
Appendix A: Notation

Sets Description
N Set of ambulances (n∈N = {1 . . .N})
C Set of ambulance categories (cn ∈ C ∀n∈N )
I Set of incident types (i∈ I)
K Set of infection types (k ∈K)
Ic Set of incident types served only by ambulance category c∈ C
A Set of all possible combinations (A= {{A1, ...,A|C|} :

∑
c∈CAc =N)

J Set of nodes (j ∈J )
Parameters Description
Ac Number of ambulances of category c
λikj Arrival rate of incident type i with infection type k at node j (λij =

∑
k∈K λikj)

dcj Share of incidents at node j that can be served by ambulance category c
l (n) Location of ambulance n
τikjn Service time of ambulance n for incident of type i and infection type k at node j
τl(n)j Driving time from location of ambulance n to node j
τD Dispatching time
tD Time threshold for driving
tR Time threshold for response
Θ Cutoff level applied to ambulance reservation strategy
γic Indicator parameter: 1 if ambulance category c can serve incident type i, else 0

1st-stage Variables
aijr rth preferred ambulance of incident type i at node j
rijn Rank of ambulance n for incidents of type i at node j
cn Category of ambulance n
yin Indicator variable: 1 if ambulance n serves incident type i, else 0

2nd-stage Variables
ρ Average system utilization

ρn, ρ
′
n Fraction of time ambulance n is busy

bnm Number of preference lists in which ambulance m is direct backup for ambulance n
ωnm Workload shifted from ambulance n to ambulance m

fijn, f
′
ijn Probability: ambulance n is dispatched to incident type i at node j

gijn Probability: ambulance n is dispatched to an unqueued incident of type i at node j
ζD Share of arrivals for which driving time exceeds tD
ζR Share of arrivals for which response time exceeds tR
Pv Probability: exactly v ambulances are busy

P (Bn) Event: ambulance n is busy
P (Fn) Event: ambulance n is idle
P (Bikjn) Probability: ambulance n is busy with incident and infection type i and k at node j

P I
n Infection probability of ambulance n

P̄ I , (P̄ I
c ) Mean infection probability (per ambulance category c)

P̂ I , (P̂ I
c ) Maximum infection probability (per ambulance category c)

Q (N,ρ, j) Correction factor to account for independent ambulances
r Average response time
d Average driving time
w Patients’ average waiting time in queue before being served
nq qth percentile of the queuing time distribution

Table 6 Notation: Sets, Indices and Parameters
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Appendix B: Derivation of the dispatching probabilities

We approximate the probability of dispatching ambulance n as the rth favored ambulance to an

unqueued emergency call of incident type i at node j, denoted by gijn, by assuming an M/M/N/∞

queuing system in which we randomly draw ambulances from the set of ambulances N without

replacement. Ambulance n is dispatched in the case it is idle, denoted by Fn, and all better-ranked

ambulances are unavailable. Baijr denotes that the r
th ranked ambulance, for incident type i at node

j, is busy. rijn is the rank of ambulance n for incident type i at node j. Thus, we extend Larson’s

(1975) AHQM by having preference lists not only dependent on node j, but also on incident type i

(Jarvis 1985, Larson 1975).

gijn = P

Fn ∩


rijn−1⋂
l=1

Baijl


 ∀i∈ I, j ∈J , n∈N (29)

where P (E) denotes the probability of event E.

Ambulances do not operate independently. On the contrary, the EMS operator considers the

status of each ambulance at the time of dispatching. Thus, Larson (1975) introduces a correction

factor Q to adjust the individual ambulance workloads. The value of Q is derived by applying laws

of probability to the calculation of gijn in (29). Further, Q depends on the average system utilization

ρ, the number of ambulances N , and the ambulance’s rank j in the preference list that was drawn

from set N . As we consider an M/M/N/∞ queuing system, the system’s utilization ρ is λτ/N

(Tijms 2003, pp. 187-188, Jarvis 1985, Larson 1975).

Q (N,ρ, j)≡
N−1∑
k=j

(
(N − j− 1)! (N − k)

(k− j)!

)
· N

k

N !
ρk−j

[
(1− ρ)

N−1∑
i=0

(
N iρi

i!

)
+
NNρN

N !

]−1
(30)

The probability that ambulance n is busy, P (Bn), corresponds to its workload ρn, stated in (31).

Thus, the probability that ambulance n is idle, P (Fn), is calculated by (1− ρn). In the case that

the first drawn ambulance n is the most preferred ambulance such that it is ranked at position

j = 0 in the preference list, the correction factor Q (N,ρ,0) is 1, defined in (32). Based on these

assumptions, we approximate the probability that ambulance n is dispatched as the rth favored

ambulance to an unqueued emergency call of type i at node j in (33) by inserting the definitions

of P (Bn) and P (Fn) in (29). Thus, we multiply the availability factor (1− ρn) of ambulance n by

the workloads of all better ranked ambulances (ρn) and amend the result by the correction factor

Q (Jarvis 1985, Larson 1975). To account for the different incident types in the pandemic context,

we consider incident-dependent preference lists.

P (Bn) = ρn ∀n∈N (31)

P (Fn) = 1− ρn⇔Q (N,ρ,0) = 1 ∀n∈N (32)
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gijn ≈Q (N,ρ, rijn− 1) (1− ρn)

rijn−1∏
l=1

ρaijl ∀i∈ I, j ∈J , n∈N (33)

We approximate the probability of an ambulance being dispatched to a queued call by PN/N , i.e.,

in the case that all ambulances are busy, each ambulance has an equal probability of becoming idle

and dispatched to a queued call. We add this term to the probability that ambulance n is dispatched

to an unqueued call, gijn, to obtain the probability that ambulance n is dispatched to any incident

of type i at node j, denoted as fijn. We refer to fijn as “dispatching probability”.

fijn =Q (N,ρ, rijn− 1) (1− ρn)

rijn−1∏
l=1

ρaijl +
PN

N
∀i∈ I, j ∈J , n∈N (34)

Appendix C: Ambulance Workloads and Infection Probabilities

To obtain further insights in the distribution of workloads among ambulances, we present the indi-

vidual workloads per ambulance in Figures 6 and 7. Each circle represents an ambulance. The circle’s

location corresponds to the ambulance’s depot location. The radius of the circle represents the

ambulance’s workload. Figure 6 presents the workloads observed for the Covid-19 case study exam-

ined in Section 6.2 when applying no split. The average workload among all ambulances amounts to

38.50% corresponding to the time the ambulances are busy serving incidents. The workloads range

from 22.59% to 57.07% with a standard deviation of 9.76%. Figure 7 shows the results observed for

the Covid-19 case study presented in Section 6.2 for the optimal fixed split. The fixed split results in

a slightly higher average workload of 39.78% with a higher standard deviation of 14.14% compared

to applying no split. We observe the lowest workload of 12.68% for three ambulances co-located

at the same depot serving only unsuspicious cases. The highest workload of 72.95% is observed

for an ambulance dedicated to suspected and known cases which underlines the superiority of not

splitting. Such a high workload can be explained by the high infection risk posed to personnel oper-

ating in ambulances assigned to this group of patients. Noticeable are the differences in workloads

among ambulances of the same category. In the city centre, ambulance workloads are rather low.

The workload of ambulances serving suspected and known cases differ between 32.09% and 72.95%.

We observe workloads between 12.68% and 57.90% for ambulances dedicated to unsuspicious cases.

These results indicate that the calculation of dispatching probabilities is paramount to obtain real-

istic approximations for the ambulances’ workloads and infection probabilities and, consequently,

the system’s performance.

Figure 8 presents the mean infection probabilities observed for different flexible splits. The results

show that the relationship between the number of ambulances per category and the mean infection

probability is non-linear and not convex. For a high number of ambulances serving suspected and

known cases we observe the smallest difference in the mean infection probabilities comparing the
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Figure 6 Covid-19: Comparison of Ambulance Work-

loads (No/Flexible Split)

Figure 7 Covid-19: Comparison of Ambulance Work-

loads (Fixed Split)

two ambulance categories. One reason for this observation could be that ambulances dedicated to

suspected and known cases often serve as backup ambulance for a high load of unsuspicious cases

such that the infection probabilities are more equally distributed among all ambulances. In the case

that more than five ambulances are dedicated to unsuspicious cases, the ambulance category with

less ambulances faces a higher mean infection probability. The more ambulances are assigned to a

category, the lower is its mean infection probability. This can be explained as the risk of infection

is distributed among more ambulances. Figures 9 and 10 present the mean infection probabilities

for all valid fixed splits which do not result in an overloaded system. Comparable to no split,

there is no linear relation between the number of ambulances per category and its mean infection

probability. For both ambulance categories, the mean infection probability decreases when increasing

the number of assigned ambulances indicating that the total risk of infection is distributed among

more ambulances.

Appendix D: Additional Performance Measures and Experimental Results

To evaluate the performance of an EMS in detail, we analyze additional performance measures.

Computation of the Percentiles of the Waiting Time Distribution

We investigate the time patients have to wait in the queue before an ambulance becomes idle and

is dispatched. Therefore, we introduce additional performance measures to obtain more information

about the queuing time distribution. Thus, we calculate the qth percentiles of the queuing time

distribution, denoted by ηq. q denotes the steady-state probability that a delayed patient has to

wait less than ηq time units (Tijms 2003, p. 199).
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Figure 8 Covid-19: Mean infection probabilities per combination (Flexible Split)

Figure 9 Covid-19: Mean infection probabilities per combination for ambulances serving only unsuspicious cases (Fixed

Split)

ηq =
−ln(1− q)τ
N(1− ρ)

(35)

We calculate ηq of the waiting time distribution ∀q ∈ {0.25,0.50,0.75}.

Computation of the Maximum Infection Probability

In the case study, when applying a fixed split, we observe significant differences in the mean infection

probabilities for ambulances and their personnel dependent on the patient categories the ambulance

is allocated to. Thus, we are interested in the highest infection risk faced by an ambulance, denoted
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Figure 10 Covid-19: Mean infection probabilities per combination for ambulances serving only suspected and known

cases (Fixed Split)

as P̂ I . Here, we make use of the ambulances’ individual infection probabilities, P I
n , and return the

highest observed value.

P̂ I = max
n∈N
{P I

n} (36)

To compare the maximum risk for an ambulance to be taken out of service for the different

ambulance categories c∈ C, we determine the maximum infection probability P̂ I for each ambulance

category, separately:

P̂ I
c = max

n∈N :cn=c
{P I

n} ∀c∈ C (37)

Supplementary results

We summarize the results derived from the numerical case study for an Ebola, Covid-19 and

Influenza A outbreak based on data of Munich in Table 7. The average response time, the average

driving time and the average patients’ queuing time are denoted by r, d and w, correspondingly.

The share of late arrivals, ζD and ζR, present the percentage of incidents for which the driving time

threshold tD or response time threshold tD is exceeded. P̄ I is the mean infection probability over all

ambulances n∈N . P̄ I
{U} denotes the mean infection probability for ambulances allocated to unsus-

picous cases, P̄ I
{S,K} the mean infection probability for ambulances designated to serve suspected

and known cases.

The results have partially been described and analyzed in Section 6.2 for Covid-19 and Section

6.4.2 for Ebola and Influenza A. Thus, we concentrate on the performance measures nq, P̂ I and

P̂ I
c introduced in this section. For the three data instances, applying a fixed split approximately
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Covid-19 Ebola Influenza A
Flexible

& No Split Fixed S.
Flexible

& No Split Fixed S.
Flexible

& No Split Fixed S.
Combination {32,11} {32,11} {28,15}
r [min] 7.27 8.72 7.38 9.06 7.80 9.87
d [min] 3.50 4.85 3.62 4.89 4.03 5.57
w [min] 0.00 0.10 0.00 0.41 0.02 0.21
ζR [%] 0.39 7.03 0.53 9.29 1.32 13.25
ζD [%] 0.39 6.34 0.53 6.56 1.32 9.53
η0.25 [min] 0.30 0.61 0.31 0.59 0.32 0.57
η0.50 [min] 0.72 1.46 0.74 1.41 0.76 1.37
η0.75 [min] 1.44 2.92 1.49 2.82 1.52 2.75
P̄ I
{U} [

0/00] 0.00 0.00 0.01
P̄ I
{S,K} [

0/00] 1.48 1.27 3.70
P̄ I [0/00] 0.03 0.38 0.03 0.33 0.10 1.30
P̂ I
{U} [

0/00] 0.01 0.01 0.02
P̂ I
{S,K} [

0/00] 2.18 1.78 4.98
P̂ I [0/00] 0.04 2.18 0.04 1.78 0.13 4.98

Table 7 Case Study results applying a flexible, fixed and no ambulance split

doubles the 25%-, 50%- and 75%-percentiles of the waiting time distribution. This can be explained

by the higher average waiting times observed for the fixed split. To give an example for the Covid-19

instance, with a probability of 75%, patients wait less than 2.92min when applying the fixed split.

In the case of no split, patients need to wait less than 1.44min until an ambulance is dispatched.

These results underline the drawbacks from applying a fixed split for patients. However, for all data

sets, the fixed split is beneficial for the share of personnel designated to unsuspicious cases as the

mean infection probabilities are lower than when applying no split. Nevertheless, personnel serving

suspected and known cases face higher mean infection probabilities for the fixed split. We observe

comparable results for the maximum infection probabilities. While personnel serving unsuspicious

cases benefit from a fixed split, personnel serving suspected and known cases face the highest infection

risk.


