Supplementary Figures and Table

A cotton lignin biosynthesis gene, *GhLAC4*, fine-tuned by ghr-miR397 modulates plant resistance against *Verticillium dahliae*

Taiping Wei^{1,2}, Ye Tang², Pei Jia², Yanming Zeng², BingTing Wang², Pan Wu², Yonggang Quan³, Aimin Chen³, Yucheng Li¹*, Jiahe Wu^{1,2}*

¹School of Resources and Environmental Engineering, Anhui University, Anhui province, Hefei, 230601, China

²State Key Laboratory of Plant Genomic, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China

³The Key Laboratory for the Creation of Cotton Varieties in the Northwest, Ministry of Agriculture, Join Hope Seeds CO. Ltd, Changji, Xinjiang, 831100, China

* Corresponding Authors:

Wu, Jiahe, wujiahe@im.ac.cn; Li, Yucheng, li-yucheng@163.com

Running title: GhLAC4 biosynthesis lignin increasing defense

Supplementary Figure S1. Schematic diagram of ghr-miR397 overexpression and silencing vectors.

(A) Schematic diagram of ghr-miR397 overexpression vector. (B) Schematic diagram of ghr-miR397 silencing vector.

Supplementary Figure S2. Ghr-miR397 nucleotides and base complementary with *GhLAC4* and degradome analysis.

(A) The alignment of ghr-miR397 nucleotides with miR397 from *Linum usitatissimum*, *Brachypodium distachyon* and *Arabidopsis thaliana*. (B) Stem-loop structure of the ghr-miR397 precursor. The red arrow underlined indicated the mature sequence of miR397. (C) *GhLAC4* mRNA is complementary to ghr-miR397, and the black arrow indicates the cleavage site of the target gene. (D) T-shaped plots of ghr-miR397 and *GhLAC4* were verified by degradome sequencing. The T-plot shows the position of degradome markers in the full length of the target mRNA sequence.

Supplementary Figure S3. The expression analysis of six targeted LAC genes under *V. dahliae* infection.

Heatmaps of differently expressed target genes in the 1, 3, 5, 7, 10 and 12 days postinoculation samples compared with the control. The color bar represents the relative signal intensity values from red (upregulated) to green (downregulated), indicating a range of 0.6 to 5.2.

Supplementary Figure S4

Gh_A03G0417:Gh_D03G1128 identity =98.56% (1647/1671)

1	ATGGAGATGGCACCATGGATTCGAGTCCTAATGCTTTAGCTTGCTT	841	ATGGTAGCAGCCTCACCTTTCATGGACGCACCGATCGCCATCGACAACGTGACCGCCACC
1	ATGGAGATGGCACCATGGATTCGAGTCCTAATGCTTTTAGCTTGCTT	841	ATGGTGGCAGCCTCAACTTTCATGGACGCACCGATAGCCGTCGACAACGTGACCGCCACC
61	TCGGTGGAGTGCATGGTTCGCCACTACAAGTTCAATGTGGTGTTGAAAAATACAACAAGA	901	GCCACCTTACATTACTCCGGCTCTCTCACCAGTGCCGCCACCACCCTCACGTCAACCCCA
61	TCGGTGGAGTGCATGGTTCGCCACTACAAGTTCAATGTGGTGTTGAAAAATACAACAAGA	901	GCCACCTTACATTACTCCGGCTCTCTCACCAGTGCCGCCACCACCCTTACGTCAACCCCA
121	TTATGCTCAACCAAGCCTATTGTCACTGTGAATGGACGTTATCCTGGACCCACTTTAGTT	961	ccgaaaaacgctacctcagtggcaacaaatttcatcagttcattacgaagcttgaattcc
121	${\tt TTATGCTCAACCAAGCCTATTGTCACTGTGAATGGACGTTATCCTGGACCCACTTTAGTT$	961	CCGAAAAACGCTACTTCAGTGGCAACAAATTTCATCAGTTCATTACGAAGCTTGAATTCC
181	GCTAGAGAAGATGATACCATTCTTGTCAAAGTGGTCAACCATGTCAAATACAATCTCTCC	1021	AAACAATATCCAGCTAATGTCCCTTTGAAGATCGATCATTCCCTGCTTTTCACCGTTGGA
181	GCTAGAGAAGATGATACCATTCTTGTCAAAGTGGTCAACCATGTCAAATACAATCTCTCC	1021	GAACAATATCCAGCTAATGTCCCTTTGAAGATCGACCATTCCCTGCTTTTCACCGTTGGA
241	ATCCACTGGCATGGGATTAGGCAAATACGTACGGGTTGGGCAGATGGACCGGCATATATA	1081	${\tt CTTGGCATTAACCCTTGTCCTACCTGCGTTAACGGAAGCCGTGTTGTGGCTTCCATCAAC}$
241	ATCCACTGGCATGGGATTAGGCAAATACGTACGGGTTGGGCAGATGGACCAGCATATATA	1081	${\tt CTTGGCGTTAACCCCTGTCCTACCTGCGTTAACGGAAGCCGTGTTGTGGCTTCCATCAAC}$
301	ACCCAATGCCCGATTCAACCGGGGCAGAACTATGTGTACACCTTCACCCTCACTGGCCAA	1141	AATGTTACCTTTGTTATGCCAAAGATTTCATTGCTTCAAGCCCATTTCTTCAACATAAGT
301	ACCCAATGCCCGATTCAACCGGGGCAGAACTATGTGTACAACTTCACCCTCACTGGCCAA	1141	AATGTTACCTTTGTTATGCCGAAGATTTCATTGCTTCAAGCCCATTTCTTCAACATAAGT
361	AGGGGCACCCTTTGGTATCATGCACATATCCTATGGCTAAGAGCCACCGTGCACGGTGCA	1201	GGCGTTTTCACCAGTGATTTTCCCCGGGAATCCGCCTGTTTCATTCA
361	AGGGCACCCTTTGGTATCATGCACATATCCTATGGCTAAGAGCCACCGTGCACGGTGCA	1201	GGCGTTTTCACCAGTGATTTTCCCGGGAATCCGCCTGCTCCATTCAACTACACAAGCACA
421	ATTGTTATCTTGCCCAAGCGTGATGTTCCTTATCCTTTCCCCAAACCCCACAAGGAAGAG	1261	CAAGTAACGAACTTTGCTACCAAACAAGGGACAAGACTGTATAGGCTTGCGTATAACGAC
421	ATTGTTATCTTGCCCAAGCGTGATGTTCCTTATCCTTTCCCTAAACCCCACAAGGAAGAG	1261	CAAGTAACGAACTTTGCTACCAAACAAGGAACAAGACTGTATAGGCTTGCGTATAACGAC
481	ATTGTTGTGTTAGGTGAATGGTGGAAATCGGATGTTGAAGCCGTCATTAATGAGGCTTTG	1321	ACCGTCCAGCTGGTCTTGCAAGATACTGGGATGATTACCCCAGAGAATCACCCTCTTCAT
481	ATTGTTGTGTTAGGTGAATGGTGGAAATCGGATGTTGAAGCCGTCATTAATGAGGCTCTG	1321	ACCGTCCAGCTGGTCTTGCAAGATACTGGGATGATTACCCCAGAGAATCACCCTCTTCAT
541	AAATCTGGTTTGGCTCCTAATGTCTCTGATGCTCACACCATCAATGGTCACCCTGGACCT	1381	TTGCATGGATTCAACTTCTTTGAGGTTGGGAGGGGATTGGGGAATTTCAACCCCAAAGAG
541	AAATCTGGTTTGGCTCCTAATGTCTCTGATGCTCACACCATCAATGGTCACCCAGGACCT	1381	TTGCATGGATTCAACTTCTTTGAGGTTGGGAGGGGATTGGGGAATTTCAACCCCAAAGAG
601	GTCCCCGGCTGCCCTTCAAAGGGGTATACGTTGCCAGTTAAACCAGGGAAGACGTACATG	1441	GATCCTAAAAAGTTCAATCTCGTTGACCCTGTTGAGAGGAACACCATTGGGGTTCCATCT
601	GTCCCCGGCTGCCCTTCAAAGGGGTATATGTTGCCAGTTACACCAGGGAAGATGTACATG	1441	GATCCTAAAAAGTTCAATCTTGTTGACCCTGTTGAGAGGAACACCATTGGGGTTCCATCT
661	CTTCGAATCATCAACGCTGCACTGAATGAAGAACTCTTTTTCAAAATCGCCGGCCATCAA	1501	GGTGGATGGACTGCCATAAGGTTCAGGGCAGATAATCCAGGGGTTTGGTTCATGCATTGC
661	CTTCGAATCATCAACGCTGCACTGAATGAAGAACTCTTTTTCAAAATCGCCGGCCATCAA	1501	GGTGGATGGACTGCCATAAGGTTTAGGGCAGATAATCCAGGGGTTTGGTTCATGCATTGC
721	CTCACCGTAGTCGAAGTTGATGCCACGTACGTGAAACCTTTCAAAACAGACACCATCGTT	1561	CATTTGGAAGTGCATACAACATGGGGGCTTAAGATGGCGTTTGTTGTGGACAATGGAGAA
721	CTCACCGTAGTCGAAGTTGATGCCACGTACGTGAAACCTTTCAAAACAGACACCATCGTT	1561	CATTTGGAAGTGCATACAACATGGGGGCTTAAGATGGCGTTTGTTGTGGACAATGGAGAA
781	ATAGCCCCAGGGCAGACCACAAACGTCCTCGTTACCACCCAC	1621	GGCCCAAATGAGTCTCTTCTACCACCTCCAAGTGATTTCCCCCAAGTGCTGA
781	ATAGCCCCAGGGCAGACCACAAACGTCCTCGTTACCACCCAC	1621	GGCCCAAATGAGTCTCTTCTACCACCTCCAAGTGATTTCCCCAAGTGCTGA

Supplementary Figure S4. Alignment of Gh_A03G0417 and Gh_D03G1128 nucleotide sequences.

Supplementary Figure S5

Supplementary Figure S5. Alignment of Gh_A03G0417 with Gh_D03G1128 amino acid sequence.

Supplementary Figure S6. Phylogenetic tree analysis of LACs gene family in *G. hirsutum* and *A. thaliana*.

It was performed using MEGA(Version7.1) software. According to different colors, they were divided into 6 groups, including fluorescent green group 1, sky blue group 2, yellow group 3, pink group 4, dark green group 5 and blue purple group 6, GhLAC4-9 and GhLAC4-8 are indicated in red box.

Supplementary Figure S7

Supplementary Figure S7. Amino acid sequence alignment between GhLAC4 and four *Arabidopsis* laccases acting in lignin biosynthesis.

The black lines represent the oxidase domains and the red boxes represent the copper ion binding domains of laccases.

Supplementary Figure S8. Photo-bleaching leaves of *GhPDS*-silenced plants.

Supplementary Figure S9

Supplementary Figure S9. Relative expression levels of *GhLAC4* in TRV:STTM397, TRV:OE-miR397 and TRV:00 plants. Mean with SD comes from triple repeats experiments. Significant differences were determined using Student's *t*-test (*P < 0.05, **P < 0.01).

Supplementary Figure S10. The *GhLAC11* and *GhLAC22* expression levels in GhLAC4-silenced plants.

(A) The alignment of *GhLAC4* fragment nucleotides with *GhLAC22*. (B) The alignment of *GhLAC4* fragment nucleotides with *GhLAC11*. (C) Relative expression levels of *GhLAC11* and *GhLAC4* in the GhLAC4-silenced plants compared to the TRV:00 plants.

	А	В	С
1	Primer name	Sequence(5'-3')	destination
2	LAC4-F	AGAAGGCCTCCATGGGGATCCTTGAATGGAGCAGGC	VIGS
		GGA	
3	LAC4-R	GAGACGCGTGAGCTCGGTACCCGTCAACCCCACCGA	VIGS
		AAAA	
4	OE-miR397-F	AGAAGGCCTCCATGGGGATCCATCCCCGGATGGAAG	overexpression
		AAACA	
5	OE-miR397-R	GAGACGCGTGAGCTCGGTACCAATTTACTTTTCAATT	overexpression
		GTTCCAAAGG	
6	STTM397-F	AACGAGTCTAGAGGATCCTAACTCACGTGACCGCAA	STTM
		CTACTTGTTGTTGTTGTTGTTATGGTC	
7	STTM397-R	CGGGCCTCGAGGGTACCAAGTAGTTGCGGTCACGTG	STTM
		AGTTAATTCTTCTTCTTTAGACCA	
8	V-PDS-F	GAAGGAGCTGAATATCACTCCC	VIGS
9	V-PDS-R	ATTAACACCGTTGCGGCTAAGC	VIGS
10	qLAC4-F	GACCATTCCCTGCTTTTCACC	qRT-PCR
11	qLAC4-R	TGCTTGTGTAGTTGAATGGAGC	qRT-PCR
12	qmiR397-F	CGCGATTGAGTGCAGCGTT	qRT-PCR
13	qmiR397-R	AGTGCAGGGTCCGAGGTATT	qRT-PCR
14	qLAC22-F	GAGACGCGTGAGCTCGGTACCAAGGCATCAAAGGTT	aRT-PCR
14		TTCCAGG	qKI-I CK
15	qLAC22-R	AGAAGGCCTCCATGGGGATCCGCCGAATCTCTTCGA	aRT-PCR
15		AGCCT	qKI-I CK
16	qLAC11-F	GAGACGCGTGAGCTCGGTACCTACCAAGATTTGCAG	aRT-PCR
10		TCAATGGTG	quirirent
17	qLAC11-R	AGAAGGCCTCCATGGGGATCCGCAAATGTGCCTCTT	aRT-PCR
17		AAAGTTGAC	qKI-I CK
18	qU6-F	CGGGGACATCCGATAAAATTGGAAC	qRT-PCR
19	qU6-R	GGACCATTTCTCGATTTGTGCGTG	qRT-PCR
20	V.dtubulin-F	AACAACAGTCCGATGGATAATTC	qRT-PCR
21	V.dtubulin-R	GTACCGGGCTCGAGATCG	qRT-PCR
22	qUB7-F	GAAGGCATTCCACCTGACCAAC	qRT-PCR
23	qUB7-R	CTTGACCTTCTTCTTCTTGTGCTTG	qRT-PCR
24	RemiR397	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTG	Reverse
		GATACGACTTCATC	transcription
25	qPR1-F	AAGGCCGACTACGATTACAGC	qRT-PCR
26	qPR1-R	CGCCATTGTTGCACTTCACC	qRT-PCR
27	qPR3-F	GATGACTCCACAATCACCGAAGC	qRT-PCR
28	qPR3-R	GCGGTCTTCTACCTGGGCATT	qRT-PCR
29	qPR5-F	TGGTCCGACCCGTTATTCAA	qRT-PCR
30	qPR5-R	CCCGAGGCTCACCTCAT	qRT-PCR

Supplementary Table S1. Primers used in the present research

31	qPDF1.2-F	CTGTCCTAGCGGATGGTGATAAG	qRT-PCR
32	qPDF1.2-R	GTGCAGACGCATTTGCGAAGGAA	qRT-PCR
33	q4CL-F	AAGTGACGATTGCTCCGATTGT	qRT-PCR
34	q4CL-R	ACTGGTCCTGCCTCGGTCATAC	qRT-PCR
35	qCCoAOMT-F	TGGTGAAGGTTGGTGGTTTGAT	qRT-PCR
36	qCCoAOMT-R	CATGCAAATCTCAATCCTGGGG	qRT-PCR
37	qCOMT-F	ACGATTGGAGCGATGAGCACTG	qRT-PCR
38	qCOMT-R	AACCTTGAAACCCAGCACTCCT	qRT-PCR
39	qF5H-F	TGGATGTGATGTTCGGTGGGAC	qRT-PCR
40	qF5H-R	GATACCCCGCCACTATTGCCTC	qRT-PCR
41	qCAD-F	ACCCCTCTTCAGTTTGTTTCCC	qRT-PCR
42	qCAD-R	CATCGTTCTTCTCCAGCCTCTC	qRT-PCR
43	qC4H-F	AGAGGAAGAAGCTTGCGAGCAC	qRT-PCR
44	qC4H-R	GTTCACAAGCTCAGCAATGCCC	qRT-PCR
45	qHCT-F	CTGAAAGCACAGCAATCTCCAT	qRT-PCR
46	qHCT-R	CCAAAGTAACCAGGTGGGAGTG	qRT-PCR
47	qC3H-F	AAACGTGTGGCCGCGGATATTA	qRT-PCR
48	qC3H-R	ATCACTTGCTTATCGCGCCCTT	qRT-PCR
49	qC4H-F	AGAGGAAGAAGCTTGCGAGCAC	qRT-PCR
51	qC4H-R	GTTCACAAGCTCAGCAATGCCC	qRT-PCR
52	qCCR-R	AGGTGGAAAAAGTGGCCAAAGC	qRT-PCR
53	qCCR-R	GCCTCTTGCTGTCTTCGCACTA	qRT-PCR
54	LAC4-GUS-F	GAGAACACGGGGGGACTCTAGAATGGAGATGGCACCA	transient
54		TGGATTC	expression
55	LAC4-GUS-R	ATAAGGGACTGACCACCCGGGGGATCCGCACTTGGGG	transient
55		AAATCACTTGGA	expression
56	Pre-miR397-F	CCTGTCGACGGATCCTCTAGAATCCCCGGATGGAAG	transient
50		AAACA	expression
57	Pre-miR397-R	GGATACATGTACGTAACGCGTAATTTACTTTTCAATTG	transient
51		TTCCAAAGG	expression
58	mI AC4-GUS-F	TGCTTCGAATCATCAATGCAGCTTTGAATGAAGAACT	transient
50		CTT	expression
59	mLAC4-GUS-R	GTTCTTCATTCAAAGCTGCATTGATGATTCGAAGCAT	transient
57		GTAC	expression
60	LAC4F1	TGCCAGTTACACCAGGGAAG	transient
00			expression
61	LAC4R1	ACGAGGACGTTTGTGGTCTG	transient
			expression
62	LAC4F2	GAAGAACTCTTTTTCAAAATCGCCG	transient
52			expression