ChemistryOpen

Supporting Information

Design and Synthesis of Hsp90 Inhibitors with B-Raf and PDHK1 Multi-Target Activity

Luca Pinzi, Francesca Foschi, Michael S. Christodoulou, Daniele Passarella, and Giulio Rastelli*

TABLE OF CONTENTS

Figures

Figure S1	. S2
-igure S2	. S3
-igure S3	. S4
-igure S4	. S5
-igure S5	. S6

Tables

Table S1	S7
Table S2	S8
Table S3	S9
Table S4	S10
Table S5	S11

Chemoinformatic analyses		S12
--------------------------	--	-----

Figure S1: Chemical structures of the designed compounds.

Figure S2: Dose-response curves of compounds **4a-4e** and the controls tested for the inhibition of the three targets. Titration curves are not reported for compounds that resulted to be inactive in the assays.

Hsp90

PDHK1

Figure S3. Schematic representation of the main hydrogen bond interactions sampled by MD for the complexes Hsp90-**4a**, Hps90-**4b** and Hsp90-**4e** (left panels), and their corresponding representative binding modes (right panels). The 3D illustration of each ligand-protein complex was created with UCSF Chimera (version 1.14).

Figure S4: Schematic representation of the main hydrogen bonds observed between compound **4e** and B-Raf in the docked (panels *a* and *b*) and MD complexes (panel *c*). The docked ligand is shown in cyan in the *c* panel, while the ligand resulting from MD is represented as green sticks, their RMSD being higher than 6Å.

Figure S5. Schematic representation of the main hydrogen bond interactions sampled by MD of complexes PDHK1-**4a** and PDHK1-**4e** (left panels), and their corresponding representative binding modes (right panels). The 3D illustration of each ligand-protein complex was created with UCSF Chimera (version 1.14).

Compound ID	рКа
4a	8.1
4b	7.3
4c	7.3
4d	7.4
4e	6.8
4f	6.5

 Table S1. pKa predictions made for compounds 4a-4f with Epik (Schrödinger Suite 2020-1).

Table S2. IFD docking s	scores (kcal/mol) of com	pounds 4a-4f into Hsp90	Dα (PDB code 2VCI), B-
Raf ^{WT} (PDB code 3D4Q)	and PDHK1 (PDB code 2	2Q8G).	
			DD11///

Compound ID	Hsp90α	B-Raf ^w	PDHK1
4a	-11.7	-9.8	-10.5
4b	-10.8	-9.4	-9.5
4c	-8.7	-10.9	-8.7
4d	-11.1	-12.0	-9.1
4e	-11.0	-12.5	-10.1
4f	-11.0	-9.4	-9.0

Table S3. Results of the cytotoxicity predictions made with the CLC-pred webserver (A.A. Lagunin et al. DOI: https://doi.org/10.1371/journal.pone.0191838). Only cytotoxic activities predicted with a probability score Pa higher than 0.3 are reported in the table. The probability of a compound to be classified as not cytotoxic (*i.e.*, inactive) is represented by the Pi value. Compounds with a Pa value higher than the corresponding Pi can be considered as potentially cytotoxic for a given cancer cell line. Cytotoxic activities with Pa \geq 0.3 were not detected on normal human cell lines.

Compound ID	Pa	Pi	Cell line ID	Cell line name	Tissue - Organ
4a	0.592	0.011	NCI-H460	Non-small cell lung carcinoma	Lung
4a	0.375	0.095	NCI-H187	Small cell lung carcinoma	Lung
4a	0.361	0.164	SK-MEL-1	Metastatic melanoma	Skin
4a	0.366	0.171	NCI-H838	Non-small cell lung cancer. 3 stage	Lung
4a	0.307	0.129	U-266	Plasma cell myeloma	Blood
4b	0.502	0.02	NCI-H460	Non-small cell lung carcinoma	Lung
4b	0.304	0.146	A2058	Melanoma	Skin
4b	0.335	0.212	NCI-H838	Non-small cell lung cancer. 3 stage	Lung
4b	0.325	0.235	SK-MEL-1	Metastatic melanoma	Skin
4c	0.471	0.023	NCI-H460	Non-small cell lung carcinoma	Lung
4c	0.347	0.094	A2058	Melanoma	Skin
4d	0.432	0.038	A2058	Melanoma	Skin
4d	0.42	0.031	NCI-H460	Non-small cell lung carcinoma	Lung
4d	0.302	0.069	SK-MEL-28	Melanoma	Skin
4d	0.314	0.108	PA-1	Ovarian carcinoma	Ovarium
4d	0.314	0.258	SK-MEL-1	Metastatic melanoma	Skin
4e	0.4	0.035	NCI-H460	Non-small cell lung carcinoma	Lung
4e	0.308	0.087	HCT-116	Colon carcinoma	Colon
4e	0.317	0.251	SK-MEL-1	Metastatic melanoma	Skin
4f	0.396	0.036	NCI-H460	Non-small cell lung carcinoma	Lung
4f	0.369	0.059	HCT-116	Colon carcinoma	Colon
4f	0.309	0.269	SK-MEL-1	Metastatic melanoma	Skin

Hydrogen bonds with protein amino acids	Occur. (%)	Dist. (Å)	Hydrogen bonds with waters	Occur. (%)	Dist. (Å)
		4a	I		
O ₂ HD93	99.5	2.7	O ₄ Wat	106	2.8
N₅HD102	94	2.8	O₁HWat	93	2.8
N₄-HG97	80	2.8	O₅Wat	87	2.8
O ₃ K58	5	2.8	N ₆ Wat	66	2.8
O ₃ Wat	120		O ₂ Wat	38	2.8
		4b)		
O ₂ HD93	99.6	2.7	O₅Wat	162	2.8
N ₄ -HG97	36	2.9	O ₃ Wat	96	2.8
О ₃ К58	17	2.8	O₁HWat	92	2.8
N ₅ K58	11	2.9	N5Wat	87	2.8
O₅H154	7	2.9	N6Wat	72	2.8
O ₄ Wat	164	2.8	O ₂ Wat	37	2.8
		4e			
O ₂ HD93	99	2.7	O ₄ Wat	130	2.8
N ₄ -HG97	44	2.9	O ₃ Wat	94	2.8
О ₃ К58	23	2.8	O₁HWat	92	2.8
N ₅ K58	16	2.9	N ₅ Wat	75	2.8
O ₄ H154	15	2.8	N ₇ Wat	66	2.8
O ₅ H154	7	2.9	O ₂ Wat	37	2.8
O ₅ Wat	176	2.8	N ₆ Wat	36	2.8

Table S4. Percentages of occurrence and hydrogen bonding distances between Hsp90 and ligands **4a**, **4b** and **4e** in the 100 ns molecular dynamics simulations.

Note: Hydrogen bonds with % occurrence < 5% are not reported. The hydrogen bond distances reported in Å are related to the distance between the donor and acceptor heteroatoms.

Hydrogen bonds with protein amino acids	Occur. (%)	Dist. (Å)	Hydrogen bonds with waters	Occur. (%)	Dist. (Å)
4a					
O ₂ HD318	99.6	2.6	O₁HWat	94	2.8
O ₃ R286	43	2.8	O ₃ Wat	66	2.8
N₅HH291	30	2.9	N ₆ Wat	50	2.8
N ₄ -HG320	4	2.9	N₅HWat	38	2.8
			O ₂ Wat	19	2.8
			O ₄ Wat	99.5	2.8
			O₅Wat	96	2.8
4e					
O ₂ HD318	99.6	2.6	O ₄ Wat	141	2.8
O₅R286	34	2.8	O ₃ Wat	113	2.8
O ₃ R286	15	2.8	O₁HWat	93	2.7
N₄HG320	9	2.9	N ₅ Wat	93	2.8
N₄HG322	5	2.8	N ₇ Wat	61	2.8
O ₄ R286	5	2.8	N ₆ Wat	36	2.8
			N₄HWat	22	2.8
			O ₂ Wat	11	2.8
			O₅Wat	146	2.8

Table S5: Percentages of occurrence and hydrogen bonding distances between PDHK1 and ligands 4a and 4e in the 100 ns molecular dynamics simulations.

Note: Hydrogen bonds with % occurrence < 5% are not reported. The hydrogen bond distances reported in Å are related to the distance between the donor and acceptor heteroatoms.

Chemoinformatic analyses

Chemoinformatic analyses were performed for selected compounds of PDHK1,^[1] Hsp90^[2] and B-Raf,^[3-5] with the aim of identifying privileged substructures and chemical frameworks, useful for the design of multi-target ligands. Chemoinformatic analyses, which included 2D similarity estimations, were performed by using the RDKit Python libraries (https://www.rdkit.org - release 2020-9). In particular, 2D similarity estimations were performed with two different types of fingerprints (*i.e.,* MACCS and ECFP4) to take into account different aspects of chemical similarity. Records that provided similarity values above commonly accepted thresholds (*i.e.,* MACCS \geq 0.8 and ECFP4 \geq 0.3) were retained and visually inspected.^[6] Interestingly, the 2D fingerprints-based estimations performed between Hsp90 and PDHK1 selected ligands, highlighted several records with similarity values above threshold both in terms of MACCS and ECFP4 fingerprints (**Table A**), clearly demonstrating that these targets present overlapping chemical spaces.

Slightly different results were obtained in the comparisons of Hsp90 and PDHK1 ligands, with known B-Raf inhibitors, which provided a number of records with a high degree of ECFP4 similarity. These results showed that B-Raf ligands overall present similar structural connectivity, with respect to Hsp90 and PDHK1 known inhibitors, several of the observed ECFP4 values resulting above accepted thresholds in the analyses (**Table A**).

Table A: Top20- scoring 2D similarity records obtained from the comparison of selected Hsp90, PDHK1 ad B-Raf ligands. Ligands are reported by means of their identifiers in the ChEMBL database.^[7]

Hsp90 (Target A) vs PDHK1 (Target B)					
Target A ligand	Target B ligand	MACCSfp similarity score	ECFP4fp similarity score		
CHEMBL252164	CHEMBL252370	0.952	1		
CHEMBL3234764	CHEMBL252370	0.817	1		
CHEMBL3234768	CHEMBL252370	0.812	1		
CHEMBL3234774	CHEMBL252370	0.775	1		
CHEMBL3235113	CHEMBL252370	0.766	1		
CHEMBL3235112	CHEMBL252370	0.757	1		
CHEMBL3234767	CHEMBL252370	0.781	0.947		
CHEMBL3234765	CHEMBL252370	0.781	0.947		
CHEMBL3234766	CHEMBL252370	0.781	0.947		
CHEMBL3234775	CHEMBL252370	0.764	0.946		
CHEMBL3234773	CHEMBL252370	0.733	0.946		
CHEMBL3234771	CHEMBL252370	0.781	0.921		
CHEMBL3234776	CHEMBL252370	0.764	0.921		
CHEMBL3234772	CHEMBL252370	0.743	0.919		
CHEMBL3235115	CHEMBL252370	0.743	0.895		
CHEMBL3235118	CHEMBL252370	0.756	0.875		
CHEMBL3235108	CHEMBL252370	0.808	0.872		
CHEMBL3234779	CHEMBL252370	0.746	0.872		
CHEMBL3234778	CHEMBL252370	0.736	0.872		
CHEMBL3235116	CHEMBL252370	0.761	0.868		
	Hsp90 (Ta	arget A) vs B-Raf (Target B)			
Target A ligand	Target B ligand	MACCSfp similarity score	ECFP4fp similarity score		
CHEMBL3234763	CHEMBL524445	0.609	0.429		
CHEMBL3234763	CHEMBL498344	0.627	0.4		

CHEMBL3234763	CHEMBL521562	0.627	0.4
CHEMBL3234760	CHEMBL498487	0.636	0.372
CHEMBL3234761	CHEMBL498487	0.636	0.366
CHEMBL3235118	CHEMBL524445	0.6	0.36
CHEMBL3234762	CHEMBL497671	0.632	0.357
CHEMBL3234758	CHEMBL498487	0.636	0.341
CHEMBL3234763	CHEMBL498317	0.634	0.341
CHEMBL3234763	CHEMBL497671	0.6	0.341
CHEMBL3234759	CHEMBL498487	0.636	0.333
CHEMBL3234762	CHEMBL498487	0.623	0.333
CHEMBL3235114	CHEMBL1822255	0.64	0.321
CHEMBL3234763	CHEMBL524640	0.627	0.319
CHEMBL3234763	CHEMBL498343	0.627	0.319
CHEMBL3234763	CHEMBL498487	0.638	0.318
CHEMBL3234762	CHEMBL525191	0.6	0.31
CHEMBL3235112	CHEMBL1822255	0.633	0.309
CHEMBL3235113	CHEMBL1822255	0.628	0.309
CHEMBL3234764	CHEMBL1822255	0.622	0.309

B-Raf (Targe	t A) vs PDHK1 (Target B)	
Target B ligand	MACCSfp	
Target B ligand	similarity score	sim

Target A ligand	Target B ligand	MACCSfp similarity score	ECFP4fp similarity score
CHEMBL498468	CHEMBL192894	0.625	0.462
CHEMBL498467	CHEMBL192894	0.6	0.423
CHEMBL1822258	CHEMBL3354226	0.608	0.419
CHEMBL1822262	CHEMBL3354226	0.608	0.405
CHEMBL1822256	CHEMBL3354226	0.608	0.405
CHEMBL1822257	CHEMBL3354226	0.608	0.405
CHEMBL1822261	CHEMBL3354226	0.6	0.405
CHEMBL1822259	CHEMBL3354226	0.608	0.395
CHEMBL1822265	CHEMBL3354226	0.627	0.372
CHEMBL1822097	CHEMBL3354226	0.616	0.372
CHEMBL1822260	CHEMBL3354226	0.608	0.372
CHEMBL1822264	CHEMBL3354226	0.6	0.372
CHEMBL1822092	CHEMBL3354226	0.6	0.372
CHEMBL1822096	CHEMBL3354650	0.629	0.36
CHEMBL1822097	CHEMBL3354225	0.622	0.356
CHEMBL1822095	CHEMBL3354226	0.616	0.356
CHEMBL1822071	CHEMBL3354650	0.685	0.354
CHEMBL1822072	CHEMBL3354650	0.667	0.354
CHEMBL1822097	CHEMBL3354650	0.625	0.354
CHEMBL1822096	CHEMBL3354226	0.6	0.348

Moreover, 2D fingerprints-based estimations specifically focussing on the amide substituents of the selected phenyl-triazole and phenyl-isoxazole inhibitors allowed to identify significant similarity with some of the phenyl-3-sulfonamide and phenyl-3-sulfamide chemical moieties of B-Raf ligands (Table B).

Table B: Top20- scoring 2D similarity records obtained from the comparison of amide substituents
 of the selected Hsp90, PDHK1 ad B-Raf ligands. As shown in the table several substituents have

Hsp90 (Target A) vs PDHK1 (Target B)						
Target A ligand	Target B ligand	MACCSfp similarity score	ECFP4fp similarity score			
CHEMBL3234772	CHEMBL252370	1	1			
CHEMBL3235112	CHEMBL252370	0.692	0.889			
CHEMBL3235113	CHEMBL252370	0.69	0.889			
CHEMBL3235115	CHEMBL3354229	0.579	0.833			
CHEMBL3235115	CHEMBL3354655	0.564	0.769			
CHEMBL3235115	CHEMBL3354651	0.511	0.714			
CHEMBL3235115	CHEMBL3354650	0.415	0.714			
CHEMBL3235118	CHEMBL252370	0.439	0.7			
CHEMBL3235117	CHEMBL3354229	0.356	0.692			
CHEMBL3234759	CHEMBL3354228	0.667	0.684			
CHEMBL3235116	CHEMBL3354229	0.674	0.667			
CHEMBL3235115	CHEMBL3354656	0.595	0.667			
CHEMBL3234759	CHEMBL3354227	0.605	0.619			
CHEMBL3234759	CHEMBL3354652	0.59	0.619			
CHEMBL3234772	CHEMBL3354651	0.413	0.615			
CHEMBL3235113	CHEMBL3354651	0.574	0.571			
CHEMBL3235114	CHEMBL3354229	0.538	0.571			
CHEMBL3235112	CHEMBL3354651	0.438	0.571			
CHEMBL3234758	CHEMBL3354228	0.595	0.565			
CHEMBL3234759	CHEMBL3354654	0.511	0.545			
	B-Raf (Tar	get A) vs Hsp90 (Target B)				
Target A ligand	Target B ligand	MACCSfp aimilarity aporto	ECFP4fp			
CHEMBI 1822003	CHEMRI 323/750					
CHEMBI 1822258	CHEMBI 3234759	0.18	0.37			
CHEMBI 1822093	CHEMBI 3234758	0.279	0.323			
CHEMBI 1822261	CHEMBI 3234759	0.234	0.323			
CHEMBI 1822262	CHEMBI 323/750	0.219	0.321			
CHEMBI 1822081	CHEMBI 3234759	0.188	0.321			
CHEMBI 1822083	CHEMBI 323/750	0.188	0.321			
CHEMBI 1822082	CHEMBI 3234759	0.188	0.321			
CHEMBI 1822257	CHEMBI 3234759	0.18	0.321			
CHEMBI 1822260	CHEMBI 3234759	0.18	0.321			
CHEMBI 1822107	CHEMBI 3234759	0.148	0.321			
CHEMRI 1822107	CHEMBI 323/750	0.140	0.321			
CHEMBI 1822102	CHEMBI 3234759	0.188	0.31			
CHEMRI 1822250	CHEMBI 323/750	0.18	0.31			
CHEMBI 1822005	CHEMBI 3234750	0.10	0.31			
CHEMRI 1822259	CHEMBI 3234758	0.226	0.303			
CHEMBI 1822100	CHEMBI 323/750	0.220	0.000			
CHEMRI 20/7870	CHEMRI 3234750	0.200	0.0			
CHEMBI 1822002	CHEMBI 3234750	0.100	0.5			
		0.200	0.01			
		0.18	0.345			

reported ECFP4 values above commonly accepted similarity thresholds.^[6] Amide substituents are identified by means of their respective ChEMBL IDs.

Target A ligand	Target B ligand	MACCSfp similarity score	ECFP4fp similarity score
CHEMBL1822259	CHEMBL3354224	0.377	0.519
CHEMBL2047869	CHEMBL3354224	0.35	0.519
CHEMBL1822258	CHEMBL3354224	0.377	0.5
CHEMBL2047878	CHEMBL3354224	0.411	0.481
CHEMBL2047877	CHEMBL3354224	0.411	0.481
CHEMBL2047876	CHEMBL3354224	0.393	0.481
CHEMBL1822260	CHEMBL3354224	0.377	0.481
CHEMBL2047879	CHEMBL3354224	0.411	0.464
CHEMBL2047876	CHEMBL3354226	0.357	0.458
CHEMBL2047878	CHEMBL3354226	0.351	0.458
CHEMBL2047877	CHEMBL3354226	0.351	0.458
CHEMBL2047869	CHEMBL3354653	0.391	0.452
CHEMBL1822259	CHEMBL3354653	0.354	0.452
CHEMBL2047870	CHEMBL3354224	0.339	0.448
CHEMBL1822088	CHEMBL3354224	0.415	0.444
CHEMBL2047879	CHEMBL3354226	0.351	0.44
CHEMBL2047870	CHEMBL3354653	0.4	0.438
CHEMBL1822258	CHEMBL3354653	0.354	0.438
CHEMBL1822094	CHEMBL3354224	0.471	0.429

References

- [1] [2]
- [3]
- T. Meng, D. Zhang, Z. Xie, T. Yu, S. Wu, L. Wyder, U. Regenass, K. Hilpert, M. Huang, M. Geng, J. Shen, J. Med. Chem. 2014, 57, 9832–9843.
 M. Taddei, S. Ferrini, L. Giannotti, M. Corsi, F. Manetti, G. Giannini, L. Vesci, F. M. Milazzo, D. Alloatti, M. B. Guglielmi, M. Castorina, M. L. Cervoni, M. Barbarino, R. Foderà, V. Carollo, C. Pisano, S. Armaroli, W. Cabri, J. Med. Chem. 2014, 57, 2258–2274.
 J. D. Hansen, J. Grina, B. Newhouse, M. Welch, G. Topalov, N. Littman, M. Callejo, S. Gloor, M. Martinson, E. Laird, B. J. Brandhuber, G. Vigers, T. Morales, R. Woessner, N. Randolph, J. Lyssikatos, A. Olivero, *Bioorg. Med. Chem. Lett.* 2008, *18*, 4692–4695.
 S. Mathieu, S. N. Gradl, L. Ren, Z. Wen, I. Aliagas, J. Gunzner-Toste, W. Lee, R. Pulk, G. Zhao, B. Alicke, J. W. Boggs, A. J. Buckmelter, E. F. Choo, V. Dinkel, S. L. Gloor, S. E. Gould, J. D. Hansen, G. Hatsings, G. Hatzivassiliou, E. R. Laird, D. Moreno, Y. Ran, W. C. Voegtli, S. Waendowky, J. Cipa, L. Budolah, J. Med. Chem. 2012, 55, 2960, 2981. [4] Wenglowsky, J. Grina, J. Rudolph, J. Med. Chem. 2012, 55, 2869–2881.
 S. Wenglowsky, K. A. Ahrendt, A. J. Buckmelter, B. Feng, S. L. Gloor, S. Gradl, J. Grina, J. D. Hansen, E. R. Laird, P. Lunghofer, S. Mathieu, D.
- [5] Moreno, B. Newhouse, L. Ren, T. Risom, J. Rudolph, J. Seo, H. L. Sturgis, W. C. Voegtli, Z. Wen, Bioorg. Med. Chem. Lett. 2011, 21, 5533-5537.
- [6] [7]
- S. Jasial, Y. Hu., M. Vogt, J. Bajorath, *F1000Res.* 2016, *5*, Chem Inf Sci-59.
 A. Gaulton, A. Hersey, M. Nowotka, A. P. Bento, J. Chambers, D. Mendez, P. Mutowo, F. Atkinson, L. J. Bellis, E. Cibrián-Uhalte, M. Davies, N. Dedman, A. Karlsson, M.P. Magariños, J.P. Overington, G. Papadatos, I. Smit I, A.R. Leach, *Nucleic Acids Res.*, 2017, *45*(*D1*), D945-D954.