dy
2m)5/ 2| U2 Jiy o, ( 27 )

1 1
B223) = — (—7T dz.
( ) (2%)3/2 /IUI/sz1n|>vp exp 2Z z)az
We note that Zp; < (B.2.23) < Zp; + Zpz2, where we define
1 1
Zpy = / exp ( — szz>dz,
(27)3/2 J1UY 2] i > 0p 2lman <4v/5ToED 2
1 1
Lpa = / exp ( — szz) dz.
(27T)s/2 |Z|max >4+/slogp 2

To prove Lemma B.2.4, we show Zpy = o(1){ e ¥/2}% and Zp; ~

1
V2mp?

{ \/%zﬂ e ¥/2}5 respectively in the following.
We first prove Zps = 0(1){\/%132 e Y/2}5. Let z ~ N(0,1). By the prop-
erty of standard normal distribution, we have
(B.2.24) P(z > t) ~ (vV2rt) e /% as t — +o0.
It follows that
(B.2.25) Zps = sx P(|z| > 4\/@)

s X ex 8slo
NTTY Tog p(—8slogp)

T
227 \/ logp Norh

12




86 HE ET AL.

Next we prove Zp =~ {\/%prz e~ ¥/2}5. Note that
1 z1z
Zp1 = / exp ( - —)dz
(2m)%7% St (U2 L el g ol <45 ToED 2
1 VAV /
< 5 exp ( - —)dy,
(27T) |Z|mm>vp |( 1/2_Is)z‘max;‘zlmax§4\/SIng 2

where I represents an identity matrix of size s x s. When |z|nax < 44/slogp,

we have \(U;/2 — I5)Z|max < 4Csy/slogp(p + n)~7 by Lemma B.2.5 in
Section B.2.2.2 below. It follows that

1 7'z
< - 2=
(B.2.26) Zpy < (o) 2 /zmm>6p exp( 5 )dy,

where we define 0, = v, —4Csy/slog p(p +n)~ 7. We set 7 as a sufficiently

large constant such that sy/slogp = of(p + n)®7}, then v, = 2v/logp{1 +
o(1)}. By (B.2.24) and (B.2.26),

< —
ZP71 — { \/%’Dp eXp( /Up/Q)}

1+0(1) s
—fo — TR (—210 + (loglog p) /2 — 2+01)}
{ NN gp + (loglogp)/2 —y/ (1)
1
= _y/Z} 1+o0
{ gz} roty
Similarly, we have
1 VAV 4
Zpy > / exp(——)dy
27T)8/ Z‘m1n>'Up+| 1/2 )Zlmax»|z|max§4\/310g 2
1 T
/ eXp<—ﬂ>dY Zps
277)8 |Z| min >vp+4C'sy/slog p(p+n)~7/2

= {2} o

2mp?

e Y/},

; ~ 1
We therefore obtain Zp; ~ { N
Since Zpyl < (B.2.23) < Zpyl + ZRQ, Zp71 ~ {

_ /2 . ~ 1
e ¥/2}s we obtain (B.2.23) ~ {\/TPQ

2mp? e7¥/2}* and Zpy =

e Y/2}. Tt follows that as

o5
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p — 0o and s = O(log"/° p),

ST P(Nofwin = V() £ e(logp) /%)
1<l <...<l

- (Vmgoetumy ey (o= 50)
exp(~y/2)} {1 +o(1)}.

B.2.2.2. Lemma B.2.5 and its proof.

LEMMA B.2.5.  For Ug in Section B.2.2.1, there exist some positive con-
stants C' and co such that \Ul/Q — Islmax < C(p 4+ n)~©7, where | - |max
represents the element-wise marimum absolute value, and T is the constant
satisfying 7, = 7log(p + n) from (A.3.3).

PROOF. Recall that Ug = cov(W;) and Wy = (Xl’jlllyjfl, .,Xl’jllsdfs)
for given 1 <[y < ... <ls < ¢, which is defined at the beginning of Section
B.2.2. To prove Lemma B.2.5, we prove |Ug — Is|max < C(p + n)~ 7 first.
Specifically, we show the diagonal and off-diagonal elements of cov(W1) — I
are bounded by C(p 4+ n)~ %7 respectively.

First we show for given (j},j?), |Va1‘()€17j117j12) -1 < C(p+n)~«". By
the independence assumption in Condition 2.3 and 0;; =1for j =1,...,p,
we know Var(ijlijlz) =1; by E(xl,jllxl,jf) = 0, we have Var(xldlla:l’jlz) =
E{(xl,jllxl,jf)2}- It follows that

var(®, ) — 1] = ‘Var(?elmf) ~var(Typ )
. . 2
2
(B.2.27) ‘E{ XLJZ Jz) } — E{(l’l’jllf[)i,] H + ’E Xml Jl) )

where we use var(z; RIEIR 2) = 1 in the first equation; and we use the def-
inition of Var(lel 2) and var(a:ljlxl] 2) = E{(xlj Ty 42 2)2} in the second

equation. Recall the deﬁmtlon Xl’ iz =T
then have

(B.2.28) ’E{(xl,jllxl,jf)Q} E{(Xlﬂz Jz) }’

‘E[(951411951,]'12)21{|$17j}$17jf’ > Tn}} ‘a

PIESRERS 1{|$17Jl1$17jl2| <7} We
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and |E(i’17jll7jl2)‘ — |E($1’]l11’1’]12 X 1{|$1’jllx1’j12| > Tn})| as E($1,jl1$1,jf) — 0

Since 1{|x1,j}x1,j12| > Tp}) < 1{|x17j11| > /Tn} + 1{|x17j12| > \/Tn}, and Ty i
and Ty 42 are i.i.d. by Condition 2.3, by Holder’s inequality, we know

(B229)  (B228) < Cx E(a? n1{le; | > v} ) x Bla? )
< € x (B! y)P(Joy | > VAP X B ),
and also

(B.2.30) ‘E(A?lel,jlz)

< O x B2 )Py g > VDI x Bl gal).

By Markov’s inequality, P(|z; jl1| > /Tn}) < E{exp(tox%jl)}exp(—tm'n),
) ]

where tg is given in Condition 2.3. Combining (B.2.27)-(B.2.30), we obtain

that there exists some positive constants C' and ¢y such that

(B.2.27) < C x {E(exp(toz] ) exp(—tom) Y2 < C(p+n) @7,

where we use the assumption that z; ;1 and 2, ;2 are i.i.d. and E{exp(tox1 1 )} <

oo as Condition 2.3 holds for ¢ = 2.
Second, we prove that for given [ # 2, there exist some positive constants
C and ¢y such that |cov(X); g ’dez 72 > )| < C(p+n)~°". We note that
_ ]
under Hy, COV(Q:l,j}iji? Lt LJZQ) E(ZL'IJ 152 L1l T2 )=0asj; #
j121 and jll #* jl22 . It follows that
‘COV X, X,

-2 1 52 )
7]117]11 ) 1.7127312

-2 X -1 52
7]117]117 11]12:]12)

5 X, o

‘cov X, —E(zy 1

Ty,52 xLJZZ l,j?Q)

+ ’E (%5 j2) ¥ B

7][1

E(xl 1.%'1 2.1'1 11'1

:2 -2 .
‘ 7]117.7 :]127.7[2) 73127]12)

By the definition of .)E‘l,jl

-2
l2 7.][2 ’

‘E X o X E(@yp 2157 21

’]llhjll 7]l27j122) 7]12$17j122)

‘E{]azl L T2 Tl T | <1{\x17]l 152 | > 71} + 1{|1:1J 152 | > Tn}ﬂ ‘

Similarly to (B.2.29) and (B.2.30), by Hoélder’s inequality, we know that
there exist some positive constants C' and ¢y such that

‘E(Xl 2 X - E(x )‘ < C(p+n)™7,

1 L1 22 Ly 51 T 52
7][1 11.7[1 11]12 1,]12

2 ) X E(X) 1 2)

7][2,]12

-2
"]lldll 7]127312)

E(X, a < C(p+n) .

’Jll’]ll
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It follows that |cov(&; 1 ik a2 X it g2 ) < C(p+n)T.
9 I 9 k2 2
In summary, |Ug — I |maX < C'(p +n)~7 is obtained. By the matrix ver-
sion taylor expansion of U;/ Zat I s [see, e.g., 15], the element wise differences

between UL/? and I, are also bounded by C(p + n)~%7. O]
B.2.3. Proof of Lemma B.2.2 (on Page 79, Section B.2.1). By the proof
of Lemma B.2.1 in Section B.2.2, we have

S

DY P {(G)?/n > 410gp —loglogp+ y |

s=11<l1<...<ls<q t=1

: 1[1'( =) (o )}+o<1>e—Mn3“4+2510gp].
s=1 s 2\/7

Since logp = o(1)n/7 and d = O(log1/5 p), we know Mn?/ — 2dlogp —
logd — oo and Zg;i O(l)ean“/MJrQslogp < O(l)eand/MJerlongrlogd _
o(1). It follows that

I
M1

U
—_

> PN {(Gy,)?/n > 4logp — loglog p + y})
=11<l;<...<ls<q
- _11( =) L+ o)} +o(1)
« s Q\ﬁ ’

B.2.4. Proof of Lemma B.2.3 (on Page 80, Section B.2.1).

U

@
I

PrOOF. Recall the definition of U in (A.3.2), and we write U( 1) = Up.
JiJi

By Lemma A.2.1, we know o(a)P} = ©(pn®/?). Then for given Iy, ..., 1,

(B.2.31) Ple@pn™ Y ur 3

(jll7jl2)eLIs
> Cply} < Pus + Pu,,

SP{’n’“/Q S Ut

(]117.7[2)61113

where we define

Py, = P(nw/a S Ul = Ol )
(G} dR)eLr,

PU,_:P<n—a/2 S Ul < Cpr)
(4} .3¢)eLr,
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By ¢ = (5),
d—1
w2329 > Y P({e@rn Z Uf| 2 Ty })
s=11<l<...<ls<q (4} .3¢)el
< dp*® max (Pu+ + PU )-

1<s<d—1;1<1 <..<ls<q

To prove Lemma B.2.3, it suffices to prove that Py and Py are o(d~1p~2%)
for each given s and Iy, ..., ;.

We show Py, = o(d~'p~29) in the following, and the same conclusion
holds for Py _ by applying similar analysis. By the construction of L, in
(B.2.5) and the i.i.d. assumption in Condition 2.3, we know that there exists
an integer D < 2s such that

P

D
(B.2.33)  Pus < ZP( N UG 2 CpFn/D)
k=1 m=k+1

< D1Ll}ca<XDE[Pk( zp: n_a/2U(ak7m) 2 Cpr/Dﬂ’
sk= m=k+1

where P, represents the probability measure conditioning on {z1 k,...,Zn %}

with k € {1,...,p}. To prove Py = o(d~'p~2%), in the following we show

that B[P(37, .y n~*2Uf, .y = C x pLyp/D)] = o(D~'d~'p~2¢) for k = 1;

and the same conclusion holds for k > 2 by similar analysis given the i.i.d.

assumption in Condition 2.3 and k < D = O(logl/ % p). Specifically, we next

prove that E[P({D°F _, n_a/zU(al’m) > Cpl'y/D})] = o(D~td~1p~2d).
Define

(B.2.34) Uy=n"" > af,..al,
1<i1..#ia<n

then E(U,) < {E(xu)}“ = O(1). Given a constant t > 0, we define an event
Tiq = {|U. — E(U,)| < t}, and let 17, , denote the indicator function of the
event T; 1. It follows that

(B.2.35) E[Pl({ Zp: n= UGy 2 CPFP/D})}
m=2

- E[P1<{ zp: n_a/QU&m) > Cpr/D}) X (11, +17g,)
m=2

< E(PTt,l) + P(th,l)a
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where 1pe, =1—17,; thl denotes the complement set of the event 7j 1;
and Pr,, = P{>" _, n_a/zU(al’m) > Cpl'y/D} x 17, ;. It remains to prove
that E(Pr,,) and P(Ty,) are o(D~1d='p~24) respectively.

Part 1: E(Pr,,) Given an integer a, define h, = C(p/log?p)¥/(@+}).
For easy presentation, we let 1y denote an indicator function of the event
{|n_“/2U(“1 m)| < hp}. We next decompose n_a/QU(Lm) = Zm,1 + Zm,2, Where

(B.2.36) Zmg =2 [U(al,m)]‘H - El{U(aLm)lH}}’
Zmo = n"Y? [El{Uﬁ,mﬂH} + U (1= IH)}

= 9/ [ — E{Ug (1= L)} + Ug (1~ 1H)};

in (B.2.36), E; denotes the expectation conditioning on {z1,1,...,2p1}, and
we use B {UG \1n} = —E UG, (1 —1g)} as E{UG )} = 0. Given

(1,m)
n_a/QU(“l,m) = Zm,1 + Zm,2, we have Pr, | < P, + P, 2, where we define

p p
Py =Pi( Y 2m1 = Cply/D)in,,, Py = Pi( Y 2ma > Cply/D) iy, .
m=2 m=2

To evaluate E(Pr,), we examine E(P, ;) and E(P, 2) respectively below.
Part 1.1: E(P; ;) When conditioning on {11, ...,%n 1}, since zp, 1’s are
independent and bounded random variables, by Bernstein inequality,
Cp°l'2/D? ) )
]rgn=2 El(zq2n,1) + Chypl'y/ D e

(B.2.37) P.y < Cexp ( -

Note that 0 < El(zfn,l) < E1[{n7a/2U(al,m)}2] and

a a

o] = 5 (M) 5T
1<iy#.. #ia<n; =1 r=1
1<i1#...#1a<n

a
—an 3 ([Ie2a) x {B@d,0)
1<iz#..#iq<n  r=1
= alU, x {E(azim)}a,
where from the first equation to the second equation, we use the fact that
E(ITr=1 i, m;_,,) # 0 only when {iy,...,iq} = {i1,...,ia}. It follows that
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1(22,1) < C x U,. As 17, indicates the event {|U, — E(U,)| < t} and
E(U,) = ©(1), it suffices to consider E (22, 1) =©6(1) in (B.2.37) and then

(B.2.38) B(P..1) < exp{—Cpl'y/(Dhy)}.

Part 1.2: E(P,2) By the definition of z,, 2 in (B.2.36),
(B.2.39) E(P,>) < P(é“ﬁé;; n=PUG | > h,,) < pP(In~ UL 5| > hy),

where the last inequality follows from the i.i.d. assumption in Condition 2.3.
By the result in Section C.1.1, we know U(1 %) Zlgz‘l;é...;éz‘agn [Ty @i 126, 2
can be written as a linear combination of Lo 300 (zi1@i2)* }, where
ai,...,a, are positive integers such that a1 + ...+ a, = a. It follows that for
finite integer a,

SRR CInE

a1+...+a,=a k=1 =

S Z Z P( Z ’1‘@1.%'2"2/\/7;‘% > Cth/a> .

a1+...+a,=a k=1 i=1

Case 1: If ap = 1, since Condition 2.3 holds for ¢ = 2 in Theorem 2.2, we
know x;1x;2, ¢ = 1,...,n, are i.i.d. sub-exponential random variables. By
the Bernstein-type inequality of sub-exponential random variables, we have

(B.2.40) P(Z |zi1m2| > C\/ﬁhil,/“) < Cexp(—C min{Ch%*, Cv/nhl/*}).
i—1

Case 2: If 2 < a;, < a, we let B, = Cn_1/6h,23/(3a). We then decompose
|zi 12i2//N| = s; + t;, where we define

si = |iai2/ V" Lag, — i, ti = |wia@ie/Vnl"™ (1= 1ay,) + i,
1HBp = 1{|Ii,1$i,2/\/ﬁ|SBp}’ Hi = E{|xi71xi72/\/ﬁ|ak1HBp}'

It follows that

P(Zn: [0/ VAl > ChgH) < P(isi > ChHl®) + P<iti > Chg/).

i=1 =1 i=1
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Since |s;| < C % Bpk from construction, by Bernstein inequality,

o B Chy™/*
(B.2.41) P(;& > Cligel) < Cexp ( ZflE(sf)iCBﬁ’“hgk/a)

As 2 < ap < a, by Condition 2.3, we have

En:E(sf) < zn:E{ (5321\/3%12)2%} < E{(z11712)%%} - E[($1,1$1,2)2ak] -
=1

nak—l
i= =1

Since hll,/a/Bp — 00, from (B.2.41), we have

(B.2.42) P(Z 5i > Ch;k/a) < exp(~Ch2/*/B2).
=1

In addition, by the definition of ¢,

P(iti > Chgk/a> < P{ i i 12i,2/v/n|" (1 — lrg,) > Chgk/a _ ‘ im
i=1 i=1 i=1

3

We note that S0 i < n~' x 30 [E{(1.121,2)%*}]"/? < oo by Holder’s

ak/a

inequality and Condition 2.3. As h, — oo, Chp" " — |37 | ;| > 0 when n
and p are sufficiently large. Since 1 — 1, indicates |z;12i2/v/n| > By,

n
(B.2.43) P(;ti > Ch;k/a> < P(lrg%xn‘$i71$i’2/\/ﬁ|% > ng)
1=

n X P(]a:i’lxi?g/\/ﬁ\ > Bp)
n x E{exp(tolz1121,2])}/ exp{to(vnBy)}
exp(—Cv/nB, + logn),

ININ TN

where we use E{exp(to|x1,1212])} < E{exp(to(2}; + x%Q)/2)} < o0 as Con-
dition 2.3 holds for ¢ = 2. By (B.2.39), (B.2.40), (B.2.42) and (B.2.43),

(B.2.44) E(P,2) < Cp x [exp ( — Cmin{Ch2/", cﬁh;/a}>

+ exp(—Chg/a/Bg) + exp(—Cv/nB, + log n)} .

Part 2: P(Ty,) By the definition in (B.2.35), P(T¢;) = P(|U,—E(U,)| >
t). Moreover, by the definition in (B.2.34), E(U,) = ©(1) and U, > 0.
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Th_erefore we know therg exist large positive constants C and t such_that
{|Uz — E(Uy)| > t} € {Uy > Ct} and P(Tf;) < P(U, > Ct). Since U, <
(3fy 7, /n)® and 7 are i.i.d. sub-exponential random variables, we have

(B2.45)  P(Tf) < P{(;ﬁl/n) > C’t} - P(;:ﬁl/n > Ctl/a>
< Cexp(—Cn),

where the last inequality is obtained by the Bernstein-type inequality of
sub-exponential random variables.

By the analysis above, (B.2.35) < E(P,1) + E(P;2) + P(T7). Recall that
hy, = C(p/log? p)* @tV logp = o(n'/7), T, = O(log~ 2 p), D = O(log"/® p)
and B, = Cn~ /612" Then combining (B.2.38), (B.2.44) and (B.2.45),
we have (B.2.35) = o(D~'d~'p~29). Therefore Lemma B.2.3 is proved. [

B.2.5. Proof of Lemma A.3.2 (on Page 7, Section A.3). Similarly to
Section B.2.1, we first prove Lemma A.3.2 for m = 1 in Section B.2.5.1 and
then for m > 1 in Section B.2.5.2.

B.2.5.1. Proof for m = 1. Specifically, in this section, we prove for finite
integer a,

P(Me 1, 88 <) - (2 ) (8 <) o

To prove (B.2.46), we start by proving the following two conclusions
(B.2.47) and (B.2.48), which suggest that M, and M, have small differ-
ence in probability. To be specific, as n,p — oo,

(B.2.46)

(B.2.47) |P(M,/n > yp) — P(Mn/n > yp)| — 0,
and
(B.2.48) |P(My/n >y, , Ula)/o(a) <

2)
— P(My/n >y, U(a)/o(a) < 2)] = 0.

To prove (B.2.47) and (B.2.48), recall that in (A.3.3), M, and M, are defined
using Gl and Gl respectively. We next focus on the difference between G,
and G;. Since G; and G, will not change if the data x;; is scaled by its
standard deviation, then we assume, without loss of generality, o;; = 1,
j=1,...,p in the following discussion.
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By the definitions in (A.3.3), we have

A -1
P iy G = Gl 2 o8) ™) < P o o oy 2 7).

Note that |xi7jl133 2| < ( it —l—:L‘ )/2 Then

iyjl

P( max max |x; .1 2\ > Tn)
1<i<q1<i<n bl
P(

IN

max max (27, + 27 2) > 27n>
1<i<q1<i<n »h i}

(B.2.49) < P( max max x g > Tn> + P( max max x> ., > Tn>
1<I<q1<i<n i 1<I<q1<i<n Y

(B.2.50) < 2P( max max a2; > rn)
1<j<pi<i<n I

< 2np joax P(|x17j\ > Ty).
From (B.2.49) to (B.2.50), we use max;<j<4 231’“ = maxi<j<p & for each 1

and k = 1, 2. To see this, recall the notation defined in Section A.3 (on Page
6). In particular, subscript [ is defined to indicate a pair of indexes (j}, j?)
with 1 < jll < j12 < p. Since jl1 and jl1 only take values from the range
{1,...,p}, we know {jF : 1 < I <gq} C{1,...,p} for k = 1,2, and then
maxi<j<q 231 = maxi<j<p T ” Moreover, by Condition 2.3 with ¢ = 2,

np max P(|x%1| >71,) < Cnp(n +p)_TEexp(x% 1) — 0.
1<5<p ’ ’

It follows that P(maxj<j<,|G; — Gyl > (logp)~') — 0. Conditioning on
maxi<j<q |Gy — Gy| < (logp)~!, by Lemma B.0.3 and |G| < 7,

M, — NI,| = )2 — max (G)?
| My, — M| f?zaii,(Gl) f?zaii,(Gl)
< 2 max \G | max |Gl Gl\ -+ max ]él - él\z
1<I<q 1<I<q 1<I<q

< 27,/logp+ (logp) .
Recall that 7, = O(log(p+n)), then |M,, /n— M, /n| L, 0. Therefore (B.2.47)
and (B.2.48) are obtained.

Given (B.2.47) and (B.2.48), we next prove (B.2.46). In particular, we
write

L C TR RS Y T EVRV O
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where we define

Note that the left hand side of (B.2.46) < [Ap1[+|Ap 2| +[Ap3]. By Lemma
A3.1, |Ap2| = 0; by (B.2.48), |Ap1| — 0; by [Ap3] < |P(M,/n > yp) —
P(M,/n > y,)| and (B.2.47), |A, 3| — 0. In summary, (B.2.46) is proved.

B.2.5.2. Proof form > 1. Following the proof in Section B.2.5.1, we know
that (B.2.47) still holds and similarly to (B.2.48),

|P(M,,/n > yp, U(ar) /o (a1) < 21, -, Ulam)/o(am) < 2m)

— P(Mn/n > Yp, Z:l(al)/a(al) <zi, ..o, Ulaw)/o(am) < zm)| — 0.

Given these results and Lemma A.3.1, we know that Lemma A.3.2 holds for
m > 1, following the arguments in Section B.2.5.1 similarly.

B.2.6. Proof of Lemma A.3.3 (on Page 8, Section A.3). Similarly to
Section B.2.5, we first prove Lemma A.3.3 for m = 1 in Section B.2.6.1, and
then discuss the case for m > 1 in Section B.2.6.2.

B.2.6.1. Proof for m = 1. Specifically, in this section, we prove for finite
integer a and given z,

U(a)
o(a)

- P(Z;{((Z; < z)P(nle(oo) > yp)‘ — 0.

(B.2.51) P < 2 ntd(0) > )

To prove this, we use M,,/n as an intermediate variable and first show

(B.2.52) ’P(ZEZ)) > 2, % > yp) - P(ZEZ)) > z)P(% > yp)‘ 0.
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To facilitate the proof, we define some notation. Given small constant € > 0,

Py, = P(u(a) > z), P, = P(u(a) > 2, % > yp),

o(a) o(a)
Puz+€:P<Z((Z))>z+e>, Pz+€:P<Z;{((Z))>z+6,]\T?>yp>,
U(a) U(a) n

Puoe = P<
uz U(a)
M
Py = P(5 > ),
®(-) is the cumulative distribution function of standard normal distribution,
and ®(-) =1 — ®(-). Then
(B.2.52) = |P.y — Py. x P, |
S |sz - Pz—l—e’ + ’Pz—i-e - Puz—}—epyp’ + |Puz+epyp - PuzPyp‘-
We next show (B.2.52) — 0 by proving the three parts above all converges
to 0 respectively.
First we show |P,, — P,4| — 0. Note that P, < P,, < P,_, then
|P.y — Pote| < |Poee — Poye|. In addition,
|Pz—e - Pz—s—e’
|Pz—e_Puz—e X Pyp‘ +’Puz—e X Pyp _Puz—l-e X Pyp|+|Puz+e X Pyp _Pz—l—e’
0(1) + |Puz+e - Puzfe|>
where we use (B.2.46) in the last inequality. Moreover, by the proof of Theo-
rem 2.1 in Section A.2, we know U(a) /o (a) 2, N(0,1). Thus when n,p — co
and € — 0,
‘Puz—i-e - Puz—e|
<NPuzge — Pz +€)| + |[P(z +€) — P(z — €)| + |Puz—e — P(z — €)| + 0(1)
— 0.

<
<

Second, we know |P, y¢—Py.1P,,| — 0by (B.2.46). Last, we show | Py, Py, —
P,.P,,| — 0. By the proof of Theorem 2.1 in Section A.2, we know U(a)/o(a) D,
N(0,1), {U(a) —U(a)/o(a)} 0, and U(a)/o(a) EEN N(0,1). Thus when
n,p — oo and € — 0,

|Puz+ePyp - PuzPyp|

S ‘Puz+e_Puz|
< |Pupve —P(z+ )|+ [®(2+€) — @(2)] + |Puz — ®(2)| +0(1)
— 0.
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In summary (B.2.52) is proved.

We next prove (B.2.51) similarly to the proof of (B.2.52). Specifically, we
write
U(a)
o(a)

< z) — P(nUQ(oo) > yp)P(Z;EZ) < z)

~—

‘P(nUQ(oo) > Yp,

:’PzO_PyOXPuz‘a

where we define P,o = P(nid?(c0) > yp, Z((Z)) > 2) and Py = P(nU?*(c0) >
Yyp). Note that

’PZO - PyOPuz’ S ’PzO - sz—e‘ + ‘sz—e - Py—ePuz| + ‘Py—epuz - PyOPuz‘a

where
Pae=P(S2>w = o(a) >2) Pre=P(Lt>wc),
M U(a)

M,
sz+6:P<7n>yP+6a >Z>, Py+E:P(Tn>yP+6>'

o(a)
To prove (B.2.51), we will show |P,0—P.y—c|, | Poy—e—Py—ePuz|, and |Py_cP,.—
Py P,| all converge to 0 respectively.

First we show |P,g — P,y—¢| — 0. Note that W, L. 0 where W, =
(n?U?(o0) — M,,)/n by the proof of Theorem 3 in [4]. Then for any ¢ > 0,
P(|Wy| > €) = 0. Since Py — P(|Wy| > €) < P.g < P,y + P(|Wy] > ¢),
we have |P,g — Poy—c| < |Pay—e — Poyqe| + 0(1). Furthermore,

‘sz—e - sz—l—e’
S ‘szfe - nyepuz| + |Py76Puz - Py+epuz| + |Py+epuz - sz+6| — 07
where the last equation follows from (B.2.52) and |Py_c — Pyyc| — 0 when
e — 0. Second we know |P,,_ — Py_cP,.| — 0 by (B.2.52). Last we show

|Py—cPy. — PyoPyz| — 0. In particular, as Pyi. — P(|W,| > €) < Py <
Py_c + P(|W,| > €) and P(|W,| > €) — 0, we have

|Py—cPuz = PyoPuz| < [By—c = Pyol < [Py—c = Pyie| + 0(1) = 0.
In summary, Lemma A.3.3 is proved.

B.2.6.2. Proof for m > 1. Note that W,, = {n?U?(c0) — M,}/n 2,0 and

U*(a,) = U(a,) —Ulay) Ly 0foreachr=1,...,m as argued in Section A.3.
Therefore when m is finite, the arguments above can be applied to prove
Lemma A.3.3 for m > 1 similarly.
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B.3. Lemmas for the proof of Theorem 2.4.

B.3.1. Proof of Lemma A.4.1 (on Page 8, Section A.4). We first prove

Vui(a)/E{Vy1(a)} S 1, and it suffices to prove var{V, 1(a)}/E*{V,1(a)} —
0. By the notation defined at the beginning of Section B, we have

var{V, i(a)}
= E{V2,(a)} —E*{V,1(a)}

(2a!)? T o 9 9 o 2 2 2 2 @
= Py > [E<Hf"mlf”z‘t,jﬂ;t,jgf”zt,h) - {E($17j1$1:j2)E(x17j3$17j4)} }
@ i,ieP(n,a); t=1
1<ji#52<p,
1<js#ja<p

To evaluate var{V, 1(a)}, we consider the summed term in var{V, 1(a)},
that is,

a
2 2 2 2 2 2 2 2
(B.3.1) E ( 11 %,jlxit,jzxzt,jgxzt,ﬂ) —{E(a1 5,21 5, }{E(21 gy 71 5,) 1
t=1

When {i} N {i} =0, (B.3.1) = 0. We then know that (B.3.1) # 0 only when
{i} U {i}| < 2a — 1. Along with Condition 2.1, we have

[var{V,1(a)}| < Cpln~tn2e~1

which induces var{V, 1(a)} = O(p*n=2¢71). By (B.1.24) and (B.1.29), we
know E{V, 1(a)} = ©(p?>n=?). It follows that var{V.1(a)}/E*{V.1(a)} = 0
as n — oo.

We next prove Vy,2(a)/E{V, 1(a)} L. By the Markov’s inequality, it
suffices to prove E{V?, 5(a)} = o(1)[E{Vy,1(a)}]*. AsE{V,1(a)} = ©(p*n~"),
it is sufficient to prove E{V372(a)} = o(p*n=2%) below.

We first derive the form of V, 2(a). In particular, when a =1,

Vu2(l) = V(1) =V,1(1)

1 = 2 — 2 2 2
= 3 > > {(Cvz‘,jl = Zj,) (@i, — Tjp)” — xi,jlxi,jg}

1<j1#52<pi€P(n,1)

2
= % Z Z Z Csy,r1,82,m H{ —; 5, Tjy,) (fi)rk}a

1<j1#j2<p 1<i<n s1+r1=1, k=1
so+ro=1
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where Cs, , s,,r, 15 SOome constant and we use

_ 2 = 2 2 2
(Tigy — Tigi)" (Tigo — Tija)” — T5, 254,
2 - 2 \(02 _ 2
= (@7, — 22 Tj +T5,) (2] 5, — 220 joTj, + T3,)

{(=20i5,2;) (@,

D

s1+ri1=1, sg+ro=1

— X

2 22
ij1lig2

e o)

Following this example, we similarly give the form of V, s(a) for general

a > 1. Given tuple i € P(n,a), for k = 1,2, let i")

tuple of i with length a —

(a—7)
r, and define S(i,a — 7) to be the collection

represent a sub-

of sub-tuples of i with length a — 7. Then for a > 1, we write V, 2(a) =

21S81+T1Sa,1§82+7’2§a TSlvrl,str? » where

D

D

Tsl ;11,582,712

Csl 11,582,712

(Py)?
@7 1<ii#ge<p ieP(n,a);
iE’Z)_T JES(La—ry): k=1,2
2 a—Ty
% H {(_—. Sk+27”k: H xT. (k) H (ngk) Jk)2}.
k=1 tk:5k+ k
When a is finite, it suffices to prove E(TZ . ., ..) = o(p*n~2%). Note that
2
E(T5, 1 s0.r2)
- & T > oo«
pn)4 L B §1,71,52,72
( a) 1SZ'17£Z'2SP i,ieP(n,a);
1S]17£.72Sp EI;) - )GS(i,lZ—’I’k)I k:1,2;
k e
1Ea)_rk)€S(1,afrk):k:1,2

2 Sk a—ry

Rt || 11 ’}

T, T35, T (k) . Ta(k) < T (k) . Ta(k) = )
{ H Tk ( i) gk i) ]k) ( it Zglz)v]k)

k=1 tkil tk:Sk—f—l

Recall that Z; = " | z; j/n. We have

2
E(Ts, 1 02,12)
(a!)? )
o (Pn)4n2i:1(23k+4rk) Z : Z $1,71,52,T2
a 1< #j2<p i,ieP(n,a);
<j jo < .
1<ji#525p Ei) Tk)GS(l,afrk):kzlz;
k 3
lEalTwES(l,a—rk):k:l,Q
(k) 5(k) (k) (k). 7. _
X Z T{l(a_rk),l(a_rk),m ,mik=1,2},

m®) m*) eC(n,sp+2r); k=1,2
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where C(n, s + 2r) follows the notation at the beginning of Section B and

T{igk) HO ;m® m®) k=1 2]

a—rg)’ (a—ry)

2 Skp+2rg Sk a—ry
= E{H H Tm> i Lo 3 Hx.k.x7k~, H x.k.$7k~.2}.
( My Tk mfk73k> ( Z,Ek)dk zﬁk),yk) ( ng)vjk zﬁk),yk)
k=1 szl tr=1 tr=sr+1

Since E(z; ;) =0, T{igs)_rk),igs)_m), m®) m®*); k=121 # 0 only when

~ (k) .(k (k)
Utm®yu{m™ o il yu i,

2
.(k) . (k)
U {l(afrk)} U {l(a—rk)}
k=1

k=1
2
< Z(sk + 2r).
k=1
Since igs)_rk) and i(s)_rk) are sub-tuples of i and i € P(n, a), |U7_, {ig?_rk)} U

{ia )} < {5} U {1} < 20. Therefore,

2
< 2a+ Z(sk + 2rp).
k=1

2

~ (k) . ~ (k)
U{m®u{m ™ yu il yufi,,, )
et (a—rk)

(B.3.2)

By (B.3.2) and the boundedness of moments in Condition 2.4, we have

§1,71,52,72

E( 2 ) _ O<p4n—4a—2i:l(25k+4rk)+2a+2i:1(sk+2rk)>

Y

_ O(p4n72a72i:1(sk+2rk)) — O(p4n72a)
where we use Zizl(sk +2rg) > 1.
B.4. Lemmas for the proof of Theorem 2.5.

B.4.1. Proof of Lemma A.5.1 (on Page 9, Section A.5). To show var{U(a)} ~
var(Tyq1.1), it suffices to prove var(Tya11) = O(p?n=?), var(Tya12) =
o(p?n=?) and var(Tyq2) = o(p?n~%). The following three sections B.4.1.1-
B.4.1.3 prove the three results respectively.

B.4.1.1. var(Tyan,1) = O(p*n™%).  AsE(Tyan11) = 0,var(Tyana) = B(TH,14),
and we have
a

—2
var(Ty,a,1) = > (P7) > E( 11 xik,jlﬂfik,jzxzk,jgﬂfak,j4)-

(41,72),(J3,J2)€TG i,ieP(n,a) k=1
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Similarly to Section B.1.1, E(J]¢_; iy ) # 0 only when

{i} = {I} Therefore,

var(Tye,1,1) = Z (P~ tal x { <Hac1 ]t>} .

(41,32),(J3,J4)ETG

Lig,ja L5y 53 L ja

By Condition A.1, as (jl,jg), (j3,j4) S Jz,
(B.4.1) E($1,j1$1,j2501,j3$1,j4) = K1 (Uj17j30j2,j4 + 0]'17]'40']'27]'3)-

We next evaluate (B.4.1) by discussing three cases on (j1, j2, j3, j4). First, if
[{j1, 42} N Gz, da}| = 2, (B.4.1) = K105, j1055.4 = O(1) by Condition 2.1.

4
2. {E(Hﬂflm)} X iGuaintsanti=2y =2 Y (F104,50j052)"

(J1,2), t=1 (J1.42)€J4
(43,d4)€JG

Second, if |{j1,72} N {j3,ja}| = 1, we assume without loss of generality
J1 = js and jo # ja, (B.4.1) = K10y, j,04,,s, Which is nonzero only when
(j2,74) € Ja, and then (B.4.1) = O(p®). By the symmetricity of the indexes,

4
Z {E(Hlxl’jt> }a X L1{j1 423N Gs.da} =1}
t=

(j17j2)’(j3’j4)€‘7104
< C ) p"=0)plJalp"

1<5<p; (§2,34)€J A

Third, if [{j1, j2} N {js, ja}| = 0, we know ji # jo # j3 # ja, and (B.4.1) # 0
only if (j1,73), (j2,ja) € Ja or (j1,7a); (j2, ja) € Ja. Then (B.4.1) = O(p**).
By the symmetricity of the indexes,

4
Z {E<1_le1’jt> }a X 11{j1.42}N{ds.da}|=0}
t=

(jl’j2)a(j3»j4)€J,C4
< C > p* = 0(1)|Ja|?p?.
(j17j3)7(j29j4)€JA

In summary, we know

Var(TU@,Ll) = ZQ!K%(Pg)_l O’gl,ﬁo’?%h

(J1,92)€JG
+O(W)p|Jalp®n=* + O(1)]J4*p**n
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Since we assume |.J4|p? = O(pn=%2), |Ja| = o(p?) and |J§| = O(p?),

var(Tya1) =~ 206 (PY) ™ > (011105.5)"
1<j1#j2<p

which is of order ©(p*n~=?).
B.4.1.2. var(Tya12) = o(p>n=®). In this section, we prove var(Tyq1.2) =

o(p?n=). As Ty 12 = Z(J‘lm)EJﬁ; Yoe 1 K(c, j1,j2), by the Cauchy-Schwarz
inequality,

var(Tyq,1,2) < C X Zvar{ Z K(QJlJZ)}

c=1 (41,32)€J4
where C' is some constant. As a is finite, to prove var(Tyq12) = o(p*n™=%), it

suffices to prove \/zaulr{z(]-m-Q)le1 K(c,j1,72)} = o(p*n=?), foreach 1 < ¢ < a.
Note that E{K(c, j1,72)} = 0 and then

var{ Y K(c,jl,jg)}zE[{ > Keani) |
(j1.52)€J5 (J1,d2)€J4
=F*a,c) Y Qeliji,ja.1,js.a),

i,ieP(n,a+c);
(41,92),(43,Ja) €T

where we define

a a+tc

a—c
Qc(i, j1,J2,1, 43, 51) = E [ H Lig,j1Tit,j2 H Lig,j1 H Lit,ja
t=1 t=a—c+1 t=a+1

a a+ca

a—cC
X ng{dém%{,jzl H xzm’?’ H ﬂigt_’jJ.
i=1

t=a—c+1 i=a+1
As F?(a,c) = O(n=2(@+9))  to finish the proof, it remains to prove
(B42) Z QC(ia j17j27 ia j37j4) = O(n2(a+6)_ap )

i,ieP(n,a+c);
(41,72),(J3,J2) €T

We note that E(z1;) = 0 and E(z15,715,) = E(r1j,715) = 0 for
(j1.J2), (Js, ja) € J§. Similarly to Section B.4.1.1, Qc(i, j1, j2. 1, js, ja) = 0 if
{i} # {1}, and

. _ ~ _ a+c
BA3) D Lgqmaisarn = 2. -y = 00",
i,ieP(n,a+c) iL,ieP(n,a+c)
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To prove (B.4.2), it remains to prove for given i,i € P(n,a + ¢),

(B44) ’ Z QC(i)j17j27i)j37j4) = O(p2)

(41,92),(J3,J2)€TG

We next prove (B.4.4) by discussing the value of Qc(i,jl,jg,i, J3,j4). To
facilitate the discussion, for given i,i € P(n,a + c), we decompose the sets
{i} and {i} into three disjoint sets respectively, defined as

{i}(l) = {ila e 7/ia—c}a {i}(2) = {ia—c—i-la sty ia}’ {i}(3) = {ia-‘rlv s 7ia+c}7
{i}(l) - {%15 LI 7;’:(1—6}5 {i}(Q) - {:L:a—c-i-la LI a;’:a}) {i}(3) - {;’:a-‘rlv L) 7%a+c}a

which satisfy that {i} = U}_,{i}¢) and {i} = U}_ {i} o)
When ¢ < a — 1, {i}(1) # 0. We consider an index i € {i}(;), and discuss
four different cases. First, if i & {;},

Qc(i7j17j27iu j37j4) = E(xi7j1xi,j2)E(Other terms) = 07

where the last equation follows from E(z;j, ;i ,) = 0 when (ji,j2) € Ja.
Second, if i € {i} ),

Qc(i, 1, j2.1, j3, ja) = E(@i j, i j,wij, ) E(other terms) = 0

where the last equation is obtained by Condition A.1. Third, if ¢ € {i}(3),
similarly by Condition A.1, we also know

(B45) Qc(i,jl,jg,i, j3,j4) = E(xi,jlzvaxi,j4)E(other terms) =0.
Fourth, if i € {i}(l),

<B46) Qc(i,jl,jg,i j37j4) = E(xmlmimxi’hxim)E(other terms).

Under Condition A.1, as E(z; % j,) = E(2i j,2ij,) = 0 when (j1,j2) and
(j37j4) € pr

4
E( II= 1,jt> = K1 {E(ﬂfz',jl Ti s ) B (@i s i) + (@i %35, ) E(2i 2 %3 j5) }
t=1

In addition, when ¢ = a, {i}1y = 0 but {i}) and {i}) # 0. We next
consider an index i € {i}() without loss of generality. Following similar
analysis, we know Qc(i,jl,jg,i7 J3,ja) = 0 when ¢ ¢ {I}
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By symmetrically analyzing the indexes in i and i similarly as above, we
know that Qc(i, j1,j2,1,43,4a) # 0 only when {i}) = {i}(1) and {i}@) U
{i}(g) = {1}(2) U {1}(3) When Qc(i,jl,jg, i,jg,j4) # 0, suppose 1 = ‘{1}(2) N

{i}()| then [{i}@)N{i}e3)| = c—r, {i} 3N {it )| = c—r, and [{i} 3N {i} )| =
r. It follows that

(B.4.7) Qc(i, j1, j2. 1, j3, ja)
4 a—cCc r
= {E ( 11 xl,jt) } {E(@15,21,5)E(21,5,71,5,)
t=1
X{E (21,5, 21,5 E(21,4571,55) 1"

4
a—c
= {E(le,jt)} (051,530 2ja) (0j1,ja0a )
t=1

To prove (B.4.4), we next examine the value of (B.4.7) with respect to three
different cases of (j1, j2, j3, j4)-

Case (1) If |{j1, 72} N {J3,Ja}| = 2, it means that {j1,j2} = {J3,74}. As-
sume, without loss of generality, that j; = js and jo = j4. Then (B.4.7) =
O1) (04,5 aj27j2)“_c+r(a]2»1 )" which is nonzero only when r = cas 0;, ;, =
0. By the symmetricity of j indexes and the boundedness of moments in
Condition 2.1,

Z Qc(i)j17j27i>j37j4) X 1{‘{j17j2}ﬁ{j3’j4}|:2} S Cp2

(41,92),(J3,J2)€TG

Case (2) If |{j1,72}N{J3, ja}| = 1, we assume without loss of generality that
J1 = js but ja # ja. Then (B.4.7) = O(1)(0y,j,05,ja)* " (01,j1 051 .a) "
which is also nonzero only when r = c. By the symmetricity of j indexes
and Condition 2.1, we have

Z Qc(i, J1, J2, 1, 33, Ja) X 151 jodn{s.ja} =1}
(J1,J2),(J3,Ja)€TG

< C‘ > (Ujl,j10j2,j4)a‘ < > O(p") = O(p|Jalp®),

(41,32),(J3,J4)ETG 1<5<p, (§2,54)€Ja

where we use Condition 2.5 that o, j, = p when (j2,j4) € J4 and 0j, j, =0
when (2, j1) & Ja.
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Case (3) If |{j1,72} N {J3,ja}| = 0, it means that j; # j2 # js # ja- Then

(B.4.7) = 0(1)(Uj1,j30j2,j4 + Uj1,j4aj2,j3)aic(o'jhj:so-jzdzx)T(Ujhjzlajz,j:a)cjr’

which nonzero only when (ji, j3), (ja, ja) € J§ or (ji, ), (ja. ja) € J§. By
the symmetricity of j indexes, Condition 2.1 and Condition 2.5,

Z Qc(i, J1, 92,1, 73, J4) X L{|{)1 jot (s, ja}|=0}
(41,42),(J3,J4) €T

<Y =00l
(41,33):(J2,54)€TG

In summary,

Y Qe dinds)| = 00+ pldale" + 1P = o).
(41,42),(43,4a) €4

as we assume |J4|p® = O(pn~%?).

B.4.1.3. var(Ty,a2) = o(p?n~?). Similarly to Section B.4.1.2, by the Cauchy-
Schwarz inequality,

(B.4.8) var(Ty.2) < C Z var(Tv,a,2,¢),
c=0

where Tyrg20. = Z(jth)eJA K(c, j1,j2). To prove var(Tyq2) = o(p*n™?),

it suffices to prove var(Tpq2.) = o(p?n=?) for 0 < ¢ < a. Following the
notation in Section B.4.1.2, we have

E(T&a,Z,c) = FQ(G’?C) Z Qc(ivjhj%i j37j4)-
i,ieP(n,a+c);
(41,32)5(J3,J4)EJT A
When 1 < ¢ < a, E(Tya2,) = 0; when ¢ = 0, E(Tua20) = X5, j»)
Then

a
€Ja T4z

(B.4.9)  var(Tyaz.) = F*(a,c) > Qu(i, j1, g2, 1, g3, ),
i,iE’P(n,aJrc);
(J1,52),(J3,72) € a
Wher? we deﬁnq(zc(i?jlvj27i7j37j4) = Qc(i7j17j27iaj3aj4) when 1 < ¢ < a
and QC(i7j17j27 i7j37j4) - Qc(iaj17j27 iaj37j4) - (Uj17j20j3,j4)a when ¢ = 0.
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To prove var(Tyaz2.c) = o(p?n=7) for 1 < ¢ < a, we next examine the
value of Q.(i, j1, j2,1, j3, j1). For given i,i € P(n,a +c), we define {i}; and
{i}(l) for I = 1,2,3 same as in Section B.4.1.2. Consider an index i € {i} ).
Ifi ¢ {i},

QC(iajlan,i j37j4) = E(xi,jl)E(Other terms) =0.

If i € {i}(1), by Condition A.1,

Qc(i,jl,jg,i, j3,j4) = E(mmlxi,j3:ci7j4)E(other terms) = 0.

Similarly, for an index i € {i}(3), we have Q.(i, j1, jo, 1, j3, ja) = 0 if i & {i}
or i € {i}(;). Analyzing the indexes in {i} symmetrically, we know that
Qc(i, j1, J2, 1, g3, ja) # 0 only when {i}(5) U {i}(s) = {i}(2) U {i}(3)- Suppose
i) i}y | = . then [{i} g N{i} | = c—r, {i} 1 {i}z)| = e—r, and
i} ) N{i} ()| = r. Moreover, we let [{i})N{i})| =t. then 0 <t. <a—c.
It follows that

(B410) QC(i7j17j2aiaj37j4)
4 te a—c—te
= {E(me)} {E(xz‘,jlﬂ?z‘,jg)E(%‘,jng‘,y‘4)}
t=1
XAE(@ijy i gy ) B (4, i, ) YA gy a5 )E(Ti gy i 55)

To examine (B.4.2), we next analyze (B.4.10) with respect to different ¢ and
t. values, where 0 < c<a,0<r<c,and 0<t.<a—c. 5 }
When ¢ = 0 and t. = top = 0, it means that {i} = {i}«), {i} = {i}q),

{i} N {i} = q)ﬂ and Qo(iaj17j2a§7 j37j4) = (Ujl,j20j3,j4)a. Then
(B.4.11)
> Qoli,jr, G2, s da) X Lty

i,iep(n,a);
(41,72),(J3,J4)E€J A

= > {Qo(i,jl,jz,ija,jz;) - (Uj1,j20j3,j4)a}1{t0:0} =0.
i,iEP(n,a);
(41,32)5(J3,Ja) €T A

In the following, it remains to consider the cases when ¢ > 1 or t. > 1 in
(B.4.10), which are examined by discussing three cases (j1, jo, js, ja) below.

Case (1) If |[{j1,72} N {js,ja}| = 2, we assume without loss of generality
that ji = js and j» = js. Then by Condition A.1, E(z1 ;21,21 j5%1,5,) =
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K1 (20-]2'17jg + Ujlvjl 0j27j2)7 a'nd
B.4.10) = 2052 g e 2lamete) o e \2(c—)
( -k ) - {”1( 041 ,jo + 0317]10]2732)} Ujl,jz (0-317]10-]27]2) (Ujhh) :

Case (1.1) For ¢ =0 and 1 < t. =ty < a, we have |[{i} U {i}| < 2a — to,
and

(B-4.12) >, Qolidn o g, i) Lm0t Za (o}l daH=2)
LieP(n,a);
(J1.J2),(J3,J4) €T A

a
C> nP0 N oy, 5, POT202 L+ 00l + Lo s [

<
to=1 (J1,42)€Ja
a
= Y ORI ] x (2 + g2,
to=1

where we use Condition 2.5.

Case (1.2) For 1 < ¢ < aand 0 < t, < a—e¢, we have |{i}U{i}| < 2a—t,,
and for each c¢ given,

(B.4.13) Z Qc(i, 1, 2, 1, 3, Ja) {1 <t <ame, (1o} sria} =2}
iviep(nva‘%
(J1:92)(d3,54) €T A

2a—t. 2(a—c—t
< C E n ¢ E ’Uj1,j2|( °)
0<r<c; (J1,d2)€Ja
0<t.<a—c

)

X ’20J2'm'2 + 0j1,j1052,52 ‘tc|aj1,j1‘7j2,j2 \T|Uj1,j2 ’2(07T

— Z 0(1)n2a7tc|JA|{p2(a7r) + p2(a7tcfr)}‘
0<r<g¢;
0<t.<a—c

Case (2) If |{j1,72} N {js,ja}| = 1, we assume without loss of generality
that jl = j3 and j2 7& j4. Then by Condition A.l, E(:I?leﬁﬂl’jQIl’ngElyﬂ) =
K1 (20j17j20j17j4 + Jj17j10j27j4)-we then know

(B.4.10) = {H1(20j17j20j17j4+Uj1,j1aj2,j4>}tc(Uj17j2aj17j4)aicitc

X (Ujhjl Uj21j4)r(aj1 349 41,52 )
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Case (2.1) For c=0and 1 < t. =ty < a, we have |{i} U {i}| < 2a — to,
and (B.4.10) # 0 at least when (j1, j2), (j1, 1) € Ja. Then

(B-4.14) >, Qolidn o g, i) Lm0zt a2} lisdaH=1)
LieP(n,a);
(J1,52),(J3,54) €T A

a
¢ Z n?e=to Z <’Uj17j2‘7j17j4|a + |Uj27j4’t0‘0j1,j2‘7j1,j4|a7t0)

to=1 (41,92),(J1,Ja)E€J 4

IN

— > ot a5, [ 1al (0% + 7).
to=1

Case (2.2) For ¢ >1and 0 < t. < a — ¢, we have |{i} U {i}| < 2a — t..
(B410) 7& 0 when (j17j2)7(j1aj4) € Jy or (j2>j4) € Ju. For given ¢, the
range of (B.4.10) is between O(p??~t=") and O(p?*~").

(B'4-15) Z Qc(ivjlaj%iv j37j4)1{Ogtcga—c,|{j17j2}ﬂ{j37j4}|:1}
iieP(n,a);
(91,52),(d3,da) €T A

= > oWnTr max || X [Jal(p2 T+ p2 ),
<ji<p

0<r<c;
0<t.<a—c

Case (3) If |{j1,j2} N {j3,7a}] = 0, we know j; # jo # j3 # ja. Then by
Condition A.1 and 2.5, E(xl,jlxl,jle,jgml,j4) = K1 (O’jl’ho‘jg’j4 +Uj1,j30j2,j4 +
Ti1.iaTias) = O(p?). Therefore, (B.4.10) = O(p*?).

Case (3.1) For c=0and 1 < t, =ty < a, we have |{i} U {i}| < 2a — t,.

(B416) Z QO(ivjthaivj37j4)1{5:071§t0§a7|{j17j2}m{j37j4}‘:0}
i,ieP(n,a);
(91,52),(d3,J4)€J A

a a
< CY Y ool =) 0P IAPO(0).

to=1 (j1,52),(43,54)€J A to=1

Case (3.2) For 1 < ¢ < a and 0 < t. < a, we have |{i} U {i}| < 2a — ¢,.
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Then for given ¢ > 1,

(B.4.17) Yo Qcligiden i ds ) Loste<a el (1N (s i =0}
i,iEP(n,a);
(41,32)5(J3,Ja)EJ A

2a—
c Y wte > 101,52 0 s a |

0<r<c; (91,52),(j3,da) €T A
0<t.<a—c

= 3 IO,

te=0

IA

where we use the symmetricity of indexes.

Combining (B.4.12)—(B.4.17) above, and by (B.4.8) and (B.4.9) and F'(a,c) =

O(n= (919 we know
(B.4.18)  var(Th 42)

. 1 a a—
> O() | al x {p™ + g2}

to=1

+> 3> 0)|J4l et [p2a") 4 plate=r)y

c=1t.=0r=0

E 2 2a—t
+t 1 nto 1r<naX ‘J31| X |Jal(p™ + p™*7™)
0=

a
FY Yy on e s [ Al + )

c=11t.=0r=0
a a
+ 300 4Py 2”220 AP
to=1 c=1te=

We then examine the six summed terms in the right hand side of (B.4.18)
and show that they are o(p?>n~%) respectively.

(1) For the first term in (B.4.18), as |J4|p® = O(pn—?),
nT|Jalp* = nTJa| T A = o(pPn ),
and
0|7 4 p2010) —pto| Ty [1=2at0)/a(| 1 | a)2(a~t0)/a
—O(1)n 0| J |20/ (py0/2)2a~10) /o
—O(1)p2n =) T a1 H0/9 (| 14| /p2)01% = o(pPn9),
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where we use 1 < tg < a and |J4| = o(p?) in the last equation.
(2) For the second term in (B.4.18), as 7 < ¢ < a and |Ja| = o(p?),
pette)| g1 20 _p~(ette)| g 11=2a=m)a(| 7 | po)2a=r)/a
—O(1)p2n—atT=2ete| g, (m 14T a(| 14| /p2)re
=o(p*n”"),
and similarly as r <c<a, tc.+r <aand c > 1,
= (2erte) | g 4| pRla—ter)
—O(1)p2n~ttetr=2e=te| g | ~LH(tetr)fa(| 74| /p2)(tetr)fa
—o(p*n~%).

(3) For the third term in (B.4.18), as 1 < ty < a, and |J4|p® = O(pn=%?),

~ maxi<<p|Jj

0 max |.J;,] x |Jalp® T4 = ofpn~),

1<j1<p N nto] J |
and
n=o pax | Jj,| % [Ja|p? "0
= 00 a5 x| E (| B0 e
<n<

= O(1)p*n =" 10/? max [T | [T |70/ (@) pto/

1<5: <
— o(1) P’ maxic <p|Jj| ( |4l maxi<j, <p \Jj1\>to/a
natto/2 | J 4l maxi <, <p |J;, | D
2 _
. P max1§j1§p|Jj1|)1 to/a(maX1§j1§p|le|)to/a o 9 —a
= oW gan (7, » —own.

where in the last equation, we use 1 < tg < a, maxi<j,<p |J;,| < |Ja| and
maxi<j <p |Jji | < p-
(4) For the fourth term in (B.4.18),

(20+tc) max ‘J HJA’an te—r

1<5: <
n—(2ette) 1-(2a—te—7)/a (Qa—to—1)/a
2 [l al (710"
- O(1)ﬁ 1 maxi <, <p |/} | (]JA|> (te+r)/a
na p2ctte/2—r/2 |JA‘ »
= O( )ﬁ ! (maX1<Jl<p [Ty |) tc+r)/a<maX1<]1<p |Jj |>(t6+r)/a
ne p2ctte/2—r/2 | .

= o(p*n~"),
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where we obtain the last equation by noting that t. +r < a, r < ¢, and
¢ > 1. Similarly, we have

n~ e pax | Tl Tal ™
_ (Uﬁ 1 (maX1§j1§p \lel)l‘r/“<ma><1s]'13p |Jj1!>7"/“
na n20+tc—r/2 |<]A| D
=o(p*n™").

(5) For the fifth and sixth terms in (B.4.18), as |Ja|p® = O(pn~%?),
to > 1 and ¢ > 1, we know

|2 2a

| A =o(p’n~?), and Seris |Ja2p%* = o(p*n™2).

B.4.2. Proof of Lemma A.5.2 (on Page 10, Section A.5). The proof is
similar to Section B.1.2. In particular, Lemma A.5.2 shows that var{{/(a)} ~
var(1y,q,1,1). By the Cauchy-schwarz inequality,

cov{td(a)/o(a),U(b)/o(b)} = E{Tva11Tvp11}/{o(a)a(b)} + o(1),

where we use E(Ty4,1,1) = E(Typ.1,1) = 0. For two integers a # b, we next
prove E(Tyq,1,17u5,1,1)=0. Specifically,

E(Tva1,1Tup1,1)
b

_ n pn\—1
- (Pa Pb ) Z (H Liy,j1Lig,jo H ’Lk,jg zk,j4)

ieP(n,a),icP(n,b); k=1
(41,52),(43,d4)€JG

Since a # b, {i} # {i}. Assume without loss of generality that a < b and
index ¢ € {i} but ¢ € {i}. Then

b
(H Tiy j1 Lig o H i s 1k,34> = E(z1,j,21,5,) X E(other terms) = 0,
k=1

where we use the o}, j, = 04,4, = 0 for (ji1,72), (J3,ja) € J4. Therefore
cov(Tu,a,1,1, Tup,1) = 0 and the lemma is proved.
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B.4.3. Proof of Lemma A.5.3 (on Page 10, Section A.5). We prove Lemma
A.5.3 similarly as in Section B.1.5. By the Cauchy-Schwarz inequality, for
some constant C,

1<k<n;1<ri,ro<m

n
var( g Wik> < Cn? max var(Tk.a,, ar, )
k=1

where c(n,a) = [a x {o(a)P?}~!]? and for two finite integers a; and as,
Th.ar,00 = Eb—1(An ka1 An k,ap)- In particular, when k < max{ai, a2}, Tk 4, 00 =
0; when k£ > max{ay,as},

Tk7a1,a2 = Ek—l (An,k:,a1 An,k,ag)
2

_ > {TLetm.a }1/2 X(k, i, o1, jor - 1 = 1,2)
1

iOeP(k—1,0,-1),1=1,2; =
(J1.,42),(J3,J2) €T

with
2 a;— 1
X(k,i%, jor—1,ju 1 1=1,2) = (Hﬂik,ﬂ) zl_[ 1_I1 T i T )
1=

To prove var(d_ _; Ter) — 0, it suffices to prove var(T,a,, a,,) = o(n~2) for
any 1 < rq,ro < m. Without loss of generality, we consider two finite integers
a1 and az, and prove var(Tk 4, 4,) = 0(n™2) when max{ai,as} < k < n.

To prove var(Ty g, .q,) = o(n~2), we decompose Tha1,00 = 2}1\4:2 Tk a1,a0,(M)>
where

Th.a1,a2,(M) = Z {4120 da Y =M}
iVeP(k—1,a;—1),1=1,2;
(J1,J2),(J3,J2)€TG

2
1/2
X {HC(?’L,CL[)} X(k7 i(l)7j2l—1)j2[ S 172)

=1
Here 2 < M < 4 because 2 < |{j1,j2} U{Js,ja}| <4 when (51, j2), (43, j4)
J4. By the Cauchy-Schwarz inequality, to prove var(Ty 4, 4,) = 0(n~ ), it
suffices to prove var(T}, alm,(M)) = o(n=?) for M = 2,3,4. For easy presen-
tation, we let ag = a1 and a4 = a9, and then

T2 = E 1 (PO

k,a1,a2,(M) {l{]1,Jz}U{J37J4}|=M7}
iOeP(k—1,a,-1),1=1,2,3,4; [{75,d6 }{ 57,98 =M
(91,32)5(J3,44),(d5,36), (57,98 ) €T G

2
X{ Hc(na CL[)} X X(k7i(l)>.j21—laj2l = 1727374)7
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where

X(kyi0, jor 1, jor : 1 =1,2,3,4)
4 8
- E<Hwk’jt)E<ka’jt) (H H J2l 1 lt 7J2z)
t=1 t=5

By Var{Tk,al,aQ,(M)} = E{Ti}al,a%(M)} - {E(Tk,al,az,(M))}za

var{Ty o, as,(00) }

S

= > 1 {|{j1,jz}u{jg,j4}|=M,}{ o(n, ‘”)}

iOeP(k—1,a,—1),1=1,2,3,4; {7556 YU{d7,d8 }I=M
(41.32),(J3,44),(d5.76), (47,98 ) €T

x [E{X(k, O Gor 1 g1 =1,2,3, 4)}
—E{X(k, O Gy eyl =1, 2)} X E{X(k:, TORF I Ny 3,4)}],

=1

where we similarly define

al—l

4
() - .
X(k, 1Y, jor—1, jor : 1 = 3,4) (H$k3t> 11 i T )

t=>5 =3 t:l

To prove var(Ty, 4, a,,(01)) = o(n~2), we examine the value of

(B.4.19) E{X(k,i(”,jm,l,jz, = 1,2,3,4)}
*E{X(kvi(l),jzl—hjm = 172)}E{X(k, 10, jor_1, joy 1 1 =3, 4)}
We next show that when (B.4.19) # 0, the following two claims hold:

(B.4.20) Claim 1: ({iY} U {i®PHn {i®yu {i®}) #0,
Claim 2: | Ul {iV}] < ay + a9 — 2.

Claim 1 can be straightforwardly seen from the definition (B.4.19). We then
prove Clazm 2. Note that E{X(k, i, jo_1, jor : 1 = 1,2,3,4)} # 0 only when
| U, {i0} <ay +ag—2 followmg similar analysis to Section B.1.5.2. In
addltlon as Ojrjs = Ojsja = 0 when (jl,jg),(jg,j4) € J4, we know that
E{X(k,i®, jo 1,72 : | = 1,2)} # 0 only when {iV} = {i?}; as oy, j, =
Tjrjs = 0 we snnllarly know that E{X(k,i), joj_1,jo : | = 3,4)} # 0 only
when {i®®} = {i®M}. Tt follows that if |UL, {iV}| > a1 +az—2, (B.4.19) = 0.
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Thus to evaluate var{Ty, ;, 4, (1)}, it remains to consider (B.4.19) under the
cases when ({iDJU{iPHN{EGTU{i?}) # 0 and U}, {iV}| < a1 +az—2.

Given the two claims above, we examine var{T}, o, a, (ar)} for M = 2,3,4
respectively. To facilitate the discussion, we decompose var{T}, o, q4,.(a)} =
var{T} 4, a,,00) } (1) + Var{Ty o, as,(a1) } (2), Where

Var{Tk,al,aQ,(M)}(l)

= Z 1{|U?1{i(l)}—a1+a2—2;} Hc(n,al) X (B.4.19),

iOeP(k—1,a,—1),1=1,2,3,4; {1,720 {gs.da}|=M; o I=1
(41,92):(J3:34) (45,36 ), (47,78 ) €T 4 [{45.76 }U{j7.is} =M

and

Var{Tk,ahazy(M) }(2)
2

- > 1 {Ml {i(l)}@lm_Q;} [1cn a) x (B.4.19).

i0eP(k—1,a,-1),1=1,2,3,4; 1.2 Viss.ga}|=M; ¢ 1=1
(91,42),(33:54):(55.36): (J7.98) €T {4556 YU{j7.ds =M

We next consider M = 2,3,4 in the following Cases (1)—(3), respectively.
We assume without loss of generality that a; < as in the following.

Case (1): When M = 2, by the definition of T} 4, 4, (ar), We know
{J1.d2} = {3, a}, {Js,J} = {s7,Js}, and [{jp : ¢ = 1,....8}] < 4. It
follows that var{Ty q, 4., }(2) = O{T T, c(n, ap)p*n®@+e2=3} = o(n~2)
by the boundedness of moments in Condition 2.1 and the definition of
Var{Tk,m,ag,(M)}@)-

We next prove var{Ty, 4, a,,(a0) } (1) = o(n=2). Recall that we consider |Uj_,
{i®}| = a1 +az — 2 here by the construction of var{Ty a, as,(a1) } (1)- Suppose
HiWYN{i®}| = s, where s < a; — 1. Then symmetrically [{i®}n{i®}| = s.
Further assume |{i)} N {i®}| = 51, then [{iP} N {i®}| =a; —1 -5 — sy,
HiWI N {i®} = a1 =1 — s — 51 and [{iP} N {i®}] = ap — a1 + 51. Tt
follows that |({iV} U {i®}) n ({i®} U {i®})| = a1 + ag — 2 — 2s. Note
that (B.4.19) = 0 if a1 + a2 — 2 — 2s = 0, which can only be achieved when
a1 = a2 and s = aq — 1. It remains to consider ai + as — 2 — 2s > 1, that is,
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0 < s < Ay, where Ag = (a1 + ag — 3)/2. Given s and s1, we have

(B.4.21) (B.4.19) = {E( H $1jt>}81{E< H x17jt)}a27a1+s1

t=1,2,5,6 t=3,4,7,8
a1—1—s—s1
AE( I m)e( I] )
t=3,4,5,6 t=1,2,7,8
s+1
AE( I o )e( I o))
t=1,2,3,4 t=5,6,7,8

Under the considered Case (1), {j1,72} = {J3, 74} and {J5, js} = {Jj7,js}-
If {je : t=1,...,8}| <3, we know by Condition 2.1,

= 0(p%).

(B422) ‘ Z (B419) X 1|{jt:t:1,‘..,8}\ﬁ3
(

(J1,42),(43,74),
(J5.76),(J7,78)EJG

If |[{j: : t = 1,...,8} = 4, {j1,72} N {Js,J6} = 0. By Conditions 2.1,
A1l and 2.5, we know E(Ht 1 Z1,j5,) = K10j, 41 0js,jo = O(1) and similarly

E(ITizs @15,) = O(1). By (B.4.21), (B.4.19) # 0 only if E([T,_, 56 215,) #
0. This induces (j1,75), (j2,76) € Ja or (j1,76), (j2,75) € Ja, and then
(B.4.19) = O(p*(@1+92=29)) By the symmetricity of j indexes, we have

(B.4.23) ’ Z (B-4.19) X 1{|(jpt=1,...8}/=4)
(jl,j2),(j3,j4),(j5,j6),(]'7,]‘8)6]164

< C Z p2(a1+a2—2—2s) < C’JA‘2p2(a1+a2—2—2s).
(j17j5)7(j27j6)€JA
By (B.4.22) and (B.4.23),

Ao

2
VaI'{Tkﬂl’aQ’(M)}(l) — Z O{p3 + ’JA|2p2(CL1+tI2—2—28)}na1+a2—2 I[c(n7 al)~
s=0 _

Note that O(pgn“1+a2_2) Hle c(n,a;) = 0(71_2), and

(B.4.24) yJA|2p2<a1+a2*2*28> @ta2=2¢(n, ay)e(n, ap)

9 g 2(aitap—2-2s) 2(agtag—2-2s)
(1) N |JA’ a1taz (’JA|,0a1 X |JA|p ) aj+tag
(1)|JA|2_2(Q1:§T~2H122 2s)p2(a1-{il—;zia22 25) _4 —(a1+a2—2_2s)_2
OM)[Jal %(qu/p) — R (a1 taz—2-25)—2

=o(n?).
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Therefore var{T) 4, a5,(v) }(1) = 0(n"2).

Case (2): When M = 3, we assume without loss of generality that j; = j3
and j5 = j7, then

(B.4.25)  {j1, 2,73, Ja} = {j1,J2, ja} and {Js,je, j7,Js} = {75, Je, Js}-

It follows that E(H?:1 T1,j,) = K104, j1 Ojo,js a0d E(H§:5 T1j,) = K10js,j50j6 js
which are 0 when (j2,74) and (jg, jg) € JG; and are O(p) when (jo,j4) and
(J6,J8) € Ja. This suggests that if (B.4.19) # 0, (jo,js) and (je, js) € JA.
We first examine var{T} q, a,,(3)}(1), Which is the part of summation in
var{T} a, as,(3)} When | UL, {i®}| = a1 + az — 2. Recall that the two claims
in (B.4.20) also hold here. Similarly to Case (1) above, we still assume
iy N {i®}] = s, and [{iV} N {i®}| = sy, then (B.4.21) holds. We next
discuss several sub-cases based on the size of the set {j; : t =1,...,8}.
Case (2.1): When |{j; : t = 1,...,8}| = 6, we know {j1, jo,J3,ja} N
{Js, 76,77, J8} = 0 by (B.4.25). Then by (B.4.21), we know if (B.4.19) # 0,

then (ja, ja), (J6, Js ) (41, J5) (J2, J6) € Ja or (j2, ja), (Je, Js ), (41, J6) (J2, J5) €
Ja. Thus by the symmetricity of the j indexes, we have

Z 1B.4.19)20 X L{j=1,..8}=6 < C Z 1< ClJal’.

(G1:52),(J3:54), (1:75),(42476),
(J5.96),(37,58)€TG (42,74),(J6,d8)EJ A

By Conditions A.1 and 2.5, (B.4.19) = O(pAl), where A; = 2(a; + ag —
2—-2s)4+2(s+1) =2(a1 +az2) —2(s+1). Thus

‘ > (BA19)L jm1,...83=6| = O(1Ta*p™).
(jl1j2)7(j37j4)7(j57j6)7(j77j8)6‘]f4

Case (2.2): When [{j: : t = 1,...,8}] = 5, recall that we assume
(B.4.25), where j; = js and js = j7 without loss of generality. If we further
assume j1 = Js, {je : t = 1,...,8} = {J1, jo, ja, J6, js}. Then for (B.4.19) #
0, E(ITiz1234715:) X E(Ili=5675715.) # 0, then (j2,j4), (Jo, Js) € Ja
holds. In addition, under this case, (B.4.19) = O{plarta2—2-2s)+2(s+1)1 —
O(p™+92), and we have

‘ > 1(8.4.19)=0(pm1+42), |{jert=1,...8}|=5| = O(0IJal?).
(jl7j2)7(j37j4)7(j57j6)7(j77j8)€‘]21
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If given j; = js and j5 = j7, instead, assume j; # js. We have j1 # ja, j1 # ja
and j1 # js. Then for (B.4.19) # 0, by discussing different cases of j indexes,
we know that (B.4.19) achieves the order between O(p1) and O(p?) where
Aj is defined as above and Ay = 2(s + 1) + (1 +2) x (a1 +ag — 25 —2)/2 =
3(a1 4+ a2)/2 — (s + 1). Moreover, we have

2
Y. YBa19=0(m), A<u<i (=t 8} =5} | = O(Dmaxl Jal).

(J1,52),(43:74),
(45.d6),(37,J8) €T

In summary,
’ Z (B419) X 1|{jt:t:1,...,8}‘:5‘
(41,92):(53:34) (35,96 ), (J7.d8 ) €T
= O(DmaX‘JA|2PA1) + O(DmaXUA|2PA2) + O(p‘JAPpalJr@)‘
Case (2.3): When [{j; : t = 1,...,8}] = 4, similarly as case (2.3),
we can discuss j; = js and j; # js respectively. When j; = j5, we note

that (B.4.19) can achieve the orders between O(p*¥2) and O(p™?) with
As=(a1+as—2—2s)/2+2(s+1) = (a1 + a2)/2 + s+ 1. Moreover,

= O(poaX’JAD-

| > L(B.4.19)=0(p"), As<u<aitasz, |{jeit=1,....8}|=4
(J1,52),(4374),
(J5.76),(J7,J8) €T G

In addition, when j; # js, we note that (B.4.19) can achieve the order
between O(p®+2) and O(pA). Under this case,

= 0(1Jal).

‘ Z 1(B.4‘19):O(pu),fi4SUSa1+a2, [{je:t=1,...,8}|=4
(41,52),(43,74)5
(J5,76),(37,8) €T G
In summary, by |Ja| < pDmax,
‘ > (B.4.19) x 1|{jtlt=1,...,8}‘:4‘
(jl7j2)7(j37j4)7(j57j6)7(j77j8)€‘],%

= O(pDmax| Jalp™) + O(pDumax| Jalp™ ) + O(Jal*p™).
Case (2.4): When [{j;: t =1,...,8}| <3, we know by Condition 2.1,

3 (B4.19) X 1,41, sy1<3| = O°).

(41,92),(53,44),(J5 36 ), (J7,d8) €T G
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In summary, combining Cases (2.1)—(2.4) above, we know

(B.4.26) var{’]I‘kal,aQ,@)}

Hc n,a;)n® 2" 22{ 5+0 \JA!SPAl)

+ O(Dunax|Ta2p™) + O(Duax| 42032 + O(p]Ja |2 p™22)
+ O(poaX|JA‘pA3) + O(poax“]A’pa1+a2) + O(‘JAP Al)}a

where A1 = 2(a; + az) — 2(s + 1), Ay = 3(a1 +a2)/2 — (s + 1), and A3z =
(a1 +a2)/2+ s+ 1.

Note that
2 ~
Hc(n’ ay) x na1+a2—2|JA|3pA1
=1
_ p74n72|JA‘3p2(a1+a27571)
4 —9 2(aytag—s—1) 3_Aagtag—s—1)
(BA27) = p A Tale™ x [Jalp) i T et
(a1+ag—s=1) s
(BA428) = O 2p eitm Ap(artessl) T
_ 4+ 4(s+1)
= O(l)n p a1+‘12n (a1+a‘2 S§— 1)|J |7 +a1+a2
1 2(s+D)
= O()n?(|Jal/p? )“”“2 | Ja| e
- 0(??,2),

where from (B.4.27) to (B.4.28), we use |J4|p® = O(pn~%?), and in the last
equation, we use 2(s+ 1) < aj 4+ ag — 1. Following similar analysis, we know
that all the terms in (B.4.26) are o(n™?) and var{T}, 4, 4, (3)}(1) = o(n"?).
We next examine var{T}, 4, q,,(3)}(2)- Note that if (B.4.19) # 0, (j2,j4)
and (je, jg) € Ja. We can discuss different cases of {j1,...,js} similarly as
above. Then by Conditions 2.5 and A.1, as p = O(|Ja|~Y%p/%n=1/2) for
t=1,2, we have } . oy i) (o) (jrjs) €7 (B.4.19) = O(p*). Given that

UL {iD}] < a1+az—2in var{Ty o, as,(3) } (2), We obtain var{Ty o, a,.3)}(2) =
H12:1 c(n,a;) x O(p*n®179273) = o(n=2).
In summary, we have var{Tj 4, a, (3)} = 0(n™?).

Case (3): When M = 4, we consider j1 # jo # js # ja and js # je #
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J7 # js under this case. Since 0, j, = 0j; j, = Ojs.js = Ojrjs = 0s

E(21,,71,5,%1,43%1,54) = £1(0j1 43 0ja,js + 041,j40j2.33)

E(21,js 21,5621, 01,5s) = K1(0js 42 Tjejs T s js T ir )

which are O(p?). Following similar analysis to Case (2), we can examine
the different cases when |{j; : t = 1,...,8}| is between 4 and 8, and obtain,

(B.4.29) Var{Tk a1.a2,(4) (1)

HC n, al > na1+a2 QZ [|JA|2 4(s+1)

=1 s=0
+Dmax|JA|2 4(s+1) (pal—l—s _|_I0a2—1—5)

+ max{|Ja|, D?..} x |Jal?p 4s+1)< (alflfs)_’_pQ(aQ,l,S))
+Dmax|JA| ( (a1+az)— (al—l—s)+p2(a1+a2)_(a2_1_5)>

+ UA|4PZ(GI+G2)}-

Note that H12:1 c(n, al)na1+“2*2|JA\4p2(“1+a2) = O(l)p*4n*2p4n*(a1+a2) =
o(n~?). Moreover,

2
(B 4. 30 Hc n, a/l a1+a2 2D X‘JA‘Q 4(s+1) <pa1—1—s +pa2—1—s>

= p n_QDmax’JA‘ (pa1+5(s+l) _i_pag—i-d(s—i-l)).

To show (B.4.30) = o(n~2) by symmetricity, it suffices to show for any
integer a1, p~*Dimax|Ja|2pM 36+ = o(1).

p Dmax’JA|2pa1+3 S-‘rl)
_ a a1+3(s+1) 27a1+3(s+1)
(B.4.31) = p Dmax(\JA]p 1) |Jal a1
a1+3(s+1) _a +3(s+1)
(B4.32) = O)p *Duax(pn=/?) @ |Ja>" @

a1 +3(s+1) (s+1)

(
= O ()

X (Dina/)'™ %0 (/| al) 5 a5
= o),

where from (B.4.31) to (B.4.32), we use |J4|p* = O(pn~%/?), and in the last
equation we use |J4| = 0(p?), Dmax < p and Dpax < |Ja|. For other terms
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in (B.4.29), similar analysis can be applied and we have var{T}, 4, 4,,(2)}(1) =
o(n=2).

In addition, similarly to the analysis of var{T}, 4, 4,,(3)}(2), by Conditions
2.5 and A.1, we still have Z(jl,jz),(jg,j4),(j5,je),(j7,j8)€Jg (B.4.19) = O(p*).
Since | U, {i¥}] < a1 + a2 — 2 in var{T} o, a.,(4)} (2) Dy construction, we
obtain var{Ty q, a,,(4)}(2) = Hl2:1 c(n, a;) xO{p*n®1 273} = o(n=2). In sum-
mary, var{Ty o, a,,4)} = o(n=?) is proved.

B.4.4. Proof of Lemma A.5.4 (on Page 11, Section A.5). Similarly to
Section B.1.6,

;E(D Z Z th XE(HAnkarl)

=1 1<T1 ,T2,73,T 4<ml 1

where we use the redefined notation in Section A.5. To prove Lemma A.2.6,
it sufﬁces to show that for given 1 < k < nand 1 < ry,ry,r3, 74 < m, we have

(H;1 1Anka,) = o(n ~1). Moreover by the Cauchy-Schwarz inequality, it
suffices to show E(A% ka) =0(n7 Yfora € {ay,...,an}. Following (B.1.61),
we have A, 1, =0 when k < a; and when k > a,

E(4; 1) = ¢(n,a) > Q (1AM, i i i jq),
iOeP(k—1,a—1),1=1,2,3,4;
(jl’j2)’(.j37j4)7(j57j6)7(j77j8)€=]2
,i((ll)) represents tuples 1 < igl) #* ... # igl) < n, and

1D 1@ 13 4
Q (l AR 7‘]8 (kajr) (HHx(l)Jm 1 Zt J2z>'
As c(n,a) = O(p~'n~"%?), to prove E(An k) = o(n~1), it suffices to show

> Q*(iM,i®,i® i jg) = o(p'n® ).
iOeP(k—1,a—1),1=1,2,3,4;
(J1,92),(J3,44),(J5,J6 ), (J7,J8) €T

Since 0]1 o = 01if (j1,72) € J9, then similarly to Section B.1.6, we have
Q*(l(l) )33 i js) # 0 only when | U?Zl{i(l)}] < 2(a—1), and similarly
to (B.1.65).

Z Q*(iM,i? i® i i) = O(n?72).

iOeP(k—1,a—1),1=1,...,4
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It then remains to show
(B.4.33) 3 Q* (M, 1,1 js) = 0p").
(41,72),(d3,74),(J5.76),(J7.78) €T §
We next prove by discussing [{j; : ¢ = 1,...,8}| and the corresponding
value of Q*(iV,i® i i jg). By Condition A.1, Q*(i),i® i®) i® js)
can be written as certain linear combination of Hfil (Tjgpy_yign, )» Where

g2t—1 # g2 and (g1,...,0s,) contain a number of 1,...,8 respectively. If
{ji:t=1,...,8} <4, by Condition 2.1,

Z Q*(i(1)>i(2)7i(3)7i(4)1j8) X 1{|{jt:t:1,...78}\§4} = O(p4)
(41,32):(33:54) (35,76 ), (37,78) €T G
If {je : t = 1,...,8}| = 5, note that for j; # j2, 0j,j, # 0 only when
(j1,j2) € Ja, then

‘ > Q (i, i?,i® i 5g) x 1g1j,.421. 8} =5}
(91,32)5(J3,44): (45,36 ) (37,98 ) €T G
<C Z qul,ha;'lmjza?s,jz’)gga,js = O(p3|JA|pa) = O(p4)7

1<51,52,J5<p,
(Jo,38)€J A

where in the last equation, we use |J4|p* = O(pn~%?). In addition, similarly,
if |{j,:t=1,...,8} =6,

| > Q (i1 1Y s) < 1 mn,syi-6)
(41,32),(43,74),(J5,96),(J7,98) €I G
2 2 2 4
<C Z U?lyj10?27j20?5»j70?6»j8 = O(p”|Jal"p™) = o(p®).
1§j17j2§p7

(45,37),(J6,J8)EJ A

If|{jr:t=1,....8}| =7,

‘ 2 Q1195 5s) x 1. 8=y
(jl,j2),(j3,j4),(j5,j6),(j7,j8)€c]2
<C Z 0?1:j10?2:j40-?5:j70-?6:j8 = O(p‘JAPpga) = 0(104)-

. d=asp
(92,94),(J5,57),(d6,38) €T A

If[{j,:t=1,...,8}| =S8,

> Q (i, i®,i® i 5g) x 141,41, .5) =8}
(jl7j2)7(j37j4)’(j5’jﬁ)»(j77j8)€‘]f‘4
=C Z 0?17j30?27j40-?57j70-?67j8 = O(|JA|4p4a) = 0(p4).

(41,33),(J2,44),(J5,37),(J6,d8 ) EJ A
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In summary, (B.4.33) is obtained and Lemma A.5.4 is proved. O

B.5. Lemmas for the proof of Theorem 4.1. In this section, we
prove Lemma A.9.1 on Page 19, where we prove var(} ,_, ng) — 0 and

S i E(D},) — 0 in the following Sections B.5.1.1 and B.5.1.2, respec-
tively.

B.5.1. Proof of Lemma A.9.1 (on Page 19, Section A.9).

B.5.1.1. Proof of var(d_;_, 7T3L7k) — 0. Similarly to Section B.1.5, D, ;, =

ot trAp kg, and then Fi,k = 1<ryrp<m tritrsEk—1(An ka,, An k.., )- Note
that by the Cauchy-Schwarz inequality, for some constant C,

n
Var< g 7r,2Lk> < Cn? max var(Tk.a,, ar, )

1<k<n;1<ri,ra<m
k=1

where c(n,a) = [a x {o(a)P?}~1]? and for two integers a; and ay we still
define T} 4, .00 = Ex—1(An ka1 An k,ap). In particular, when k < max{a,as},
Tk.a1,0, = 0; when k > max{a,as},

Trara: = Ex-1(AnkaAnkas)
2 al—l
= > {c(n,a1)e(n, a2)} 20y, 5 [T 11 Ty
1<j1,52<p; =1 t=1

iOWepP(k—1,a;—1):1=1,2

To prove Lemma var(} ,_, W%k) — 0, it suffices to prove var(Tq,,4,) =
o(n=?), where var(T 4, a,) = E(T? arian) — {E(Tk,a,,a5) }*- We consider with-
out loss of generality that k£ > max{ai,as}.

When {i(l)} - {i(Q)}, E(Hl2:1 H?l:1 . jt) = 0; and when {i(l)} = {i(2)},
[P
it induces a; = az and E(Hle | %tﬂ),jt) = 05 >

az = a. It follows that when a; # ag, E(Tk 4, ,4,) = 0; when a1 = a2 = a,

where we write a1 =

E(Tk,a1,02) = > Ligmy—peryy X {e(n, ar)e(n, ag)}' 205, .
1<j1,2<p;
iOeP(k—1,a,—1):1=1,2

Then
{E(Tk,al,ag)}Z = Z 1{{1(1)}{1(2)}} HC(n, ar) X (0j1,j207j3.54) -

1<751,52,73,74<p; {i®)=({iW} ) I=1
iOeP(k—1,a;—1):1=1,2,3,4
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In addition, we obtain

BT 0y 0) = > {

1<51,42,J3,J4 <p; =1
iOWeP(k—1,a;—1):1=1,2,3,4

a;—1

4
C(naal)ajzthjzz}E(H H li”dl)
=1 t=1

S

where for simplicity of representation, we set ag = a1 and a4 = as. Define

Gk,al,ag,l = Z {1 1)}_{1(2)},
1<51,52,93,J4<p; { {i®}={i®}, }
iOeP(k—1,ai—1):1=1,2,3,4 {i<1>}m{i(3)}—@

X {f[c(n, al)szz—ujzl} <H H x%i”dz)

Since |E( kal (J,Q) {E(Tk a1,a2)}2’ < |E( k,a1, ag) sz,a1,a2,1| + ‘Gk,ahaz,l -
{E(Tk.a;.a5) }?|, we next prove E(T? an, a2) Grayas1 = 0(n™2) and Gk a; 491~
{E(Tk.a.0) }? = o(n™?) respectively.

Step I: E(Tial w) = Grarasg = 0o(n™2). When {i} = {i®}, {i®}
{i®M}, and {i0} N {i®} = 0, it implies that a1 = az = a, | UL, {iV}| <
a1 + ao — 3, and

4 a;—1

<HUJ21 17J21) X E(H H T, (1)7 ) 317]20337]4)&'

It follows that if a1 # a2, {E(Tkay.as)}> — Gray.ast = 0; if a1 = ag = a,
‘{E(Thahaz)}Q = Graia21

= c(n, a1)0(n,a2)0(nal+a2*3)‘ Y (000" = o(n?)

1<41,52,33,Ja<p

where we use c(n,a) = O(p~1n~%) and by Condition A.2,
(B.5.1) Y (01000)" = O0°).
1<g1,52,J3,Ja<p

Step II: Gk’a17a271_{E(Tk,al,az)}Z = O(niz)- We write E(T% ,ai, az) Gk,a1,a2,1 =
Gk,a17a2,2 + Gk,al,az,g, where

Grayan2 = Z 1 {iW}={®3,
1<51,42,43,74<p; { (N =@}, }
i0eP(k—1,a,-1):1=1,2,34 i) 1£0
4 a—1

2
X {Hc(naal)gjmfbjm} (H H xlg”,j;)
=1

=1 t=1
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and

Gk’al’“z”?’ - Z 1 {iMOY£{i®D} or }
1<51,72,73,54<p; OO
iOeP(k—1,0,—1):1=1,2,3,4

2 4 a—1
X {nc(nval)aj21—1,jzz}E(n 1_[1 xiﬁ”,j;)’
=1 =1 t=

For Gj.aya2, it is a summation over the indexes satisfying {i)} =
(i}, {i®} = {i®} and iV} {i®} # 0. Thus |UL, {iV}| < a1+ a2 3,
and by c¢(n,a) = ©(p~1n~%) and (B.5.1),

—2 _—(a1+a a1+az—3 _ -2
’Gk,al,azﬂ‘ <Cp“n (a1 2)n e E : 031,529343,j4 —O(TL )

1<j1,72,73,54<p

For G}, ay.a0.3, it is a summation over the indexes satisfying {i)} # {i®}
or {i®} #£ {iM}. We assume without loss of generality that {i()} # {i(®}
and there exists an index m € {iV} but m ¢ {i®}. Similarly to Section
B.1.5, we know

a;—1

9 4
(B.5.2) (ﬂajzl—17j21> x E(H $i§l>7jl>
=1

=1 t=1

is nonzero only when | U}, {i®}] < a1 4 ap — 2, that is, each index ap-
pears at least twice among the four sets {i(l)},l = 1,2, 3,4. Therefore, we
know if (B.5.2) # 0, m € {i®Yu {i®}. If m € {i®} but m ¢ {i¥},
(B.5.2) = 0}, js0js.ja0.js B(other terms). Under this case, we define Ky =
—(2+4¢€)(4 +7)logp/(elogd), where v and € are some positive constants and
0 is from Condition A.2. Then we have

(B.5.3) > (B.52) < C ) T j1,42053,j4 01,43
1<51,52,93,J4<p 1<91,J2,33,Ja<p
<C E 1+C E §lir—izle/(2+¢)
|j1—32| <Ko, lj1—32|> Ko
lj3—dal <Ko,
l71—331<Ko

= O(pK¢) + O(p'p~ ),

where in the second inequality, we use the symmetricity of j indexes and
also use Lemma B.0.1 similarly as in Section A.9. If m € {i(¥} but m ¢
{i®®)}, (B.5.3) also holds similarly. If m € {i®®} and m € {i¥}, (B.5.2) =
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T 1,42 03js,ja (T, gy Tm, js Tm, j, ) E(other terms). Similarly to (B.5.3), as E(x) =
0, if |71 — j3| > Ko and |51 — j4| > Ko, (B.5.2) < C§l317721¢/+) Thus under
this case, we also have » 3, - . . . (B.5.2) = O(pK?) + O(p~). Recall
that (B.5.2) # 0 only when [U}_, {iO}| < a14+as—2. By ¢(n,a) = O(p~'n%)
and Ko = O(logp),

|Ghiaran3| < Cp~2n(etelpmta=2 3" (B 5 9)]

1<71,52,33,J4<P
R ) -2 N\ -2
=2 2{O(pKE) + O(p7) } = o(n™?).
In summary,
Var(Tk ai, a2) < ‘E(Tk a1, ag) Gk7a1,a2,1‘ + |Gk7a1,a2,2‘ + |Gk7a1,a2,3‘ = O(n_Q)’
and then var(>_p_; 72 ,) — 0 is proved.

B.5.1.2. Proof of Y 1, E(Di,k) — 0. Similarly to Section B.1.6,

éE(D -y oy Htrle<HAnkarl).

k=11<ri,ro,r3,r4<ml=1

To prove > ;_, E(D;‘;’k) — 0, it suffices to show that for given 1 < k < n

and finite integers (ai, az,as, as), we have E(]_[?:1 Apka) =o(nh).
In particular,

4 4 1/9
E(ll;[lAn’k’aJ = {Ec(n,al)}/ Z

iOeP(k—1,a,-1),1=1,...,4;
1<71,J2:93,J4<p

4 4 alfl
E(ka,jz)E(H H xiujz)'
=1 =1 t=1

Slmllarly to Section B.1.6, we have E(Hl LTS ! i, j,) # 0 only when |Uf_
(i} < 2 (a; — 1)/2. We will prove that

(B.5.4) > E(ﬁﬂfk,jl) = O(p?).

1<51,52,J3,J4<p =1

Then as c(n,a) = O(p~1n=9),

4
E(HAn,k,al) = O(1)p~2n~ T a/2p Tl (@-1/2p2 _ -1y,
=1
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To finish the proof, it remains to show (B.5.4). When |{j1, j2, J3, ja}| < 2,

4
>, E(Hmkm)1{\{j1,jz,j3,j4}\g2} =0(p”).

1<41,52,33,J4<p =1

When [{j1, j2, j3,ja}| > 3, we assume without loss of generality that j; <
jo < js < ]4 For K defined in Section B.5.1.1, if |j; — j2| > Ky or s —ja| >
Ko, [B([Tj=y wkj)| < Co-a2l/@re) = O(p~ (4“) If |j1 — jo| < Ko and
|73 — ja| < Ko, but |j2 — j3| > Ko, by Lemma B.0.1,

4
’E(Hfﬂkazﬂ < 05y o 0js ju + COTTRIICT) — oy 560 4, + O(p~ 7)),
=1

Therefore

4
Z E(Hmkm)1{|{j1,j2,j37j4}|23}

1<41,52,93,Ja<p =1
= 0K +0p'p N+ Y 05,055 =007,
1<51,52,33,Ja<p
where in the last equation, we use Condition A.2 (2). In summary, (B.5.4)
is proved and the proof is finished.

B.6. Lemmas for the proof of Theorem 4.3.

B.6.1. Proof of Lemma A.10.1 (on Page 20, Section A.10). Under H :
p = v, we assume g = v = 0 without loss of generality by Proposition

A.1. To derive var{U(a)}, we write U(a) = Zp UU)(a), where we define
G(a,c) = (=1)*(3) (Pr=) "1 (Py2,) "', and

a—c

(B.6.1) U9 (a ZG a,c) Z kat,J H Ysm.j-

keP(ng,c), t=1
s€P(ny,a—c)

Since E{U(a)} = 0 under Hy,
(B.6.2) var{U(a)} =E{U’(a)} = > E{UI(a) xu)(a)}.
1<j1,j2<p
Note that for given 1 < ji1,j2 < p,
BU (U (a)} = > > Gla,0)G(a,d)Q(k,s,k,8,j).
0<c<a, 0<c¢<a,

kG'P(nzyc), 12673(71:675)7
SEP(ny »afc) §€7)(ny »(Z*E)
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where we define
~ c ¢ a—c a—c¢
Q(k,s,k,s,j) = E(Hwkml fogg,h)E( 1T vswn 11 ys‘m,jz)-
t=1 i=1 m=1 m=1

Since we assume the n = n,+n, copies are independent from each other and

p=v=0, thenQ(ksEé)—Oif{k}#{f(}or{s}#{é} If{k}_{f(}

and {s} = {8}, it induces ¢ = ¢ and Q(k, s,k,8,j) = 05 ; ; 0.~ . It follows
that

(B.6.3) E{UY9)(a)(a }—ZGQ VPP cla — e)lot . o otse

Oz J1,J27 y,d1,92

_ ' 2 'n».z y \—1 ¢ .. ai.c.
( > (Fe Pa—c) Ox,51,52 %y, 1,72

~ a!<0'a:7jl7]2 + O-y7]17]2)a.
Ny Ny

Combining (B.6.2) and (B.6.3), we obtain var{i/(a)}. By Condition A .4,
var{ld(a)} = O(pn~?).

B.6.2. Proof of Lemma A.10.2 (on Page 20, Section A.10). Since under
Hy, E{U(a)} = E{U(b)} = 0, we have cov{U(a),U(b)} = E{U(a) x U(b)}.
Following (B.6.1),

(B.6.4) E{t(a) xU®b)} = Y E{UY (@) x U (b)},
1<71,j2<p
where
EUO (a) x U ()} = > > Gla,0)G(b,é)
0<c<a, 0<é<b,

kEP(’%;ﬁ)y 12673(7%;70),
SEP(”y ,(L—C) §€7)(ny ,b—C)

c ¢ a—c b—¢
X E(kamh fogmz)E( H Ysm,jn H yé‘m,jz)’
t=1 i=1 m=1 m=1

As a # b, {k} # {k} and {s} # {8} always hold. Then as u = v = 0,

E([Ti=1 ke Ht:l kt-,]g) = 0 and E(T[55 ¥sn.in Hm 1ysm,yz) = 0, simi-
larly to Section B.1.2. It follows that (B.6.4) = 0 and the lemma is proved.
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B.6.3. Proof of Lemma A.10.3 (on Page 21, Section A.10). By the Cramér-

Wold Theorem, to prove the asymptotic joint normality of the U-statistics,
it suffices to prove that any of their fixed converges to normal. For illus-
tration, we first prove the asymptotic normality for each U(a) of finite a.
The similar arguments can be applied to the linear combination of finite
U-statistics and then the joint normality is obtained.

Recall U(a) = >_ U (a) from (B.6.1). To derive the limiting distri-
bution of U(a), we use Bernstein’s block method in [17, page 338]; see also
[7, 28]. Specifically, we partition the sequence, ¢~ (a) xU)(a), j =1,...,p,
into r blocks, where each block contains b variables such that rb < p <
(r+1)b. For each 1 < k < r, we partition the kth block into two sub-blocks
with a larger one A ; and a smaller one Ay, 5. Suppose each Ay, 1 has by vari-
ables and each Ay o has by = b — by variables. We require r — oo, by — o0,
by — oo, rby/p — 1 and rby/p — 0 as p — oo. We write

b1 bo
Aga(a) =Y U (a), Apg(a) =D uk=DrT(g),
=1 =1
and further define Uy = o7 1(a) Y 4_; Ag1(a), Us = o7 (a) X f_; Ara(a),
andUs = o~ 1(a) ?:errl UY) (). Thus we have the decomposition: o~ (a)x
U(a) =U + Uy + Us.

The Bernstein’s block method makes Aj; “almost” independent, thus
the study of U; may be related to the cases of sums of independent random
variables. In addition, since bs is small compared with b1, we will show that
the sums Uy and Us will be small compared with the total sum of variables
in the sequence, i.e., 0~ 1(a) x U(a). In particular, we first show

o a) x U(a) = Uy + 0,(1),

where op(1) represents that the remaining term converges to 0 in probability.
Since E(Uz) = E(Us) = 0, it suffices to prove that var(Us) = var(Us) = o(1).
For U, note that Us = o~ 1(a) >°4_; Aga(a). Then

(B.6.5) var(Us)

< 0'_2(CL) Z ‘COV{z/{((kl—1)b-l—b1—|-i1)(a)7 u((kz—l)b+b1+i2)(a)}‘ )

1<k ,ka<r;
1<i,i2<by

Recall a,(s) and ay(s) in Condition A.4. Define a(s) = ay(s) + ay(s), then
a(s) < C6°, where § = max{d,,d,} € (0,1). By the a-mixing inequality in
Lemma B.0.1,

]cov {na/Qu(i)(a),na/QU(j)(a)} ] < 8{a(li — j|)}7F max [E

1<j<p

. 2+€
nd/%{(])(a)) ]

_2
2+e€
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We take € = 2, and by Lemma B.6.1 (on Page 132, Section B.6.4), we have
max < j<p E{n2UV) (a)}?*¢ < co. Tt follows that

(B.6.6) ‘COV {u((kl—l)b—&-m—&-il)(a)’u((kg—l)b+b1+i2)(a)}’

a | cov {na/zu((qu)zﬂrbﬁil) (), no/ 2y =Dbb1+i2) (4 } ’

n-

Cn™%a{[((k1 = 1)b+ b1 +1i1) — ((k2 — 1)b+ b1 + i2)|}%

<
< Cn—a5|k1b+i1—k2b—i2|/2‘

By (B.6.5), (B.6.6) and 0%(a) = ©(pn~?) from Lemma A.10.1,
var(Us)

0'_2(0,) Z ‘COV{M((kl_l)b+b1+il)(a),u((k2_1)b+b1+i2)(a)})

1<k, ka2 <r;
1<iy,i2<b2

0'_2(CL) Z n—a05|k1b+i1—k2b—i2‘/2

1<k, k2 <r;
1<iy,i2<b2

= O)p 'n%byn= = O(1)rbop !,

IN

IN

which converges to 0 by our construction, i.e., rba/p — 0. This shows that
var(Us) = o(1). Next we exmaine Us = o~ !(a) Z?zerrl UY)(a). Similarly,
by Lemmas B.0.1 and B.6.1, and € = 2,

varty) = o a3 Y cov{na/QU(i)(a),na/2l/{(j)(a)}

i=rb+1 j—rb—i— 1

< O()p~'n*n Z ZC’Q|Z—]\2+6
i=rb+1 j=rb+1
p p
< Z Z §li—il/2
i=rb+1 j=rb+1
< OWp~'(p—rb—1)
< O(L)p '

Since b/p — 0, var(Us) = o(1).

Given var(Us) = o(1) and var(Us) = o(1) above, next we focus on Uj.
By the a-mixing assumption in Condition A.4, and following the similar
arguments in [17, page 338], we have for properly chosen r and bs,

E {exp(itth)} — H E [exp {z’to*_ a)Ag( ‘ < 16ra(be) —
k=1
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This suggests there exist independent random variables {& : k=1, -+ ,r}
such that &, and Aj(a) are identically distributed and U; has the same
asymptotic distribution as o~ '(a) Y }_; &. To prove the asymptotic nor-
mality of o1 (a)ly, now it remains to show that central limit theorem holds
for 071 (a) >_}_; &- Then we check the Lyapunov condition, i.e., check that
the moments of & satisfy

(B.6.7) s E{o )&l 0,
k=1
where we define s2 = Y} _, var{o71(a)¢;}. By Lemma B.6.1, for even € > 0,

(B.6.8) Myte := maxi<j<p {Hna/2 {U(j)(a)}H4+€} < 00.

Then by the moment bounds in [20, Theorem 1], and the a-mixing assump-
tion in Condition A.4, for g(2,€) = ¢/(4 + ¢),

4
b1 b1
E Zna/Q {u(j)(a)} < Cb%{C ML, Zj2—1a(j)g(2,e)}
=1 =1
As 6 € (0,1) and 0 < g(2,¢) < 1,

> ja(i)IF <Y jx (09*9) < 0.
j=1 j=1

It follows that

4
by
E {U_l(a)A1,1(a)}4 = o *(a)n E z:n‘l/2 {Z/l(j)(a)}
j=1
b1
< O(W)p?n* n 2 x b} C+ M > 7 a(j)7®e)
j=1

=O0(1)p~2 x b,

Similarly, for other k > 1, E {ail(a)A;@l(a)}4 have the same bound. Thus,

(B.6.9) > o Ha)ElG|* = 0(1)rp~?b].
k=1
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In addition,

by
var{o "' (a)&} = o %(a)var {ZU«kl)bH) (a)}
=1

—o7%(a) > cov {UTIIE) () g (D) ()}

1<i1,i2<b1

=0 %) > (B63).

1<i1,i2<b1

By Condition A.4 and rb;/p — 1, we have

(B.6.10) st — [Zvar{gj/a(a)}r
=1
= O()p 2 (r x byn™*)? = ©(1)p 2%,

Combine (B.6.9) and (B.6.10), (B.6.7) is proved as r — oo.

In summary, for any finite integer a, we prove the asymptotic normality of
U(a)/o(a). For any linear combination of U-statistics Z, := >, t,U(a,)/o(a,),
we can similarly decompose Z,, into three parts and apply the analysis above.
The similar conclusion holds for finite m and the asymptotic joint normality
is obtained by the Cramér-Wold Theorem.

B.6.4. Proof of Lemma B.6.1 (on Page 132, Section B.6.3).
LEMMA B.6.1.  ForV finite even w > 0 any V finite integer a > 0,

a/204) ()
lr%;ag(pE{n U (a)} < 0.

PROOF. Recall the definition of /) (a) in (B.6.1). For positive even w,

(B.6.11) E[{UD(a)}¥]

w w a—cy
- % cen( g, oI T o)
=1 0§c1§a7 =1 tl=1 =1 ml:1
k(l)ep(nzycl)z
s(l)E'P(ny,a—cl)

Define the index tuple (kO,... k@) = & &0 6 k).
When [{(k™M, ..., k@)} > 7% ¢/2, it means that one of the index ap-
pears only once. Suppose index i € {(k(1)7 e ,k(w))} only appears once,
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then under Hj,

(B.6.12) (H H $k(l)7 ) E(z; ;) x E(other terms) = 0.

I=14=1

Thus (B.6.12) # 0 only when [{(k(V), ... k@)}| < 3% | ¢/2. By the bound-
edness of moments in Condition A.4,

félja%(p Z <H H $k(l) ) = ( ;le 61/2) '

OSClSa7k(l)€P(nm,Cl) 1=1t=1

Similarly, we have

w a—c¢ o o
s S B(T1 T g, ) -0 ("),

OSclga,smEP(ny,a—cl) I=1m;=1

As Gla,¢) = O(ny°n, ™), by (B.6.11), maxi<;<p E[{n®/2U0) (a)}*] <
0. O

B.7. Lemmas for the proof of Theorem 4.4.

B.7.1. Proof of Lemma A.11.1 (on Page 21, Section A.11). Recalli{)(a)

defined in (B.6.1). Similarly to U.(a), we define Uy )(a) as the sequence of
random variables on the conditional probability measure P, given the event
ngnyU(00)/(ny + ny) — 7, < u such that

P{L?c(j)(a) <wuj:1<j< p}

_P{L{U)( ) <uj:1<j <p‘ %U(oo)gﬁ,—l—u}.
Ny y

Then o~ (a)lU(a) = o~ (a) Z?:l I;{C(j)(a), and we prove the asymptotic nor-
mality of o~ (a)U,(a) similarly to Section B.6.3. In particular, we partition
the sequence {0~ 1(a) x Z:lc(j)(a) : 1 < j < p} into r blocks, where each block
contains b variables such that rb < p < (r + 1)b. For each 1 < k < r, we
further partition the kth block into two sub-blocks such that a larger one

Ak | contains the first b; variables and a smaller one Ay 2 contains the last
by = b — by variables. Similarly, for 1 < k < r, we write

by

Apa(a) =Y UF D a),  Ays(a ZU Dbt (q),

=1
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Correspondingly, definely = o' (a) Y1_, Ap1(a),Us = o= (a) So5_; Ap2(a)
and Us = o~ (a) ?:rb—‘,—l Uy (a). Then we have the decomposition: o~ (a)x
U.(a) = Uy + Uy +Us. To show that o' (a) x U,(a) satisfies the central limit

theorem, we first show that E(U3) = o(1) and E(UZ) = o(1).
£08) = o~ 2(@B{ (Y Aa(a)) '}
k=1

o 3 [elaao)] e{aa0)]) ")

1<k ka<r

IN

IN

o (a)[P{-" Y(o0) < 7, }] -

Ng + Ny

(3 paw)] pam)] )

1<k ,ka<r
where in the last inequality we use the fact that
E{A7 2(0)L{n,n,0(00)/(notny) <rptu} }
P{ngnyl(c0)/(ng +ny) < 7p +u}b

< B{42 (o)}
= P{ngn,U(0)/(ng +ny) < 17p+u}

E{flig(a)} =

The upper bound above converges to 0 under the a-mixing condition by
choosing proper convergence rate by; see Eq. (18.4.8) of [17]. Similarly, we
can also show E(UZ) = o(1). It remains to examine the ;. Define af(s)
as the mixing coefficient of {(x1j,...,%n, 5, Y15, YUn,j : 3 = 1,...,0)}
and define a(s) as the corresponding mixing coefficient on the conditional
probability measure. Following a similar argument to that in [16, Lemma
2.2], we have

N maxi<p<p-da P{U}, 4(00) > 7 + u} + a(d)
M) S A (50 (ng 1) < 7 + u) P

9

where U}?’d(oo) = maxy<j<pra UV (00), UV (00) = oj_,jl x (Z; — 9;)? %

NzNy/(ng +ny), and recall 7, = 2logp —log log p. Since z; ; and y; j are sub-

gaussian random variables by Condition A.4 [26, Proposition 2.5.2], we know
U;].l/ % (Zj—7j) X \/Nizy/\/Tz + Ny is a sub-gaussian variable with Yariance
1. Therefore, max;<j<,_q P{UY ;(00) > 7, +u} < dmaxi<j<, P{UY) (c0) >

mp+u} < Cdexp{—(m, +u)/2} < Cdp~ty/logp. Then similarly to [17, page
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338], we have
‘E{exp (itlhy ) } 1:[ [exp {ita_l(a)flk,l(a)}} ’
< 16ra(b) .
< 6 MAaX1|<h<p—bo P{Ugbz (00) > 1 + u} + a(ba)
= T P{nan,U(o0) /(g +my) <7+ ulP

which converges to 0 for properly chosen r and by such that 7b2+/log p/p — 0.
Thus there exist independent {fk k=1,...,r} such that &, and Akl( ) are
identically distributed on probability measure P. Similarly to [16, Lemma
2.4, Lemma 2.5], we have E{o ' (a) 37_, &} — 0O and E[{o " (a) S5 _, &} —
1. To show the asymptotic normality on the conditional probability measure,
it remains to check the Lyapunov condition that

> =1 B(ER)
ZE{ |fk|} ()P{n;pny U(oo )/(nz+ny)<7‘p+u}_>o’

where £, are define same as in Appendix Section B.6.3, and the convergence
result follows from (B.6.7). This implies the asymptotic normality of condi-
tional distribution given {n,n,U(cc0)/(ns + ny) < 7, + u}. Thus we obtain
the asymptotic independence between U(a)/o(a) and U(c0).

B.8. Lemmas for the proof of Theorem 4.5.

B.8.1. Proof of Lemma A.12.1. Recall the definitions in (A.12.1). Tp 2 is
the summation over j indexes in the set {ko,...,p} such that p; = v; = 0.
Then E(T}2) = 0. Following the argument in Section B.6.1, we obtain

Opi i Gy s\ G
var(Ty 2) ~ E a!( Jugz y,Jl,Jz) '

n n
ko+1<j1,j2<p v Y

Let Vajijo = {02.41.jo/7 + yjrjo/(1 — 7)}*. By the mixing assumption in
Condition A.4 and Lemma B.0.1, we know there exist some constants C' and
6 such that |V, j,| < C01772l. Note that

‘ E : Va7j17j2 - E Va,jhjz

1<71,J2<p ko+1<j1,j2<p

(X + X o+ X e

1<ji,ja<ko  1<j1<ko,ko+1<j2<p 1<j2<ko,ko+1<j1<p

<c( X o+ X+ X )=o)

1<y1,52<ko  1<j1<ko, ko+1<ja<p 1<ja<ko, ko+1<j1<p
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Since ko = o(p) and Condition A.4 assumes that >, 5 < Va1 = O(p),
then >4 1<) i<p Yasijo = O(p). It follows that var(T,2) = O(p*n—9).

It remains to prove var(7y 1) = o(pn~*). Note that var(T5 1) = E(Til) -
{E(To1)}?, and E(T,,1) = kop®. Following the definition in (A.12.1),

E(TaZ,l) = Z Z Z G(a,c)G(a,E)Q(k,s,f(,é,j),

1<j1,j2<ko 0<c<a,  0<é<a,
kEP(nz,c),  keP(ng,d),
s€P(ny,a—c) 5€P(ny,a—c)

where similarly to Section B.6.1,

c ¢ a—c a—c¢
Q(k,5,k,5,3) = B( [T #keis [T, )E( TT wmn IT 9502
t=1 =1 m=1 m=1

Since E(y) = v = 0, if {s} # {8}, Q(k,s,k,8,j) = 0. I {s} = {5}, it
induces ¢ = ¢. When {s} = {8}, let b = |{k} N {k}|, then 0 < b <,

T~ —b, c—b b — —b), b -
E{Q(k7svkasa-])} = Mjl /L;Q S0j1,j20-;'b1,j02 = pQ(C )gpjlzj2o-;l17jc2’
and
—b) b _
E(TZ)= ) Yo Ga0) x PPV o X L=y
1<j1,92<ko  0<c<a,
k.keP(ng,c);

s,5€P(ny,a—c)

We next decompose E(Tf’a) = Gi1a1 + G102 + Gi1,0,3, Where

_ 2 2(c—b), b a—c
Giiar= D > G4, 0" VG 00 L (6= (8 emab=0)
1<j1,52<ko  0<c<a,
kkeEP(nz,c);

s,5€P(ny,a—c)

_ 2 2(c—b) b a—c
Giia2= Y > Ga,0)pP b 08 sy~ (5} e<a15—0)
1<j1,92<ko  0<c<a,
k,keP(ng,c);
s,8€P(ny,a—c)
and
2 2(c—b) b a—c
Grias= Y Y. GHa.0p Vg o0 s = (st
1<j1,j2<ko  0<c<a,
k,keP(ng,c);

Svéep(ny 70'76)
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Note that |var( 0%1)‘ < |Gt 1,a,1 — {E( a 1)}2
var(Tg,1) = o(pn™%), we will next show |G 1,41 — {E( wi1) ) \ |Gt1a2] and
|Gt,1,0,3] are o(pn~—?) respectively.

First, as Zk,fcep(nz,a);s,§€73(ny,afc) 1{{5}:{5}7020717:0} - P;lz and G(CL, a) -
(Pae)™"

Nax
P2a

Gila1 = Z Z G*(a, €)p** L{{s)= {5} c—ap0} = (Pnz)gk(]p
1<j1,52<ko 0<c<a,
k,keP(ng,c);

s,8€P(ny,a—c)

Then |Gt1.41 — {E(Tu1)}?| = o(1)k3n=2n%p?* = o(pn~*), where we use
E(Ta,l) = kop®. In addition, as Ek,f(ep(nm,c);s,éep(ny,a—c) 1{{5}:{5},c§a—1,b:0} =
O(n?t2=¢) and G(a,c) = ©(n~?), we have

—(a—c) 2c a—c
|Gtra2l < C Z Zn Tj1,g2°

1<)1,j2<ko c=0

Since Y 1<, i, <k Tirgo = O(ko) by Condition A.4 and Lemma B.0.1, we fur-
ther know |Gy1a2] = 397 O(kop*n=(=9). As p = O(ko_l/apl/@“)n_lﬂ)
and kg = o(p), we obtain (pn™*). Moreover, as G(a,c) =
O(n™), @i = p* + Tjy.jz»> and Zk,fce?’(nac,c);S,éeP(ny,a—c) Lisy=s3021) =
O(n2c—b+a—c)’

—(b+a—c) 2(c—b
n ( +a C)p (C )(0']1 jg +p )]17]20‘?1).702

0<c<a, 1<j1,j2<ko
1<b<c

For given c and b, the maximum order of 21<j1 ia<ko n~(0Fa=e) p2(e=b) (0 jot

pQ)I]’-1 2 U?;jé is bounded by the following two quantities:
—(b+a— c) 2¢ ya—c
(B.8.1) Z on T 1,52
1<j1,52<ko
b
(B.8.2) Z Cn~ (b+a— c) ‘jj:;LQ cp2(c b)
1<g1,52<ko

For (B.8.1), when ¢ = a, (B.8.1) = O(k23n~%p**) = o(pn~®). When ¢ <
a—1,since 3y i<k Tings = O(ko) by Condition A.4 and Lemma B.0.1,
then (B.8.1) = O(kon~("+t2=9)p2) = o(pn=?). For (B.8.2), as b > 1, b +
a — ¢ > 1. Then similarly by Condition A.4 and Lemma B.0.1, (B.8.2) =
O(konf(b+afc)p2(cfb)) — 0(]377,7(1).
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In summary, we obtain var(7, 1) = o(pn~*) = o(1)var(1y2). Then

. . a
var{U(a)} ~ var(T2) ~ Z a!(ggc"“’]2 + ay’]l’m) .

ko+1<j1,j2<p e "y
By Markov’s inequality, {751 — E(T4,1)}/0(a) 2o,
B.8.2. Proof of Lemma A.12.2. Note that

{o(a)o(b)} teov{U(a),U(b)} = {o(a)a(b)} Tt x Z cov(Tay, T, )-

1<iy,1252

Lemma A.12.1 suggests that var(7, 1) = o(1)o?(a). By the Cauchy-Schwarz
inequality, {c(a)o(b)} " tecov{U(a),U(b)} = {o(a)o(b)} Lcov(Ty 2, Tha)+o(1).
To finish the proof, it suffices to show cov(T,2,Tp2) = 0. Note that T,
and Tpo are summation over j indexes in the set {ko,...,p} such that
p; = vj = 0. Then the proof in Section B.6.2 applies similarly and we
have cov(Tg,2,Tp2) = 0.

B.9. Lemmas for the proof of Theorem 4.6.

B.9.1. Proof of Lemma A.13.1 (on Page 25, Section A.13). In the fol-
lowing, we will first derive the form of var{i{/(a)} and then prove that
var{U(a)} = o(1)var{U*(a)}.

As we assume E(x) = E(y) = 0, then cov(z1;,,21,5,) = E(z1,,21,5,) and
cov(y1j1, Y1) = E(Y11Y1.5,)- It follows that E{t(a)} = 0 and var{U(a)} =

E{U?*(a)}. By definition,

Z;{(a) = (szpf?y)_l § E Dx,y(i7w7j17j2)7
1<51,§2<p i€P(ns,a);
weP(ny,a)

. . . a
where we define Dy y (i, W, j1,72) = [ [} (@i,51 Tiy jo — Yuws,ji Yuwr,jo)- Then

~ 1 . .. T o~ .
var{l/{(a)} = e py2 Z E{Dx,y(lawa.]17.72)ﬂ)x,y(laWa.]37.74>}'
(Pa Fa ) 1<j1,42,73,74<p;
i,1€P(ng,a);

w, WeP(ny,a)

Under H(], Zx = Ey =X = (Jj17j2)p~><p, then E(:Ul,jleh — Gjl,jz) = 0 and
E(y1.1Y15 — o) = 0. If [{i} N {i}| + {w} N {W}| < a, it means that
the common indexes between (i,w) and (i, W) is smaller than a, then we
know E{Dx y (1, w, j1, j2) Dxy (1, W, j3, ja) } = 0. If {i} n{i}[+ {w}n{w}| >
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a, we know E{Dx,y(i,W,jl,jg)Dx,y(i,vV,jg,jzl)} is a linear combination of
(le7j27j3,j4)m(Yj17j27j37j4)aima where a — {w} N {w}| <m < [{i} N {i}| and
Xijigogags = E{(1,1%155 = 051,50) (T1,j321,55 — Ojs,ja) }
Yjigogsgs = Byt — 0502 WY1, — i) }-

And if [{i} N (i} + {w} N {%}] = to,

. _ 4a—t
Y Landwin =y = 00",

i,1€P(ns,a);
w, WEP(ny,a)
which achieves the largest order at tg = a when ty > a. Therefore,
~ 1
@)} =~ ey D Nmnfmn=a
1<51,52,73,J4<p;

i,1€P(ng,a);
w, WEP(ny,a)

X B{ Dy (i, W, 1, 12Dy (1, W, s, 1) -
It follows that
(B.9.1) var{U(a)}

Z ZP;; mPa o (@ 2la—m\?
(P=P,v)2 \m a—m

1<51,52,43,54<p m=0

12

Xm!(a - m)!(le,jz,j37j4)m(Yj17j2,j3,j4)a_m7
and then (B.9.1) ~ Zl<]1y]2733,14<17 '(le szs,jzx/”cc + Yj1,j27j3,j4/”y)a'
We next prove var{id(a)} = o(1)var{i{*(a)} under Conditions A.5 and
A.6 in the following Sections B.9.1.1 and B.9.1.2 respectively.

B.9.1.1. Under Condition A.5. To prove vzar{lj{(a)} = o(1)var{Ud*(a)} un-
der Condition A.5, we will first show var{t/(a)} = O(p?’n~%). Note that
Py mPa_i_m/(P"IPny) ~ Cn®. By (B.9.1), it remains to show that for any

m € {0,1,...,a},
(B.9.2) > Kigaisdd)" Y gedn) ™ = O(0°).
1<j1,42,J8,Ja<p

We next prove (B.9.2) by discussing different cases of {ji,j2,j3,j4}, and
using Ko = —(2+4¢€)(8 +2u)(logp)/(elogd) similarly to (B.1.46), where €
and p are positive constants and 6 = max{d,, d,} from Condition A.5.
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Case 1: If |j; — jo| < Ko and |js — j4| < Ko, we define a distance kg =
min{|j1 — 73|, [J1 — jal, [J2 — 73], [j2 — ja|}, and discuss when kg > Kp and kg <
K respectively. For the simplicity of notation, define two indicator functions
I = 1{|'J'1'—j2\§K07\j3—j4|§Koyﬁd>K0} and Iy = 145, js| <Ko, |js—ja| <Ko,ka<Ko}-
By definition, we have Xy j, j; js = COV(Z1,5, 1,5, 1,53 21,55) and Y, jy s jy =

20¢€
COV(Y1,j1Y1,jos Y1.jsY1.4a)- When kg > Ko, we know Xj, j, js j; < Cd%+e by
Condition A.5 (2) and (3) and Lemma B.0.1. It follows that

(B.9.3) ‘ Z (Xjrgzsgsga) ™ (Yt gagaga) " X< Iy

1<51,52,33,Ja<p

<OptsaEe = O(1)pt x p~ B+ — o(1).

In addition, note that ), <o
dition A.5 (2), we know

inis<p l2 = O(PK§) = O(plog®p). By Con-

— 3
Z (le,j27j37j4)m(Yj1,j2,j37j4)a " x Il = O(plog p)'
1<51,72,73,J4<p

Case 2: If |j; — jo| > Kj or |j3—ja| > Ko, by Lemma B.0.1, we know that

Kpe
101,50 05,54 < C52+ . We consider |71 — j2| > Ko without loss of generality
and discuss the following cases (i)—(iv).

(i) When |]2 —j3| > K0/2 and |]2 —j4| > Ko/Q,

Koe
X i ja,dadal =ICOV(T151 81 j3T1 4y s T1jn) — Oy ja T jal < COZEHI.
(11) When ’jg —jg‘ S K0/2 and ‘]2 —j4’ S K0/2, we kHOW that ’]1 —jg‘ Z
|71 — g2| — |72 — J3| > Ko/2 and |j1 — ja| > |71 — j2| — |72 — ja| > Ko/2. Then
Koe
(B9:4)  [Xj1 2 agal =leov(rg s 21,521,5521,5:) = 0j1,j s ja| < CH7EF.

(iii) When |jo—7j3| < K¢/2 and |ja—ja| > Ko/2, as we know |71 —j2| > Ko,
then |71 — j3| > Ko/2. We next discuss three sub-cases.
(iiia) If |71 — ja| > Ko/2, we know (B.9.4) also holds.

For easy presentation, let Is be an indicator function when {j1, jo, j3, ja}
satisfies the sub-cases (i), (ii) and (iiia) above. Then similarly to (B.9.3),

’ > Kjgpisga) " Yirasga)™ ™ x I3 = o(1).

1<51,52,73,J4<p
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(iiib) If |j1 — ja| < Ko/2, and |j3 — ja| < Ko/2, we know under this case
g2 = 73l 191 = Jal, 173 — Jal < Ko. Let In = Lgjo_js) lj1—jal,ljs—ja| <Ko} - We have

<y da s da<p T4 = O(pK3}). By Condition A.5 (2), we know

- 3
’ Z (le,j27j37j4)m(Yj1,j2,j37j4)a x| = O(p log p)-
1<j1,72,73,54<p

(lllC) If ‘jl —j4‘ < K0/2, and ’jg —j4’ > KO/Z, we know

K06
Xy gagaga = B(@15, 71,5, E(71 4y 21 55) — CH2CF .

Let I5 be an indicator function of the sub-case (iiic) above. Then

. . . . m . . . . aim
E (X agsnia) " (Yjy gajarga) X 15‘
1<51,72,93,J4<p

- Z (Ujl,j40j2,j3)a X 15‘ + O(p4p—(4+u))
1<71,52,93,7a<p
B 2. ((’jlﬁjwjz,js)“‘ +o(1)

|71—541<K0/2,|j2—3j3| <Ko /2

- Z (041,20 2.3) " — Z (01.,ja0jarjs)"| +0(1)

1<41,52,43,J4<p |71—Ja|>Ko or |ja—j3]|>Ko

= 0(p°).

where the last equation uses Conditions A.5 (3) and (4) and Lemma B.0.1.

(iv) When [jo — j3| > Ko/2 and |jo — ja| < Ko/2, this is symmetric
to the sub-case (iii) discussed above. Define an indicator function Is =
1{|j2—j3|>K0/2,\j2—j4|§Ko/2}' We then have

Z (Xj17j2,j37j4)m(Yj17j2,j3,j4)a_m x Ig| = @(p2)-

1<j1,52,93,54<p

In summary, (B.9.2) is proved and thus var{i/(a)} = ©(p*n~%) is ob-
tained. To prove var{U/(a)} = o(1)var{t{*(a)}, it remains to show that
var{t*(a)} = o(p*n=%).

We write U(a) = D005 —0 2 -0 Casepr,ba Thy ba,c» Where we define
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Cocpr b = (—I)C_b1+b2a!/{b1!b2!(c —b1)!(a — c—by)!}, and

(BIS) Thpe= 3 Yoo (B P

1<51,52<p  i€P(ng,2c—by);
wEeP(ny,2(a—c)—b2)

b1 2c—bq
X H(wikvjlxikij — Oj1jz) H Lig,j1 H Liy,,j2
k=1 k=b1+1 k=c+1
bo a—c 2(a—c)—b2
X H (Ywm.gi Ywm.ja — Tju,jz) H Yuwy,g1 H Ywq,jz-
m=1 I=ba+1 g=a—c+1

ThenU(a) = ELO(‘UWC ca—cecand U™ (a) = Zg 0 Zil =0 EZQ_CO a,e,by,by X
Tbl,b2,01b1+b2§a71~ Note that Var{u* )} < C’maxbl,bmc ;b1+b2<a— 1{V&1‘(71b17527 )},
where C' is some constant. When a is finite, to prove var{t*(a)} = o(p*n=%),

it suffices to show that var(Ty, p, ) = o(an*a) for each (b1, be, ¢) satisfying
by + by < a — 1. Note that E(T}, p, ) = 0 under Hy, then var(Ty, p, ) =
E(Tl)Ql,bQ,C) and

(B.9.6)  var(Th, py.c) = (Poy Py oy IR >
1<71,25P;  i,i€P(ng,2c—b1);
1<j1,j2<p ww'€73'(ny7 (a—c)—b2)

T(i7i7w"x]7j17j2’]17]2)5

where we let

T(iv i7W7V~V7j17j2731732)

by c
= E{ [ @igizicss = 0500) @5 5,255, —05.5) 11 @i, )
k=1 k=b1+1
2C—b1 b2
X H ($ik7j2x2k7j2)}E{ H (Yt Y iz — Ujl,jZ)(yﬁ;mleﬂ}mJQ — 0j1s)
k=c+1 m=1
a—c 2(a—c)—b2
< 11 Wwwnva, ;) 11 (ywm,jzymm,jg)}-
m=bo+1 m=a—c+1

Since we assume without loss of generality that E(x) = E(y) = 0, then
E(xldlxl J2 0-31»32) = E(y17]1$1 J2 — 9, 32) = 0. It follows that when {i} # { }

or {w} # {W}, T(i,i,w, W, 1,2, j1,J2) = 0. When {i} = {i} and {w} =
{w}, we have |{i} U{i}|+|[{w}U{W}| = 2¢—b1 +2(a —¢) — by. By Condition
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A5 (1) and (2), for any given {jl,jg,jl,jg},

(BOT)  (Pyey Pyl ) T T(i,1, w, W, j1, ja, j1, j2)

i,i€P(ng,2c—b1);
w WEP(ny,2(a—c)—b2)

_ O(n—2(2a+b1+b2) % n2a—b1—b2) _ O(n—2a+b1+b2) _ O(n—a—l)

where in the last equation, we use b + by < a — 1. In addition, similarly to
(B.9.2), we have that for any given (i,i, w, W),

(B98) Z T(i,i,W,\i’,jl,jQ,jl,jQ) = O(p2)

1<j1,52,J1.52<p

In summary, by (B.9.7) and (B.9.8), we know var{U*(a)} = O(p*>n=*"1) =
2,—a

o(p*n™).

B.9.1.2. Under Condition A.6. In this section, we prove that var{l/(a)} =

O(].)VEM”{Z/N{* (a)} under Condition A.6. Recall that we have already obtained
var{U(a)} in (B.9.1). By Condition A.6 (3), we have

(B.9.9) X1 jadsria = Hw(aj1,j30j27j4 + Uj17j4‘7j27j3) + (K2 — 1)‘7j17j2‘7j37j47
Y

J1,J2,33,J4 = Hy<aj17j3‘7j27j4 + Uj17j40j27j3) + (Hy - 1)Uj1,j2‘7j37j4'

Then by Condition A.6 (1) and (4), we know (X, jojs.ja) ™ (Y1 jojzrja) ™"
is a linear combination of

a

(B.9.10) H {qu(t)ﬂqu X qu(t%jq(t) }’
t=1 = ‘1 %2 B

where {(git),gét)),(gét),gy)) :t = 1,...,a} are a allocations of the set
{1,2,3,4} into 2 (unordered) pairs. When the a allocations are the same,
by the symmetricity of j indexes,

a

E' HU‘ R — Z (01 is T i)
]g%t)ngét) ng(at)dgy) J1,J3% 72574

1<91,J2,98,Ja<pt=1 1<51,72,93,J4<p

When the a allocations are different, by Condition A.6 (4),

a
3911 > Tl 00 e =00 > (@)
2 3 4

1<j1,j2,d3,ja<pt=1 ! 1<71,52,33,J4<P
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which can be obtained by taking square of both sides of (B.9.11) and using
Condition A.6 (4). It follows that by (B.9.1), Condition A.6 (1) and (4) and

the symmetricity of j indexes,

(B.9.12) var{(a)} =0n™") > (05,5505.5)"

1<j1,72,73,J4<p

We next show var{U/*(a)} = o(1)var{(a)}. Similarly to Section B.9.1.1,
we know it suffices to prove var(Th, p,) = o(1)var{td(a)} for 0 < ¢ < a,
0<by <¢,0<by<a—candb +b < a—1. Note that (B.9.6) still
holds here, and when {i} # {i} or {w} # {w}, T(i,i,w, W, j1, jo, j1,J2) = O.
Therefore, (B.9.7) also holds. By Condition A.6 (3) and (4), similarly to the
analysis of (B.9.12), we have for any given (i,i, w, W),

(B.9.13) Yo TG w, W, 1, 2, 51, o)
1<51,52,73,Ja<p
= 0(1) Z (01,530 2,54) -
1<j1,52,33,Ja<p

Combining (B.9.7) and (B.9.13),

var(Ty, poc) = O™ D" (04,430)p50)" = o(1)var{U(a)}.

1<g1,52,J3,Ja<p
B.9.2. Proof of Lemma A.13.2 (on Page 25, Section A.13). Since E{U(a)} =

B{U(b)} = 0 under Ho, cov{U(a) /o(a),U(t) /o ()} = BIU(@U®)} Hoa)o (D)}
Recall that U(a) = U(a) +U*(a) and U(b) = U(b) + U*(b). Then

U(a) U(b)}:E{Z;l(a)+Z:l*(a) Z](b)%—l]*(b)}

(B.9.14) E{ @) = o0 oW X
_ gU@u)y
N E{ o(a)o(b) } +o(l),

where the last equation follows by Lemma A.13.1. By the definition and
notation in Section B.9.1,

Z:l(a’) = C’a Z Dx,y(iawvj17j2>7 d(b) = éb Z Dx,y(iw,jh,EQ),

1<51,52 <p; 1<j1,52<p;
iEP(na,a); i€P(na,b);
weP(ny,a) WEP(ny,b)

where we let C, = (ngwPfy)_l, C, = (Pb"“”any)_l, Dy y(i, w,j1,J2) =

T o~ T b
Htazl(xityjlxitdé - ywt,jlywtﬂé) and DX,Y(LWJI?]?) = Ht:l(xit,jlwft,jg -
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yu?t,hyu”]t,ig)' It follows that
E{a(a)d(b)} = C~1ac~'b Z E{Dx,y(iaWaj17j2)]D)x,y(i7‘7"7}1732)}'

1<51,52,01,02<p;
i€P(ng,a); i€P(ng,b)
WEP (ny,a); WEP(ny,b)
As a # b, we know {i} # {i} and {w} # {w}. It follows that simi-
larly to Section B.1.2, E{Dxy (i, w, j1,j2)Dxy (i, W, j1,72)} = 0. Therefore
E{U(a)U(b)} = 0 and cov{U(a)/o(a),U(b)/o(b)} = o(1).

B.9.3. Derivation of Dy, j, and 7r7217k. To prove Lemmas A.13.3 and A.13.4,
we derive the forms of D, ,, and 7r7217 ;. in this section. By construction, D,, , =
ot trAn ka,, Where Ay, g, = (Ex—Er_1)[U(a,)/o(a,)]. In addition, m2 =
Zlgm rp<m tritrs Er—1(Ankar, Ankar, ). It then suffices to derive the form of
Ay, k.o for a given integer a, and also derive E;_1(Ay, k. q, An k.a) fOr two given
integers a; and as.

For easy presentation, we define &; ;, j, = ;i j, Ti, jo — 0j, j» and V; j, j, =
Yij1Yir,j2 — Oji,j» iD the following. Then under Hy,

a

Z;{(a) = (Pgwpc?y)_l Z H(th7j1,j2 = Vitjr.ga)-

1<91,525p; t=1
i€eP(ng,a); weP(ny,a)

B.9.3.1. Part I: 1 <k <mng,. When 1l <k < n,, similarly to Section B.1.4,
as E(X) j, j,) = 0 under Hy, we have

a

(Ex — E,H){ [T X0 — ywt,jl,gg)} = (Ex — Eg—1) ( 11 Xit,jl,jz)a
t=1

t=1

which is nonzero only when i1,...,i, < k and k& € {i1,...,i5}. Then we
know when k < a, A, 1, = 0 and when k > a,

a—1

(B.9.15) Appa=cr(na) > (H Xit,ﬁm)?‘%,m,jm

1<71,52<p; t=1
ieP(k—1,a—1)
where c¢j(n,a) = al/{P)*c(a)}. For two integers a; and as,

Er—1 (An,k’,cu An,k,az )

2
. l . .
- HC(?’L,CL[) Z Mxﬁy,l(kal( )7]2l717.72l =1, 2)7
=1 1<j1,42,58,J4<p;
iOeP(k—1,a,—1),1=1,2
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where

w1 (B0 oy 1, o 1 1=1,2)

2 a;—1
- H ( H X( O o 17321)E(Xk,j17j2Xk7j3,j4)'
=1 t=1

B.9.3.2. Part II: ny +1 <k <ng+ny,. Whenn, +1<k < n;+ny, we
have

a S a—s
H(Xit:j17j2 = Viejrojz) Z Z (H Xif»jhh) ( H yw§7j17j2>’
t=1 = i 68(1 5)7 t=1 =1

w*eS(w,a—s)

where S(i, s) represents the collection of sub-tuples of i with length s and
S(w,a — s) represents the collection of sub-tuples of w with length a — s,
which is similarly used in Section B.3.1. When n,+1 < k < nx—i—ny, similarly
to Section B.1.4, (Eg — Ep_ ) {I[}—1 (iz sy Tiz o — 0150) [15-] (yw 1Y s —
0j14,)} # 0 only when wi,...,wi_  <k—ngand k —n, € {wl, cwE_
and then

a—s—1

S a—s
(Ex —Ex_1) ( H XiZJl:jQ H ywtf,jl,p) Vk—nzji1,52 H th J1:J2 H ywt J1.J2
t=1 =1

It follows that

a—1 a—s—1
Apka = § : E ca(n, a, ) Vi Nx,J1,52 H‘Xit,huz H ywt7]17.727
s=Ly 1<j1,j2<p; =
iEP(ng,s);

weP(k—ng—1,a—s—1)

where Ly, = max{n,—k+a,0} and cy(n, a,s) = P75 Py~ {Pre PV (a)} L.
Thus for two constants a; and ao,

Er_1 (An,k:,al Ap k,az )

- Z HCQ n alvsl X,y ,2 (k - n$7i(l)7j2l*17j2l = 172)7

1<71,J2,33,J4<p;
Li<s;<a;:1=1,2;

iOeP(ng,s;): 1=1,2;
weP(k—ngy—1,ai—s;—1):1=1,2

where

My 2(k — ng, i i) g1, jor 1 1=1,2)

S al—sl—l

2
- ll_[l (H Xigl)vhz-l,jm H ywtw,j21—17j21)E(yk_nx’jl’hyk_nx’jg’j‘l)'
= t=1

t=1
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B.9.4. Proof of Lemma A.13.3 (on Page 26, Section A.13). Note that
by the Cauchy-Schwarz inequality, for some constant C,

n
2 2
var E T ) <Cn max var(T )
<k:1 nk 1<k<n;1<r1,ro<m ( k,ar17a72)7

where for two integers ai and a2, Tk ay.00 = Ex—1(An ka1 Anka,) is given
in Section B.9.3. Therefore to prove Lemma A.13.3, it suffices to prove
var(Tk.a,, a,,) = o(n=2) for every 1 < k <nand 1 < ry,79 < m. We next
prove var(Tk q, a,) = 0(n"2) when a < k <ny and ny + 1 < k < ng +ny in
the following Parts I and II respectively.

B.9.4.1. PartI: a <k <mn,. We first derive the form of var(Ty, 4, q,) When
a<k<ng As Var(Tk,al,az) = E(TQ ) - {E(Tk,m,az)}Za we next derive

k,a1,a2

E(Tk a,,4,) and E(T% a1.a,)- In particular,
2

E(Thara:) = | [ et ar) > E{Mx’y’l(]g7 O oy 1 gy =1, 2)}.
=1 1§j1)j27j3’j4gp;

iOeP(k—1,a;—1),1=1,2

For easy presentation, we let ag = a1 and a4 = as, and have

{E(Tk,a1,a2)}2
= HC(TL,CL[) Z E{Mx,y,l(kyi<l)vj2[—1aj2l = 1’2)}

=1 1<51,92,73,74,35,J6,J7,J8 <P;
iWeP(k—1,a;-1),1=1,2,3,4

X E{Mx,y,l(kai(l))j2l—laj2l = 374)}

In addition, we have

4

E(Ti,al,ag) = H C(n’ al) Z

=1 1<51,52,93,74,75,J6,J7:78 <P}
iOeP(k—1,a,—1),1=1,2,3,4

B{ My (ki oo, g 1= 1,2,3,9) |,
where we define

My 1 (ki) Gy 1, gy 1 1= 1,2,3,4)
a;—1

4
=11 ( I X0, | m)E(Xk,jl,jﬂk,jm)E(Xk,js,jﬁxk,jmg)-
=1 =1
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Let 15 be an indicator function of the event that ({iV}uU{i®}H)N{i®}u
{i®®}) = 0. Then define

4
Gal,ag,l = Hc(n,al) Z X1g
=1

iOeP(k—1,a,—1),1=1,2,3,4
x E{Mx,y,l(k, 10 oy 1o i1 =1,2, 3,4)}.
We also note that
(B.9.16) E{Mx,yg(k,i(l)anZflajﬂ = 172,374>} X 1g
_ E{Mwl(i{;,i(”,jm_l,jm = 1,2)}
x E{Mx7y71(k,i(l),jzl_l,jgl = 3,4)} x 1g.

Since |Var(’]rk,a1,a2)| < |E(T%,a1,a2) - Ga1,02,1| + |{E(Tk,a17a2)}2 - Ga17a2,1|7
to prove var(Tka,.4,) = 0(n™2), we will next show that [{E(Tk.a,.a5)} —
Gayasa| = o(n™2) and |E(Ti,a1,a2) — Gay.as1| = 0o(n™2). In particular, we
present the proof under Conditions A.5 and A.6 in the following Sections
B.9.4.1.1 and B.9.4.1.2, respectively.

B.9.4.1.1. Proof under Condition A.5.

Step I {E(Tk.ay.a5) 1> — Gaya,1| = 0(n2). If a1 # ag, we have E(Tk.q, 45) =
Gai 40,1 = 0. It remains to consider a; = az below. Note that

(B.9.17) E{Myy1(k, i, jor 1,01 : 1 = 1,2)}
XE{MX,y,l(k;) i(l)7j21—17j2l = 374)}

satisfies that (B.9.17) # 0 only if {iD} = {i®} and {i®} = {i¥}. Thus,

4
{E(Tk,ahaz)}Q = Hc(nv ar) Z 1{{i(1)}={i(2>},} x (B.9.17).
P;

=1 1<51,52:53,J4,J5,36,37:J8 < {i®)1={i"}

iVeP(k—1,a;—1),1=1,2,3,4
Similarly, E{Mxyy,l(k,i(l),jgl_l,jgl 1 =1,2,3,4)} x 1g # 0 only when
{i0} = {i®} and {i®} = {i®}. Therefore, by (B.9.16),

4
Gay 0,1 = Hc(n7al) Z 1 GW)=(i®@y, | X (B.9.17),
=1 1<51,2,33:J4,J5,J6,37,38 <P; { {i®}={i"D}, }
iVeP(k—1,0,-1),1=1,2,34 “{i0IN{i®)}=p}
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and then

(B.9.18) {E(Thay.00)}> — Gy ani]

4
< [Jena) > 1 goy—pey, | X [(B.917)].
=1 1<51,32,78,J4,35,36 77,18 <P; { (iGN ={iW}, }

i0eP(k—1,ai-1),1=1,2,34  “{iM}n{i®) 120}

Note that
(B.9.19) > 1 Goy_g@y, . = O0m™+e9),

iOeP(k—1,a,—1),1=1,2,3,4 { {i®}={iD3}, }

O IN{EG) )0}

In addition, by Condition A.5 (2),
(B.9.20) > (B.9.17)]

1<51,32,78,74,35,36,J7,J8 <P

<C Z ’E(Xk,jl71'2Xk,j3,j4)E(XkJs,jGXkJLjEs) .

Recall that E(thl,jZXk,jS,jzl) = le,jg,jg,j4 and E(Xk,j5,j6Xk,j7,j8) = st,jﬁ,jnjg
following the notation in Section B.9.1. Following the similar analysis for
the proof of (B.9.2), we obtain » ;_; i & i<p [ Xjijasal = O(p*) and
D 1<s o jrgs<p | K dergrods| = O(p?). Tt follows that (B.9.20) = O(p*). Note
that c(n,a) = O(p~'n"%?) by Lemma A.13.1. Combining (B.9.19) and
(B.9.20), we obtain {E(Tk 4, 45)}> — Gay.a9,1 = 0(n72).

Step II: |E(T%’a17a2) — Gay.a5.1] = 0o(n™2). By construction, we have

4
(B.9.21) E(T},, 0,) — Garas = | [ e, ar) > (1-1g)

=1 1<91,J2,73,J4,95,36,J7:J8 <P3
iWepP(k—1,a;-1),1=1,2,3,4

XE{MX,y,l(kv i(l)7j2l—17j2l = ]-7 27 37 4)}
When | UL, {i®'}| > a1 + ag — 2, which means that there exists one index

that only appears once among the four sets {i"}, I = 1,2, 3, 4, then similarly
to Section B.1.5,

(B922) E{MX,}’,I(kai(l)v.leflijl = 172)} X (1 - 1E>
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satisfies that (B.9.22) = 0. When | U, {iD}| < a1 + a2 — 2,
(B923) Z 1{|U?=1{i(l)}\<a1+a2—2} = O(na1+a2*3)'
iOeP(k—1,a,—1),1=1,2,3,4
Similarly to the analysis of (B.9.20) above, by Condition A.5, we have
(B.9.24) > (B.9.22) = O(p*).
1<J1,52,73,J4,J5,76,37,38 <P
Therefore, by (B.9.23), (B.9.24) and ¢(n,a) = O(p~'n"%?),

4
H c(n, ay) Z (1 =1)1gus (0))<aytaz—2)

=1 1<51,92,73,34,35,J6,J7,J8 <P;
iOWeP(k—1,a;-1),1=1,2,3,4

XE{MX,yJ(k)i(l)7j21—17j2l = 1)2)}
_ O(l)n—al—agp—4na1+a2—3p4 — o(n_Q).
Last, we consider | UL, {i!}| = a; 4 ag — 2. Note that 1 — 15 # 0 indicates

that ({iMYU{ANHN{E® JU{i®}) # 0 under this case. By the symmetricity
of the j indexes, we have

(B.9.25) ‘ 3 (B.9.22)’
1<741,32,78,74,35,36,J7,48 <P
<C Z ‘E(X/wi 52Xk 30 VE (X s js X7 s )

X B(Xk 5y 5o Xk s o ) E( Xk s s Xz js)

Following similar arguments to that in Sections B.1.5.2 and B.9.1.1, by dis-
cussing different cases of j indexes, we have (B.9.25) = o(p*). Thus,

4

[T e, a) > (1 =1E)1gu (i0)|=a)+az—2}

=1 1<51,92,73,74,35,J6,07:J8 <P;
i(l> Ep(k_laal_l)v l:1727374

XE{Mx,yJ(k,i(l),jzl—l,jm = 172)}
_ 0(1)n7a17a2p74na1+a272p4 _ 0(77,72).

In summary, we obtain E(Ti,al,az) — Gayap1 = 0(n72).
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B.9.4.1.2. Proof under Condition A.6. Similarly to Section B.9.4.1.1, we
next prove |{E(Tk,a17a2)}2 — Gayaz,1| = 0(7172) and ‘E(T2 )= Gayaz,1] =

k7a17a2
o(n=?).

Step I: [{E(Tk.a1.a5)}* — Gaya9,1] = 0(n™?). Following the same analysis in
Section B.9.4.1.1, we obtain (B.9.18) and (B.9.19). By Condition A.6 (2)
and (4), we have

(B.9.26) > (B.9.17)

= O(l){ Z (Ujhjzajs,jz;)al}{ Z (Uj57j60j77j8)a2}'
1<71,52,73,j4<p 1<75,J6,37:J8 <P

Note that 02(a) = ©(n~%) x > 1< 1 jasja<p Tt isTiaga)® Dy Lemma A.13.1,
and c(n,a) = O(1){n%(a)}~!. Combining (B.9.19) and (B.9.26), we have
‘{E(Tk,al,%)}z — Gayaz,1| = o(n=?).
Step II: |E(Tz’a1’a2) — Gayap1| = 0o(n™2). Similarly to Section B.9.4.1.1, we
have (B.9.21) and E{My.y 1(k,iV), jo;_1, 42 : | = 1,2,3,4)} # 0 only when
[us, (i} < a1+ ap — 2.

When | UL, {iD}] < a1 + a2 — 2, (B.9.23) still holds. By Condition A.6
(2) and (4), similarly to (B.9.26), we have

Z E{Mx,y,l(k7i(l)7j2l71,j2l = 1,2,3,4)}

= 0(1){ > (Ujl,jszjg,j4)“1}{ > (Uj5,j60j7,jg)“2}-
1<51,72,73,J4<p 1<j5,J6,97,38<p

Note that 0%(a) = ©(n~%) x D 1< 1 jajsja<p\Ti1,sTiaja)® Dy Lemma A.13.1,
and c(n,a) = ©(1){n%(a)}~*. Then we have

4

H c(n,ap) Z Lous, (i0})<a1+as—2}

=1 1<51,52,793,94,35,J6,J7,J8 <P;
iOeP(k—1,a;—1),1=1,2,3,4

X E{Mx,y,l(k7i(l)7j21—17j2l = 1727374)} = 0(77‘72)'

When | UL, {iD}| = a1 + az — 2, by the construction of 1, we know

(B.9.27) E{Mx,y,l(k, O oy 1 gl =1,2, 3,4)} % (1—15)
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satisfies that (B.9.27) # 0 if ({i0Y U {i®}) N ({i®Y U {i®}) # 0. Then
by Condition A.6 (3) and (4), we know (B.9.27) is a linear combination
of Zlgjl,...,jggp ?ilb Ojons1rdag With Sg > 4, where we recall that Sg is
the number of distinct sets among {ga21—1,92},t = 1,...,a + b, induced by

G=1(g1,--- ,92(a+b)). Therefore,

4
HC(H, a) Z (1—=1g) X 1gus (i0)=as +ar—2)

=1 1<71,J2:73,J4,95,36,J7:J8 <P}
iWep(k—1,a;—1),1=1,2,3,4

X E{Mx,y,l(k7i(l)7j2l717j2l = 1727374)}
a+b

< C{ ﬁc(n, al)} x paitaz=2 Z ‘ Z Hajgzt,pjggt

G:Sg>4 1<j1,...js<p t=1

= o(n

where the last equation follows by Condition A.6 (4), 0%(a) = O(n™%) x
lejl,jz,jg,j4§p(0j1»jsgj2»j4)a7 and c(n,a) = ©(1){n%(a)}~!. In summary,

we obtain E(’]I‘i’ahm) — Gayap1 = 0(n72).

B.9.4.2. Part II: n, <k < ng +ny. In this section, we prove that when

Ny <k <ng+ny, var(Ty g, 0,) = o(n~?). Recall the form derived in Section
B.9.3.2. We have T}, 4, a, = ZL1§81§@17L2§82§a2 Tk,a1,a0,51,50, Where

2
Tk7al,a2,81782 = E H C2 (n7 a, 51)
=1

1<j1,52,793,54<p;
i eP(ng,s;): 1=1,2;
weP(k—ng—1,a;—s,—1):1=1,2

X My 2(k — nx,i(l)7j2z—1,j21 1=1,2).
To prove var(Tk g, 0,) = o(n=?), it suffices to prove var(Tk oy as.s1.80) =

o(n~2). In particular, for easy presentation, we set a3 = a1, a4 = ag s3 = 51,
and s4 = s9, and then have

4
{E(Tk,al,a2,81,32>}2 = Z H C2 (n; ar, Sl)
=1

1<71,J2:93,J4:95:36,J7:38 <P3
i eP(ng,s;): 1=1,2,3,4;
weP(k—ng—1,a;—5—1):1=1,2,3,4
N .
E{Mx,y,Q(k — Ny, 1( )7]2l717]2l = 17 2)}

X E{Mx,y,z(k — 1, 1D, Gop 1, oy 1= 3,4)}-
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In addition, we have

4
E(Ti,al,ag,sl,@) - Z H €2 (n7 al’ Sl)
=1

1<51,J2,33,J4,35,76,J7,38 <P}
iOeP(ng,s;):1=1,2,3,4;
weP(k—ng—1,0;—s;—1):1=1,2,3,4

X E{Mx,y,Z(k - nwai(l)7j2l717j21 = 1727374)}7
where we define

Mx,y,Q(k — N, i(l)7j2l—17j2l :1=1,2,3, 4)
4 S al—sl—l

- Xo . - )
H (H 1§l)aJ2l—17]21 H yﬂ)(l) J21—1,J21
t=1

=1 t=1 £
E(Vk—ngj1,j2 Vk—najsja) X BV k—ng.js jo Yk —ns jr.js)-
Therefore var(Ty g, a.51.50) = E(T? )—{E(Tk7a17a27sl’32)}2 is derived.

k.a1,a2,s1,52
We note that the form of var(T} 4, 40,5,.5,) 18 very similar to the var(Ty 4, q,)
in Section B.9.4.1. In particular, we can write Z; j, j, = &; j, j, if i < n, and
Ziiris = Vicneirio if @ > ng. Then we let g = (i), W) to be a joint
index tuple of i) and w¥), where W) is transformed from w) by adding
each index with n;. Also let 1z be an indicator function of the event that

{aDru{a®@H n {a®}u{q®1) = 0. Then define

4
Gal,ag,Q = Hc(n7al) Z X].E~
=1

1<71,92,73,34,35,J6,07,J8 <P;
iDeP(ng,s;): 1=1,2,3,4;
weP(k—ng—1,a;—s;—1):1=1,2,3,4
o(1 . . . o
X E{Mx,y,Q(ka 1( )7.72l717‘72l = 17 27 37 4)}

Similarly to Section B.9.4.1, we also note that
E{Mx,y,g(k, ORI iy g 1,2,3,4)} <1
- E{Mx7y72(k, 1O oy 1l =1, 2)}
X E{Mx,yg(kz,i(l),jgl_l,jgl = 3,4)} x1p.

Given Conditions A.5 and A.6, we know that similarly to Section B.9.4.1,
we can show |[{E(Tk.a; a.51.55) 1> — Gay.az,2] = 0(n™?) and ]E(’]I‘i@h@m&) —
Gy an.2| = 0(n™2) respectively. Finally we obtain var(T g, ay.51.5,) = 0(n72).

The proof is very similar and the details is thus skipped.
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B.9.5. Proof of Lemma A.13.4 (on Page 26, Section A.13). Recall the
form of D, ;. derived in Section B.9.3:

éE(D Z T thxE<HAnM”)

=11<r1,r2,r3,r4a<ml=1

To prove Lemma A.13.4, it suffices to show that for given 1 < k < n and
1 < 7ry,79,73,74 < m, we have E(H?:1 An’k’%) = o(n~!). In addition, by
the Cauchy-Schwarz inequality, it suffices to show E(A% ka) = o(n~1) for
each given finite a.

B.9.5.1. Part I: 1 < k < mn,. We consider without loss of generality that
k > a and

4 a—1

<HA"’”) (n,a) 2 E(H 11 Xi§j),jgz_1,jzz)

1<71,--,J8<p; I=1t;=1
i(l)GP(kfl,afl),l:l,A..,4

XE(H Jai— mgz)

As E(X}, j,) = 0 under Hy, we know

4 a—1

(HH lt :J2l 1,J2l) 7&()

I=1t=

only when | Ut {i¥'}| < 2(a —1). Note that c(n,a) = ©(1){n%(a)}~*. To
finish the proof it suffices to show that for given (i ih i@ @) ¢ )) we have

B.928) (HH 0 g u)E (H v ) = O(n2) (a).

1<j1,..,J8<p I=14=

We next prove (B.9.28) under Conditions A.5 and A.6 in the following Sec-
tions B.9.5.1.1 and B.9.5.1.2, respectively.

B.9.5.1.1. Under Condition A.5. Recall that &, j, = TijiTijo — Ojy jo-
By the symmetricity of the j indexes, we have

3 B(lsem)e s {p(ITn)

1Sj17--~7j8<p 1<g1,.,08<p
4
+ ‘ H Oj21—1, jai
=1

+ ’E ( H 901,;@) Ojr.gs| T ‘E< H l’m) Tjs.56 T 7.Js
=1 =1

}.
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Under Condition A.5 with the mixing-type assumption, following similar
analysis in Sections B.1.5.2 and B.1.6.2, we know Zlgjl,...,jggp ]E(H?:1 z1,5,)]s
Zlgjl,...,jggp ’E(H?:I T1,5,)0j7js Z1§j1,...,j8§p |E(H?:1 1,j,)05j5,j6 O jr.js | and
Zlgjl,.,.,jggp ] H?zl Tjo_1. 4| are all O(p*). Tt follows that

(B.9.29) > e (H ot-ria )| = O*):

1<j1,...,J8<p

Recall that Lemma A.13.1 shows that 02%(a) = O(p?n~%). By (B.9.29) and
Condition A.5 (2), we have (B.9.28) holds and E(Ai ka) = o(n™1).

B.9.5.1.2. Under Condition A.6. By Condition A.6 (3), we know that
(Hl 1Htl 1 X ) i 1]21) X E(H?:1 Xj,_1jy) is a linear combination of

(Ht 1 T 1ng), where G = (g1,...,984) € {1,...,8}%% satisfies that
got—1 # gor for t = 1,...,4a and the number of ¢’s equal to m is a for each
m € {1,...,8}. By Condition A.6 (4), for given G satisfying the constraints,

. ) — s e~ \a
Zléjl,mdsép Oliggr_1+dg2; — 0(1) Zlgjl,...7j8§p(0J17]20-J3:.740-J57360-J7:J8) . Then
we have

4 a—-1 4

Z E(H H Zfz Jar— 1,]21) X E(H KXjoi_1,j21)

1<)1,,98<p I=1t=1 =1
4
—_— . . . . B . B . a —_— a
=0(1) E (Tj1,42 073,34 0 s j6 Tir i) —0(1)< E Ujl,jz) :
1<j1,...,J8<p 1<71,j2<p

Recall that Lemma A.13.1 shows that o%(a) = O™ ) (X 1<)y jo<p a8 i,)?
Therefore, (B.9.28) is obtained and Lemma A.13.4 is proved.

B.9.5.2. PartIl:nz+1 <k <ng+n,. Section B.9.3.2derives that 4,, ., =
Zg;ik Ap ka,s, Where

a—s—1
Ankas = E : c2(n, @, ) Ve—ny,j1,jo HXltm,Jz H Vuwz i g2
1<51,52<p;
iEP(ng,s);

weP(k—ng—1,a—s—1)

Similarly to Section B.9.5.1, it suffices to show that for given finite integers
a and s, E(A? kas) = o(n™1). Following the arguments in Section B.9.4.2,
we know Amk’a,s takes a similar form to Ap k. in Section B.9.5.1. Therefore
the proof in Section B.9.5.1.1 can be applied similarly to show E(Ai ka S) =
o(n™!) in this section. The proof will be very similar and the details are thus
skipped.
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B.10. Lemmas for the proof of Theorem 4.7.

B.10.1. Proof of Lemma A.14.1 (on Page 28, Section A.14). In this sec-
tion, to prove Lemma A.14.1, we study var(Tp 4.1), var(Tp 4,2) and var{U/*(a)}
respectively.

Part I: var(Tpq1). We first derive var(Tp q,1). Note that Tp 41 is a sum-
mation over j indexes in Jo, and o0y j, j, = 0y j, j» for ji1,j2 € Jo. Following
the arguments in Section B.9.1, similarly to (B.9.1), we have

var(Tpan) =~ > a XKy gy s s/ Me + Yoo js.ga/ 1) "
1<51,52,43,34€J0

By Condition A.7 (3), (B.9.9) still holds. Then by Condition A.8 and the
symmetricity of j indexes,

(B-10.1) var(Tp,a1) = Cra Z a!0?1,j20?3,j4’
1<51,52,93,54€J0
where Cyo = {(ka — 1)/ns + (ky — 1)/ny}* + 2(kz/ne + Ky/ny)?, and

. axrl/2 . 1/2
var(Tp q,1) is of order ©(n aVa,/a,o,o) with Va,/a,O,O = Zjhwﬂejo(Uzjjmagg,jg,jél)“
defined on Page 27.

Part II: var(Tpq2). We show var(Tp q2) = o(1)var(Tp q1). Particularly,

Tpag2 = Z ﬁ Z H vtz — Ywejgz)s

(r.g2)€do,p = ¢ 7Y i€P(nga), t=1
weP(ny,a)

where we redefine &X; j, j, = i j, Ti,j, — 0y, j g, A0 Vi jy o = Yirjs Yirja — Ty, jo-
Moreover, we define

Gp,a= Z (PyePa”)™? Z Liipngy=oy (D2 D ia) -

(41,32),(93,J4)€Jo, D i,ieP(ng,a),
w, WEP(ny,a)

To prove var(Tp q2) = E(Tl%,a o) — {E(Tpa2)}? is o(1)var(Tp 41), we next

show |E(Tf)’a72) — (TD}a’Q)}Q — Gp,q| are both o(1)var(Tpg,)-
Note that E(Xi,jl,jg) = Dj1,j2 and E(yi,jhh) = 0. We have

{E(TD,aQ)}Q = Z (P(?xpgly)_2 Z (DJI;JZDJ&.M) :

(41,32)5(J3,44)€Jo, D i,i€P(ng,a),
w, WEP(ny,a)
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Then
{E(Tp,az2)} — Gp.dl

< ’ E (Py=pPy")~? Z Liipngyzor (Dinge Dis.ga)”
(41,92),(J3,a)€Jo, D i,ieP(ng,a),
w, WEP(ny,a)

—1 a
<Cn E : ‘DjthDj&jzl‘ ’
(41.42),(J3,Ja)€Jo,D

where we use Zi,ieP(nx,a),w,WGP(ny,a) Liingioy = O(n**=1). In addition,

[E(T.42) = Gp.a

<C > (Py=Pa)™ )

(J1,42),(J3,Ja)E€Jo, D i,ieP(ng,a),
w, WEP(ny,a)

<1{{i}m{;}:@}’E{ [T = Vi o) (X g — ywt,ja,j4)} — (Dj1,j2Djs a)*

+ 1{{i}m{§}¢@}‘E{ H(Xit,jhjz - ywt,jl,jz)(xgt,j&ﬁl - yﬁ)z,js,h)}’) '
t=1

We redefine X, j, js iy = E(Xijy jo X jsia) a0d Yy o s is = E(Vigy o Viis a)-
Then

[E(T5.4.2) = Gp.al

<C Z n_TTm2

1<mi+ma<a

mi ma - . ja—mi—m2
x Z ‘le 7j27j3,j4Yj17j27j37j4 (Dj1 2 Dijs.ja) :

(41.72),(43,4)€Jo,D

Note that Yy j js.js = Oyj1.jsOy.jaia T Oy.jr.jaCy.gz,gs 0 Oy jy gy = Ty ja —
Dj, j,. By Conditions A.7 and A.8, Holder’s inequality, and definitions in
(A.14.1), we have

a

var(Tp,a2) < C%ﬂgﬁ{ > (0 Vara )™ (Varns) ™", n_lVa,H,D,s}-
t=1,2 m=1

Therefore by Condition A.8 and (B.10.1), var(Tpq2) = 0(1)”_aVi,/j,0,0 =
o()var(Tpq1)-
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Part III: var{ld*(a)}. Last, we prove var{{*(a)} = o(1)var(Tpq.1). Sim-
ilarly to Section B.9.1, we write U*(a) = Y%, Y5120 2by—0 Caepr by X
Th, bs,c by +by<a—1, Where Ty, 4, o is defined in (B.9.5). For finite a, to prove
var{it*(a)} = o(1)var(Tp 4.1), it suffices to prove var(Th, p,.c) = o(1)var(Tp 4.1)
for 0 <c<aandbi+by <a—1. AsE(}Y;;, j,) = 0and E(x) = E(y) =0, we
know that if by + by < a —1, E(Ty, p, ) = 0. Then var(Tp, p, o) = E(Tfhb%c),
which takes a similar form to (B.9.6). Specifically, we can write var(Tp, p, ) =
Var(Tbth,c)(l) + Var(Tb1,b2,c)(2)7 where

Var(Tb17b27C)(1) = Z (P2ncm—b1 P;(ch)sz)_2 Z

J1.92.31,52€J0 i,1€P(ne,2c—by );
w WEP(ny,2(a—c)—b2)

T(i,i,W,VV,jl,jQ,jl,jQ),

and
var(Th, by.c)(2) = Z (P;cm—blPzn(@zjz—c)—lazr2 Z
(J1.52)s i,1€P (ng,2c—b1);
(91,52)€Jo,D w weP(ny,2(a—c)—b2)

T(i,1i, w, W, j1, j2, j1, j2),

and T(i,1, w, W, j1, jo, J1, j2) is defined same as in (B.9.6).

Note that var(Ty, p,.c) (1) is @ summation over j indexes in Jo, and oy j, j, =
Oy.jr.jo fOT ji,72 € Jo. Therefore the arguments under Hp in Section B.9.1
can be applied similarly to var(7}, p,c)1).- Then we have var(Ty, p,.c)1) =
o(n™*) (X2, nelo 0?17]-2)2 which is o(1)var(Tp q,1). We next consider var(Ty, p,.c)(2)-
As E(Vijij,) = 0 and E(x) = E(y) = 0, by the definition in (B.9.6),
we know E~{T(i,i,w,v?r,jl,jz,jl,jg)} =% 0 only when {'l‘bl_l’_l,..;,ch_bL} =
{ib1+1a ce 7i2c—b1} and {W} = {VNV} Let mg = bl—‘{il, e ,’ibl}ﬂ{il, e ibl}|-
By Condition A.7 (3) and Holder’s inequality,

var (Tb1 ,ba ,C) (2)

a—c
— p— — —_—C— — a
< an (c b1)ny (a—c—b2) ?5%%}57 {(nya Z |Uy,jh1 iy T i |a>
0<mo<by (41,32)5(J3,Ja)€Jo, D
C—mo
X (n;a Z ’JZ Jh1 5Tho OT0ng 0n ‘a ’
WhyoJhg Wh3aJhg

(41,42),(43,44)€Jo, D
mqg

. . . . a T
X ( Z |Dyh1,Jh2 D.Yh3:]h4’ ) }
(41,32)5(J3,J4)€Jo, D

< Cn_(a’_bl_b2) max n—aV A%
- HEHO,t:LQ{ a,H,x,t> (l,’H,D,3},
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where the last inequality uses oy j, j» = 0z j1,jo — Dji jo- As by +b3 <a—1,
var(Ty, py.c)(2) < Cn~ ' maxyemyt=12{n" Va2t Var,ns} By Condition
A.8 and (B.10.1), we know var (T, p,.c)(2) = o(1)var(Tp,a,1)-

B.11. Proof of Remark 2.4. In this section, we prove the conclusion
in Remark 2.4. To be specific, we prove in the following that under the
conditions of Theorem 2.3,

U(ar) < 2z,... Ulam)

(B.11.1) ‘P(n(M,Z)2 > Yp,

~—

J(a1

- P(nar)? > ) TT P(L%) < 2,)
r=1

3

o(ay)

Note that we already know M, /n and U(a,)/o(a,)’s for r =1,...,m are
asymptotically independent by the proof of Lemmas A.3.2 and A.3.3. In this
section, the proof idea is that we show the difference between n(M,JE)2 and
My /n is op(1) and then obtain (B.11.1). To prove that n(M})2 — M, /n is
op(1), we introduce an intermediate variable M,,/n defined below, and show
that M, /n — n(M;)? = 0p(1) and M,,/n — M,,/n = o,(1) respectively.

Specifically, we define

Y ~2
Mn/n - IS;?QJ?;SP ‘najl,jz/gjhh‘?
where 6 j, = D1 {(@ijy — %)) (@i g, — Tjp)}/n and 0, = var{(zij —
i )(Zi jo — g, ) . Moreover, by (A.3.3), we have
~2
Mn/n - ISJI'?QJ?;SP ‘najl,jz/gjhh‘?
where we use the fact that 0;, ;, = 0, j,04,,, by Condition 2.3 and define
Girgo = 2 {(@ijy — ) (@i j, — o) }/m. In addition, we have
N 5 1/2
M = \max 105,521/ (0.,) 2,
where we let 9j1,j2 = \72;1“(5']'17]'2) =n! Zzﬂzl{(xivjl 7Ej1)(xi,j2 *CEJ'Q)*&J'IJQ}Q.
In the following, we will first compare M, /n and n(MZ)Q, and then compare
M, /n and M, /n. Also for simplicity, we assume without loss of generality
that p; =0 and o;; = 1.

Note that n(MTTL)Q = MAXi<jy£jp<p |n(7j241 o /éjl _j»|, which differs from M, /n
only by replacing 6;, ;, with 6}, j,. By the proof of Lemma 3 in [5], we know
that for any Cy > 0, there exists some constant C7 such that

P( max_ 6,5, = 65151 /01 g2 2 Clvlogp/”) =0(p™).

1<j1#52<p
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Under the event \HAjl,jQ/Hjth — 1| < C1+/logp/n, we have
| My /1 — n(M)?|

~2 ~2 )
=| max nd; . /0, — max no: ;[0
HLdl , J1,J2 Hlds , J1,J2
1<ji#j<p T2 1<ji#j<p T2
< max |na'j2‘1 jQ/Hjl»j2| X max |1 - GjlajZ/éjl’j2|
1<j1#52<p ’ 1<j1#£52<p
-9
< _max_ [n6j, ;,/0;5,|C1v/logp/n.
1<j1#52<p

It follows that n(M;)? = M, /n{1 + O(\/log p/n)}. Since logp/n — 0, and
M,, /n has alimit by Theorem 3 in Cai and Jiang [4], then | M,, /n—n(M})?| =
op(1). _

We next compare M,,/n and M, /n. by Lemma B.0.3,

n

n
< C  max ‘ Y (@i — Tj)(Tigy — Tjp) — Y Ti gy Tig
1<j1#j2<p 1 =1

2
/ n
n n
+ Cy/My,/n _max ’ D (@igy — B (@igy — Tjp) — > ija T
1<j1#52<p P =1

—4 1/2 -2
< C max nZ; + Cn'/*\/M,/n max 77,
1<j<p 1<j<p

/v

21+
56?2)/2 < maxi<j<p f? By Eq. (27) in Lemma 2 of Cai and Liu [3], ]We
know that max <<, |Z;| = Op(y/logp/n). Since we assume logp = o(n!/7),
and Proposition 6.3 in [4] shows that M, /n has a limit, we know | M, /n —
My /n| = op(1).

In summary, | M, /n — n(M£)2| < |My/n — My, /n| + | M,/n — n(M;g)2| =
op(1). Since |M,,/n — n(M;E)2| = o0p(1) and M,,/n and U(a,)/o(a,)’s for r =
1,...,m are asymptotically independent, similarly to the proof of Lemma
A.3.3, we know (B.11.1) is proved.

where in the last inequality we use maxi<j, £j,<p Tj; Tj, < MaAX1<j,£jo<p(T

B.12. Proof of Corollary 4.1. Since the proofs in Sections A.10 and
A.12 do not rely on ¥, = X, the proof of Corollary 4.1 follows from Sec-
tions A.10 and A.12 directly. We also obtain var{{/(a)} under the null and
alternative hypotheses by Lemma A.10.1 (on Page 20) and Lemma A.12.1
(on Page A.12.1), respectively.

APPENDIX C: COMPUTATION & SUPPLEMENTARY SIMULATIONS
C.1. Computation.
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C.1.1. Formulae for (2.15). Note that Uj(a) = Ulla by the definitions
n (2.16), and for different I’s, the computation methods of Ull‘“s are the
same. Therefore in the following, for simplicity, we give the formulae of U, lla
without the subscript I:

vt =y,

Utz —y A1) _ V(Q),

Uts =vts 3y 4 oy ®)

Uls =yl — gy LY 4L gy G 4 322 _ gy @)

Uls =yts — 10V 21) 4 ooy Git2) 4 157221 _ 3oy (1)
—20V®3) 4 247 6),

Ule =yte — 15102 4 4oy G1s) 4 45y (11.22)
— 90V 120y (123) 4 144y (15) _ 157(222)
+ 90V %) 40V 33 — 120V,

where U'e and V{#1%) are defined as in (2.16).

C.1.2. Computation with unknown mean. In this section, we provide the
details of the computation of U(a) when E(z; ;) is unknown. We note that
U(a) is some linear combination of

(C'l'l) Z H :;]11 2]22’

1<i1#. Fip<n t=1
where a < k < 2a, 741,742 > 0 and 1,1 + 7,2 > 1. A direct calculation
of (C.1.1) has computational cost O(n*), which is large when k is large.
But following the discussion in Section 2.3, we can similarly reduce the
computational cost of (C.1.1) to order O(n) with an iterative method. In
particular, we note that

Tt,1 T‘t 2
(C'1'2) Z H Zt7]1 Ly 2J2
1<i1#. #ip<nt=1
n
o Tt,1 T2 Tk, Tk,2
_< Z H Ztv]l Zi7]2> <Zwl7.]1 xi:j? )
lgllgﬁ 757,]C 1<TL t=1 =1
k—1 k—1
_ Tt,1 T2 re,l  rE,2
Z Z ( H Liy g xit7j2>xim7j1 Limyjo*

m=1 lgzl;«é;ﬁlk,lgn t=1
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k—1 e, , .

Suppose we can compute > i; o ;< [[10 :L'Zjllx:z; with cost O(n)
for any (r¢1,7¢2),t =1,...,k — 1. Then by the relationship in (C.1.2), we
can obtain (C.1.1) with cost O(n) iteratively.

We then illustrate the iterative method with some examples. When k = 1,
for any given (r11,r1,2), we know » ", mzljllarzljj can be gomeutedT with

1 2
cost O(n). When k = 2, by (C.1.2), we have > i, [Timy 235,235, =
T1,1 71, 2,1 T2, r1,1+t7r2,1 _rietre, .
(i legll xzbj)@?:l xzill %?f)—ZL leﬁl ’ 1xz1]22 **, which can be com-
puted with cost O(n). For a general k, suppose for any given (r41,72),t =
k—1 _re1 T, .

L....k — 1, we can compute » ;. s  <nlli— xzf;lxlf; with cost
O(n). Then by (C.1.2), we can obtain (C.1.1) with computational cost O(n).

Given the iterative method discussed above, we can compute U(a) with

cost O(p?n). For example, we can write (1) as
n n n n
-1 -1
Z {n le}jlxi,ﬁ — (P%) ( Z Ti1,j1 Z Tig,ja — Z ﬂfi,jlxi,jz) }
1<j1#j2<p i=1 i1=1 io=1 i=1
For a = 2, similar analysis holds. Note that

u = Y {E) U@ - 2P @) + (P Us(2)],

1<j1#52<p

2
Ui(2) = Z Hliit,hxit,jm

1<ii£ip<nt=1

Us(2) = D (@i i) @i ) (i o),

1<iy #ia#i3<n
2 4
Us(2) = > [z [z
1<iy #igFiz#ia<n =1 =3

We then find that U (2),Us(2) and U3(2) can be computed with cost O(n)
using the following formulae.

n

n
2
Ui(2) = (Zfﬂz’mxi,jg> = (@igwig)*
i=1

=1

U2(2)=(zn:$i,j1$i,jg>< > ﬂfi,jlf'fi,jz)
i=1

1<i1#i2<n

2 2
- E (J:il,jlxil,jz)xiz,jz - E (xilajlxihjg)xi%jl?

1<iz#i2<n 1<iz#i2<n
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where we use -y < i< Tiji Tijo = (Dioq Tigy ) oty Tiga) =D iy Ty i
and Zlgilﬁggn(l‘% ,jlm’il,b)ximh = (Z?:l %2,]'1 xi,jz)(z?;ﬂ %’Jz)—Z?:l x%,jlxiz,jz‘

Us@) = > @i )Y Twgig) - 24(2) - (),

1<ir#i2<n 1<iz#ia<n

where we use >y ;. i <, Tiy kTis k = O @ik =3, ;. for k = ji, ja.

When a > 3, the similar iterative method can be applied. But the closed
form for computation might be hard to derive directly. Alternatively, we
introduce a simplified form of U-statistics: U.(a) = (P7)~! D i Ain<n
Y 1<ivtin<p LLi=1(Tie s =Ty ) (%, jo — Tj,). We note that Ue(a) takes a similar
form to U(a) in (2.5), but replacing each observation z; ; with the centered
correspondence x; ; — Z;. Therefore, U.(a) can be computed with cost O(n)
using Algorithm 1, if we set s;; = (x; j, — Z;, ) (@i j, — Zj,) in Algorithm 1 for
L€ {(j1,72) : 1 < 71 # jo < p}. We then show that we can substitute U(a)
with U.(a) when a > 3 in computation under certain conditions.

ProrposiTioN C.1.  Under the Conditions of Theorem 2.4, consider a >
3. If a is odd, p = o(n*t*?); if a is even, p = o(n*?). Then {U(a) —
Ua(a)}/o(a) 0.

Proposition C.1 is proved in the following Section C.1.3. It implies that the
results in Theorem 2.4 sill hold by replacing U (a) with U.(a). As discussed
above, we recommend including U-statistics of orders {1,2,3,...,6,00} in
the adaptive testing procedure. Then Proposition C.1 requires that p =
o(n?), which suits a wide range of applications. Combining Theorem 2.4
and Proposition C.1, we can conduct the test with quick computation of
cost O(p?n).

On the other hand, we can conduct the test more generally without Con-
dition 2.4 and the requirement p = o(n?). Specifically, we compute ¥(a) in

(2.5) with cost O(p?n). Then [U(a) — E{U(a)}]/+/var{U(a)} TN N(0,1) by
Lemma A.2.1 in Supplementary Material and Theorem 2.4. To test Hy in
(2.1), it suffices to estimate E{U/(a)} and var{l/(a)} with permutation. This
may have higher computational cost than the method above due to permuta-
tion, but is computationally more efficient than estimating p-values directly
via permutation or bootstrap, especially when evaluating small p-values.

C.1.3. Proof of Proposition C.1 (on Page 163). In this section, we prove
Proposition C.1. As both U.(a) and U (a) are location invariant in the sense of
Proposition 2.1, similarly to the proof of Theorem 2.4, we assume E(x) = 0
in the proofs in this section.
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Let U.; = U(a) in (2.5), and L{cg( ) = Uc(a) —Ueq(a ) By the proof of
Theorem 2.1, we know {U(a) a)}/y/var{(a } 2 0. To ﬁmsh the
proof of Proposition C.1, it sufﬁces to prove Ueo(a)/+/var{U(a)} 2o By
Lemma A.2.1, var{U(a)} = O(p?>n~%). Then it suffices to prove E{Ug2(a)} =
o(p?>n=) by Markov’s inequality. To derive U.2(a), we similarly use the
notation in Section B.3. Specifically, given tuple i € P(n,a), let (s, 1,1s,)
represent a sub-tuple of i with length s+ s2+ s3, and define S(i, s1+s2+ s3)
to be the collection of sub-tuples of i with length s1 4+ s2 + s3. Then we write

uc2( )

= Z Z Z ('i'jd j]’z)a_SI_SQ_S3

1€EP(n,a); 081,520 (4 1 sy1e9)ES(,51+52+53)
1<ji#j2<p 0=s3z<a

S1+S2 S$1+82+s3

7. )52 o e

{ —Zj,) qu,m}{ —Zj;) H J%t,az}{ H xltdlxlt,h}
t=s1+1 t=s1+s2+1

= E 051732,33T51,52,537

0<s1,s52<a;0<s3<a

where Cy, s, s, are some constants that only depend on s1, s2, s3 and a, and

1
— 7oA. \A—S1—82—83
Tsy 50,53 = E P x (%5, j,)
1<j1#j2<p; i€P(n,s1+s9+s3) S1T52+83
s1+s2 S1+82+s83
7. )52 . . ..
{ —Zjs) Hl‘u,h}{ —Zj,) H 1‘“,]2}{ H xlt»]lmlty.h}‘
t=s1+1 t=s1+s2+1

When a is finite, it suffices to prove E(TZ ,, ..) = o(p*n™?).
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Particularly,

(C.1.3) E(T? )

51,52,83

- ¥ R

- P
1<j1#52<p iieP(ns1+satsg) 115213

1<j1#52<p
S1+s2
F. . A —S1—82—S83 7. )52 .o
xE | (), %) { —Zj,) H%wl}{ —Zj) H %m}
t=s1+1
s1+s2+s3 S1
e T . \O—S1—82—83 ) (4 \S1 S
X{ H $zt,j1xlt,]2}(xj1xj2) {( xjg) Hxit,jl}
t=s1+s2+1 t=1
Ss1+s2 $1+82+83
_\S2 S e e -
X{( x]l) H xiuh}{ H xitvjlxitva}
t=s1+1 t=s1+s2+1

= Y > 152,55 M (1,1, W, W, J),

1§217522§p i,iEP(n,Sl-i-Sg-i-Sg);
1<j1#72<p w,WweC(n,2a—s1—s2—253)

where we define on Page 35 that w € C(n,s) represents tuples i1, ..

satisfying 1 < idy,...,is < n, and Ch s 50,55 = (Perisyrss
and

Sy ls
2a—s1—32—33)—2

(C.1.4)  M(i,i,w,w,j)

S1+s2 S1+5S2+83
- H Lig, g1 it ]1 H Lit,ja T it ]2 H (ximjﬂit,jz)(%,}l xzt,jg)
t=s1+1 t=s1+s2+1
a—S1—S3 2a—81—S2—283
x H xwknjl $1Z)k:31 H $wk7j2 xﬂ?k:jQ'
k=1 k=a—s1—s3+1
We write M (i, i, w, W, j) = Mj;, Mj,M; M; , where
S1 s1+s2+s3 a—81—83 s1t+s2+s3 2a—s1—82—283
Mj, = Hxitm H Lig 51 H Tuyjrs My, = H Lit, o H Loy, g2
t=1 t=s1+s2+1 k=1 t=s1+1 k=a—s1—s3+1
s1 s1+s2+s3 a—s1—S3 s1+s2+s3 2a—s1—52—283
M31 - sztvjl H i g H Liog, v MEQ - H L3y 32 H Lipgjo
t=1 t=s1+s2+1 k=1 t=s1+1 k=a—s1—s3+1

As E(x) = 0, when a = 1, E(M;,) = E(M;,) = (M~):E(M~.) 0.
We then consider a > 2. As E(x) = 0, i1 # ... # ig, 1515y and i # ... #
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Qs +sytss, We know that E(M;j,) # 0 only when {i1,..., 45,9 450415,
i81+82+83} g {wh cee 7wa—51—53} and

(C.1.5) 1Sj,] < s14+ s34+ [(a—2s1 —2s3)/2] = |a/2],

where Sj, = {i1, ..., s, G5 450415+ » bsit+sotszs Wi, - - - Wa—s,—s - Similarly,
when E(M]) # 0, we know {i81+17"'7i81+82+83} - {wa751733+1,

o 7w2a—51—32—2$3}7 and

(C.1.6) 1Sj,| < s24+ 53+ |(a—2s2 — 253)/2] = |a/2],

where sz = {i81+17 v 7i51+52+83a Wa—s1—s3+1 - - - vw?a*51*52*283}' As |Sj1 N
Sj,| = s3, combining (C.1.5) and (C.1.6), we know that if E(M;,) # 0 and
(Cl?) |Sj1 U Sj2’ < 2[@/2J — 83

Similarly, if E(M;l) # 0, we know

(C.18) 1551 < la/2),

where 551 = {7:1, N 7i51,i51+52+1, PN 7i51+52+53, QIJl, N 771}(1—81—83}- If E(M52) 7&
0, we know

(C.1.9) 1S5,] < la/2),

where 852 — {gsl—o—la ce ,5314_324_33, Qf}a_sl_s3+1, e ,’u~)2a_sl_32_253}. IfE(Mjl) 7'5
0 and E(Mj5,) # 0, we know

(C.l.lO) |Sjl @] Sj2| < 2La/2j — S3.

To evaluate BE(T?Z ,, ..) in (C.1.3), for the simplicity of representation, in

the following we write

). = 2 2

ALL SUM 1<y #jo<p; 1<j1#j2<p i,i€P(n,s1+s2+53); w,WEC(n,2a—s1—s2—253)

We next evaluate E(T?2 ) by discussing the indexes {j1,jo, j1,j2}. We

51,582,583
first consider |{j1, j2,71,J2}| = 4, and the summation

Z 1{‘{]-1,]-27"]71’32}':4} X Cn,81,82783 X E{M(i, i7 W, W,j)}
ALL SUM
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Note that |{j1, j2, j1, 2} = 4 implies that ji1 # j2 # J1 # j2. Without loss
of generality, we assume j; < jo < j1 < Ja , while the other cases can follow
similar analysis. Define k1 = jo — j1, k2 = j1 — jo and K3 = jo — j1. In
addition, for some small positive constants p and € and ¢ in Condition 2.2,
define Ko = —(2+¢€)(4 + p)(logp)/(elogd). If Ky, = max{ky, ka2, K3} > Ko,
we can write

[E{M (1,1, w,W,j)}| < Co50/CTI L A -
We next evaluate A, 5 by discussing the following cases (a)—(c).

Case (a) If all three k1, k2, k3 > Ko, we have
A5 = [E(M;,)E(M;, ) E(M; )E(M;,)|.

Then if A, = 7 0, we know E(M;,), E(Mj,), E(M;,) and E(M;,) # 0, which
implies that (C.1.7) and (C.1.10) hold. By Condltlon 2.4, we Tnow that

- I _ 4, 4la/2]—2s
Z A5G g oY = ma s> Ko} = O(L)PTn .
ALL SUM

In addition, E{M(i,i, w,w,j)} # 0 only if [{i} U{i} U{w}U{w}| < 2a— ss.
It follows that

(C]'l]') Z Cn,81,82753E{M(1’ 1’W7W7‘])}1{{j1,j2731,52}|=4;}‘
ALL SUM
a—1
C Z n—2(2a—53)n2a—83p405K05/(2+6)

s3=0
+ ) Cn eI
ALL SUM
_ O(n—(a+1))+O(1)p4n4La/2J—4a7

K1,Kk2,k3>Ko

IN

. {|{J1732,11732}| 4,k1,k2,k3>Ko}?

where we use Y arp sum {E{M( w0} = Z?;:lo n2e—sspd  §Koe/(2+e) —

O(1)p~*+1 | and C’nml,%53 O(1)n=2(2e=s3) If g is even, (C.1.11) =
O(1)p*n=2% = o(1)p*n=* Ifais odd, (C.1.11) = O(1)p*n=2272 = o(1)p?*n—2.

Case (b.1) If k; < Ky, ko > Ky and k3 > K,
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If B(M;,) and E(M;)) # 0, we know (C.1.10) holds. We then consider
E(M;j, M;,) with j; # j2. Note that

M' M'
S1+s2 S1+S2+sS3 a—S1—S3 2a—s1—S2—283
_Hxltzjl H Liy,ja H xlt;]lxluh H Lawy,j1 H Lwy,j2 -
t=s1+1 t=s1+s2+1 k=a—s1—s3+1
As E( ) = 0 and E(z1j,21,) = 0 under Hy when j; # jo, we know
( ) 7& 0 only when {il,...,isl+32+33} Q {wl,...,wQ(z_sl_sQ_gsS}
and
(C.1.12) S50 U S| < (20— 53)/2)

We then know A, = 7 0 only when (C.1.10) and (C.1.12) hold, and thus

Z AJ’J X 1{\{1'1,jzjl,32}|=4,/€1SK071€2,H3>K0}

ALL SUM
a—1
= Z O(1)p® Kon?lo/2l—ss+1(2a=s3)/2]
s3=0
Then similarly to (C.1.11), we have
(C.1.13) ‘ 2, CnaswmsesB{MG I’W’W’J)}l{ [t gz G} =4 }‘
ALL SUM rk1<Ko;ka,k3>Ko
a+1
< 0( Z Ch.as, 52’83A]3 { 1{41.42,71,02}|=4; }
ALL SUM k1<Ko; k2,rk3>Ko

a—1
_ O(n—(a+1)) + Z 0(1)p3K0n2La/2j—53+L(2a—53)/2j—4a+253'

s3=0
If a is even, we use 2|a/2| — s3+ | (2a — s3)/2] —4a + 2s3 < —2a+ s3/2 <
—a — (a+1)/2 as s3 < a — 1. Then (C.1.13) = O(1)p*Kon ¢~ (¢+D/2 =
o(1)p?>n=a. If a is odd, we use 2|a/2| — s3 + [(2a — s3)/2] — 4a + 2s3 <
—2a + s3/2 < —a — (a4 3)/2 as 2|a/2] = a—1 and s3 < a — 1. Then
(C.1.13) = O(1)p? Kon o~ (@+3)/2 = o(1)p?n—1.

Case (b.2) If k1 > Ko, k2 > Ko and k3 < Ky, similarly to Case (b.1), by
symmetricity, we know

(cri) | Y on,a,sl,SQ,s?,E{M(i?iw,v~v,j>}1{

{g1.32:71,02 }|=4;
ALL SUM

K1,k2>Ko; H3§K0}

a—1
= o(n~"™) + 3" O(1)p*Kon?le/2 s tlRazss) 2l Hat2ss

s3=0
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Then (C.1.16) = o(1)p*n =%
Case (b.3) If k1 > Ky, ko < K¢ and k3 > K,
A5 = [E(Mj,)E(M;, M; )E(M;, ).

If E(Mj, ), E(M;,) # 0, we know (C.1.5) and (C.1.8) hold. We then consider
E(M;j, M5 ). Note that

M;, M,

$1+82+s3 2a—s1—s82—2s3 s1 s1+82+53 a—s81—83

= I #s I wwsllss I =5 I #ea
t=s1+1 t=a—s1—s3+1 t=1 t=s1+s2+1 t=1

IfE(MjQMjl) = 0, we know that |Sj2U531’ < a. As |(Sj2USjl)ﬁ(Sj1U532)| =
2s3, we have [Sj, USj, US: US; | < a+2[a/2] —2s3. We then know

a—1

~ o _ 3 a+2la/2]—2s3

Y AL e e e Kowa <Ko} = D O(Lp*Kon :
ALL SUM s3=0

Then similarly to (C.1.13), we have

(€115) | D Cusronss BAMG, L w, w,3)}1
ALL SUM {

_ O(Hf(aJrl))_i_O(l)pSKOnZ\_a/QJfBa.

{g1.92.01.J2}=4; } ‘

k1,k3>Ko;62<Ko

If a is even, we know (C.1.15) = p*Kon 2% = o(1)p?>n~% If a is odd, we
know (C.1.15) = p3Kon=2¢"1 = o(1)p?n 2.

Case (c) If two of k1, ko, k3 < Ko, we know

Z l{two of k1,k2,k3<Ko} — O(pQKg)

J1,02:01.02

Following definition in (C.1.4), we know E{M(i,i,w,W,j)} # 0 only when
‘Sjl U Sj2 U 531 U 552’ < 2a — s3. It implies that

. I _ 2712 2a—s3
Y AL et two of e <Ko} = O(PPEGn 7%,
ALL SUM
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Similarly to (C.1.15), we have

(C.1.16) ‘ Z Cn7a751782753E{M(1,I,W,W,J)}l{ {i1.d2.1,52}1=4; }‘
ALL SUM two of k1,k2,k3<Kp
a—1
_ O(n—(a—i-l)) + Z O(l)p2Kgn—2a+83_
s3=0

As 53 <a—1and Ko = O(logp), we know (C.1.16) = O(1)p*Kgn=*"! =
o(1)p*n=c.

Case (d) If |{j1,72,73,J4}| = 3 or 2, similar analysis can be applied, and
we know that

(C.1.17) ‘ Y Cnassss BIMEGL W, W DI 505 5,100 or )
ALL SUM

_ O(H_(a+1))+0(1)p2n_2a.

Summarizing Cases (a)-(d) above, we obtain E(TZ ,, ..) = o(p*n™?).

C.2. Simulations on One-Sample Covariance Testing. In this sec-
tion, we provide extensive simulation studies for the one-sample covariance
testing discussed in Section 2. We present the results of the five simulation
settings introduced in Section 3.1 in the following Sections C.2.1-C.2.5.

C.2.1. Study 1: Empirical Size. In this study, we verify the theoretical
results under Hy in Section 2 and the show validity of the adaptive testing
procedure across different n and p values. In particular, we fix n = 100
and take p € {50,100, 200, 400,600,800,1000}. Then we generate n i.i.d.
p-dimensional x; for ¢ = 1,...,n, and each x; has i.i.d. entries of N(0,1)
and Gamma(2, 0.5) respectively. The results are summarized in the following
Tables S1 and S2 respectively.

In Tables S1 and S2, we provide the simulation results of all the single U-
statistics with orders in {1,...,6}. For U(oc0), we first use the test statistic
(2.8) same as in Jiang [18], which is denoted as “U(oc) 1”7 below. Since
the convergence in [18] is slow, we use permutation to approximate the
distribution in the simulations. We also use the standardized version MJL
given in Remark 2.4, which is denoted as “U(oc0) 2” below. Given “U(c0) 1”
and “U(oc0) 27, we apply the adaptive testing with minimum combination
and Fisher’s method respectively. The results are denoted as “adpUminl”,
“adpUfl”, “adpUmin2” and “adpUf2” respectively below. In addition, we
also compare several methods in the literature. The identity and sphericity
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TABLE S1
Empirical Type I errors under Guassian distribution; n = 100.

D 50 100 200 400 600 800 1000
1) 0.0564 0.055 0.045 0.053 0.048 0.052 0.036
2) 0.058 0.058 0.066 0.050 0.071 0.048 0.063
3) 0.057 0.066 0.061 0.055 0.051 0.063 0.052
4) 0.0564 0.067 0.052 0.080 0.053 0.041 0.056
5)
6)

0.049 0.054 0.059 0.070 0.045 0.049 0.053
0.039 0.057 0.063 0.061 0.056 0.057 0.074

1 0.046 0.055 0.049 0.067 0.064 0.042 0.044
U(co) 2 0.040 0.047 0.045 0.056 0.048 0.050 0.048
adpUmin 1  0.056 0.066 0.067 0.064 0.067 0.056 0.051
adpUf1 0.065 0.083 0.069 0.079 0.063 0.058 0.060
adpUmin 2 0.054 0.069 0.065 0.060 0.062 0.055 0.057
adpUf2 0.069 0.082 0.065 0.065 0.058 0.057 0.062
Identity 0.055 0.053 0.058 0.053 0.061 0.049 0.053
Sphericity  0.053 0.050 0.058 0.053 0.062 0.049 0.054
LW 0.058 0.051 0.053 0.045 0.067 0.048 0.058

Schott  0.052 0.055 0.050 0.052 0.050 0.044 0.051

TABLE S2
Empirical Type I errors under Gamma distribution; n = 100.
D 50 100 200 400 600 800 1000

(I) 0.043 0.049 0.054 0.048 0.050 0.049 0.043
(2) 0.0567 0.075 0.062 0.054 0.057 0.055 0.061
(3) 0.0564 0.064 0.050 0.041 0.057 0.051 0.056
(4) 0.047 0.056 0.061 0.056 0.052 0.053 0.045
(5) 0.043 0.043 0.054 0.052 0.050 0.053 0.049
(6) 0.032 0.035 0.059 0.045 0.046 0.053 0.044
)1 0.052 0.045 0.048 0.053 0.045 0.049 0.055
U(co) 2 0.044 0.052 0.052 0.053 0.044 0.051 0.045
adpUmin 1  0.051 0.054 0.069 0.062 0.049 0.058 0.065
adpUf1 0.055 0.060 0.075 0.067 0.054 0.058 0.067
adpUmin 2 0.049 0.055 0.068 0.063 0.049 0.059 0.066
adpUf2 0.063 0.067 0.070 0.058 0.047 0.057 0.061
Identity 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Sphericity 0.088 0.065 0.071 0.056 0.060 0.059 0.050
LW 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Schott 0.051 0.063 0.053 0.053 0.055 0.046 0.060

tests in Chen et al. [8] are denoted as “Equal” and “Spher” below; the
methods in Ledoit and Wolf [21] and Schott [24], which are referred to as
“LW” and “Schott” respectively.
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C.2.2. Study 2. In this section, we provide the simulation results for the
second setting in Section 3. In particular, we generate n i.i.d. p-dimensional
x; for ¢ = 1,...,n, and x; follows multivariate Gaussian distribution with
mean zero and covariance 34 = (1 — p)I, + plyk, 1;7%.

Similarly to Figure 2, we conduct simulations on the adaptive proce-
dure with U-statistics of orders in {1,...,6,00}. We provide the simula-
tion results of all the single U-statistics and the adaptive procedure, and
also compare with some other methods in the literature. We take (n,p) €
{(100, 300), (100, 600), (100, 1000)}, and provide the results in the following
Figures S1-S3 respectively.

In Figure S1, the first 7 plots are simulated with k¢ € {2, 5,7, 10, 13,20, 50}.
Particularly, we include results of U(a) for a € {1,...,6,00}; the adaptive
procedure “adpU” by minimum combination of these single U-statistics;
identity and sphericity tests in [8], which are denoted as ‘Equal” and “Sh-
per”, respectively. We can see that when ko € {7,10,13}, the results of
“adpU” are better than all the other test statistics. For other cases, the
results of “adpU” are close to the best results of single U-statistics. In ad-
dition, we also examine the case when the nonzero off-diagonal elements of
34, ie., 0j j, with 1 < j1 # jo < ko, have same absolute value |p|, but can
be positive or negative with equal probability. The results of powers versus
different |p| values are given by 8th plot in Figure S1, which is consistent
with Remark 2.6 in Section 2.2.

In Figures S2 and S3, the meanings of the legends are the same as in
Tables S1 and S2, and are already explained in Section C.2.1. We can find
similar patterns to that in Figure S1.
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C.2.3. Study 3. We provide supplementary simulations for the third set-
ting in Section 3.1. In particular, we generate n i.i.d. p-dimensional x;
for : = 1,...,n, and x; follows multivariate Gaussian distribution with
mean zero and covariance X 4. In this case, 34 is symmetric and positive
definite, and has the diagonal being all one and only |J4| random posi-
tions being nonzero with value p. Note that here p represents the magni-
tude of the alternative signal; and |J4| represents its sparsity level with
a larger value indicating a denser alternative, and vice versa. We let |J4|
and p vary to examine how the power changes correspondingly. We take
(n,p) € {(100,600), (100,1000)}, and provide the results in the following
Figures S4-S5 respectively. The meanings of the legends are the same as in
Tables S1 and S2, and are already explained in Section C.2.1. We observe
similar patterns to that in the figures in Section C.2.2.

C.2.4. Study 4. In this section, we provide the simulation results of the
fourth setting in Section 3.1. In particular, we generate n i.i.d. p-dimensional
x; for ¢ = 1,...,n, and x; follows multivariate Gaussian distribution with
mean zero and covariance 3 4. Under this setting, 34 is symmetric and
positive definite and has the diagonal being all one and |J 4| random positions
taking values uniformly in the range (0,2p). Therefore, the nonzero off-
diagonal elements in 34 are different. Figure S6 below presents the power
versus p when n = 100 and p = 1000. The meanings of the legends are the
same as in Tables S1 and S2, and are already explained in Section C.2.1. We
observe similar patterns to that in the figures in Section C.2.2.

C.2.5. Study 5. In this section, we compare our methods with the meth-
ods in Chen et al. [8] following their multivariate models. Specifically, for
each i = 1,...,n, x; = Zz; + @, where Z is a matrix of dimension p x m
with m > p. Under null hypothesis, m = p, & = I, p = pol, with
po = 2; under alternative hypothesis, m = p+ 1, p = 2(v/1 — p+ /2p)1,,
E = (V1—ply,\/2p1,), thus ¥ = (1 — p)I, + 2p1,1}. Two settings are
examined: first, z;’s are i.i.d. multivariate Gaussian random vectors with
mean 0 and covariance Ip; second, z; = (z;1,...,2m)T consists of i.i.d. ran-
dom variables z; ; which are standardized Gamma(4,0.5) random variables
so that z; has mean 0 and covariance I,,.

To mimic “large p, small n” situation, [8] sets dimension p = ¢ exp(n') +
¢, where n = 0.4, for (c1,c2) = (1,10) and (c1,c2) = (2,0) respectively.
In particular, we consider (n,p) € {(40,159), (40, 331), (80, 159), (80, 331),
(80,642)}. The results are based on 1000 simulations and the nominal sig-
nificance level of the tests is 5%.

In the tables S3-S10, results outside and inside parentheses are calculated
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from parametric-permutation- and asymptotics-based methods, respectively.
To be specific, psarametric-permutation-based method means estimating p-
values or powers by permutation; and asymptotic-based method uses the
asymptotic theoretical results and is described in Section 2.3. For each
a€{l,...,6,00}, the row of “U(a)” has results using the single test statis-
tic U(a); and the row of “adpU” is obtained by the adaptive testing proce-
dure which combines all single candidate U-statistics in the tables using the
minimum combination. In addition, “Ident” and “Spher” rows denote the
identity and sphericity tests in [8] separately.

In the tables S3—-S8, we find that the empirical sizes of most tests are
close to the nominal level, except U(co) due to the slow convergence to
extreme value distribution as pointed out in [13]. “Ident” and “Spher” tests
perform similarly to ¢(2) in both settings. This is reasonable because they
are all sum-of-squares-type statistics. Moreover, for the p’s examined, (1)
has higher power than U(2), as the constructed alternative is very dense
and only has positive entries. In addition, “adpU” achieves high power for
different cases, and its power converges to 1, as one of the test statistics has
power converging to 1. In Tables S9 and S10, data are standardized with
sample mean and variance. It can be seen that methods in [8] perform poorly
in this case. Other than this, the results follow similar patterns to results in
other tables.

TABLE S3
Empirical Type I errors and power (%) under simulation setting 1. n = 80,p = 331.
p 0 0.001 0.002 0.003 0.004

U(1) 4.4 (4)  93.4(90.6) 100 (99.9) 100 (100) _ 100 (100)
U@2) 556 55 (6) 7.2 (5.9) 131 (10.2) 19.7 (14.4)
UB) 5.4 (6.1) 4.5 (4) 6.3(5.4) 6945 9 (5.4)
U) 4.7(.1) 6 (54) 3.7 (4.6) 4.2 (5.3) 6 (4.8)
UG) 5.4 (63) 4947  53(56) 6 (5.7) 6.1 (5.1)
UG) 4.6 (4.9) 58 (54) 4.9 (45)  52(48)  48(5)

U(oo) 4.7 (0.3) 5 (0.6) 55(0.7) 51(04) 5.9 (0.8)
aSPU 5 (5.4) 81 (81.8)  99.4 (99.4) 100 (100) 100 (100)
Ident 5.5 5.7 8.2 14.4 21.8

Spher 5.6 5.7 8.1 14.2 21.4
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TABLE S4
Empirical Type I errors and power (%) under simulation setting 2; n = 80,p = 331.
p 0 0.001 0.002 0.003 0.004
U(l) 5.3 (4.6) 56.7(50.3) 92.5(89.3) 99.3 (99.1) 100 (99.8)
U2 54((5) 55(7) 694  T7(58) 114 (7.3)
UB) 56 (5.4) 45 (3.5) 5.7 (4) 58 (4.8) 7.2 (5.1)
U4) 48 (3.9) 4.9 (41) 4.9 (5) 6.5 (6.8) 4.9 (5.1)
UBG) 6.1(5.1) 56 (6.1)  51(52)  55(57) 52 (55)
U®6) 6.4 (5.6) 54 (41)  51(53)  51(54) 58 (53)
U(co) 5.5 (3) 5.3 (2.5) 6 (2.8) 5.5 (2.8) 6.8 (3.1)
adpU 6.4 (6.5) 35 (36.3) 78.7 (79.2) 96.1 (96.1)  99.5 (99.6)
Ident 6.7 6.5 7.4 9.2 13.5
Spher 6.2 6.2 7 9.1 12.9
TABLE S5

Empirical Type I errors and power (%) under simulation setting 1; n = 40,p = 159.

p 0 0.0005 0.001 0.0015 0.002 0.0025
U(l) 5.8 (4.6) 16.6 (13.6) 36.5(32.3) 57.4(51.3) 69.2 (65.1) 83.3 (80)
UR) 52 (49) 4.6 (3.1) 4.6 (5.6) 5.3 (4.5) 5.5 (4.8) 5.9 (4.8)
UB) 4.9 (4.8) 58 (5.4) 5.6 (5.6) 5.6 (4.9) 4.6 (4.7) 5.6 (5)
UA) 4.6 (5.7) 4.2 (4.1) 5.6 (4.6) 4.7 (4.6) 4.5 (5.1) 5.3 (4.9)
UuG) 5.5 (5.6) 5.3 (6.2) 5.7 (4.9) 3.1 (3.1) 4.7 (4.4) 5.5 (5.4)
UB) 4.4 (4.3) 4.8 (4.6) 4.4 (4.7) 4.3 (4.3) 4.8 (4.6) 5 (4.2)

U(o) 5.1 (0.1) 5.1 (0.1) 4.2 (0) 4.6 (0.1) 4.6 (0) 5.5 (0.1)

adpU 5.7 (5.8) 8.9 (10.6) 185 (21.1) 31.5 (34.2) 47.4 (50.8) 63.2 (66.2)

Ident 5.8 5.3 5.9 6.8 6.8 7.1

Spher 5.8 5.1 5.7 6.5 6.5 7.2
TABLE S6

Empirical Type I errors and power (%) under simulation setting 1; n = 40,p = 331.

p 0 0.0025 0.005 0.01 0.015 0.02
U(1) 5.9 (5.4) 99.4(99.3) 100 (100) 100 (100) 100 (100) 100 (100)
U?2) 5.1 (4.4) 7(6.3) 155 (10.7)  65.8 (60)  95.1 (93.1) 99.3 (98.7)
UB) 54(55) 7.6(4.6) 13 (7.5) 26.3 (19.7) 53.9 (44.1) 76.9 (68.9)
U4) 48 (5.1) 49(54)  68(5.6) 6.3 (6.6) 114 (7.7) 144 (11.7)
UB) 5.9 (4.8) 55 (4.9  7(6.6) 56 (4.9) 86 (7.3) 85 (82)
U6) 4.1(4.9) 3.4(45)  68(4.6)  48(65)  55(6.6)  8(8.6)
Uc) 42(0) 4.1 (0) 6.1 (0) 4.9 (0) 6.6 (0) 7.3 (0.1)
adpU 5.2 (5.8) 97.5(98.5) 100 (100) 100 (100) 100 (100) 100 (100)
Ident 6.2 8.3 19.2 68 95.5 99.3
Spher 6.3 8.2 18.6 67.6 95.4 99.3
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TABLE S7
Empirical Type I errors and power (%) under simulation setting 1; n = 80,p = 159.
p O 0.0025 0.005 0.01 0.015 0.02
U() 5.74.7) 98.1(97) 100 (100) 100 (100) 100 (100) 100 (100)
U2 6.2(.1) 6855 165 (11.4) 684 (60.6) 96.7 (94.7) 100 (99.9)
UB) 647 6255  T7.4(5.9) 152 (9.2)  34.8 (26.2) 69.2 (61.4)
U4) 5.4 (5.6) 4(3.8) 47 (4.2)  76(71) 106 (9) 18.2 (15.7)
UBG) 45 (4.9) 46 (42) 48 (45)  53(53) 9.6 (7.6)  13.1(13)
Uue) 5.6 (5.3) 3.9 4.7 4 (3.3) 5.3 (4.9) 8.7 (8) 12 (12.4)
U(o) 45 (0.8) 6.1 (1.1) 49 (1.4)  54(L7)  8(L5) 10.7 (3.3)
adpU 5.7 (7) 91.8 (92.6) 99.8 (99.8) 100 (100) 100 (100) 100 (100)
Ident 6.7 7.8 18.5 71.1 97.3 100
Spher 6.7 7.2 18 69.6 97 100

TABLE S8
Empirical Type I errors and power (%) under simulation setting 1; n = 80,p = 642.
p 0 0.0025 0.005 0.01 0.015 0.02
7(1) 5.8 (4.8) 100 (100) 100 (100) 100 (100) _ 100 (100) 100 (100)
U2) 64 (62) 17.9 (127) 71.2(63.4) 99.8 (99.8) 100 (100) 100 (100)
U@3) 52 (56) 6.2 (3.6) 19 3(13.3) 684 (57.3) 96.4 (94)  99.8 (99.6)
U4 52(52) 6.2 (6.4) 2(5.2) 85 (6.4)  25(183) 57.9 (5L.7)
UG) 6.4 (46) 5 (5.2) 4(54)  7.8(72)  11.7(9.9) 21.1(16.9)
U(6) 4 (4.2) 5.8 (6.4) ( ) 42 (5.2) 9.3 (10.3) 13.1 (15.3)
Ulco) 4.4 (0.6) 5 (0.2) 6(0.4)  7(08) 9.3 (0.8)  15.3 (0.6)
adpU 6 (4.2) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
Ident 6.8 18.9 72.6 100 100 100
Spher 6.6 18.7 72.6 100 100 100
TABLE S9
Empirical Type I errors and power (%) under simulation setting 2; n = 80,p = 159.
p 0 0.0005 0.001 0.002 0.003 0.004
(1) 49 (42) 26.1(204) 57.1(49.7) 952 (93.1) 99.9 (99.8) 100 (99.9)
U2) 4.9 (44) 39(3) 59(52)  6.7(48)  83(56) 122 (7.7)
UB) 54(52) 47(.3) 4341 6 (4) 59 (5.1) 7 (5)
U4) 5.4 (49) 55((52) 48 (48  59(63)  67(7.2) 4.6 (4.6)
UG) 7362 54(56) 58(65)  53(63) 58(55) 56 (5.6)
U@G) 6.5 (5.6) 4.9 (5) 55(5.3)  4.9(52)  55(54) 4.2 (4.7)
Uo) 59 (3)  5.7(21)  58(25)  57(26)  55(2.9) 6.7 (3.3)
adpU 5.7 (5)  12.1 (13.1) 34.8 (34.6) 81.9 (82.6) 98.1 (98.1) 99.9 (99.8)
Ident 0.2 0.1 0.1 0.2 0.1 0.1
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TABLE S10

Empirical Type I errors and power (%) under simulation setting 2; n = 80,p = 642.

p 0 0.0005 0.001 0.002 0.003 0.004
(1) 2.8 (22) 942(93) 100 (100) 100 (100) 100 (100) _ 100 (100)
U2) 5842 4248 6 (5.6) 11.9 (7.2)  22.3 (14.5) 459 (36.2)
U3) 36((38) 54(2) T2(5  6(3.6) 11.9 (7.6)  15.1 (9.3)
UA) 4.4 (44) 46 (44)  64(62) 48(3.8) 54(5.2)  T(6.2)
UG 7066 6(5) 62 (5.4) 7(6.2) 6.6 (5.4) 7.4 (5.6)
UeG) 704 5 (46) 46 (5.6) 6.8 (7.2) 54 (46) 5.6 (5.8)
Uoo) 4.8(22) 62(24) 48 (0.8) 6.2 (3) 6.4 (2.6) 52 (1.6)
adpU 5 (4) 84.5 (85.9) 100 (100) 100 (100) 100 (100) 100 (100)
Ident O 0.4 0.2 0.4 2.4 8.3
Spher 0 0.4 0.2 0.4 2.4 7.8

C.3. Simulations on Other Testing Examples. In this section, we
provide the simulation results on other testing examples discussed in Sec-
tion 4. We present simulations on generalized linear model in Section C.3.1.
In addition, we provide simulations on two-sample covariance testing to ex-
amine the empirical type I error and power in Sections C.3.2 and C.3.3,
respectively.

C.3.1. Study 6: GLM. In this study, we conduct simulations for gener-
alized linear model considering the following model

(C.3.1) yi=zla+x]8+e¢,

fori =1,...,n. We generate i.i.d. x; from the multivariate normal distribu-
tion N(0,X). We show the results with an equal variance and a first-order
autoregressive correlation matrix case, that is, ¥ = (0.4"'*j|). We further
generate z; of two covariates with entries i.i.d. from standard normal dis-
tribution A(0,1), and ¢; are the random errors following i.i.d. normal dis-
tribution N(0,0.5). In (C.3.1), we take @ = (0.3,0.3)T, 3 = 0 or # 0
corresponded to the null hypothesis Hy and the alternative hypothesis H 4,
respectively. Under Hy4, [ps] elements in 3 are set to be non-zero, where
s € [0,1] controls signal sparsity. We vary s to mimic varying sparsity sit-
uations, from sparse to dense signals with s € {0.001,0.1,0.3,0.7,0.9}. The
positions of non-zero elements in B are assumed to be uniformly distributed
in {1,2,...,p}, and their values are constant ¢, where c is the effect of sig-
nals that vary in the simulations. The results are based on 1000 simulations
with 5% nominal significance level, n = 500 and p = 1000. We summarized
the results in Figure S7. It shows similar patterns as in Study I.
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Fig S7: Power comparison under generalized linear model simulation setting.
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C.3.2. Study 7: Two-sample covariance testing under Hy. In this section,
we examine the empirical Type I errors of the proposed the adaptive testing
procedure and compare it with the other methods.

We follow the simulation settings in Yang and Pan [29]. In particular, let
A(s) be the sx s covariance matrix of MA(1) model with the parameter 6, =
0.4. In addition, B = 0.71,_, is a (p—s) x (p — s) scaled identity matrix. We
then define the matrix Q(s) = BlkDiag(A(s), B), where “BlkDiag” indicates
a block diagonal matrix. We take s = p'/2 and n = 100, and consider
3, = X, = Q(s). The results are presented in Table S11.

In Table S11, we provide the simulation results of the single U-statistics
U(a) with a € {1,...,6}. In addition, we provide the simulation results of
U(o0) using permutation and the asymptotic distribution in Cai et al. [5],
which are denoted as “U(oco) permutation” and “U(co) Tony” respectively.
Given the results of U(1),...,U(6) and “U(co) (permutation)”, “adpUmin
1”7 and “adpUf 1” represent the results of the adaptive testing procedure us-
ing minimum combination and Fisher’s method respectively. Similarly, given
the results of U(1),...,U(6) and “U(c0) (Tony)”, “adpUmin 2” and “adpUf
2” represent the results of the adaptive testing procedure using minimum
combination and Fisher’s method respectively. Moreover, “Schott”, “Sriva”
and “Chen” represent the methods in Schott [24], Srivastava and Yanagi-
hara [25] and Li and Chen [22], respectively. In addition, we denote the tests
without and with Micro term in Yang and Pan [29] as “Panl” and “Pan2”
respectively. The tests in [29] are time-consuming. Therefore we only provide
the simulation results at p = 50, which takes about 100 times the time of
the proposed adaptive testing procedure.

Based on our simulation results, we find that the empirical Type I errors
of the single U-statistics are close the nominal levels, which verifies the theo-
retical results of Theorem 4.6. Moreover, comparing “U(oo) (permutation)”
and “U(co) (Tony)”, we find that using the asymptotic distribution in Cai
et al. [5] gives conservative Type I errors that are smaller than the nominal
levels. In addition, by examining the results of minimum combination and
Fisher’s method, we find that both of the two methods give empirical Type
I errors that are close to the nominal level, while the Fisher’s method may
have slight size inflation compared to the minimum combination.
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TABLE S11
Empirical Type-I errors under X, = 3y = Q(s); n = 100, s = p/?

P 50 100 200 300
U(1l) 0.052 0.055 0.040 0.039
U(2) 0.051 0.060 0.053 0.047
U(3) 0.048 0.061 0.054 0.054
U4) 0.039 0.059 0.067 0.053
U(5) 0.056 0.046 0.041 0.066
UB) 0045 0.044 0.041 0.044

U(oo) (permutation) 0.047 0.042 0.049 0.052
adpUmin 1  0.043 0.057 0.059 0.053
adpUf1 0.076 0.081 0.060 0.076
U(oo) (Tony) 0.018 0.024 0.016 0.013
adpUmin 2 0.044 0.056 0.059 0.051
adpUf2 0.051 0.056 0.040 0.050
Chen 0.050 0.049 0.049 0.050

Sriva  0.166 0.002 0.000 0.000

Schott 0.074 0.119 0.236 0.418

Panl 0.055 NA NA NA

Pan2 0.058 NA NA NA

C.3.3. Study 8: Two-sample covariance testing power. In this section, we
examine the power of the two-sample covariance testing.

We follow the covariance matrix models in Yang and Pan [29]. In partic-
ular, let H (19, 71,7) = (hij)pxp, Where h; j = 0 except h;j; =719,1=1,...,r
and hj 41 = hijj—1 =m7,1=1,...,7r—1. Here 79 and 7 are used to measure
the level of faint alternatives and r is used to measure the sparsity level of
alternative. We fix 3, = I, the p x p identity matrix, and examine the
following three representative covariance matrix models of X,.

Model 1: (Extreme faint, 7o = 0.04, 74 = 0.2, = p). ¥, = I,+H(0.04,0.2,p).
This matrix can also be considered as the covariance matrix of MA (1) model
with the parameter #; = 0.2, which is also used in Li and Chen [22].

Model 2: (Extreme sparse, 9 = 1,71 = 1.5,r =2). 3, = I, + H(1,1.5,2).
This model only has four large disturbances compared with 3., which is
regarded as the extreme sparse (ES) alternative.

Model 3: (Reasonable faint and sparse, 7o = 0.3,77 = 0.3,r = p/10)
¥, =1, + H(0.3,0.3,p/10). The value of r here is between 2 (in Model 2)
and p (in Model 1), which is regarded as a moderately sparse setting.

Under each model above, we take n = 100, p € {50, 100,200,300}, and
provide the simulation results of the Models 1-3 in the Tables S12-S14
respectively. The explanation of each row are the same as in Table S11,
which is given in Section C.3.2. Similarly, we note that the tests in Yang
and Pan [29] are very time-consuming. Therefore for “Pan 1”7 and “Pan 2”,
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we only provide the simulation results at p = 50, which takes about 100
times the time of the proposed adaptive testing procedure.

TABLE S12
Empirical Power under Model 1 (Extreme faint); n = 100.

p 50 100 200 300

U(1) 0397 0389 0408 0.416
U(2) 0445 0.458 0.456 0.484
UB) 0290 0309 0354 0.371
UA) 0197 0211 0.199 0.205
UG) 0244 0397 0.752  0.855
UG) 0.054 0.052 0.054 0.091

U(oo) (permutation) 0.066 0.062 0.044 0.029
adpUmin 1  0.478 0.511 0.692 0.783
adpUf1 0.600 0.648 0.843 0.886
U(oco) (Tony) 0.091 0.072 0.087 0.072
adpUmin 2 0.480 0.513 0.691 0.781
adpUf2 0.619 0.669 0.855 0.903
Chen 0.573 0.574 0.569 0.623

Sriva  0.513 0.586 0.598 0.569

Schott 0.667 0.731 0.888 0.956

Panl 0.640 NA NA NA

Pan2  0.669 NA NA NA

TABLE S13
Empirical Power under Model 2 (Extreme sparse); n = 100.

D 50 100 200 300
1) 0.068 0.056 0.048 0.049
2) 0.725 0.364 0.122 0.086
3) 0.993 0.960 0.850 0.660
4) 1.000 0.997 0.988 0.956
5)
6)

0.934 0.874 0.803 0.682
0.972 0.960 0.935 0.914
U(o0) (permutation) 0.966 0.919 0.852 0.772
adpUmin 1 1.000 0.992 0.984 0.959

adpUf 1 1.000 0.996 0.989 0.970

U(co) (Tony) 0.999 1.000 0.997 1.000
adpUmin 2 1.000 0.997 0.993 0.995

adpUf2 1.000 0.999 0.992 0.992

Chen 0.800 0.457 0.196 0.127

Sriva 0.787 0.433 0.166 0.101

Schott 0.864 0.640 0.550 0.654

Panl 0.673 NA NA NA

Pan2 0.694 NA NA NA

We then analyze the simulation results. Model 1 is the extreme faint case
and ¥, — X, is dense. We find that under this case, the U-statistics of
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TABLE S14
Empirical Power under Model 3 (Reasonable faint and sparse); n = 100.

p 50 100 200 300
u() 0.072 0.067 0.069 0.070
U(2) 0.090 0.096 0.096 0.083
U(3) 0.155 0.151 0.152 0.145
UH4) 0.175 0.162 0.162 0.154
U(5) 0.347 0.582 0.868 0.946
Uu(6) 0.308 0.494 0.732 0.854

U(oo) (permutation) 0.028 0.034 0.027 0.018
adpUmin 1 0.337 0.496 0.797 0.901

adpUf 1 0.355 0.535 0.802 0.910

U(oo) (asymptotic) 0.254 0.319 0.409 0.403
adpUmin 2 0.348 0.508 0.798 0.901

adpUf 2 0.426 0.620 0.862 0.940

Chen 0.138 0.149 0.153 0.144

Sriva  0.092 0.096 0.097 0.100

Schott 0.189 0.283 0.486 0.712

Panl 0.167 NA NA NA

Pan2 0.186 NA NA NA

small orders, e.g., U(1) and U(2) are powerful. The tests based on the sum-
of-squares type statistics including “Chen”, “Sriva” and “Schott” are also
powerful under this case. Our proposed adaptive testing procedure using
Fisher’s method has comparable power performance to “Pan 1”7 and “Pan
27 and is computationally more efficient. Model 2 is the extreme sparse
case. Under this case, we find that generally U-statistics of higher orders,
e.g., U(4) and U(co), are more powerful than the U-statistics of smaller
orders, e.g., U(1) and U(2). Model 3 is the moderately faint and sparse case.
Under this case, we can see that a finite-order U-statistic U(5) is the most
powerful one. Neither the maximum-type test statistic ¢ (oc) and the sum-
of-squares type test statistic U(2), “Chen”, “Sriva” and “Schott” are very
powerful. Tests in [29] considering only faint or sparse alternatives are not
very powerful under this case. On the other hand, the proposed adaptive
testing procedure maintains high power under this case.
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