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Hematopoietic stem cell gene therapy is emerging as a prom-
ising therapeutic strategy for many diseases of the blood and
immune system. However, several individuals who underwent
gene therapy in different trials developed hematological malig-
nancies caused by insertional mutagenesis. Preclinical assess-
ment of vector safety remains challenging because there are
few reliable assays to screen for potential insertional mutagen-
esis effects in vitro. Here we demonstrate that genotoxic vectors
induce a unique gene expression signature linked to stemness
and oncogenesis in transduced murine hematopoietic stem
and progenitor cells. Based on this finding, we developed the
surrogate assay for genotoxicity assessment (SAGA). SAGA
classifies integrating retroviral vectors using machine learning
to detect this gene expression signature during the course of
in vitro immortalization. On a set of benchmark vectors with
known genotoxic potential, SAGA achieved an accuracy of
90.9%. SAGA is more robust and sensitive and faster than pre-
vious assays and reliably predicts a mutagenic risk for vectors
that led to leukemic severe adverse events in clinical trials.
Our work provides a fast and robust tool for preclinical risk
assessment of gene therapy vectors, potentially paving the
way for safer gene therapy trials.

INTRODUCTION
Hematopoietic stem cell gene therapy with retroviral vectors has
demonstrated effectiveness in clinical trials for treatment of monoge-
netic diseases.1 However, transplantation of genetically modified he-
matopoietic stem cells led tomyelodysplastic syndromes and leukemias
in some gene therapy trials.2–4 These severe adverse events (SAEs) were
caused by integration of the provirus in the vicinity of proto-oncogenes,
such asMECOM and LMO2, which were subsequently upregulated by
the strong viral promoter and enhancer sequences.5 Research efforts to-
ward safer gene therapy led to removal of the long terminal repeat (LTR)
Molecular
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enhancer elements in first-generation vectors. Instead, the field now
mostly uses internal promoters in self-inactivating (SIN) retroviral vec-
tor designs.6–8 However, safety tests of integrating retro- and lentiviral
vectors remain a bottleneck for transition frombasic research to clinical
application. Tumor-pronemice can be used to assess themutagenic po-
tential of integrating vectors, but these models are laborious, require
large numbers of animals, and suffer from long readout times.9 Another
commonly required safety analysis is the integration site pattern of a
vector and a screen for clonal dominance in mouse models. However,
judging the results of integration site studies regarding clonal domi-
nance versus normal clonal fluctuation in mouse models can be diffi-
cult10 and suffers from poor predictability of the clinical occurrence
of SAEs. Hence, efficient and reliable in vitro assays to screen for inser-
tionalmutagenesis are instrumental for clinical vectordevelopment.We
previously developed the in vitro immortalization (IVIM) assay to
quantify the risk of vector-induced cellular transformation.11 In this
assay, murine hematopoietic progenitor cells are expanded after trans-
duction with retroviral vectors. Following limiting dilution, non-
immortalized cells stop proliferating, whereas insertional mutants
give rise to clonal outgrowth. The incidence of vector-induced immor-
talization can be used to quantify and compare the mutagenicity of
different vector types. Although the IVIMassaymainly detects mutants
with insertions near the Mecom (also known as Evi1) locus, it reliably
uncovers the ability of a given vector to activate neighboring proto-on-
cogenes. Therefore, IVIM results have been accepted by regulatory
agencies in Europe, the United States, Canada, and Australia as part
of the preclinical safety assessment for gene therapy vectors.12–15
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Figure 1. IVIM and SAGA assays to detect vector genotoxicity in vitro

(A) Workflow of the in vitro genotoxicity assays. (B) Vector designs used in this study. Indicated are the various promoters and transgenes tested in our study (for details, see

Table S1). (C) Replating frequencies (RFs) of different IVIM samples (n = 502) measured in 68 IVIM assays. Each dot represents one individual sample. RFs above Q1 (Q1 =

0.75 quantile of the RF for LTR.RV.SFFV) are counted as positive assays. LOD, limit of detection. Above the graph, the ratios of assays with RFs above and below Q1 are

shown. Differences in the incidence of positive and negative assays relative to mock- or LTR.RV.SFFV-transduced cells were analyzed by Fisher’s exact test with Benjamini-

Hochberg correction (*p < 0.05, ***p < 0.001; NS, not significant). Bars indicate mean RF. (D) Receiver operating characteristic (ROC) of the IVIM assay for samples (n = 502)

with known activity in the IVIM assay. (E) Same as in (D) with separate curves for strongly transforming vectors (LTR.RV.SFFV) and mock controls (red curve) and weakly

transforming vectors, safe vectors, and mock controls (black curve) for which the classification based on repeated testing in the IVIM assay was known.
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However, the IVIM assay is limited in terms of sensitivity and suffers
from considerable inter-assay variability.

Transformation of healthy hematopoietic progenitors to preleukemic
cells and leukemia is linked to specific gene expression programs that
cause dysregulation of stemness pathways, growth, and perturbed dif-
ferentiation.16–18 By creating a resource of transcriptional responses
to vector integration, we show that integrating genotoxic vectors acti-
vate a gene expression program linked to transformation, stemness,
and cancer de-differentiation. We hypothesized that this transcrip-
tional signature can be exploited to create better predictors of vec-
tor-induced genotoxicity. To this end, we develop the surrogate assay
for genotoxicity assessment (SAGA) classifier, which uses machine
learning to detect dysregulation of this gene expression signature in
transduced murine hematopoietic stem and progenitor cells (HSPCs).
We compare results from the IVIM assay and SAGA for a variety of
integrating benchmark vectors, including the three gammaretroviral
vectors that triggered leukemias in clinical trials. The molecular
readout of SAGA enhances sensitivity and reproducibility and elimi-
3384 Molecular Therapy Vol. 29 No 12 December 2021
nates the need to rely on the variable replating phenotype of the IVIM
assay, reducing assay duration. In addition, we provide the SAGA
analysis pipeline as a freely available R package.

RESULTS
Cell culture-based assays for in vitro genotoxicity prediction

For IVIM and SAGA, murine lineage-negative (Lin�) HSPCs are
transducedwith highmultiplicities of infection (MOIs) to reach at least
3 vector copies per cell (Figure 1A). After transduction, bulk cultures
are expanded for 15 days in myeloid differentiation-promoting me-
dium. On day 8 after transduction, cells are diluted to increase prolif-
erative selection pressure until day 15. For the IVIM assay, cells
are replated at low density and cultured for another 14 days before
microscopic and enzymatic detection of growing insertional mutants.
The results of the IVIM assay showed that non-transduced mock con-
trol cells rarely proliferated under limiting dilution conditions (11 of
124 assays positive), whereas cells transduced with a gammaretroviral
vector with strong spleen focus-forming virus (SFFV) promoter/
enhancer elements (LTR.RV.SFFV) showed a high incidence of
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insertional mutants (153 of 204 assays positive). These results are
congruent with clinical data because this vector design led to myeloid
malignancy in clinical trials for chronic granulomatous disease because
of insertional activation of EVI1 and PRDM16. We tested a variety of
gammaretroviral, alpharetroviral, and lentiviral vectors with different
designs and mutagenic potential in both assays, including several vec-
tors that have been or are currently used in clinical trials (Figures 1B
and 1C; Table S1). The IVIM assay identified the potential hazard
of two other vectors with clinically demonstrated genotoxicity:
LTR.RV.MLV.IL2RG (also known as MFGgC), which caused
leukemia in X-SCID studies,2 and LTR.RV.MPSV.WASP (also known
as CMMP-WASP), which led to several primary and secondary leuke-
mias in individuals with Wiskott-Aldrich syndrome (WAS).4,19 How-
ever, the replating frequencies and, hence, the power of the IVIM assay
to uncover the mutagenic potential was substantially lower for vectors
that contain weaker LTRs or SIN lentiviral vectors with SFFV as an in-
ternal promoter.We summarized the outcome of 502 IVIM assays in a
receiver operating characteristic (ROC) curve (Figure 1D) todetermine
the predictive power of the replating phenotype as a proxy for vector
mutagenicity. Overall, the IVIM assay showed a low false negative
rate (specificity, 88.1%) and a sensitivity of 68.8%, reaching an overall
area under the receiver operating curve (AUROC)of 0.827 (Figure 1D).
Next we evaluated the results separately for mock control cells against
the strongly transforming vector LTR.RV.SFFV (Figure 1E, red curve;
sensitivity, 74.6%; AUROCLTR.RV.SFFV, 0.88) or other vectors with
known mutagenicity (Figure 1E, black curve; sensitivity, 54.2%;
AUROCother, = 0.74). Hence, the IVIM assay has significant predictive
power to detect vector-induced immortalization in mouse hematopoi-
etic cells, but for vectors other than the LTR.RV.SFFV, the IVIM assay
suffers from low sensitivity andhas to be repeatedmany times to obtain
a reliable prediction of vector safety.

Transforming vectors impose an oncogenic gene expression

signature

We hypothesized that gene expression changes induced by trans-
forming vectors might be a more accurate and sensitive predictor of
vector-induced genotoxicity than the occurrence of a poorly defined
clonal outgrowth after long periods of in vitro culture. Therefore, we
analyzed the transcriptome from HSPC bulk cultures on day 15 after
transduction. t-distributed stochastic neighbor embedding (t-SNE)20

and heatmaps of single assays (Figures 2A–2D) revealed that trans-
duction with transforming vectors (based on the IVIM assay)
imposed a distinct gene expression signature in HSPCs, clearly distin-
guishing them from the mock samples. In contrast, SIN vectors with
weaker internal promoters, such as the EF1a-short (EFS) promoter,
clustered with the non-transduced mock controls (Figures 2C and
2D). Importantly, gene expression changes were linked to but inde-
pendent of the full immortalization phenotype in the IVIM assay.
Cultures that were transduced with transforming vectors but did
not immortalize in the IVIM assay (indicated as closed circles in Fig-
ure 2A) still showed similar gene expression changes compared with
LTR.RV.SFFV immortalized samples (Figures 2A and 2B). The trans-
formation-associated gene expression changes were observed across
different vector genera as transforming gammaretroviral, lentiviral,
and alpharetroviral vectors clustered together (Figures 2C and 2D;
Figure S1A). The most consistently dysregulated genes (absolute
log2FC > 1.0, Padj. < 10�5; Table S2, tabs 1 and 2) in samples trans-
duced with transforming vectors included stem cell-associated genes
(Aldh1a1, Smim5, and Ifitm6), proto-oncogenes (Zbtb16, Sox4,
Pdgfrb, and Fgf3), stem cell transcription factors or their target genes
(Spns2, Ces2g, and Myct1), and myeloid markers (Mpo and Cebpe).
This oncogenic signature was detected as early as day 4 after transduc-
tion with transforming vectors (Figures S1B and S1C) and across
three gene expression platforms (microarrays, qPCR, and RNA
sequencing [RNA-seq]; Figures S1D and S1E). Gene set enrichment
analysis (GSEA) showed upregulation of gene sets linked to positive
cell cycle regulation, hematopoietic stem cells, erythroid/megakaryo-
cytic differentiation, and Evi1 target genes21 in samples transduced
with transforming vectors compared withmock controls and safe vec-
tor designs (Figures 2E, 2F, 2H, and 2I; Table S3, tab 2). Interestingly,
samples transduced with safe vector designs displayed a similar
enrichment of cell cycle gene sets and genes linked to erythroid/mega-
karyocytic differentiation compared with mock controls (Figure 2G).
However, in contrast to transforming vectors, they showed downre-
gulation of stemness and Evi1 target genes and a reduction of myeloid
gene sets (Figures 2G and 2J; Table S3, tab 8). We hypothesized that
the accelerated cell cycle and upregulation of genes associated with
non-myeloid lineages might be a sign that assay progression and
myeloid differentiation were generally delayed in transduced samples,
independent of the vector type. Therefore, we compared early mock
samples from day 8 with mock samples from day 15. Indeed, non-
transduced HSPCs from this early time point displayed a similar
enrichment of cell cycle, erythroid, and megakaryocytic gene sets
but no upregulation of Evi1 target genes (Figure 2K; Figure S1F; Table
S3, tab 14), reflecting incomplete myeloid differentiation and faster
proliferation at that time. Most importantly, only genotoxic vectors
upregulated hematopoietic stem cell transcriptional programs and
Evi1 target genes compared with mock and non-transforming vec-
tors. The upregulation of myeloid differentiation genes and stemness
programs by transforming vectors (Figures 2E and 2F) underscores
that differentiation and transformation are not mutually exclusive,
as described for Evi1-driven leukemogenesis.22 By probing more
than 8,000 gene sets from the MSigDB collection,22 we sought to
obtain a more global view of the biological processes and pathways
altered by transforming vectors. We found that transforming vectors
triggered an early transcriptional signature that already included
several “hallmarks of cancer,”23 including upregulation of gene sets
linked to DNA replication, stemness, cancer de-differentiation, and
therapeutic resistance and an enrichment of interferon signaling
genes (Figure 2L; Table S3, tab 11). These data demonstrate that inte-
grating vectors with the propensity to transform hematopoietic cells
induce a unique oncogenic gene expression signature that distin-
guishes them from non-transforming vectors.

Dataset preparation for classifier development

Having shown that genotoxic vectors impose a specific stemness-
related gene expression profile, we sought to develop a machine
learning algorithm distinguishing transforming vectors from safe
Molecular Therapy Vol. 29 No 12 December 2021 3385
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Figure 2. Transforming vectors impose an oncogenic gene expression signature in murine HSPCs

(A) t-distributed stochastic neighbor embedding (t-SNE) of three mock samples (gray) and 4 samples transduced with LTR.RV.SFFV (red) from one SAGA assay (ID 120411)

using all 36,226 annotated probes. (B) Hierarchical clustering of the samples shown in (A) based on the most variable probes (top 1%). (C) t-SNE of a second SAGA assay (ID

150128, 36,226 annotated probes). (D) Hierarchical clustering of the samples shown in (C) based on the most variable probes (top 1%). (E) Gene set enrichment analysis

(GSEA) of hematopoiesis-associated gene sets (Table S3, tab 1) of samples transduced with IVIM-transforming vectors versus mock controls. Plotted are normalized

enrichment scores (NESs) against the false discovery rate (FDR). The enrichment cutoff (FDR < 0.1) is indicated by the dashed line. (F) GSEA of IVIM-transforming vectors

against IVIM-safe vectors. (G) GSEA of samples transduced with IVIM-safe vectors against mock controls. (H–K) GSEA plots for EVI1 target genes20 for the contrasts (H)

transforming versus mock, (I) transforming versus safe, (J) safe versus mock, (K) mock day 8 versus mock day 15. (L) Enrichment map of highly upregulated (FDR < 0.005)

gene sets from MSigDB in samples transduced with transforming vectors compared with mock control and safe samples.
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Figure 3. Development phase of an SVM classifier to predict genotoxicity

(A–C) Data preprocessing. (A) t-SNE representation of all 169 SAGA assays after quantile normalization using all 39,428 probes. The coloring scheme encodes individual

SAGA assays. (B) t-SNE of the 169 SAGA-samples after quantile normalization and ComBat correction using the same color key as in (A). (C) t-SNE plot as in (B) with the

samples color coded according to vector properties in the IVIM assay. IVIM positive, transforming vectors; IVIM negative, nontransforming vectors; mock, untransduced

controls; unknown, IVIM data inconclusive. (D) Scheme of classifier development during the development phase. The complete raw dataset was quantile normalized and

(legend continued on next page)
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designs. We started with the full dataset consisting of 169 SAGA mi-
croarrays with 39,428 probes each, resulting in more than 6 million
data points. Similar to other cell culture assays analyzed with high-
throughput methods,24 we observed systematic differences between
assays because of different primary cell material, reagent lots, instru-
ments, time, and personnel (“batch effects”). These batch effects
caused clustering of samples by assay and processing date after
normalization (Figure 3A). Thus, we first implemented a robust
normalization and batch effect correction method to reduce the un-
wanted variation between individual SAGAs. We found that a com-
bination of quantile normalization25 (Figures S2A and S2B) followed
by ComBat26 effectively normalized and removed batch effects, allow-
ing us to analyze all samples within a common gene expression space
where transforming and safe/mock groups formed two different but
overlapping groups (Figures 3B and 3C). Importantly, both methods
are capable of “add-on adjustment” of new test batches, allowing
cross-batch predictive modeling by leaving training data and classifi-
cation rules fixed when new test data are adjusted.27 For the classifier
development phase, the jointly normalized and batch-corrected gene
expression matrix was reduced to samples with known properties in
the IVIM assay (transforming/non-transforming/mock, n = 152; Fig-
ure 3D). We split the dataset into 10 different training and test sets,
with the training sets comprised of 70% and corresponding test sets
comprised of 30% of the samples. Development of models was per-
formed on the training sets using repeated cross-validation to assess
model performance during feature selection and hyperparameter
tuning (Figure 3D; Figure S3). The test sets were then used to assess
the performance of the final model fit and to control for overfitting of
the classifier; for instance, because of feature selection bias or
hyperparameter tuning.28,29

Genetic algorithm-enhanced feature selection for prediction of

genotoxicity

Initial testing of several machine learning approaches revealed that
support vector machines (SVMs) offered a good classification perfor-
mance on our dataset. Because the performance and computational
cost of SVMs are negatively influenced by non-informative predic-
tors, we performed feature selection on the training sets to find
smaller predictor subsets with higher predictive power. A second
aim for feature selection was to reduce the number of predictors as
far as possible for potential later transfer of SAGA to other technical
platforms that offer higher sample throughput but can interrogate
fewer predictors. Starting with all 36,226 annotated probes, an unsu-
pervised filtering step was applied to remove all probes with little or
no variation across the training set, leaving a median of 1,195 probes
(Figure 3D; Figure S3; Table S4, tab 1). Next we performed recursive
batch corrected. The dataset was split 10 times into training (70%of samples) and test se

further splitting the training sets using repeated cross-validation and monitoring predict

each step of the feature selection routines using nested cross-validation. An SVMwith ra

SVM-RFE and SVM-GA and used to predict the test set. (E and F) Performance profi

remaining probes during SMV-RFE for a representative training set (split 7). (G) Performa

of the GA for training set 7. (H and I) Estimates of the prediction accuracy for the full mode

validation (y axis). The horizontal and vertical bars represent the 95% confidence interv
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feature elimination (SVM-RFE),30 which ranks all predictors accord-
ing to their individual predictive power and then iteratively removes
the least important predictors. The performance profiles across the
different predictor subset sizes showed performance maxima between
3 and 45 predictors for the different training sets (median, 23 predic-
tors; Figures 3E and 3F; Table S4, tab 1). On average, SVM-RFE
removed more than 98% of the probes from the dataset, which re-
sulted in a slight but significant boost in prediction performance, as
measured by cross-validation (median accuracy full models, 89.0%;
median accuracy RFE models, 90.8%; median Ppaired, 0.038; Table
S4, tab 1). On the separate test sets, the median accuracy for the
full models was 90.0%, whereas the SVM-RFE models achieved a
median accuracy of 91.1% (Table S4, tabs 1 and 2). Notably, the
SVM-RFEmodels required less than a tenth of the computation times
of the full models because of the smaller number of predictors.

SVM-RFE is a greedy algorithm that is effective in eliminating large
numbers of less important probes, but it does not perform an exhaus-
tive search to find the best combination of retained predictors.We hy-
pothesized that an optimal combination of probeswith high predictive
powerwould allowus to further reduce the number of required predic-
tors while maintaining or even increasing prediction performance. To
this end, we next employed a genetic algorithm (GA) to find the best
combination of probes retained by SVM-RFE. GAs search for the best
solution in a given feature space, guided by evolutionary principles.31

GAs have been shown to efficiently find optimal or near-
optimal solutions for complex optimization problems, including
feature selection.29 We implemented the GA together with support
vectormachine-basedmodeling (SVM-GA) and used cross-validation
to asses predictive performance during the feature selection process.
For SVM-GA, a population of 40 candidate solutions (individuals)
was initially created from random subsets of the most informative
probes found by the preceding SVM-RFE step. The predictor subsets
with the highest fitness (prediction performance) of each generation
had the best chances to survive andproduce the next generation of pre-
dictor subsets by random crossover and mutation, producing more
and more optimized probe combinations over time (Figure 3D; Fig-
ure S3). We performed feature selection using SVM-GA for all
training/test set splits where SVM-RFEhad retainedmore than 10 pre-
dictors. This ensured that the GA could choose from a sufficient num-
ber of predictors to create the initial population of predictor subsets. In
three of four cases where SVM-RFE alone had arrived at less than 10
predictors, cross-validation accuracy (median accuracy full models,
89.0%; median accuracy RFE models, 90.7%; median Ppaired, 0.024)
and test set accuracies (median accuracy full models, 90.0%; median
accuracy RFE models, 92.2%; Table S4, tab 1) were already improved,
ts (30% of samples). Feature selection by SVM-RFE and SVM-GAwas performed by

ion performance using the hold-out samples. Tuning of the SVM was performed at

dial kernel was trained on the training set reduced to the optimal predictors found by

le of SVM-RFE: accuracy on the hold-out samples plotted against the number of

nce profile of SVM-GA: accuracy on the hold-out samples plotted against generation

ls (H), RFEmodels (I), and GAmodels (J) using the test set (x axis) or repeated cross-

als using the test set and resampling approach, respectively.
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making a second round of feature selection unnecessary. The cross-
validation performance over the 40 generations of SVM-GA was
aggregated into a performance profile demonstrating the progress of
the algorithm and to choose the optimal generation for the entire data-
set (Figure 3G). The algorithm further reduced the median number of
predictors from 36 to 14 for the six training/test set splits subjected to
SVM-GA. Importantly, cross-validation accuracy and test set accu-
racy showed improved predictive power compared with the full and
SVM-RFE models (median cross-validation accuracy SVM-GA,
92.5%; median cross-validation accuracy full model, 89.0%; median
test set accuracy SVM-GA, 93.3%;median test set accuracy full model,
90.0%; Figures 3H–3J; Table S4, tabs 1 and 2).

Because the performance of the final SAGA classifier, which was built
on all 152 samples available, could only be estimated via cross-valida-
tion, we assessed whether our cross-validation strategy was trust-
worthy or whether it produced overly optimistic results because of
feature selection bias or overfitting. Therefore, we plotted the accu-
racy estimates from cross-validation within the training sets against
the test set accuracies (Figures 3H–3J). The performance estimates
obtained by cross-validation and the test set accuracies showed
good agreement, with the median of both estimates for the different
splits (red dots in Figures 3H–3J) being located near the identity
line. The wider confidence intervals of the accuracies calculated
from single test sets demonstrated the higher uncertainty of perfor-
mance estimates obtained from a test set of limited size compared
with properly implemented resampling.28 Next we defined SAGA
as the compound classifier obtained on a training set when SVM-
RFE retained less than 10 predictors for this training set and used
SVM-RFE followed by SVM-GA otherwise.

Assessing the predictive performance of SAGA

In the classifier development phase, the test samples were selected by
random sampling from a jointly preprocessed gene expression matrix
to obtain test sets of sufficient size and with the same class distributions
as the training set. However, this approach did not fully reflect the later
test scenario, where a new test set is to be predicted by SAGA using a
preprocessed and fixed training set and classifier. To realistically assess
the predictive performance of SAGAwith unseen data in the absence of
external validation data, we employed a jack-knife, leave-one-batch-out
approach. The SAGA dataset was comprised of 19 individual SAGAs
(batches). For each iteration, one complete batch was set aside as an in-
dependent test set (Figure 4A). The remaining 18 batches were used as
the training set to which the preprocessing and feature selection pipe-
line developed above was applied (Figure 4A; Figure S3). On median,
10 optimal predictors were derived from the training sets (Table S5,
tab 1), and an SVM was trained on the training set reduced to the
optimal predictors (Figure 4B). Next, the batch that served as the inde-
pendent test set was add-on normalized and add-on batch corrected.
This adjusted the test set to the training set without altering the latter
(Figure 4C), ruling out data leakage from the test samples into the
training set or the classifier.32,33 Finally, the add-on adjusted test set
was reduced to the optimal predictors, and the class labels were pre-
dicted. We repeated this procedure for all 19 batches and aggregated
the prediction results over the 19 iterations (Figures 4D–4I; Figure S4;
Table S5, tabs 1 and 2). Compared with the IVIM assay, SAGA outper-
formed the IVIM assay in terms of AUROC (AUROCSAGA, 0.940;
AUROCIVIM, 0.827; PDELONG < 10�4; Figure 4D), overall accuracy
(accuracySAGA, 90.9%; accuracyIVIM, 76.9%; Figure 4D), and the area
under the precision recall curve (AUPRCSAGA, 0.944; AUPRCIVIM,
0.89; Figure 4G). Specifically, SAGA had a markedly higher sensitivity
(87.7%) compared with the IVIM assay (68.8%). Most importantly,
SAGA detected the genotoxicity of strongly transforming vectors
(accuracySAGA, 97.1%; accuracyIVIM, 80.8%; Figures 4E and 4H) and
vectors with weaker transforming potential with higher predictive
power than the IVIM assay (accuracySAGA, 88.9%; accuracyIVIM,
78.5%; Figures 4F and 4I). The negative predictive value of SAGA
was much higher than that of the IVIM assay (negative predictive value
[NPV]SAGA, 0.91; NPVIVIM, 0.67; Table S5, tab 2); therefore, there is
much higher confidence to classify a vector as “safe” for clinical use
when using SAGA than IVIM. The number of predictors at each
step and the classification performance metrics over the 19 iterations
of the leave-one-batch-out approach are summarized in Figures
S4A–S4D. To assess the stability of the feature selection process, we
quantified how often individual predictors were included in the set of
optimal predictors in each of the 19 iterations (Table 1; Table S5, tab
3). We found a high degree of overlap between the sets of optimal pre-
dictors found during the different iterations with a core set of highly
potent predictors, such as Naip1 and Itih5, which were included in
most of the sets (Table 1). These predictors also showed a high degree
of overlap with the features found for the random test sets during the
development phase (Table 1; Table S4, tab 3), as well as with the final
list of 11 optimal features (Table 1; Table S4, tab 5) obtained on the
complete SAGA dataset (described below).

Construction of the final SAGA model

Next, using the pipeline developed above, we built the final SAGA
classifier on the entire set of available samples (n = 152) for use as
the training set in the SAGAR package. After variance-based filtering,
1,243 features (Table S6, tabs 1 and 2) were supplied to SVM-RFE
(Figure 5A), which retained 20 predictors (Table S6, tab 3). The
following SVM-GA step found an optimal combination of 11 predic-
tors after 14 iterations for the complete dataset (Figure 5B; Table S6,
tab 4). Principal-component analysis of the SAGA dataset reduced to
these 11 probes showed a clear separation of IVIM-transforming vec-
tors against mock controls and IVIM-neutral vectors (Figure 5C),
whereas a separation of classes was not discernible when the dataset
was reduced to 11 randomly selected probes (Figure 5D). Finally,
we queried transcriptome data from the Immunological Genome
Consortium34 to determine which cell types of the hematopoietic sys-
tem expressed the 20 most important predictors found by SVM-RFE.
A majority of these predictors were highly expressed in the most
immature hematopoietic stem cells (Figure 5E), whereas the predic-
tors that were retained after unsupervised filtering and used as input
into the feature selection process showed no such association with
HSCs (Figure S5). The remaining genes, such as Frat2 and Traf4,
were mainly associated with the lymphoid lineage, whereas none of
these genes was expressed in mature granulocytes, a route of
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Figure 4. Estimation of model performance via the leave-one-batch-out approach

(A) Scheme of the leave-one-batch-out approach used to estimate SAGA performance. Details are given in themain text. (B) PCA representation of training set 01 reduced to

the 8 optimal predictors derived from the training set and used to train the SVM. (C) Projection of add-on adjusted test set 01 samples into the PCA plot spanned by training

set 01. (D–I) Aggregated prediction results over 19 iterations for the leave-one-batch-out approach versus a conventional IVIM assay. (D) AUC-ROC for all vector genera. (E)

AUC-ROC for strongly transforming LTR.RV.SFFV vectors. (F) AUC-ROC for non-LTR.RV.SFFV vectors. (G) AUC-PRC for all vector genera. (H) AUC-PRC for strongly

transforming LTR.RV.SFFV vectors. (I) AUC-PRC for non-LTR.RV.SFFV vectors.
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Table 1. Top 20 predictors most often selected in the leave-one-batch-out approach and random test set approach used during the development phase

Leave-one-batch-out approach Random test set approach

Probe ID Gene symbol

Times
selected
(of 19)

Variable
importance
(AUC) Probe ID Gene symbol

Times
selected
(of 10)

A_51_P289392 Naip1* 16 94.49 A_55_P2077048 Itih5* 10

A_55_P2077048 Itih5* 15 98.06 A_55_P2024155 Zbtb16* 8

A_51_P106059 Traf4* 14 94.65 A_51_P289392 Naip1* 7

A_66_P135106 Slco3a1* 12 94.18 A_66_P135106 Slco3a1* 7

A_55_P1987984 Zfpm1 12 93.64 A_55_P2018929 Spns2* 7

A_55_P2018929 Spns2* 11 96.98 A_66_P122559 Myct1 5

A_55_P2024155 Zbtb16* 9 100.00 A_51_P334942 Aldh1a1 4

A_51_P486121 Aff3* 8 96.59 A_55_P2108248 Art4* 4

A_55_P2057587 Arx 8 95.15 A_55_P1987984 Zfpm1 4

A_55_P1976882 4930519L02Rik 7 95.00 A_55_P2136426 Prss57 3

A_55_P2108248 Art4* 7 95.62 A_52_P6828 Xk 3

A_52_P56682 Sla2* 6 95.77 A_55_P1976882 4930519L02Rik 2

A_51_P177171 Tie1* 6 93.49 A_55_P2472735 A530032D15Rik 2

A_51_P334942 Aldh1a1 5 90.31 A_51_P486121 Aff3* 2

A_52_P73475 Fam78a 5 93.76 A_55_P2057587 Arx 2

A_52_P162957 Frat2* 5 93.52 A_52_P73475 Fam78a 2

A_52_P68221 Gria3 5 92.75 A_52_P162957 Frat2* 2

A_51_P115626 Shank3 5 94.49 A_52_P68221 Gria3 2

A_55_P2146034 Abca4 4 91.82 A_52_P663904 Lhfpl1 2

Tabulated are the number of times a predictor was included in the list of optimal predictors for a given training set and the global variable importance (AUC-ROC) of each individual
predictor computed on the complete dataset of 152 SAGA samples. Indicated with asterisk (*) are 11 optimal predictors of the final SAGA classifier. Complete lists can be found in
Table S4, tab 3; Table S5, tab 3; and Table S6, tab 4.
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differentiation normally supported by the cytokine conditions used
for the IVIM assay and SAGA. The most important predictors to
detect genotoxic vectors were linked to stemness, differentiation
arrest, and non-myeloid cell fates reflecting early steps of leukemo-
genesis that precede full cellular transformation and leukemia.35

SAGA-GSEA

A critical step in the SAGA-SVM procedure is correct estimation and
correction of batch effects to project the new samples into a common
gene expression space together with the training samples. This can be
error prone for assays with few samples, a profoundly skewed class
distribution, or particularly severe batch effects. For these cases, we
sought to implement a more robust classifier that can be used within
each individual SAGA independently (Figure 6A). We first examined
whether the predictors found by our feature selection approach could
be used in GSEA to discriminate genotoxic from safe vector designs.
Indeed, we observed strong enrichment of the 11 optimal predictors
from the final SAGA classifier in transforming vectors compared with
mock controls (Figure 6B), whereas this signature was coordinately
downregulated in safe vector designs compared with mock samples
(Figure 6C). To estimate the predictive performance of this approach,
we performed SAGA-GSEA within each of the leave-one-batch-out
iterations by using the optimal predictors found for each of the
training sets by our feature selection routine as a gene set for
GSEA. We then examined the enrichment of the optimal predictor
gene sets by performing GSEA for each sample against the mock con-
trols in the left-out batches, yielding an AUC-ROC of 0.91 over
all iterations (Figure 6D). To determine the optimal normalized
enrichment score (NES) cutoff, we performed a ROC analysis,
yielding an NES of greater than 1.7 as the ideal cutoff point for the
complete dataset (Figure 6D). However, we found that this was
confounded by inclusion of many samples of the strongly genotoxic
LTR.RV.SFFV vector, which served as positive control and displayed
very strong enrichment of the predictor gene sets. Therefore, we
determined the cutoff again on the dataset without LTR.RV.SFFV
samples, for which a NES of greater than 1.3 was the optimal
threshold (Figure 6D). Using this NES cutoff, SAGA-GSEA outper-
formed the IVIM assay, albeit with a lower specificity than with the
SVM-based SAGA classifier (AUROCGSEA, 0.91; AUROCIVIM,
0.827; PDELONG, 0.005; accuracyGSEA, 84.8%; accuracyIVIM, 76.9%;
AUPRCGSEA, 0.91; AUPRCIVIM, 0.89; Table S7, tab 1; Figures 6E
and 6F). Similar to SAGA-SVM, we used the 11 final predictors
(Table S6, tab 4) that were derived from the complete dataset as a
GSEA gene set for the final SAGA-GSEA classifier. The optimal
NES cutoff for this 11-predictor gene set was determined by ROC
analysis on the complete dataset after exclusion of the LTR.RV.SFFV
Molecular Therapy Vol. 29 No 12 December 2021 3391
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Figure 5. Construction of the final SAGA classifier

(A) Performance profile of the SVM-RFE procedure for the

complete set of 152 samples. The filled circle represents

the predictor subset with the highest performance

comprised of the 20 most important predictors. (B) Per-

formance profile of the SVM-GA procedure for the com-

plete set of 152 samples over 40 generations of the GA. (C)

Principal-component analysis (PCA) of 152 samples with

known IVIM activity on the 11 optimal probes found by

SVM-GA. (D) PCA of 152 samples with known IVIM activity

on 11 randomly selected probes of 36,226 annotated

probes. (E) Heatmap representing expression of the 20

genes with the highest predictive power from SVM-RFE

across murine hematopoiesis.34 The boxplot below the

heatmap represents the expression of genes in each

column relative to the expression of all genes. LT-HSC,

long-term HSC; ST-HSC, short-term HSC; MPP, multi-

potent progenitor; Mac/MF, macrophage; Mo, monocyte;

Gran/GN, granulocyte.

Molecular Therapy
samples (NES > 1.0; Figure 6G). LTR-driven gammaretroviral, SIN
lentiviral, or alpharetroviral vectors with strong promoters and trans-
forming properties in the IVIM assay showed a mean NES between
1.22 and 2.15 (Figure 6H), whereas potentially safer vector architec-
tures with weaker internal promoters did not or only rarely showed
this enrichment (Figure 6H; Table S7, tab 2). SAGA-GSEA presents
an alternative classifier that circumvents the caveats of cross-batch
prediction when correct add-on adjustment is difficult to achieve
but critically depends on the integrity of the mock samples.
3392 Molecular Therapy Vol. 29 No 12 December 2021
DISCUSSION
One important bottleneck for gene therapy is the
necessity to assess potential safety risks. Since its
inception,11, the IVIM assay has become the de
facto gold standard in vitro assay for risk assess-
ment of gene therapy vectors, and multiple
groups have used the IVIMassay to test their vec-
tor constructs.12–15 Here we show that the IVIM
assay uncovers the genotoxic potential of vectors
that caused SAEs in clinical trials for CGD3

(LTR.RV.SFFV), X-SCID2 (LTR.RV.MLV), and
WASP4 (LTR.RV.MPSV). However, transfor-
mation potential is affected by vector design,
integration sites, vector copy number, the trans-
gene itself, and the disease background. In some
contexts, such as ADA-SCID, even LTR-driven
vector designs seemed to have an acceptable
safety profile,36 although one individual treated
with Strimvelis developed T cell leukemia linked
to an insertional event.37 Consequently, most
gene therapy trials now use SIN vectors. IVIM
assays for the mutagenic vector design
SIN.LV.SFFV revealed the genotoxic risk in
only 40% of assays. Hence, even though the
IVIM has an excellent specificity because of its
low sensitivity, it has to be repeatedmultiple times to produce an infor-
mative and reliable result. We developed SAGA as a robust, standard-
ized pipeline that efficiently identifies genotoxic vectors with higher
accuracy by coupling a shortened IVIM assay with a molecular
readout. By performing gene expression profiling on murine hemato-
poietic progenitors transduced with vectors with known IVIM
properties, we show that only genotoxic vectors upregulate a
specific gene expression signature that is reminiscent of immature
HSC transcriptional programs, myeloid differentiation, and early
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Figure 6. SAGA-GSEA

(A) t-SNE representation of gene expression data from three independent SAGAs without batch correction. (B) GSEA plot for the 11 optimal predictors from the final classifier

for LTR.SFFV.EGFP (sample X4991) versus mock from IVIM 3 (shown in A). (C) GSEA plot for the 11 optimal predictors for SIN.LV.EFS (sample X4997) versusmock from IVIM

3. (D) AUC-ROC aggregated from the leave-one-batch-out approach for all vector genera (red) and without strongly transforming LTR.RV.SFFV vectors (gray). The points on

the curve indicate the best NES cutoff. (E) AUC-ROC for all vector genera (same curve as in D) versus AUC-ROC of the IVIM assay. (F) AUC-PRC aggregated from the leave-

one-batch-out approach for all vector genera versus IVIM. (G) AUC-ROC using the 11 optimal predictors from the final classifier on all IVIM batches for all vector genera (red)

and without strongly transforming LTR.RV.SFFV vectors (gray). The point on the curve indicates the best NES cutoff. (H) SAGA-GSEA results for all tested vectors. Plotted are

the NESs of the 11-probe gene set from the final classifier over the different vector genera. The dashed line denotes NES R 1.0, indicating evidence of genotoxicity as

determined from the ROC analysis (Figure 6G) for genotoxic vectors when the strongly transforming LTR.SFFV samples were disregarded. Above the graph, mean NES

values are shown for each vector type. The level of evidence whether the NES is significantly different from the positive control is indicated (ns = not significant, *p < 0.05,

***p < 0.001; p values were calculated using a Kruskal-Wallis test with Dunn’s post hoc test).
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transformation. One challenge was to identify a set of optimal predic-
tors from the highly dimensional predictor space that allow precise
classification to keep computational costs low and make the model
more interpretable and as a potential starting point for possible later
transfer of SAGA to simpler technical platforms. However, even
with efficient feature reduction using RFE, the predictor space to be
explored to find the best combination of features retained after
SVM-RFE is vast. For instance, finding the best combination of 10–
15 of 30 retained predictors would require building and testing over
500 million models. Instead of a complete search of the predictor
space, we show here that Darwinian natural selection embedded in a
GA can be used efficiently for a guided search of the predictor space.
Thus, harnessing principles of population biology for complex optimi-
zation tasks is a powerful approach, as shown before for optimization
of a gene expression-based classifier using particle swarm optimiza-
tion.38 However, because of the nature of the GA, the solution repre-
sents a local optimum for each training set, and it cannot be excluded
that better solutions may exist. Initializing the GA with different
random seeds yielded slightly different lists of optimal predictors.
However, the solutions mostly differed by only one or two predictors,
indicating that the feature selection procedure was stable and the GA
found a near-optimal solution. Importantly, as more samples are
added to the dataset, improved solutions will be found, and SAGA
will continue to evolve.

We tested a SIN lentiviral vector for RAG1 and RAG2 deficiency, in
which transgene expression is controlled by a strong MND or a
weaker PGK promoter.39 The PGK promoter did not display geno-
toxic potential in IVIM or SAGA. Conversely, the MND promoter
constructs differed in their risk profile; vector SIN.LV.MND.RAG1
was determined to be safe by IVIM (0 of 9 positive assays) and
SAGA (2 of 9 samples with an NESR 1.0). In contrast, SIN.LV.MN-
D.RAG2 showed a replating phenotype in 2 of 9 IVIM assays and a
core set enrichment in 7 of 9 SAGA tests. This underscores the higher
sensitivity and predictive potential of SAGA compared with IVIM.
Based on these data, the preferred vector for potential treatment of
RAG2-SCID is PGK-RAG2 rather than MND-RAG2. Similarly,
when we tested an integrase mutant (LTR.RV.SFFV.W390A) of the
strongly transforming LTR.RV.SFFV vector with an altered and
potentially safer integration profile,40,41 SAGA detected a decrease
in the mean NES to 1.35 (compared with 2.15 of the wild-type inte-
grase vector). Thus, by providing a continuous score rather than a
digital outcome, SAGA provides a higher resolution of genotoxic risk.

Recently, Zhou et al.42 observed that murine thymocytes transduced
with mutagenic vectors show developmental arrest during T-lympho-
cyte development. The arrested progenitors overexpressed Lmo2,
Mef2c, and Prdm16. The transcription factor LMO2 was the most
clinically relevant dysregulated proto-oncogene in vector-associated
transformation in clinical trials for X-SCID and WASP. Importantly,
Lmo2 and Mef2c upregulation was detected in SAGA samples trans-
duced with mutagenic vectors (log2FC Lmo2, 0.67; p = 5 � 10�24;
log2FC Mef2c, 0.79; p = 9 � 10�15; moderated t test with BH adjust-
ment; Table S2, tab 1). Hence, SAGA detects perturbation of proto-
3394 Molecular Therapy Vol. 29 No 12 December 2021
oncogenes of the lymphoid lineage, something that is beyond
the capacity of the conventional IVIM assay. In addition, more
work is needed to determine whether SAGA can detect genotoxic po-
tential caused by transformation mechanisms other than cis activa-
tion of proto-oncogenes, such as aberrant splicing,43,44 and whether
the SAGA principle can be transferred to non-hematopoietic target
tissues. In the future, single-cell RNA-seq experiments might help
to further fine-tune the SAGA signature. Our work provides insights
into the early molecular events of genotoxicity following transduction
of hematopoietic cells with integrating vectors and presents a power-
ful machine-learning approach to prospectively estimate the muta-
genic potential of integrating vector systems for gene therapy.

MATERIALS AND METHODS
Study design

The study aimed to develop a gene expression-based diagnostic clas-
sifier to distinguish potentially genotoxic gene therapy vectors from
safe vector designs. For SAGA, murine Lin� HSPCs were transduced
with vectors of interest (Table S1) at high MOIs (target, >3 vector
copies per cell) and expanded in myeloid growth-promoting medium
(Figure 1A). On day 15, RNA was extracted for microarray analysis
on Agilent Whole Mouse Genome 4x44K v.2 microarrays. The data
were analyzed using R 3.5.1 and Bioconductor 3.7. All available mi-
croarrays (n = 169) were read in, quantile normalized, and batch cor-
rected. 152 SAGA samples with known behavior in the IVIM assay
(65 transforming, 55 safe, and 32 mock samples; Supplemental mate-
rials and methods; Table S8, tabs 1 and 2) were analyzed for differen-
tial expression (Table S2), GSEA (Table S3), and development of the
SAGA classifier (Table S4). During classifier development, the jointly
preprocessed gene expression matrix of all 152 SAGA samples was
split into 10 different training (70% of samples) and test sets (30%)
using stratified resampling to ensure comparable class distributions
in test and training sets (Figure S3). Development of models
was performed on the training sets only using cross-validation to
assess model performance during feature selection and nested
cross-validation for hyperparameter tuning. The test sets were not
used at any point for feature selection or model tuning. Three
different feature selection routines were applied to the training data
to reduce the number of predictors as far as possible. First, an unsu-
pervised filter was applied to exclude probes showing little variation
in the dataset, followed by RFE, which iteratively removes the least
important predictors before applying a GA to find a near-optimal
combination of predictors retained by the preceding steps. After
feature selection, an SVM was trained on the training data reduced
to the optimal predictors and used to predict the test sets. For estima-
tion of classifier performance, a jack-knife, leave-one-batch-out pro-
cedure was employed by leaving one batch of SAGA assays
completely out of the model building process. The complete feature
selection and model training pipeline was applied to the remaining
batches. After the optimal predictors had been derived from the
training set and the classifier had been trained and fixed, the batch
that served as the independent test set was add-on normalized,
add-on batch corrected, and predicted. The procedure was repeated
for each of the 19 experimental SAGA batches, and the predictions
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results on the left-out batches were aggregated to determine perfor-
mance. The final SAGA classifier was built on the entire set of avail-
able samples (n = 152) for use as the training set in the SAGA
R package. For SAGA-GSEA, we used the optimal predictors found
by the feature selection routines on each training set for each iteration
as a gene set for GSEA. We then examined the enrichment of these
optimal predictor gene sets by performing GSEA for each test set sam-
ple against the mock controls within the left-out test sets.

Cell culture for IVIM and SAGA

Lin� cells were isolated from tibiae, femora, and iliac crests of 8- to
12-week-old female C57BL/6J animals (Janvier) using themouse line-
age cell depletion kit (Miltenyi Biotec). Cells were frozen in aliquots of
5� 105 cells in 90% fetal bovine serum (FBS) (PAA Laboratories) and
10% DMSO (Merck). After thawing, one aliquot per assay was
cultured for 48 h in StemSpan (STEMCELL Technologies) supple-
mented with 50 ng/mL rm-SCF, 100 ng/mL rh-Flt-3L, 100 ng/mL
rh-interleukin-11 (IL-11), and 20 ng/mL rm-IL-3 (PeproTech). For
transduction, 250 mL of viral supernatant (or medium for the mock
controls) was preloaded on 24-well suspension plates coated with Ret-
roNectin (TaKaRa) to reach a definedMOI. Following the preloading,
1 � 105 cells were added to the wells in a total volume of 250 mL and
incubated overnight. The preloading procedure was repeated for the
second round of transduction. For this, suspension cells from the first
transduction round were harvested, and cells still bound to RetroNec-
tin were incubated with cell dissociation buffer (Gibco), pelleted, and
resuspended in 250 mL of fresh culture medium before being added to
the suspension harvest. Subsequently, 750 mL of the cell suspension
was added to the wells preloaded for the second transduction. Cells
were incubated for 24 h; harvested as described; mixed with 1.6 mL
IMDM (Biochrom) containing 10% FBS, 1% penicillin/streptomycin
(PAN Biotech), 2 mM glutamine (Biochrom). and cytokines as
described above; and seeded onto 12-well suspension plates. On
day 4 after (the second round of) transduction, we isolated DNA
and/or RNA from 10% and used 2.5% of the cell material for flow cy-
tometry analysis of transgene expression. After feeding the cells with
1.9 mL IMDM containing supplements (IMDM+), cells were incu-
bated for 48 h on 6-well suspension plates before adding another
2.2 mL of medium. On day 8 post transduction (p.t.), samples were
diluted (�1:10) by seeding 1 � 106 cells in 4 mL of IMDM+ in 6-
well suspension plates. On days 11 and 13 p.t., cells were given
1.2 mL of IMDM+. For the IVIM replating step, cells were re-seeded
on day 15 p.t. at 100 cells/well in 96-well flat-bottom suspension
plates. Following 14 days of incubation, plates were screened micro-
scopically for growth of insertional mutants. Afterward, 20 mL of
0.25% thiazolyl blue tetrazolium bromide (Sigma) in DPBS (Pan
Biotech) was added to the wells and incubated for 2–3 h at 37�C. Cells
were lysed by addition of 100 mL of 20% SDS (Sigma). Plates were set
on a shaker overnight at room temperature before absorption was
measured at 540 nm with a SpectraMax 340PC (Molecular Devices).
After background subtraction, the highest absorption value from the
mock plate was used as a threshold to determine positive wells unless
the value was higher than the mean absorption value of immortalized
wells from a meta-analysis of 22 assays (5.61 times the expression
value of a microscopically negative well). In this case, the second-high-
est mock value was used as a cutoff. Differences in the incidence of
positive and negative assays relative to mock or LTR.RV.SFFV.
EGFP-transduced cells were analyzed by Fisher’s exact test with the
Benjamini-Hochberg multiple testing correction procedure.

SAGA sample processing and bioinformatics

A complete list of SAGA samples with a detailed description of RNA
isolation, microarray acquisition, and all bioinformatic procedures,
including de novo annotation of microarrays, raw data preprocess-
ing, t-SNE, and principal-component analysis (PCA) visualizations,
differential expression analysis, GSEA, description of the classifier
development and performance measurements, the SAGA R package,
qRT-PCR, and RNA-seq are outlined in the Supplemental materials
and methods.

Statistical analysis

The incidence of positive and negative IVIM assays in Figure 1C was
analyzed by a Fisher’s exact test with Benjamini-Hochberg correction.
The SAGA-GSEA results in Figure 6H were compared using a Krus-
kal-Wallis test with Dunn’s post hoc test. For a detailed description of
the different R package versions and statistical tests used in each bio-
informatic step of SAGA, refer to the respective Supplemental mate-
rial and methods section.

Data and materials availability

All data associated with this paper can be found in themain text or the
Supplemental materials. Raw and processed expression data from all
experiments have been deposited in the Gene Expression Omnibus
under GEO: GSE109391. The R code for the SAGA genotoxicity pre-
diction package and all other computations is available as source code
and compiled R package via https://github.com/rothemi/SAGA. For
convenience, an Amazon Machine Image running R3.6 and SAGA
is available, including test samples from two different SAGA assays.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.
1016/j.ymthe.2021.06.017.
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Figure S1. Transforming vectors impose specific gene expression changes in murine hematopoietic progenitors A) t-SNE representation 
of the gene expression profiles in samples transduced with SIN.AV.EFS, LTR.RV.SFFV and SIN.AV.SFFV. B) t-SNE representation of 
SAGA assays measured on day 4 (pale colors) and day 15 after batch correction using the assay date as a batch variable. C) GSEA-plot 
showing the enrichment of the Top 100 genes (upregulated on day 15 in transforming samples vs mock samples, rank based on p-values) 
in the day 4 samples transduced with LTR.RV.SFFV.eGFP compared to the MOCK control. Below the plot, the statistics for three differ-
ent GSEA tests (Broad gene_set permutation; ROAST self-contained GSEA and CAMERA competitive GSEA test) are given as 
discussed in Materials and Methods. D) validation of gene expression changes by qPCR: row-scaled heatmap of qPCR based gene 
expression genes showing the highest log2FC  by transforming vectors in the first three IVIM assays. e) validation of gene expression 
changes by RNASeq: row-scaled heatmap of RNA-Seq based gene expression (rlog transformed normalized counts) of the top-upregulat-
ed genes by transforming vectors.  F) Gene set enrichment analysis of expression changes in 106 hematopoiesis-associated gene sets 
(Supplementary Table 3) in mock-samples from d8 versus mock-samples from day 15. Plotted are normalized enrichment scores (NES) 
against the false discovery rate (FDR) obtained by gene set permutation. Significant enrichment (FDR < 0.1) is indicated by the dashed 
line. 
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Figure S2 Quantile normalization  of individual SAGA assays. A) Boxplot of log2 raw intensities of 169 SAGA samples 
(167 individual SAGA samples plus 2 mock duplicates from IVIM ID 180523; see Materials and Methods) hybridized to 
Agilent Microarrays. The coloring scheme denotes individual assays (batches). B) Boxplot of log2 intensities of 169 SAGA 
samples after quantile-normalization and averaging of quadruplicate probes  
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SAGA dataset 

training sets:   36,226 annotated predictors 

10 random splits of jointly preprocessed gene expression matrix (development phase)
or

19 leave-one-batch out splits of RAW data before preprocessing 

test sets:  

training set 1:  median 1226 predictors 

2. unsupervised variance based filtering 
    interquartile range = 0.8

3. create 200 external resamples (20x10-fold CV)
Feature selection is conducted within each resample
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Figure S3. Training / Test set splitting and resampling during feature selection.  1) The dataset is split into training  and test sets  2) An 
unsupervised filter is applied to the training set to filter out probes with low variance 3) 200 resamples of the training set are generated using 20 
times repeated 10-fold CV. Each resample is comprised of 90 % of the training set (97 samples, light blue) for feature selection and a 10% hold-out 
sample (15 samples, purple) to assess prediction performance (”external layer”). 4A) Feature selection is performed within each resample by 
training/tuning the model using all n predictors and prediction of the external hold-out sample. Variable importance is calculated via AUC for each 
predictor and the process is repeated using the n-1 most important predictors 4B) Tuning of hyperparameters is performed at each iteration of 
feature selection using an “internal layer” that further splits each training sample from the outer loop using 3x10-fold CV. The optimal hyperpa-
rameter is passed to the outer loop to build the model. 5) results from the outer loop are aggregated into 6) a performance profile over the tested 
predictor subsets. 7) If SVM-RFE retains more than 10 predictors 8) a genetic algorithm is employed to find the best combination of retained 
features using a similar resampling scheme. 9) the resampling accuracy of each generation of the genetic algorithm is recorded and the optimal 
iteration is selected. 10) The final model is build using the optimal predictors on the complete training set and the test set is predicted. 11) The 
whole process is repeated for the remaining 9 training / test set splits and the prediction accuracies on the test sets are aggregated into a ROC statis-
tic. 
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Figure S4 Classification performance metrics over the 19 iterations of the leave-one-batch-out approach.  A) number of predictors used 
for the full model and as input for the feature selection routines (median = 1226), after SVM-RFE (median=22) and after SVM-GA (median = 
10) B) boxplot of prediction accuracy on the 19 hold-out batches for the full model (mean prediction accuracy = 88.0 %) and SAGA (mean 
prediction accuracy = 91.7%, PPaired t-test= 0.242) C) boxplot of AUC-ROC on the 19 hold-out batches for the full model (mean AUCROC = 
0.98) and SAGA (mean AUCROC = 0.98) D) boxplot of AUC-PRC on the 19 hold-out batches for the full model (mean AUCPRC = 0.98) and 
SAGA (mean AUCPRC = 0.99) 
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Figure S5 Expression of non-specifically filtered genes across the murine hematopoietic system.  A) row- scaled heatmap of 
1243 probes/genes retained after unsupervised filtering (IQR = 0.8) of the quantile normalized and batch-corrected expression 
matrix of n=152 SAGA samples. B) Boxplots of expression of genes in each column relative to the expression of all genes demon-
strates relative enrichment of myeloid genes in the selection. Abbreviations: LT-HSC: long term-HSC, ST-HSC: short term-HSC, 
MPP: multipotent progenitors, Mac/MF: Macrophages, Mo: Monocytes, Gran/GN: Granulocytes.
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SAGA samples Table S8 tab 1 and tab 2 give an overview of all SAGA assays, experimental batches and the 
corresponding microarray samples used at each step. One SAGA assay consists of all SAGA samples generated 
in the same cell culture experiment. Each SAGA assay that was run independently is one experimental batch, with 
the following exemptions: SAGA assays with the IDs #160525 and #160706 were run in parallel and constitute 
one batch (batch 7).  Due to severe class imbalance, one SAGA assay (ID #180523) had to be split into two separate 
batches (#180523A: batch 16, #180523B: batch 17) for normalization and batch correction. Each batch contained 
the two mock samples from assay #180523 and four or five LTR.RV.SFFV samples, respectively. Table S8 lists 
all 179 SAGA samples used in this work, including 169 SAGA samples from day 15 (including the two mock 
duplicates X6374.1 and X6379.1 from assay #180523B), 5 SAGA samples from day 4, and 5 SAGA samples from 
day 8. For the computation of differentially expressed genes and pathways between mock, safe and transforming 
vectors, and for development of the SAGA classifier only samples from day 15 were used. These 169 samples 
were used as input into the microarray preprocessing pipeline, whose individual steps are visualized in the t-SNE 
plots of Figures 3A-C and Figures S2A and 2B and described in detail in the paragraph “Microarray data 
processing”. After preprocessing, the two mock duplicates (X6374.1 and X6379.1) and 15 samples for which the 
class label was unknown due to an insufficient number of IVIM assays or inconclusive IVIM results were removed 
from the analysis, resulting in a final dataset of 152 unique SAGA samples (65 transforming, 55 safe and 32 mock 
samples), which was used for differential expression, gene set enrichment analysis and development of the SAGA 
classifier. For the subsequent leave-one-batch-out approach, batch 17 was treated as independent test set with the 
two mock duplicates X6374.1 and X6379.1 included, resulting in a dataset of 19 test sets and 154 samples in total.  

RNA isolation and microarray acquisition On day 15 p.t., cells from bulk cultures were pelleted (5 x105 to 2.5 
x106 cells) and resuspended in 700 µl of RNAzol B reagent (WAK-Chemie Medical) and frozen at -80°C. Total 
RNA was isolated employing the Direct-Zol RNA MiniPrep Kit (Zymo Research) with on-column DNAse 
treatment. Four different microarray designs were used in this study, all representing a refined version of the Whole 
Mouse Genome Microarray 4x44K v2 (Design ID 026655, Agilent Technologies) comprised of all probes of this 
array in quadruplicates: (1) ‘026655AsQuadruplicatesOn4x180k’ (Design ID 048306) was developed by the 
Research Core Unit Genomics (RCUG) of Hannover Medical School. Microarray design was created at Agilent’s 
eArray portal using a 4x180K design format for mRNA expression as template. All non-control probes of design 
ID 026655 were printed four times within one 180K region. (2) ‘048306On1M’ (Design ID 066423), (3) 
‘048306On1M_V3’ (Design ID 084107) and (4) ‘026655QM_RCUG_MusMusculus’ (Design ID 084956) were 
also developed by RCUG, using a 1x1M design format for mRNA expression as template. All non-control probes 
of design ID 026655 were printed four times within a region comprising a total of 181560 features (probes) (170 
columns x 1068 rows). Four of such regions were placed within one 1M region giving rise to four microarray 
fields per slide to be hybridized individually (Customer Specified Feature Layout). Control probes required for 
proper Feature Extraction software operation were determined and placed automatically by eArray using 
recommended default settings. 100 ng of total RNA was used to prepare Aminoallyl-UTP-modified (aaUTP) 
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cRNA (Amino Allyl MessageAmp™ II Kit; #AM1753; Thermo Fisher Scientific) applying one round of 
amplification as directed by the company, except for a two-fold downscaling of all reaction volumes. Prior to the 
reverse transcription reaction, 1 µl of a 1:5000 dilution of Agilent’s One-Color spike-in Kit stock solution (#5188-
5282, Agilent Technologies) was added to 100 ng of total RNA of each analyzed sample. Labeling of aaUTP-
cRNA was performed with Alexa Fluor 555 Reactive Dye (#A32756; Thermo Fisher Scientific) as recommended 
in the manual of the Amino Allyl MessageAmp™ II Kit (two-fold downscaled reaction volumes). cRNA 
fragmentation, hybridization and washing steps were carried out as recommended in the ‘One-Color Microarray-
Based Gene Expression Analysis Protocol V5.7’, except that 500 ng of each fluorescently labeled cRNA 
population were used for hybridization. Slides were scanned using the Agilent Micro Array Scanner G2565CA 
(pixel resolution 3 µm, bit depth 20). Data extraction was performed with the ‘Feature Extraction Software 
V10.7.3.1’ with the extraction protocol file ‘GE1_107_Sep09.xml’. 

Microarray annotation Since microarray probe annotation may change as the genome annotation advances, we 
re-annotated the 39,428 probes on the Agilent Whole Mouse Genome Oligo Microarray 4x44K v2 (Design ID 
026655) by mapping the 60mer sequences to a recent release of the murine transcriptome (Gencode version M181, 
GRCm38.p6, release 07/2018). The transcript databases were downloaded as FASTA files for the 64,732 protein 
coding transcripts (ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M18/gencode.vM18. 
pc_transcripts.fa.gz) and for all 136,535 coding and noncoding transcripts of the reference transcriptome 
(ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M18/gencode.vM18.transcripts.fa.gz). The 
annotation was performed using R 3.5.1, Bioconductor 3.72 and the R package “Biostrings”3. Due to their higher 
expression compared to non-coding transcripts4 we prioritized protein coding sequences by aligning the 60mers 
first to all protein coding transcripts of Gencode M18, and second to all transcripts of Gencode M18 allowing a 
maximum of 3 mismatches per 60mer. Using these parameters 33,361 out of 39,428 probes were successfully 
mapped to the Gencode M18 transcriptome. The mapping process retrieved an Ensembl-GeneID (e.g. 
“ENSMUSG00000020743”) for each probe with a hit in the Gencode transcriptome. The Ensembl-GeneID was 
further annotated using the “BiomaRt” 5 R package to retrieve gene symbols, description and gene type from the 
Ensembl 94 database. For probes that could not be annotated by Gencode, annotation was taken from the latest 
annotation file for the Whole Mouse Genome Oligo Microarray 4x44K v2 downloaded from Agilent eArray web 
service (https://earray.chem.agilent.com/earray/, ID 026655, released October 2017) resulting in annotation of 
2872 additional probes and 36,226 annotated probes in total. The R script for the annotation and all files used are 
available in the GitHub repository accompanying this manuscript.  

Microarray data processing The data was analyzed using R 3.5.1 and Bioconductor 3.72. Raw files were read in 
separately for each array design and a merged dataset was created by extracting all probes derived from the original 
Agilent Mouse Genome Oligo Microarray 4x44K v2 array from the four array platforms and combining them 
using the function “cbind.EList” from “limma”. The probe with the ID “A_55_P2337033“ interrogating the gene 
“2310065F04Rik” was excluded from the dataset since it strongly cross-reacted with the sequence of EGFP. Array 
quality was assessed by interrogation of probe intensity distributions and by principal component analysis of log2-
transformed unprocessed data. The Raw data was log2-transformed and quantile-normalized using the ”limma” 
package. The success of preprocessing was verified by inspection of probe intensity distributions before and after 
preprocessing (Figure S2A and 2B). The four within-array replicates of each probe were collapsed using the 
“avereps” function from the R package “limma” resulting in a dataset with 39,428 unique probes. Probes 
interrogating the same gene were not collapsed further since most genes were only interrogated by one probe on 
this platform. In the quantile-normalized data, a substantial batch effect between different SAGA assays was 
observed (Figure 3A). Batch correction between different SAGA assays was performed on quantile-normalized 
log2-values using the parametric ComBat algorithm as implemented in the R package “sva” 6 (Figures 3B and 3C) 
with the SAGA number as batch variable and all other parameters set to default. 

t-SNE and PCA visualizations Two-dimensional representation of gene expression profiles was visualized by t-
distributed stochastic neighbor embedding (t-SNE)7. The Barnes-Hut implementation of t-SNE from the “Rtsne”-
package8 without prior dimension reduction was used for all t-SNE representations. For each t-SNE plot, Barnes-
Hut t-SNE was run 1000 times with different random seeds and the iteration with the lowest Kullback-Leibler 
divergence was selected for visualization as a 2D plot. For t-SNE visualizations of the whole dataset (Figures 3A-
C), all 39,428 probes were used and the perplexity was set to 16, since this exceeded the average number of 
samples within each cluster/SAGA assay and is within the range of 5-50 proposed by the authors of t-SNE7. For 
the t-SNE plots in Figures 2A, 2C and Figure S1A, 36,226 annotated probes were used and the perplexity was 
set to 2, which was the maximum value allowed for this sample size. The “prcomp” function from the R package 
“stats” was used to perform principal component analysis. The function “heatmap.2” from the R package “gplots” 
was used to generate heatmaps on the number of probes indicated in the figure legend. Heatmaps were row-scaled 
with the color key indicated below the heatmap. Variance-based filtering of probes for unsupervised analysis was 
performed using the interquartile range (IQR) function in the package “genefilter” resulting in the number of 
probes indicated in the figure legend.  
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Differential expression analysis Differentially expressed probes between the subgroups were computed on the 
quantile normalized and batch corrected expression matrix of 36,226 annotated probes using the moderated t-test 
of the ”limma” package9 with Benjamini-Hochberg multiple testing correction. We computed the Toplists 
(differentially expressed genes) for the following contrasts: ”transforming – mock” (Table S2 tab 3) , “safe – 
mock” (Table S2 tab 4), “transforming – safe” (Table S2 tab 5) and “transforming – (mock+safe)/2”  (Table S2 
tab 1) for 152 SAGA samples with known IVIM properties (65 transforming, 32 mock and 55 safe).  

Gene set enrichment analysis The quantile normalized and batch corrected SAGA expression matrix (36,226 
annotated probes, 152 samples with known IVIM properties (transforming, mock and non-transforming (”safe”)) 
was first filtered for gene symbols that appear at least once in the interrogated MSigDB.v6.2 (C2, C3, C5, C6, 
hallmark) gene set collections10. In cases with multiple probes per gene, the probe with the highest standard 
deviation across the samples was selected, resulting in a gene expression matrix consisting of 15,376 probes/rows 
interrogating 15,376 unique genes. From this matrix .gct files were generated containing all 65 transforming and 
32 mock samples (contrast “transforming vs mock”, Table S3 tab 2 – tab 4), 65 transforming and 55 safe samples 
(contrast “transforming vs safe”, Table S3 tab 7), 55 safe and 32 mock samples (contrast “safe vs mock”, Table 
S3 tab 8 – tab 10), 65 transforming, 32 mock and 55 safe samples (contrast “transforming vs mock and safe”, 
Table S3 tab 11 – tab 13).  For samples from day 4, cultures LTR.SF.EGFP (n=4) and one mock sample were 
used (contrast “transforming vs mock day 4”, Figure S1C).  For the comparison of day 8 and day 15, samples 
(Table S3 tab 14 – tab 16) were preprocessed together with all 169 SAGA samples and treated as a separated 
batch in COMBAT. For the GSEA contrast “d8 mock vs d15 mock”, the two mock samples from day 8 were 
compared to 32 mock samples from day 15. The .gct files were used as input for the Broad GSEA software10 
together with a .chip file containing the annotation for the 15,376 probes. GSEA was performed with ranking the 
probes according to signal to noise ratio and the permutation type set to “gene_set” (10,000 permutations). First, 
we used 106 custom gene sets related to hematopoiesis and leukemia (Table S3 tab 1)4. In addition, 8286 gene 
sets were tested for enrichment from MSigDB.v6.2 (C2, C5, hallmark gene sets). The enrichment results were 
visualized by plotting the normalized enrichment score (NES) against the FDR (Figures 2F-2H). For visualization 
purposes, gene sets with a nominal FDR of zero were assigned a log10 FDR between -5 and -6 in Figure 2F-2H 
and Figure S1F. Table S3 tab 2 – tab 16 contain all exact results of GSEA computations. Competitive gene set 
tests using permutation of genes assume statistical independence of genes in the gene sets, which is unrealistic in 
most cases. It has been shown that inter-gene correlation can lead to falsely significant P-values in these tests 11. 
In contrast, permutation of the sample labels preserves inter-gene correlation, but requires a substantial number of 
samples in each group, suffers from low statistical power and inevitably alters the hypothesis being tested. 
Therefore, we additionally performed GSEA with ROAST (rotation gene set tests for complex microarray 
experiments12) and CAMERA (competitive gene set test accounting for inter-gene correlation13) from the limma 
package by applying both functions to the matrix of 15,376 probes and computing the same contrasts as with the 
Broad GSEA tool. The parameters for ROAST were set to 50,000 rotations and set.statistic="mean" (default 
value). For CAMERA the inter.gene.cor parameter was set to 0.01, as proposed by the authors13. CAMERA and 
ROAST allow for non-independence of genes by estimating the inter-gene correlation (CAMERA) or using 
rotation of residuals to generate a valid null distribution (ROAST)12. Importantly, both methods test different null 
hypotheses: whereas CAMERA is a competitive test that interrogates whether genes within the gene set of interest 
are significantly more often differentially expressed compared to genes outside of the gene set, ROAST is a self-
contained test that tests whether a defined proportion of genes within the gene set is differentially expressed at all. 
However, while both methods have been shown to control the FDR correctly compared to methods based on gene 
permutation12,13, they do not report a normalized enrichment score or a similar measure, making it difficult to 
assess how strong the gene set is enriched at the top or bottom of the ranked gene list. This also makes comparisons 
between different gene sets difficult. Therefore, we report both the results of GSEA with the intuitive and widely 
used NES (normalized enrichment score) and the results of CAMERA/ROAST based on a rigorous test statistic. 
All gene sets labeled in Figures 2F-2H and Figure S1F were found to be significantly enriched (FDR < 0.1) by 
at least one additional method (ROAST or CAMERA), whereas most of the gene sets were found by both 
additional methods (Table S3 tab 2 – tab 16). For the enrichment map network shown in Figure 2M), the output 
from the GSEA analysis querying 8,286 gene sets from MSigDB.v6.2 was used as input for the Enrichment Map 
Tool14 for Cytoscape 3.7.1. Gene sets with a nominal FDR < 0.05 were selected for visualization in the network 
graphs. The color of the nodes encodes normalized enrichment score as shown in the color key. A similarity cutoff 
of 0.375 (combined Jaccard and overlap) was used.   

Classifier development phase The development of the predictive model was implemented using the R package 
“caret”15 based on a support vector machine with a radial basis function kernel (method = "svmRadial"). Unless 
otherwise specified, all calls to functions mentioned in this paragraph belong to the “caret” package with key 
parameters specified in parentheses after the name of the function or directly discussed in the text. Computations 
allowing multiple cores, e.g. the feature selection routines, were run on a c5.18xlarge Amazon Web Service EC2 
instance with 72 cores and 144 Gb RAM running RStudio 1.1.456 and R 3.5.1. The data splitting and resampling 
scheme to assess the performance of the models and control for overfitting is outlined in Figure S3. First, the 
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quantile normalized and batch corrected expression matrix (36,226 annotated probes, 152 samples with known 
IVIM properties) was partitioned into a training set comprised of 70% of the samples (107 samples) and an 
independent test set of 30% of the samples (45 samples). The test set was not used at any point for feature selection 
or model tuning. To allocate samples to the test or training set the caret function “createDataPartition” (p=0.7) was 
used, which performs stratified sampling based on the class labels to keep the distribution of transforming and 
nontransforming samples equal between the training and test sets. Since a single training / test set split can lead to 
a biased assessment of model building and feature selection16 ten stratified random training / test set splits of the 
dataset were created and the complete model building pipeline was run for ten times for a more unbiased and 
reliable assessment of the predictive modeling process. Predictive performance of many models, especially support 
vector machines, can be significantly affected by large numbers of irrelevant predictors17. Furthermore, models 
using fewer predictors are quicker to compute, less prone to overfitting and generally better interpretable than 
models based on thousands of predictors16. Therefore, a combination of feature selection steps was performed to 
reduce the number of predictors as far as possible while maintaining or increasing predictive power. First, we 
applied an unsupervised filter to each training set to exclude probes interrogating genes that were not expressed at 
all or show only little variation in the dataset. This step helped to reduce computation time and avoided the 
selection of features by the subsequent SVM-RFE step that have a good discriminatory power between the classes 
based on their AUROC, but display only a small absolute fold-change between the different classes. The R-
package “genefilter” was used to discard probes with an interquartile range (IQR) of log2-expression values less 
than 0.8 in the quantile-normalized and batch corrected training cohort, which retained a median of 1,195 out of 
36,226 annotated probes (Table S4 tab 1). IQR = 0.8 was chosen empirically, since it consistently selected around 
1,000 features in all test/training set splits. Setting the IQR lower (e.g. IQR= 0.5) retained too many features 
(median around 4,500), leading to a substantial increase in overall computation time as well as a failure to reduce 
the number of features in the subsequent SVM-RFE step in 3 out of 10 training/test splits. In contrast, setting 
IQR=1.2 selected on average around 250 features, which could be efficiently handled by SVM-RFE. However, at 
IQR=1.2 important predictors, such as A_55_P2077048/Itih5 (AUROC= 0.98) were already discarded before the 
actual feature selection step. The implementations using IQR 0.5 and IQR = 1.2 are available at GITHUB.  Next, 
we performed recursive feature elimination (SVM-RFE) on the training set using the function “rfe”. Since feature 
selection is part of the model building process, it needs to be conducted inside of a resampling layer (“external 
resampling layer”, Figure S3) to assess the impact of the selection process on the model performance and to 
prevent overfitting of the model to the predictors. To establish the external resampling layer, 200 resamples of the 
training set were created by twenty times repeated 10-fold cross-validation using the function “createMultiFolds” 
(Parameters: k=10, times = 20). The function divides the entire training set (107 samples) into 10 subsets (folds) 
of equal size and the first fold (11 samples, “external holdouts”) is predicted by a model fit to the remaining 9 
folds (96 samples, “external training”) of the data. This is repeated with the second fold after the first one has been 
returned to the training set and so on, resulting in 10 resamples for each of the twenty repeats of 10-fold CV. 
Importantly, the 200 identical resamples were used to fit the full models using all predictors, to allow a direct 
comparison of the SVM-RFE model and the full model using the resampling accuracies. The 200 resamples were 
submitted to the helper function “rfeControl”, which controls the details of the external resampling process of the 
function “rfe”. The feature selection process itself was carried out for each of the 200 resamples separately and 
computed in parallel by setting the “rfeControl” parameter: “allowParallel = TRUE”. To ensure reproducibility of 
the analysis, a fixed set of random seeds that “rfe” uses at each resampling iteration was created and submitted to 
“rfeControl” via the “seeds” parameter. Within each resample, SVM-RFE ranks all predictors according to their 
individual receiver operating characteristic (ROC) on the 96 training samples. In each iteration, less important 
predictors are removed, the model is fitted to the 96 training samples and the 11 holdout samples are predicted. 
The metric to be maximized by “rfe” was set to “Accuracy”. After initial inspection of the resampling profiles, we 
noted that accuracy peaked most often between 5-30 predictors. For maximum resolution within these ranges, all 
subset sizes from 1-40 predictors were tested. Outside of this range, wider intervals were used (45, 50, 60, 70, 80, 
90, 100, 200, 300, 400, 500 predictors), resulting in 52 subset sizes in total. For each tested subset within each 
resample of the external layer an additional “inner layer” of resampling had to be established to determine the 
tuning parameters of the SVM-model. The details of the inner resampling layer were specified by the helper 
function “trainControl” and set to three times repeated 10-fold cross-validation (30 resamples). To be precise, each 
training set from the external layer (96 samples) was partitioned further into 30 internal resamples comprised of 
86 “internal training” and 10 “internal holdout” samples, respectively (Figure S3). For each value of tuning 
parameters and each internal resample, the SVMrad model was fit to the 86 internal training samples and the 
remaining 10 internal holdout samples were predicted. The prediction accuracy from the 30 internal resamples 
over the different tested hyperparameter values was used to determine the optimal value for the tuning parameters 
and these parameters were passed to the external layer to fit the model and predict the external hold-outs. SVM-
RFE with a radial basis function kernel has two tuning parameters: cost (penalty parameter) and sigma (inverse 
width of the gaussian kernel). For the cost parameter, the parameter “tuneLength” of the “rfe”- function was set to 
20, resulting in cost values ranging from 2-2 - 217. For the sigma parameter an analytical estimate was used which 
is calculated by “rfe” internally by calling the function “sigest” from the R-package kernlab18. “sigest” uses the 
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methodology proposed by Caputo et al19 to estimate a value for sigma which results in a good prediction 
performance when used with a radial kernel SVM. We validated this approach initially by a manual search for 
sigma over a wide range of values (2-15 - 20), but could not find substantially better solutions for our dataset than 
suggested by “sigest” (data not shown). Hence, using a fixed value for sigma estimated with “sigest” and tuning 
the SVM over the cost parameter only resulted in a substantially smaller hyperparameter space and reduced 
computation time for SVM-RFE. To find the best subset size for the entire training set, the prediction accuracy of 
the external holdout samples for each subset size and each resample was averaged into a resampling profile 
(Figures 3E and 3F, Figure 5A), which allowed to determine the best average subset size across all resamples. 
To generate the final set of predictors, “rfe” repeated the process on the complete training set with the optimal 
subset size determined from the resampling profile. The performance of the SVM-RFE model was compared to 
the full model using all predictors using the caret functions “resamples” and “diff”, which compare resampling 
results of different models on a common data set comprised of identical resamples using a paired t-test20. The 
resampling-based results for the ten training / test set splits and the final model are tabulated in Table S4 tab 1 (P-
value_Resampling_full_vs_rfe). The GA procedure was implemented using the function “gafs” and its helper 
function “gafsControl” from the R package “caret”. The gene expression matrix reduced to the probes found by 
the preceding SVM-RFE step was used as input into GA. Similarly to the SVM-RFE implementation, SVM-GA 
was conducted inside an external resampling layer to assess the performance of the GA-model over the generations 
(external resampling accuracy). 50 external resamples of the training sets or the final dataset were created with the 
function “createMultiFolds” (k=10, times = 5) and passed to the function “gafsControl”, which controls the outer 
resampling process of the GA. The computational burden of SVM-GA is higher than for SVM-RFE, so only 50 
external resamples were used to complete the analysis in a reasonable amount of time. The prediction performances 
on the external hold-out samples at each generation across all external resamples were averaged into the external 
resampling profile (Figures 3G and 5B), which was used to determine the optimal number of iterations the 
algorithm should proceed (Figure S3). To determine the final feature set, “gafs” applied the GA to the entire 
training set for the optimal number of generations from the resampling process. Further parameters of 
“gafsControl” were set to enable parallel computing for the external layer, to maximize the test statistic (accuracy) 
and to use fixed random seeds for reproducibility. In initial runs, using the default settings of “gaf” feature 
reduction was quite inefficient, leading to the removal of only 3-5 predictors on average. For a more effective 
reduction of feature numbers, the size of the initial predictor subsets (chromosomes) in the starting population was 
reduced. Therefore, the helper function of GA (caretGA$initial) that creates the initial population was modified to 
produce chromosomes comprised of a random 40% of predictors, instead of creating initial subsets ranging from 
10% to 90% of predictors. The GA procedure itself was run for 40 generations, with a population size of 40, a 
crossover probability of 0.7, a mutation probability of 0.1. Elitism was set to 3, meaning that the best three solutions 
survive to the next generation. The metric to optimize was set to “accuracy”, the classification method to 
“svmRadial”. Similarly to the SVM-RFE process, the GA had an additional inner layer of resampling conducted 
at each generation within each resample and for each chromosome to tune the SVM. The inner resampling layer 
of GA was set to two times repeated 10-fold cross-validation (20 resamples) by the helper function “trainControl”. 
For the cost parameter of the SVM, the parameter “tuneLength” was set to 12, for cost values between 2-2 – 29. 
The reduced tune length was chosen to save computation time after it had been determined from the preceding 
steps that the optimal cost parameter for the SVM was in the range of 2-2 - 27.  For the sigma parameter, the estimate 
computed by “sigest” function from “kernlab” was used as described above. For the analysis of gene expression 
of the selected predictors across murine haematopoiesis (20 probes from SVM-RFE and 1243 probes after 
unsupervised filtering, Table S6 tab 2,3 and Figures 5E and S5), the online resource of the Immunological 
Genome Consortium21 (http://rstats.immgen.org/MyGeneSet_New/index.html) was queried using the 
corresponding gene symbols of the probes as input.  

Classifier performance metrics  Samples in the test sets were predicted after training a support vector machine 
with radial kernel on the training set using all predictors (full model) or reduced to the optimal predictors found 
by SVM-RFE and SVM-GA (reduced models) by using the caret functions “train” and “predict”, respectively. For 
training the full and the reduced SVM-models, identical parameters and resamples were specified in the “train” 
function (method = "svmRadial", metric = "Accuracy", tuneLength = 20, twenty repeats of 10-fold cross-
validation). The function “predict” was used with the parameter “type” set to “prob”, which computes the 
probability that a sample belongs to a given class. An unknown sample was considered belonging to the class 
“transforming” when the probability for class “transforming” was greater than 0.5. Performance estimates 
(sensitivity, specificity, accuracy, kappa) for the predicted test sets were computed using the function 
“confusionMatrix” on the predicted and the true class labels, respectively. For Figures 3H-3J, the resampling 
accuracies and their confidence intervals were determined using the function “resamples” for the full models, 
SVM-RFE and SVM-GA and plotted on the y-axis. The values on the x-axis represent the test set accuracies and 
the corresponding confidence intervals as output by the function “confusionMatrix”. The “pROC” R-package22 
(v1.15.3) was used to compute and visualize the ROC curves for the test sets using the function “roc” on the 
probability for class “transforming” as output by the “predict” function. P values to compare the difference 
between the AUROC of two unpaired ROC curves were performed with the “roc.test” function using the “delong” 
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method and the alternative hypothesis set to “greater”. Precision recall curves were generated using the R-package 
“PRROC” (v.1.3.1). As delineated in the main text, we defined SAGA as the compound model based on the 
predictions from SVM-RFE when this process yielded equal or less than 10 optimal predictors and from SVM-RFE 
followed by SVM-GA otherwise. For Figures 4D-4I, the prediction results for SAGA for all 19 independent test 
batches were aggregated and compared to the performance of the IVIM assay via AUROC, AUPRC and 
calculation of the confusion matrices and associated performance estimates (Table S5).  

Performance estimation via leave-one-batch-out approach Raw intensities of 169 arrays from 19 experimental 
batches were read in and combined into an “EListRaw” object without further modification. 15 samples with 
unknown ground truth were subsequently removed from the dataset, resulting in 154 assays including two mock 
duplicates (X6374.1, X6379.1 from batch 17, Table S8). For iteration 1, the raw data of batch 1 (IVIM #120411) 
was set aside as an independent test set, all other batches (2-19) were used as training set and were quantile 
normalized, averaged and batch corrected as described above. The preprocessed training set was subjected to SVM-
RFE and SVM-GA using the same parameters as above, except for the numbers of subset sizes to assess during 
SVM-RFE, which were reduced to 1,2,3…,40,45,50, all predictors = 43 predictor subsets in total to limit 
computational costs. After having determined the optimal predictors in the training set, the raw training set was 
again quantile normalized and batch-corrected by the R package “bapred”23, in order to estimate and store the 
parameters necessary for the later add-on correction of the test set. An SVM with radial kernel was trained on the 
bapred-adjusted training set reduced to the optimal predictors found by the feature selection routines. The 
hyperparameters of the SVM (sigma and cost) were determined by 20 times repeated 10-fold cross-validation as 
described above. At this point, the optimal features had been determined and the classifier had been trained and 
fixed using the training set only, whereas the test set had not been used. This was followed by add-on quantile 
normalization and add-on batch correction of the raw-test set using the bapred functions “qunormaddon” and 
“combatbaaddon”, respectively. Add-on adjustment prevents the alteration of the training set by the addition of 
test set samples (information leakage) by applying the necessary adjustments to the test data using parameters 
estimated on the training data only23. The add-on adjusted test set was reduced to the optimal predictors determined 
on the training set (e.g. for the first iteration: 8 predictors) and predicted using the SVM trained before and the 
caret function “predict”. The complete procedure was repeated 18 additional times with every available batch to 
be used one time as independent test set. The results from the 19 iterations of building SAGA and predicting the 
independent test batches are summarized in Figure 4, Table S5 and Figure S4. 
 
SAGA R package The R implementation of the SAGA classifier is available online 
(https://github.com/mytalbot/saga_package) and its functionality is described in detail in the package vignette. The 
SAGA package depends on R ≧ 3.6. The SAGA package expects data from microarrays based on Agilents Whole 
Mouse Genome 4x44K v2 platform as input. The Agilent Design IDs of compatible arrays are given in the section 
“RNA isolation and microarray acquisition” above.  SAGA is a support vector machine with radial kernel that is 
trained on the complete SAGA dataset of 152 arrays reduced to the 11 optimal predictors derived from this dataset 
by applying the pipeline developed above (quantile normalization, batch correction and feature selection) to all 
152 SAGA samples with known IVIM behavior (Table S6). The SVM is trained by using the “caret” function 
“train” with the following parameters: method = "svmRadial", metric = "Accuracy", tuneLength = 20 and five 
repeats of tenfold cross-validation for tuning the cost parameter, the sigma parameter is estimated internally by 
“train” as outlined before. The unknown samples are read in using the “limma” function “read.maimages” followed 
by add-on quantile normalization and add-on batch correction using the functions “qunormaddon” and 
“combatbaaddon” from the R package “bapred”23. Add-on adjusted test sets are then reduced to the 11 optimal 
SAGA predictors. Prediction of the unknown samples is performed by the function “predict” with the parameter 
“type” set to “prob” as described above. An unknown sample is considered belonging to the class “transforming” 
when the probability for class “transforming” is greater than 0.5. Prediction of unknown samples by SAGA-GSEA 
follows the procedure described in the paragraph SAGA-GSEA. 
 
SAGA-GSEA For the implementation of SAGA-GSEA, complete assays were read in batch-wise, quantile-
normalized, averaged and log2-transformed within each assay using the R package “limma”. The preprocessed and 
unfiltered expression matrix with the Agilent ProbeIDs as row names was directly converted into an “epheno” 
object using the function “ExpressionPhenoTest” from the package “phenoTest”24 with the phenotype variable 
(“Group”) set to 1 for all mock samples in each assay and a unique value {2,3,…,n} for each of the samples to be 
tested against the mock samples. The normalized enrichment score, p-values and fdr were calculated for every 
sample against the mock samples using the function “gsea” from “phenoTest”. During the leave-one-batch-out 
procedure, the optimal predictors found by SVM-RFE and SVM-GA for the training set of each iteration were used 
as geneset for GSEA. The raw data of the left-out test set was read in and preprocessed as described above followed 
by GSEA. IVIM #171102 was excluded from SAGA-GSEA since it had no mock samples available. The GSEA 
results were aggregated over the remaining 18 test sets. The ROC curve for SAGA-GSEA and the best NES cutoff 
were computed using the function “roc” on the normalized enrichment scores and the true class labels with the 
parameter “threshold” set to “best”, which determines the NES associated with the point farthest to the diagonal 
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line22. A vector was assigned to the class “transforming” when its NES was greater than the optimal ROC-cutoff 
computed on the dataset after exclusion of the strongly transforming LTR.SFFV.eGFP samples (leave one-batch-
out: NES>1.3, Figure 6D). For the final implementation of SAGA-GSEA to be used in the R-package, the 11 
optimal predictors determined on the complete dataset for the final SAGA classifier (see above) are used as 
geneset. The optimal NES threshold for this geneset was determined by ROC-analysis after performing SAGA-
GSEA on the 18 SAGA batches with mock controls available (NES > 1.0, Figure 6G).  
 
Quantitative real-time PCR For quantitative real-time PCR (q-RT-PCR), 200 ng total RNA from day 15 samples 
were reverse transcribed with the QuantiTect Reverse Transcription kit (QIAGEN, Hilden, Germany). cDNA 
samples (20 µl reaction volume) were diluted with 20 µl water and 2 µl were used for each q-RT-PCR replicate. 
For quantification of gene expression in duplicate measurements, we used a mastermix of 7.5 µl 2x QuantiTect 
SYBR Green (QIAGEN), 0.75 µl 20x PrimeTime qPCR Assays (Mm.PT.39a.22214843.g, Mm.PT.56a.9170255, 
Mm.PT.58.10065691, Mm.PT.58.11560570, Mm.PT.58.5431010, Mm.PT.58.32478304.g, Mm.PT.58.41635140, 
Mm.PT.58.41288607, Mm.PT.58.12595646, Mm.PT.58.41494395, Mm.PT.58.5925960, all from Integrated DNA 
Technologies, Coralville, USA), 4.75 µl water and 2 µl diluted cDNA. The program in the StepOnePlus 
thermocycler (Thermo Fisher Scientific, Inc.) was 15 min 95°C, 50 cycles of 30 sec 94°C, 30 sec 60°C, 30 sec 
72°C and a melt curve analysis with 15 min 95°C, 1 min 60°C and a gradual increase to 95°C for 15 min 
(2.3°C/min). Target gene expression was analyzed by the delta-delta Ct-method relative to Actb25. All transduced 
samples were compared to the mock control of the respective assay. 

RNA-Seq RNA from three SAGA assays on day 15 was isolated as described above. RNA samples were sent for 
sequencing to Novogene Bioinformatics Technology Co., Hong Kong. The sample quality was verified with 
Agilent 2100. After mRNA enrichment with the NEBNext Poly(A) mRNA Magnetic Isolation Module, 
sequencing libraries were generated using the NEB Next® Ultra™ RNA Library Prep Kit from NEB. Samples 
were sequenced on an Illumina HiSeq2500. RNA-seq reads (on average 55 x 106 read counts per sample) were 
aligned to the Gencode mouse reference genome (GRCm38.p5) using Tophat226, which generated 44.5 x106 
uniquely mapped reads on average. Count matrices were computed for Gencode defined transcripts and all reads 
that were unambiguously assigned to annotated exons were submitted to further expression analysis with 
DESeq227. Heatmaps were generated by using rlog-transformed (Regularized logarithm transformation) values of 
normalized counts.  
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