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Supplementary background: State value vs. value difference

We use state value during option presentation and value difference at choice to analyze the
neural data in the main paper. While we determine state value as the sum of the subjective values
of the options, it could in principle serve as input for decisions when options are presented alone
and decision makers decide whether to continue to do what they do in a given state. Accordingly,
state value is relevant to anybody interested in value-based choice. Moreover, it is well known
that the brain represents state value also in choice situations (e.g. 1), in-keeping with the notion
that multiple value signals are represented in the brain.

In contrast to state value, the value difference between options is a classic decision value signal
that correlates strongly with the probability of choosing one option over the other (e.g. 2) and is
commonly used in decision neuroscience (e.g. 3-6). Note that the larger the value difference, the
more evidence there is in favor of one over the other option. Accordingly, computational
decision models directly transform value difference into the probability of choosing one action
via a softmax function (e.g. 7). It is worth noting that choice difficulty (e.g. 8) can be defined as
the inverse of the value difference. However, choice difficulty tends to activate different regions
than those coding value difference (see results; (5, 6)). Of course, the sum and difference of
subjective option values are not the only important variables related to value-based decision
making. Yet, because they are defined independently of behavior, they are less subject to bias
(arising e.g., from individual differences) and confound than choice-dependent value measures
(e.g. 5, 9) and as such useful and informative.

Supplementary tables and figure

Table S1. BOLD responses from parametric analysis over the whole group of participants
(N=27) for each model (Expected Utility, Prospect Theory, Mean-Variance-Skewness) for the
sum of subjective values for both presented options during option presentation and difference
between subjective values of options at decision time (Puncorr.<.001, k=20; areas named with the
Anatomy Toolbox, version 2.2b, (10-12))



Peak MNI Peak Z-  Hemi-  Anatomical region
coordinates value sphere
X y z
Expected utility model; Subjective value sum

48 2 18 5.49
32 48 34 4.69
34 -9 -8 4.49
26 24 -4 4.48
50 28 24 4.39
-32 88 -8 4.38
-24  -62 42 4.35
36 -54 -16 4.08
14 22 42 4.02
-4 74 -26 3.84
26 10 54 3.79
36 54 -2 3.75
-36 0 30 3.70
-2 82 4 3.66 Calcarine gyrus (V1)
-38 -50 -16 3.53 Fusiform gyrus
8 -62 42 3.41 Precuneus

Expected utility model; Subjective value difference

Inferior frontal gyrus (cluster extends into caudate)
Intraparietal sulcus
Inferior occipital gyrus
Insula

Inferior frontal gyrus
Inferior occipital gyrus
Superior parietal lobule
Fusiform gyrus
Superior medial gyrus
Cerebellum

Superior frontal gyrus
Middle orbital gyrus
Precentral gyrus
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-28  -14  -22 4.86 L Hippocampus
8 48 -6 4.61 R Middle orbital gyrus
10 -6 28 4.45 R Midcingulate cortex
66 -12 -8 4.29 R Superior temporal gyrus
=26 20 10 3.83 L Insula
16 -24 52 3.78 R Posterior medial frontal cortex
12 2 12 3.59 L Olfactory cortex
36 -52 12 3.57 R White matter
-12 -46 -28 3.48 L Cerebellum

Prospect theory model; Subjective value sum

46 10 18 5.24
28 26 -6 4.49
34 -50 38 4.38
-48 26 22 4.33
34 -9 -8 4.15
14 22 42 4.07
-32 88 -8 4.02
-40 54 0 4.00
12 12 -2 3.94
36 -54 -16 3.90
24 -62 42 3.84
34 2 30 3.83
-2 -718 -6 3.67
-4 74 -26 3.66

4 54 -16 3.51

Inferior frontal gyrus (cluster extends into caudate)
Insula

Angular gyrus

Inferior frontal gyrus
Inferior occipital gyrus
Superior medial gyrus
Inferior occipital gyrus
Middle frontal gyrus
Caudate*

Fusiform gyrus
Superior parietal lobule
Precentral gyrus
Lingual gyrus (V1)
Cerebellum

Cerebellar vermis
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10 -60 42 3.40 R Precuneus
26 -76 24 3.40 L Middle occipital gyrus
18 -52 -28 3.37 R Cerebellum

Prospect theory model; Subjective value difference

-8 52 -8 5.34
-30 -32 -12 4.61
-14  -50 26 4.58
-12 -12 B2 4.42
-50 -18 50 4.12
220 46 70 4.02
24 12 -22 3.96
2228 40 3.80
38 -56 16 3.78
48 0 10 3.71
-54  -64 16 3.56 Middle temporal gyrus
52 -18 -16 3.51 Middle temporal gyrus

66 -26 4 3.44 Sueerior temeoral gxrus

Mean-variance-skewness model; Subjective value sum

Middle orbital gyrus
Hippocampus
Precuneus
Midcingulate cortex
Postcentral gyrus
Superior parietal lobule
Hippocampus

Middle frontal gyrus
Middle temporal gyrus
Rolandic operculum
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34 22 4 4.73 Insula (cluster extends into inferior frontal gyrus)
28 22 -4 4.37 Insula
-10 -16 -12 4.17 Thalamus

26 -42 40 3.78
14 6 0 3.67
18 -52  -28 3.64
-12 6 -2 3.63
32 -46 -20 3.63
36 2 30 3.56
34 46 14 3.51
10 22 38 3.46
-2 82 -4 3.42

Mean-variance-skewness model; Subjective value difference

Intraparietal sulcus

Pallidum (cluster extends into caudate)
Cerebellum

Pallidum (cluster extends into putamen)
Fusiform gyrus

Precentral gyrus

Middle frontal gyrus

Midcingulate cortex

Calcarine gyrus (V1)
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8 30 4 4.37 R Superior medial gyrus (cluster extends into middle orbital gyrus
and anterior cingulate cortex)
Precuneus

Hippocampus

Hippocampus

Midcingulate cortex
Precuneus

Middle temporal gyrus
Hippocampus

Middle temporal gyrus
Hippocampus

Postcentral gyrus

Middle temporal gyrus
Middle frontal gyrus

20 -56 32 4.08
38 -32  -10 4.03
36 -18 -18 3.99

2 -12 32 3.94
-10 52 18 3.92
58 -6 -12 3.91
44 -34 -6 3.83
56 -14 -12 3.77
-30 -6 -16 3.64
-30 -40 66 3.52
46 62 8 3.51
36 46 24 3.49

* No classification provided by Anatomy Toolbox, instead named using the Automated Anatomical Labelling
Atlas (13).
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Table S2. Lottery pairs (1-90) used in the study.

Left Lottery Right Lottery Left Lottery Right Lottery
Pair | p X1 X2 p X1 X2 Pair p X1 X2 p X1 X2
1 |050 20 0 |030 25 O 46 025 20 10 |045 45 5
2 |050 20 0 |030 30 0 47 025 20 10 |015 40 5
3 |050 20 0 095 10 O 48 025 20 10 |0.05 45 10
4 050 20 0 |020 30 O 49 075 20 10 |0.60 20 15
5 |050 20 0 ]|020 3 0 50 075 20 10 |060 30 5
6 |050 20 0 |020 40 O 51 075 20 10 |050 25 10
7 |010 40 0 |020 3 0 52 075 20 10 |050 30 5
8 |010 40 0 |020 30 O 53 075 20 10 |09 20 5
9 |010 40 0 |020 25 0O 54 075 20 10 /090 25 O
10 |010 40 0 |040 15 O 55 095 40 10 |0.75 40 25
11 |010 40 0 |040 20 O 56 095 40 10 |075 35 25
12 /010 40 0 |040 25 O 57 095 40 10 |0.60 50 20
13 |090 40 0 |070 50 10 58 095 40 10 |0.60 45 20
14 1090 40 0 |070 40 10 59 095 40 10 |050 45 25
15 |090 40 0 |070 40 15 60 095 40 10 |050 35 30
16 [ 090 40 0 |050 40 20 61 005 50 20 ]0.20 40 20
17 | 090 40 0 |050 40 15 62 005 50 20 ]020 35 20
18 |090 40 0 |050 35 20 63 0.056 50 20 030 30 20
19 |010 20 10 |025 15 10 64 005 50 20 030 35 20
20 |010 20 10 |025 30 5 65 005 50 20 |050 25 20
21 {010 20 10 |025 25 5 66 005 50 20 ]050 30 20
22 |010 20 10 |035 15 10 67 025 20 10 |040 25 5
23 |010 20 10 |035 30 5 68 025 20 10 |040 30 5
24 |010 20 10 |035 25 5 69 025 20 10 |040 15 10
25 |050 20 10 |030 25 10 70 025 20 10 |040 35 O
26 {050 20 10 [030 40 5 71 025 20 10 010 30 10
27 |050 20 10 |030 40 O 72 025 20 10 |0J10 25 10
28 |050 20 10 |0.40 30 10 73 050 50 20 |030 50 25
29 |050 20 10 |040 35 10 74 050 50 20 |030 45 20
30 |050 20 10 |0.10 40 10 75 050 50 20 |0.20 50 25
31 {090 20 10 (080 25 5 76 050 50 20 020 45 30
32 |09 20 10 /080 30 5 77 050 50 20 | 0410 50 30
33 |090 20 10 |0.70 30 5 78 050 50 20 |010 45 30
34 |090 20 10 |070 35 O 79 075 50 20 |085 50 10
35 |090 20 10 |060 35 5 80 075 50 20 |0.60 50 25
36 {090 20 10 |060 35 O 81 075 50 20 060 45 30
37 |005 40 10 |0.20 20 10 82 0.75 50 20 |060 40 35
38 |005 40 10 |0.20 15 10 83 075 50 20 | 085 50 15
39 |005 40 10 |0.30 20 10 84 075 50 20 |085 45 25
40 005 40 10 |030 25 10 85 095 50 20 085 45 40
41 005 40 10 |040 20 10 86 095 50 20 085 45 35
42 | 005 40 10 040 25 10 87 095 50 20 |0.60 50 40
43 1025 20 10 |040 25 5 88 095 50 20 | 060 50 35
44 1025 20 10 |040 40 O 89 095 50 20 | 050 50 40
45 1025 20 10 |050 25 5 90 095 50 20 |050 50 35




Table S3. Lottery pairs (91-180) used in the study.

Left Lottery Right Lottery Left Lottery Right Lottery
Pair | p X1 Xo p X1 Xo Pair p X1 Xo p X1 Xo
91 |050 20 O 100 13 O 136 | 050 30 0 [100 10 O
92 |050 20 0 100 10 O 137 | 050 30 0 [010 20 15
93 |050 20 O |1.00 7 0 138 | 050 30 0 |010 20 10
94 010 40 0 |100 5 0 139 | 050 30 0 |025 15 10
9% |010 40 O |1.00 7 0 140 | 050 30 0 [025 20 10
9% |[010 40 0 100 10 O 141 | 050 30 0 [100 15 O
97 |090 40 0 100 25 O 142 | 050 30 0 [090 15 O
98 |090 40 0 100 30 O 143 | 050 30 0 [090 15 5
99 |090 40 0 100 33 O 144 | 050 30 0 [075 15 5
100 | 0.10 20 10 [1.00 7 0 145 | 050 30 0 [075 20 O
101 | 010 20 10 [1.00 10 O 146 | 0.60 30 5 [100 20 O
102 1010 20 10 100 15 O 147 | 060 30 5 [100 15 O
103 | 050 20 10 [1.00 12 O 148 | 060 30 5 |025 25 15
104 | 050 20 10 100 15 O 149 | 060 30 5 |025 20 15
105 | 050 20 10 [1.00 17 O 150 |0.60 30 5 |010 25 15
106 | 090 20 10 [1.00 15 O 151 | 040 30 5 (100 15 O
107 1090 20 10 100 17 O 152 | 040 30 5 100 10 O
108 | 090 20 10 100 19 O 153 | 040 30 5 075 20 10
109 | 005 40 10 (100 12 O 154 | 040 30 5 |075 20 5
110 | 005 40 10 100 15 O 155 | 040 30 5 (090 20 5
111 | 005 40 10 [1.00 18 O 156 | 050 50 0 [1.00 20 O
112 1025 20 10 [100 12 O 157 | 050 50 0 |0J10 30 15
113 | 025 20 10 100 15 O 158 | 050 50 0 |010 30 20
114 | 025 20 10 {100 17 O 159 | 050 50 0 [025 30 15
115 | 075 20 10 [1.00 15 O 160 | 050 50 0 [025 30 20
116 | 075 20 10 100 17 O 161 |050 50 0 [100 15 O
117 | 075 20 10 100 19 O 162 | 050 50 0 [090 25 10
118 | 095 40 10 100 35 O 163 | 050 50 0 [090 20 15
119 | 095 40 10 (100 33 O 164 | 050 50 0 |075 25 10
120 | 095 40 10 {100 30 O 165 | 050 50 0 |075 20 15
121 | 005 50 20 [1.00 22 O 166 |0.60 50 10 100 30 O
122 | 005 50 20 [1.00 25 O 167 | 0.60 50 10 |010 45 25
123 | 005 50 20 [1.00 27 O 168 | 0.60 50 10 | 010 40 25
124 1025 20 10 {100 12 O 169 | 0.60 50 10 | 025 40 25
125 1025 20 10 [1.00 13 O 170 | 0.60 50 10 025 35 25
126 1025 20 10 100 16 O 171 | 040 50 10 (100 25 O
127 | 050 50 20 {100 30 O 172 | 040 50 10 |090 25 15
128 | 050 50 20 [1.00 33 O 173 | 040 50 10 [0.90 30 15
129 | 050 50 20 [1.00 36 O 174 | 040 50 10 |075 25 15
130 | 0.75 50 20 [1.00 42 O 175 | 040 50 10075 30 15
131 | 075 50 20 [100 3 O 176 | 050 40 10 [100 25 O
132 | 075 50 20 100 38 O 177 | 050 40 10 (100 20 O
133 | 095 50 20 [1.00 47 O 178 | 050 40 10 025 30 20
134 | 095 50 20 [1.00 43 0 179 | 050 40 10 075 25 15
135 1095 50 20 |[1.00 40 O 180 | 050 40 10 010 30 20
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Figure S1. Corrected Akaike weights for the three models in individual participants show that
prospect theory is the winning model for only 14 of 27 participants, although it is the winning
model over the whole group.

Supplementary analyses

In supplementary analyses, we examined the associations between behavior, the brain regions
reported in the main paper, and functional connectivity of these regions with the rest of the brain.
These exploratory analyses are not critical for the main findings of the article, but yield
additional insights into which brain regions are involved in the choice process triggered by our
task and how individual differences in behavioral choice strategies might be associated with
connectivity differences in distinct neural networks.

We first used hierarchical linear mixed effects regression to examine the association between the
BOLD signal in our regions of interest and response times. This kind of analysis takes random
individual variation into account, which makes the effects found on the group-level more robust
(14-17). Using extracted BOLD responses from our ROIs and averaging them over each ROI for
each participant, we found that the BOLD response in vmPFC is a significant predictor of



response times (=-.15, t(23.626)=-4.65, p<.001). Thus, the stronger the BOLD response in the
vmPFC in a particular trial, the faster the response in that trial, which further strengthens the link
of this value difference-representing region to behavior in a general sense. In contrast, the
regions representing state value did not show an association with response times.

Next, we assessed how the different models of subjective value related to interactions of our
value coding clusters with the rest of the brain, using psychophysiological interaction (PPI)
analyses. At the time of choice, the vmPFC region coding absolute value differences showed
*differential* functional connectivity depending on which of the three models fitted individual
choice behavior best (Expected Utility [EU], Mean-Variance-Skewness [MVS], or Prospect
Theory [PT]). This differential connectivity concerned a large cluster comprising left posterior
prefrontal, insular, opercular and anterior parietal cortex (peak coordinates: x=-46, y=8, z=-6,
F(3,24)=43.37, prwe<.001, whole-brain voxel-level corrected). For these regions, connectivity
with vmPFC was stronger in MVS- compared to both EU- and PT-participants (Figure 1A and
B). A similar effect was evident in the right parietal cortex (peak coordinates: x=60, y=-36, z=28,
F(3,24)=35.10, prwe<.001, whole-brain corrected) with strongest positive connectivity in MVS-
participants, in line with vmPFC preferentially encoding value difference according to the MVS
model (Figure 1A and C). Moreover, the functional connectivity between vmPFC and left
anterior parietal cortex was stronger the better the fit of the MVS model to the behavioral data
(i.e., the smaller the AlICc score; peak coordinates: x=-62, y=-26, z=22, t(25)=-5.88, prwe<.001
whole-brain cluster-level corrected; Figure 1D). In contrast, connectivity between vmPFC and
the right temporal cortex was lower the better the fit of the PT model to the behavioral data (i.e.,
the smaller the AICc score; peak coordinates: x=58, y=-6, z=-8, t(25)=-5.83, prwe=.005 whole-
brain cluster-level corrected; Figure 1E). These findings demonstrate model-related differences
in patterns of functional connectivity and give some indication how PT-like behavior may arise.

Next, we interrogated our functional connectivity findings by assessing the subjective value
model-specific parameters as covariates in the analyses. The association of the vmPFC at the
moment of choice with temporal and parietal regions increased with the variance weighting (beta
sigma) from the MVS model (peak coordinates of left parietal-opercular cluster: x=-60, y=-8,
z=6, 1(25)=6.16, prwe=.001; peak coordinates of left temporal cluster: x=-52, y=-12, z=-6,
t(25)=5.70, prwe=.05; peak coordinates of right temporal cluster: x=54, y=-24, z=-2, 1(25)=6.40,
prwe<.001; peak coordinates of right parietal-opercular cluster: x=52, y=-2, z=2, 1(25)=4.88,
prwe=.09; all results whole-brain cluster-level corrected). Beta sigma reflects the weight given to
the variance of outcomes (risk attitude) when computing subjective value according to the MVS
model. To assess specificity of these correlations, we considered the rho parameter of PT, which
specifies the curvature of the value function, and thereby captures risk attitude in this model. In
line with model specificity, all four clusters showed little relation with PT-rho and significantly
stronger relations with MVS-beta sigma.
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Figure S2. Model-related connectivity of vmPFC. A Bar plots showing differential connectivity
strengths between vmPFC and frontoparietal clusters depicted in B (left bars) and C (right bars).
The bars are separated for participants according to the subjective value model that best fitted the
behavioral data (blue = EU, red = MVS, yellow = PT). B Cluster in the right parietal and
opercular cortex connected more strongly with the vmPFC for MVS than EU- and PT-
participants. C Cluster in the left parietal, opercular, and insular cortex connected more strongly
with the vmPFC for MVS than EU- and PT-participants. D Cluster in the left parietal cortex
connected more strongly with the vmPFC the better the fit of the MVS model (i.e., the lower the
AlICc score). E Cluster in the right temporal cortex connected less strongly with the vmPFC the
better the fit of the PT model (i.e., the lower the AICc score).

To further explore PT-like behavior, we also analyzed functional connectivity in the few trials in
which the PT model made a unique behavioral prediction (that is, both EU and MVS predicted
choice of one lottery and PT predicted choice of the other lottery) AND participants went with
the prediction of the PT model. We used the intraparietal lobule (IPL) and ventral striatum as
seeds for these analyses because we found IPL and striatum to be best described as regions
processing PT value sums in our model comparisons. PPI analyses revealed differential
connectivity of the IPL with a cluster in medial prefrontal cortex (peak coordinates: x=-4, y=56,
2=36, F(2, 25)=33.55, prwe<.001 whole-brain cluster-level corrected; Figure S2). Specifically,
connectivity between these areas was weaker in PT-unique trials when compared to the
remaining trials. Interestingly, the mPFC region overlapped with our vmPFC ROI associated
with absolute value differences and best explained by the MVS model over the whole sample
(Figure S3). Thus, the IPL appears to be connected to the vmPFC in general during value based
choices unless the choice follows specifically PT. The finding of reduced connectivity
specifically for PT decisions suggests that more local computations, particularly in parietal



cortex, underpin PT-like behavior. This finding converges with reports of a central role of
parietal cortex for numeric and arithmetic processing (18) and the stronger requirement for
numeric cognition imposed by PT compared to MVS (19).

sizes

Effect

Bl all trials
I PT unique trials

mPFC

Figure S3. Model-related, behavior-dependent connectivity of IPC. A Bar plot showing
differential connectivity strengths between the IPC seed and a cluster in mPFC depending on
whether PT made different predictions than the other two models. There was little connectivity
between these regions at the moment of choice in the trials, in which the PT model uniquely
predicted choice (red), while connectivity was positive in the remaining trials (blue). B Coronal
(left) and axial (right) view of the brain showing the overlap between the cluster positively
connected to the IPC seed at time of choice except for the trials that were uniquely predicted by
PT (blue) and the vmPFC ROI mask associated most strongly with MVS absolute value
differences (green) described in Figure 5.
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