Supplementary Methods

As shown in Supplementary Figure 1, the ASPP block is composed of four dilated 3 x 3 convolutions

layers with dilation rate » = {0, 6, 12, 18} and followed by BN layers. The four sup-blocks are next added

to create a multi-scaled features block that is finally fed into a 1 x 1 convolutions layer.
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Supplementary Figure 1: The Atrous Spatial Pyramid Pooling (ASPP) block
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Supplementary Figure 2: The proposed Connect-AUNets architecture



The attention block, as shown in Supplementary Figure3, consists of a 2 x 2 transposed convolutions
layer with strides equal to (2,2) and takes low-level features as input. Next, the output is concatenated
with the high-level features and the result is fed into a ReLU activation layer followed by a 2 x 2
transposed convolutions layer with strides equal to (1,1) and a sigmoid activation layer. This generates the
attention map that is next multiplied by the skip connection input to produce the final output of the

attention block, which serves as a new input of the decoder block.
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Supplementary Figure 3: The attention block
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Supplementary Figure 4: The proposed Connect-ResUNets architecture

Given two different domains, where X is the source domain (i.e. weak domain) and Y is the target domain

(i.e. strong domain), the technique applies two generators for cycled image mapping, namely, G: XY



and F: Y=>X, and two discriminators Dy and Dy. Following the same logic of GAN, the discriminators are

trained to distinguish between the synthetic and the real samples of each domain and thus it minimizes the

probabilities p. and py. However, CycleGAN additionally evokes a cycle consistency for the generators G

and F to ensure the reconstruction of the images back to their original domains, where F(G(X)) = X

and G(F(Y)) = Y. This helps the final model to capture the characteristic features of the two domains

and transfer the style without requiring any paired dataset. Thus, the network uses the standard adversarial

losses and a cycle consistency loss, defined as ||F(G(X)) - X||1 + ||G(F(Y)) - Y||1. We refer to Xea as

true images coming from domain X and Y., as true images coming from domain Y. However, we refer to

Xpure as synthetic images translated from domain Y to domain X through generator £, and Yy as synthetic

images translated from domain X to domain Y through generator G.
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Supplementary Figure 5: CycleGAN architecture for data synthesis



