

Supplementary Fig.1. Description of cortical and pallidal single unit spike-shape and firing rate properties. dlPFC units and GPe units. (a) Spike width histogram. Cortical wide and narrow units were defined according to their spike width (trough to peak). Units with spike width that exceeded 3 SD over the mean were considered as outliers and excluded from the dataset. (b) Single unit firing rate ($N_{narrow}=321$, $N_{wide}=1736$, $N_{hfd}=1636$ units before outlier exclusion). On each box, the central line indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points within 1.5*IQR (interquartile range, equal to the length of the box) distance from the edge of the box. Narrow units had higher firing rate relative to wide units, in-line with their identification as putative interneurons and pyramidal cells, respectively. (c) Average spike shape of cortical wide (blue), narrow (orange), and pallidal high-frequency discharge (HFD) (gray) units. Source data are provided as a Source Data file. dlPFC: dorsolateral prefrontal cortex, GPe: globus pallidus pars externa, FR: firing rate, spk: spikes, s: second, ms: millisecond, uV: microvolt

Supplementary Fig.2. Behavioral effect of dopamine tone modulation. Dopamine modulation had an ongoing effect on eye behavior parameters including (a) pupil size, (b) saccade frequency, (c) saccade amplitude, (d) the percentage of time in which the monkey eyes were closed, (e) blink frequency. Upper row: average behavior as a function of time locked to drug injection (dashed line). N=224 days. Shadows indicate standard error of the mean (STE). Straight lines in the upper part of the panel mark time in which behavior post drug injection was significantly different from saline (Two-sample t-test with Bonferroni correction for multiple comparisons. See methods). Lower row: average over time (mean±STE). Each dot marks a single day and bars represent average over days. After outlier exclusion of samples that exceed 3 SD distance from the mean, N=216, 223, 224, 222, and 221 for pupil size, saccade frequency, saccade amplitude, eye-closed probability, and blink frequency, respectively. Drug effects were assessed by one-way ANOVA followed by post-hot Tukey test (Table-S3). Dopamine up-modulation (Amp, Apo1) led to increased pupil size (a; Amp: p=8.3e-8, Apo1: p=0.032), saccade frequency (b; Amp: p=9.9e-9^a) and amplitude (c; Amp: p=9.9e-9^a), and blink frequency (E; Apo1: p=9.9e-9^a), and decreased eve-closure probability (d; Amp: p=1.0e-8, Apo1: p=0.014). Dopamine down-modulation by haloperidol led to an opposite effect in all parameters excluding blink frequency (pupil size: p=1.3e-8, saccade frequency: p=1.0e-8, saccade amplitude: p=9.9e-9^a, eye-closure probability: p=9.9e-9^a). The behavioral profile during Apo2 was similar to that of dopamine down-modulated post-haloperidol recording (Hal) (pupil size: p=0.018, eye-closure probability: p=1.2e-5).Results are detailed in Table-S3. Source data are provided as a Source Data file. *p<0.05, **p<0.01, ***p<0.001, apost-hoc p-value resolution was limited to 9.9e-9. Sal: saline, Amp: amphetamine, Apo1/2: Apomorphine phase 1/2, Hal: haloperidol, h: hours

Supplementary Fig.3 Identification of LFP oscillatory sites in NHPs. (a) Average normalized spectrogram (nPSD) of all (left), oscillatory (middle), and non-oscillatory (right) LFP sites in all drug conditions. (b) Fraction of oscillatory sites out of all the recorded sites in each condition. Drug effect was tested with chi-square test followed by pairwise comparisons with Bonferroni correction for multiple comparisons. Top row: dlPFC acute dopamine modulation. Middle row: GPe acute dopamine modulation. Bottom row: STN chronic dopamine modulation. Shadow indicates standard error of the mean. Legend includes counts of all, oscillatory, and non-oscillatory sites, respectively. Chronic MPTP increased the number of oscillatory LFP sites in the STN (chi-square test, N=63 LFP sites, p=0.009). Results are detailed in Supplementary Table 5. Source data are provided as a Source Data file. *p<0.05, **p<0.01, ***p<0.001. LFP: local field potential, NHP: non-human primate, dlPFC: dorsolateral prefrontal cortex, GPe: globus pallidus pars externa, STN: subthalamic nucleus, Sal: saline, Amp: amphetamine, Apo1/2: Apomorphine phase 1/2, Hal: haloperidol, (n)PSD: (normalized) power spectrum density, osc: oscillatory, Freq: frequency, prob: probability

Supplementary Fig.4. Beta activity during eye-open and eye-closed states. Normalized LFP PSD in the dlPFC (top) and GPe (bottom) at times in which the monkey eyes were open (solid line) or closed (dashed line), presented for each drug condition. Shadows mark standard error of the mean (STE). Source data are provided as a Source Data file. nPSD: normalized power spectral density, Sal: saline, Amp: amphetamine, Apo: apomorphine, Hal: haloperidol

Supplementary Fig.5. Effect of eve state, open vs. closed, on beta oscillation properties. Eye state, open vs. closed, modulated beta frequency, beta peak, and area under curve (AUC) in the dlPFC and GPe. First and third columns: For each day, recording was divided into times at which eyes were open (filled bars) or closed (empty bars), normalized PSD (nPSD) and beta properties were calculated for each state. Each dot represents a single day and bars represent average over days. Whiskers mark the standard error of the mean (STE). Second and fourth columns: Each dot represents the difference in a given parameter between eye-open and eye-closed states for a single LFP site. First row: N_{dlPFC}=142, N_{GPe}=186 LFP sites which were oscillatory in both eye-state conditions. Second and third row: NdIPFC=565, NGPe=414 LFP sites. Bars mark the average difference over days and whiskers mark the STE. Eye-state effect was assessed using a two-way mixed-design ANOVA with eye-state as a within-factor and drug condition as a between-factor, followed by post-hoc pairwise comparison of eye-state effect within each drug with Bonferroni correction for multiple comparisons. Results reveal that within the different drug conditions, eye-closure was associated with a decrease in LFP beta-frequency in the dlPFC (Sal: p=0.035, Amp: p=2.1e-5, Apo1: p=4.0e-4) and GPe (Sal: p=6.2e-16, Apo1: p=7.5e-28, Apo2: p=2.2e-5). Eye-closure effect on beta power depended on drug condition. During saline, Amp and Apo1 conditions eye-closure was associated with increase in beta power in the dlPFC (beta-peak: Amp: p=8.3e-11; beta AUC: Sal: p=2.1e-5, Amp: p=7.8e-5, Apo1: p=1.6e-10) and GPe (beta-peak: Apo1: p=0.02; beta AUC: Sal: p=6.2e-15, Apo1: p=6.5e-9). Conversely, During Apo2 and Hal conditions, eye-closure was associated with decrease in beta peak in the dlPFC (Apo2: p=4.5e-4, Hal: p=1.0e-5) and GPe (Apo2: p=7.4e-11, Hal: p=2.0e-6). Results are detailed in Table-S6. Source data are provided as a Source Data file. *p<0.05, **p<0.01, ***p<0.001. AUC: area under the curve, Sal: saline, Amp: amphetamine, Apo: apomorphine, Hal: haloperidol, diff: difference.

Supplementary Fig.6. Single unit FR. Top: cortical wide units. Amphetamine increased FR. Middle: cortical narrow units. No statistically significant results. Bottom: pallidal units. FR was increased by amphetamine and apomorphine (Apo1), and decreased by haloperidol. Bars indicate average values. Single points indicate individual unit values within the range of mean \pm 3 SD. N=1715, 318 and 1627 wide, narrow and pallidal units. Black vertical lines indicate standard error of the mean. Drug influence was evaluated by Kruskal-Wallis test followed by post-hoc Tukey test. FR of cortical wide units was increased by Amp (p=2.8e-4). FR of pallidal units was increased by Amp (p=0.023) and Apo1 (p=9.4e-7) and decreased by Hal (p=6.0e-4). Results are detailed in Table-S7. Source data are provided as a Source Data file. *p<0.05, **p<0.01, ***p<0.001 Sal: saline, Amp: amphetamine, Apo1/2: Apomorphine phase 1/2, Hal: haloperidol, FR: firing rate.

Supplementary Fig.7. Identification of oscillatory units. (a) Average normalized spectrogram (nPSD) of all (left), oscillatory (middle), and non-oscillatory (right) single units for cortical wide (1st row), narrow (2nd row), pallidal (3rd row), and subthalmic (4th row) single units under acute (upper three rows) and chronic (4th row) dopamine modulation. Acute nPSDs normalized to extended range beta-power (5-40Hz) for presentation purposes. Shadow indicates standard error of the mean. (b) Percentage of oscillatory units out of total recorded units in each condition. N_{wide} =1715, N_{narrow}=318, N_{pallidal}=1627, N_{STN}=175 units. Drug effects were evaluated using chi-square test followed by pairwise comparisons with Bonferroni correction for multiple comparisons. Amphetamine increased the number of oscillatory units in cortical narrow units (p=0.027) and pallidal units (p=3.0e-4). Chronic MPTP increase the number of oscillatory units in the STN (p=1.1e-5). Legend includes counts of all, oscillatory, and non-oscillatory sites, respectively. Results are detailed in Table-S5. Source data are provided as a Source Data file. *p<0.05, **p<0.01, ***p<0.001. Sal: saline, Amp: amphetamine, Apo1/2: Apomorphine phase 1/2, Hal: haloperidol, nPSD: normalized power spectral density, Freq: frequency, osc: oscillatory, prob: probability.

Supplementary Fig.8. Comparisons of LFP beta activity in drug-naïve and controlsaline conditions. Average normalized PSD (nPSD) of all, oscillatory, and non-oscillatory LFP sites in drug-naïve and saline conditions within the dlPFC and GPe. Shadow indicates standard error of the mean. Legend includes counts of all, oscillatory, and non-oscillatory LFP sites for each condition, respectively. Results are detailed in Table-S8. Source data are provided as a Source Data file. nPSD: normalized power spectral density, Sal: saline, Freq:frequency.

Supplementary Fig.9. Comparisons of SUA beta activity in drug-naïve and controlsaline conditions. Average normalized PSD (nPSD) of all, oscillatory, and nonoscillatory single units in drug-naïve and control-saline conditions within the cortical wide units, cortical narrow units, and pallidal units. Shadow indicates standard error of the mean. Legend includes counts of all, oscillatory, and non-oscillatory single units for each condition, respectively. Results are detailed in Table-S8. Source data are provided as a Source Data file. nPSD: normalized power spectral density, Freq: frequency, Sal: saline.

Supplementary Fig.10: Single unit magnitude-squared coherence in cortical narrow and pallidal pairs shows dopamine tone dependent shifts in beta frequency. Shadow indicates standard error of the mean. Only unit pairs that were simultaneously recorded for at least five minutes were included in this analysis. Source data are provided as a Source Data file. Freq: frequency, Sal: saline, Amp: amphetamine, Apo: apomorphine, Hal: haloperidol.

Supplementary Fig.11. Acute up- and down-modulation of dopamine tone up- and down-shifts the beta frequency of maximal PLV in LFP pairs within the CBG network of NHPs. (a) Average PLV of dlPFC-dlPFC, GPe-GPe, and dlPFC-GPe LFP pairs. Time 0 indicates injection time. White line divides the post-apomorphine period into Apo1 and Apo2 phases. (b-d) Properties of PLV beta peak in dlPFC-dlPFC, GPe-GPe, and dlPFC-GPe LFP pairs under each drug condition. NdlPFC-dlPFC=1162, NGPe-GPe=745, NdlPFC-

_{GPe}=480 LFP pairs. (b) Average PLV during drug influence period (mean±STE) (c) Frequency of PLV peaks (mean±STE). Beta frequency was increased by Amp and Apo1 and reduced by Apo2 and Hal in dlPFC-dlPFC (Amp: p=9.9e-9^a, Apo1: p=0.007, Apo2: p=0.019, Hal: p=9.9e-9^a) GPe-GPe (Amp: p=9.9e-9^a, Apo1: p=9.9e-9^a, Hal: p=9.9e-9^a) and dlPFC-GPe (Amp: p=9.9e-9^a, Apo1: p=2.9e-4, Hal: p=1.8e-6) LFP pairs. (d) Overall beta phase locking in the beta range was evaluated as area under the PLV curve (AUC) in 8-24Hz range, and as the PLV peak within 8-24Hz frequency band (mean±STE). dlPFCdlPFC PLV was increased by Amp (AUC: p=5.1e-6, peak: p=2.1e-6) and Hal (AUC: p=0.010, peak: p=0.012). GPe-GPe PLV was increased by Amp (AUC: p=7.8e-4, peak: p=5.3e-6) and Apo1 (AUC: p=1.9e-5, peak: p=2.4e-4). dlPFC-GPe PLV was increased by Amp (peak: p=7.6e-4), and Apo1 (AUC: p=1.7e-4, peak: p=0.014). (c-d) Single points indicate individual LFP pairs. Outlier values were excluded from the figure, for presentation purposes. Outlier values were defined as data points exceeding 8 standard deviations above the mean. Drug influence was evaluated by Kruskal-Wallis test followed by post-hoc Tukey test. Test Results are detailed in Table-S10. Source data are provided as a Source Data file. *p<0.05, **p<0.01, ***p<0.001, apost-hoc p-value resolution was limited to 9.9e-9. PLV: phase locking value, LFP: local field potential, CBG: cortico-basal ganglia, NHP: non-human primate, dlPFC: dorsolateral prefrontal cortex, GPe: globus pallidus pars externa, Sal: saline, Amp: amphetamine, Apo1/2: Apomorphine phase 1/2, Hal: haloperidol

Supplementary Fig.12: Coherence in the ipsilateral pairs is greater than in the contralateral pairs in the dlPFC, but not in the GPe. Shadow indicates standard error of the mean. Source data are provided as a Source Data file. dlPFC dorsolateral prefrontal cortex, GPe globus pallidis pars externa, Sal: saline, Amp: amphetamine, Apo: apomorphine, Hal: haloperidol.

Supplementary Fig.13. Spectral activity of single units grouped by their oscillatory and LFP-entrainment classification. Units were classified in two independent processes as oscillatory or not, and as entrained to LFP beta activity or not (see methods). (A) Average normalized PSD (nPSD) of oscillatory and not entrained units (first column), oscillatory and entrained units (second column), non-oscillatory and entrained units (third column), non-oscillatory and not entrained units (fourth column). (B) Distribution of units into the aforementioned groups. Note the higher sensitivity of the entrainment analysis relative to the oscillation analysis. Entrainment analysis was based on LFP phase during spike occurrence, while oscillation analysis was based on beta peak prominence in the power spectrum. Top row: cortical wide units. Middle row: cortical narrow units. Bottom row: pallidal units. Shadow indicates standard error of the mean. Source data are provided as a Source Data file. Sal: saline, Amp: amphetamine, Apo: apomorphine, Hal: haloperidol, nPSD: normalized power spectral density, osc: oscillatory, ent: entrained, freq: frequency.

Supplementary Fig.14. Effect of acute and chronic dopamine modulation on LFP beta frequency in individual patients with PD. Each column shows data of a single patient. First row: Frequency of beta peak in the high beta domain as a function of time post-surgery. Each point represents average per day of beta peak frequency in one STN on (red) and off (blue) DRT. Second row: Comparison of beta frequency on and off DRT. Each point represents average per day of beta peak frequency in one STN in days with both off and on DRT sessions. X axis – off DRT. Y axis – on DRT. Clustering of data-points above the diagonal line indicates a shift up in beta frequency in the on DRT condition relative to the off DRT condition. Third row: same as first row for low beta domain. Fourth row: same as second row for low beta domain. Patients can exhibit a peak in one or both beta domains. Gray dashed line indicates day 250 post-surgery. Recordings after this day were not included in the model to avoid exaggerated influence of jur01 data on MLEM results. Source data are provided as a Source Data file. freq: frequency, med:medication.

Fig S15. Effect of acute and chronic dopamine modulation on LFP beta power in individual patients with PD. Beta power was evaluated as area under the curve (AUC) of the normalized PSD (nPSD) in the high and low beta domains. AUC values were normalized relative to those collected during the first recording day after the surgery. Each column shows data of a single patient. First row: Beta power in the high-beta domain as a function of time post-surgery. Each point represents average per day of high-beta AUC on (red) and off (blue) DRT. Second row: Comparison of beta power on and off DRT. Each point represents average high-beta AUC in days with both off and on DRT sessions. X axis – off DRT. Y axis – on DRT. Clustering of data-points below the diagonal line indicates a decrease in beta power in the on DRT condition relative to the off DRT condition. Third row: same as first row for low beta domain. Fourth row: same as second row for low beta domain. Patients can exhibit a peak in one or both beta domains. Gray dashed line indicates day 250 post-surgery. Recordings after this day were not included in the model to avoid exaggerated influence of jur01 data on MLEM results. Source data are provided as a Source Data file. Norm: normalized, AUC: area under the curve, med: medication.

Supplementary Fig.16. Effect of acute and chronic dopamine modulation on LFP coherence beta frequency in individual patients with PD. Each column shows data of a single patient. First row: Frequency of beta coherence peak in the high beta domain as a function of time post-surgery. Each point represents average per day of beta coherence peak frequency on (red) and off (blue) DRT. Second row: Comparison of beta coherence frequency on and off DRT. Each dot represents average of beta coherence frequency in the high beta domain in days with both off and on DRT sessions. X axis – off DRT. Y axis – on DRT. Clustering of data-points above the diagonal line indicates a shift up in beta coherence frequency in the on DRT condition relative to the off DRT condition. Third row: same as first row for low beta domain. Fourth row: same as second row for low beta domain. Patients can exhibit a peak in one or both beta domains. Gray dashed line indicates day 250 post-surgery. Recordings after this day were not included in the model to avoid exaggerated influence of jur01 data on MLEM results. Source data are provided as a Source Data file. freq: frequency, med: medication.

Supplementary Fig.17. Effect of acute and chronic dopamine modulation on beta synchrony in individual patients with PD. Beta synchrony is evaluated as area under the curve (AUC) of the coherence in the high and low beta domains. AUC values were normalized relative to those collected during the first recording day after the surgery. Each column shows data of a single patient. First row: Beta synchrony in the high beta domain as a function of time post-surgery. Each point represents average per day of normalized beta AUC on (red) and off (blue) DRT. Second row: Comparison of beta synchrony on and off DRT. Each dot represents average per day of normalized beta AUC in the high-beta domain in days with both off and on DRT sessions. X axis - off DRT. Y axis - on DRT. Clustering of data-points below the diagonal line indicates a decrease in beta synchrony in the on DRT condition relative to the off DRT condition. Third row: same as first row for low beta domain. Fourth row: same as second row for low beta domain. Patients can exhibit a peak in one or both beta domains. Gray dashed line indicates day 250 post-surgery. Recordings after this day were not included in the model to avoid exaggerated influence of jur01 data on MLEM results. Source data are provided as a Source Data file. AUC: area under the curve, med: medication, Norm: normalized.

12	-		١	
		-		
	L			

			Sal	Amp	Apo1	Apo2	Hal
	Mankov	dIPFC	54	59	46	47	53
	Wonkey G	GPe	68	52	55	54	58
LFP	Mankov D	dIPFC	87	58	78	78	51
sites	Wonkey D	GPe	58	41	40	40	53
	Total	dIPFC	141	117	124	125	104
	TOLAI	GPe	126	93	95	94	91
		wide	198	221	61	153	221
	Monkey G	narrow	27	27	8	19	30
Single units		HFD	267	253	72	185	175
		wide	298	154	67	151	191
	Monkey D	narrow	61	47	17	50	32
		HFD	172	130	50	137	186
		wide	496	375	128	304	412
	Total	narrow	88	74	25	69	62
		HFD	439	383	122	322	361

b

		naive	MPTP
	Monkey G	15	15
LFP sites	Monkey D	26	9
	Total	41	24
	Monkey G	33	35
Single	Monkey D	54	53
unito	Total	87	88

Supplementary Table 1. Number of LFP sites and single units in the NHP dataset.

(a) Acute dopamine modulation experiment. (b) Chronic dopamine modulation experiment. LFP: local fiels potential, Sal: saline, Amp: amphetamine, Apo: apomorphine, Hal: haloperidol.

Pts.	Number of	Number of	Number of
	recording days	recording	observations
	OFF/ON (both)	sessions	(sessions*sites)
	DRT	OFF/ON DRT	OFF/ON DRT
Jur 01	10/11 (8)	13/19	156/228
Jur 03	8/5 (3)	10/6	120/72
Jur 05	6/4 (1)	9/4	81/36
Jur 06	5/10 (5)	11/19	132/228
Total	29/30 (17)	43/48	489/564

Supplementary Table 2. Patient recording dataset. Each recording day has either only on DRT recording sessions, only off DRT sessions, or both. In column two, days with on and off sessions are counted both as off day and as an on day. Pts: patients, DRT: dopamine replacement therapy.

а

		Sal	Amp	Apo1	Apo2	Hal
Dunil size	mean	0.29	0.97	0.63	0.07	0.47
Pupil size	SD	0.38	0.64	0.5	0.48	0.84
Canada fuanuanau	Mean	1.38	3.38	1.87	1	0.13
saccade frequency	SD	0.73	1.27	1.19	0.69	0.15
Cassada amplituda	mean	124.36	175.85	131.55	121.12	76.25
Saccade amplitude	SD	20.96	23.22	15.33	16.72	26.18
Fire alored weekshility	mean	0.19	0.01	0.1	0.32	0.61
Eye closed probability	SD	0.12	0.04	0.1	0.15	0.2
Plink froguency	mean	12.81	10.08	24.68	12.92	11.66
billik frequency	SD	4.41	5.23	6.7	5.42	5.79

b

	F	df1	df2	p value	η²
Pupil size	38.78	4	211	2.6e-24	0.42
Saccade frequency	74.68	4	218	9.0e-40	0.58
Saccade amplitude	119.94	4	219	5.1e-54	0.69
Eye closed probability	131.24	4	217	9.1e-57	0.71
Blink frequency	47.13	4	216	1.9e-28	0.47

С

		Pupi	l size	Saccade f	requency	Saccade a	amplitude	Eye closed	probability	Blink fre	equency
		р	g	р	g	Р	g	р	g	Р	g
Sal	Amp	8.3e-8	-1.32	9.9e-9	-1.99	9.9e-9	-2.33	1.0e-8	1.94	0.0998	0.57
Sal	Apo1	0.0319	-0.78	0.0591	-0.51	0.4346	-0.38	0.0140	0.75	9.9e-9	-2.15
Sal	Apo2	0.0182	0.85	0.2169	0.54	0.9410	0.17	1.2e-5	-0.97	1.0000	-0.02
Sal	Hal	1.3e-8	1.26	1.0e-8	2.17	9.9e-9	2.05	9.9e-9	-2.65	0.8506	0.23
Amp	Apo1	0.0579	0.58	9.9e-9	1.22	9.9e-9	2.23	0.0049	-1.32	9.9e-9	-2.41
Amp	Apo2	9.9e-9	1.81	9.9e-9	2.03	9.9e-9	2.68	9.9e-9	-2.89	0.1223	-0.53
Amp	Hal	9.9e-9	1.93	9.9e-9	3.47	9.9e-9	4.00	9.9e-9	-4.23	0.6926	-0.28
Apo1	Apo2	3.3e-7	1.41	8.5e-5	0.89	0.1465	0.64	9.9e-9	-1.68	9.9e-9	1.91
Apo1	Hal	9.9e-9	1.60	9.9e-9	1.99	9.9e-9	2.57	9.9e-9	-3.19	9.9e-9	2.06
Apo2	Hal	0.0183	0.59	1.5e-4	1.69	9.9e-9	2.03	9.9e-9	-1.66	0.8396	0.22

Supplementary Table 3. Drug effects on eye physiology. (a) Descriptive statistics (b) One-way ANOVA test results. Effect size was estimated by η^2 measurement (c) Post-hoc results. p: p value, result of Tukey post-hoc test. g: effect size estimated by Hedge's g. Comparisons that did not reach statistical significance and didn't require post-hoc test are marked with a dash. Results are presented in Fig.S2. Source data are provided as a Source Data file. Sal: saline, Amp: amphetamine, Apo: apomorphine, Hal: haloperidol,

0.005 0.004 0.004 0.002 0.005	0.005 0.004 0.004 0.002 0.005	0.005 0.004 0.004 0.002	0.005 0.004 0.004	0.005 0.004	0.005							SD	LFP beta peak (top 20%)
2 0.041 0.024 0.031 0.040	2 0.041 0.024 0.031 0.040	2 0.041 0.024 0.031	2 0.041 0.024	2 0.041	.~	0.032						Mean	
0.013 0.007 0.009 0.011 0.0035	3 0.013 0.007 0.009 0.011	0.013 0.007 0.009	3 0.013 0.007	3 0.013	~	0.008	600'0	0.006	0.003	0.004	0.006	DS	rrr beta peak
0.022 0.015 0.019 0.023 0.0080	0.022 0.015 0.019 0.023	0.022 0.015 0.019	0.022 0.015	0.022		610.0	0.014	0.011	0.008	600'0	0.012	mean	
5 0.055 0.059 0.063 0.05 0.023	5 0.055 0.059 0.063 0.05	5 0.055 0.059 0.063	5 0.055 0.059	5 0.055	5	0.05	0.047	0.046	0.04	0.038	0.046	dS	LFF Dela AOC
3 0.188 0.188 0.2 0.209 0.10	3 0.188 0.188 0.2 0.209	3 0.188 0.188 0.2	3 0.188 0.188	3 0.188	ω	0.20	0.192	0.168	0.16	0.157	0.185	mean	
1.07 3.08 2.18 1.08 2.44	1.07 3.08 2.18 1.08	1.07 3.08 2.18	1.07 3.08	1.07		1.72	2.95	2.25	3.5	1.48	2.8	dS	trr beta lieq
7 16.84 15.82 14.51 12.34 13.80	7 16.84 15.82 14.51 12.34	7 16.84 15.82 14.51	7 16.84 15.82	16.84	1	14.47	12.54	13.52	15.71	16.74	14.41	mean	
Amp Apo1 Apo2 Hal naive	Amp Apo1 Apo2 Hal	Amp Apo1 Apo2	Amp Apo1	Amp		Sal	Hal	Apo2	Apo1	Amp	Sal		
GPe	GPe	GPe	GPe						dIPFC				

				, 	.	
LFP beta peak (top 20%)	LFP beta peak	LFP Beta AUC	LFP beta freq			
	59.36	55.54	185.13	χ ²		
	(4,606)	(4,606)	(4,522)	df		
	3.9e-12	2.5e-11	5.9e-39	р	dIPFC	
	0.12	0.09	0.23	η²		
	6.7e+12	3.9e+8	1.1e+25	BF		
72.85	30.02	8.98	228.69	χ^2		
(4,95)	(4,494)	(4,494)	(4,486)	df		
5.7e-15	4.8e-6	0.0616	2.5e-48	Р	GPe	
0.69	0.07	0.02	0.35	η²		
2.9e+20	4.1e+4	0.071	2.1e+41	BF		
	-5.50	-3.28	4.27	t		
	<mark>63</mark>	63	43	df		
	7.3e-7	0.0017	1.1e-4	p	STN	
	-1.4	-0.83	1.25	90		
	2.1e+4	16.16	226.75	BF		

												С				
apo2	Apo1	Apo1	Amp	Amp	Amp	Sal	Sal	Sal	Sal							
Hal	Hal	Apo2	Hal	Apo2	Apo1	Hal	Apo2	Apo1	Amp							
0.003	9.9e-9	6.9e-7	9.9e-9	9.9e-9	8.5e-4	1.6e-8	0.061	0.023	9.9e-9	p	F					
0.38	0.97	0.74	1.88	1.69	0.38	0.65	0.34	-0.41	-1.01	g	P beta f					
2.080	1.4e+7	4.8e+4	3.7e+24	6.8e+23	3.555	1.6e+3	2.406	8.607	3.3e+10	BF	req.					
0.001	1.4e-6	0.524	1.3e-7	0.234	0.984	0.875	0.017	2.8e-5	2.5e-6	p	Ę					
-0.52	-0.75	-0.19	-0.85	-0.28	-0.09	-0.16	0.36	0.57	0.67	m	beta /	dIPFC				
110.98	1.7e+5	0.224	5.3e+6	0.741	0.092	0.155	4.473	2.1e+3	4.6e+4	BF	UC					
0.056	1.1e-8	6.7e-4	9.9e-4	0.696	0.067	0.982	0.138	1.1e-8	0.003	q	LEI					
-0.48	-0.96	-0.58	-0.74	-0.29	0.40	-0.29	0.24	0.85	0.56	8	⁹ beta peak	P beta pe	P beta p	^o beta pe	⁹ beta pe	
37.882	1.1e+9	1.7e+3	9.2e+4	0.874	8.019	0.869	0.439	2.4e+8	1.1e+3	BF						
1.0e-8	9.9e-9	0.004	9.9e-9	9.9e-9	2.4e-4	9.9e-9	0.999	0.003	9.9e-9	P	я Г					
1.25	1.48	0.49	4.17	1.35	0.44	1.42	-0.02	-0.56	-1.60	g	P beta f					
3.5e+11	9.3e+15	16.118	2.5e+63	5.7e+13	6.723	1.4e+17	0.077	270.43	5.0e+21	BF	req.					
	j									LFP beta AUC						
0.373	5.0e-6	0.010	0.957	0.803	1.3e-4	0.3635	1.000	0.003	0.8195	р	Lŧ	GP				
-0.36	-0.86	-0.52	-0.05	0.28	0.73	-0.35	0.03	0.59	-0.27	g) beta p	n				
1.566	5.3e+5	41.021	0.087	0.52	8.9e+3	1.945	0.078	640.63	0.549	BF	eak					
2.8e-4	1.0e-8	0.113	0.977	1.8e-5	9.9e-9	0.002	0.991	0.033	1.6e-4	p	F					
-2.16	-3.21	-2.00	0.27	3.085	3.99	-1.45	0.32	1.73	-1.92	m	P beta j (top 20)					
5.2e+5	6.6e+9	1.1e+5	0.244	2.3e+9	3.2e+12	634.70	0.284	8.5e+3	5.1e+4	BF	peak %)					

SD: standard deviation; dlPFC dorsolateral prefrontal cortex, GPe: globus pallidis pars externa, Sal: saline, Amp: amphetamine, Apo: g: effect size estimated by Hedge's g. BF: Bayes factor. Comparisons that did not reach statistical significance and didn't require postapomorphine, Hal: haloperidol, df: degrees of freedom. hoc test are marked with ---. Results are presented in Fig. 2. Source data are provided as a Source Data file. LFP: local field potential, acute and chronic experiments, respectively. η^2 – effect size. (c) Post-hoc comparison results. p: p value, result of Tukey post-hoc test GPe) and chronic (STN) dopamine modulation experiments (b) Results of Kruskal-Wallis test and two-sided student's t-test for the Supplementary Table 4. Properties of LFP beta oscillations. (a) Descriptive statistics of LFP beta properties in NHP acute (dlPFC,

۵

~
_
-
-

		dIPFC LFP sites	GPe LFP sites	Cortical wide units	Cortical narrow units	Pallidal units
Oscillatory	sal	0.90	1.00	0.35	0.30	0.11
site/unit probability	amp	0.94	0.99	0.38	0.53	0.22
	apo1	0.81	1.00	0.34	0.36	0.04
	apo2	0.83	0.97	0.36	0.32	0.10
	hal	0.78	0.96	0.28	0.45	0.15

b

		STN LFP sites	STN units
Oscillatory site/unit	Naïve	0.56	0.24
probability	MPTP	0.875	0.57

С

		experiment	X2	df	P value	Effect size
LFP	dIPFC	Acure	16.35	4	0.0026	0.16
	GPe	Acute	9.77	4	0.0446	0.14
	STN	Chronic	6.83	1	0.0090	0.32
Single units	Cortical wide	Acute	9.47	4	0.0505	0.07
	Cortical narrow	Acute	11.70	4	0.0197	0.19
	Pallidal	Acute	38.75	4	7.8e-8	0.15
	Subthalamic	Chronic	19.38	1	1.1e-5	0.33

		dIP	PFC	G	Pe	Cortical v	vide units	Cortical na	rrow units	Pallida	l units
		р	Φ	р	Φ	р	Φ	р	Φ	р	Φ
sal	amp	1.0000	-0.07	1.0000	0.08			0.0274	-0.24	3.0e-4	-0.15
sal	apo1	0.4339	-0.12					1.0000	0.06	0.1659	-0.10
sal	apo2	0.9802	-0.10	0.4347	-0.14			1.0000	0.03	1.0000	-0.02
sal	hal	0.0846	0.17	0.1753	-0.16			0.4975	-0.16	1.0000	0.06
amp	apo1	0.0315	-0.19	1.0000	0.07			1.0000	-0.15	1.0e-4	-0.20
amp	apo2	0.0857	-0.17	1.0000	-0.07			0.1189	-0.21	1.0e-4	-0.16
amp	hal	0.0047	-0.24	1.0000	-0.10			1.0000	-0.08	0.1523	-0.09
apo1	apo2	1.0000	0.02	0.7922	-0.13			1.0000	0.04	0.4688	-0.09
apo1	hal	1.0000	0.04	0.3885	-0.15			1.0000	-0.08	0.0126	0.15
apo2	hal	1.0000	0.07	1.0000	-0.03			1.0000	-0.14	0.3818	0.08

Supplementary Table 5. Probability of oscillatory LFP sites/single units. (a) Descriptive statistics, acute dopamine modulation experiment. (b) Descriptive statistics, chronic dopamine modulation experiment. (c) Chi-square test results. Effect size was estimated by Cramer's V for the acute modulation experiment, and Φ for the chronic modulation experiment (d) Results of post-hoc comparison with Bonferroni correction for multiple comparisons. p: p-value of 2x2 Chi-square test with drug condition and oscillation status (oscillatory vs non-oscillatory) as factors. Φ : effect size. Results are presented in Figures S3 (LFP) and S7 (SUA). Source data are provided as a Source Data file. LFP: local field potential, dlPFC dorsolateral prefrontal cortex, GPe globus pallidis pars externa, STN: subthalamic nucleus, Sal: saline, Amp: amphetamine, Apo: apomorphine, Hal: haloperidol.

	-	٦	۱
4	^	-	
	L	,	

			F	DF	sig	Partial η ²
dIPFC	Beta	Eye state	21.486	(1,137)	8.0e-6	0.136
	frequency	Drug	4.811	(4,137)	0.001	0.123
		Eye state*drug	5.912	(4,137)	2.0e-4	0.147
GPe		Eye state	48.392	(1,181)	6.2e-11	0.211
		Drug	5.931	(4,181)	1.6e-4	0.116
		Eye state*drug	21.820	(4,181)	1.0e-14	0.325
dIPFC	Beta peak	Eye state	0.791	(1,560)	0.374	0.001
		Drug	7.995	(4,560)	3.0e-6	0.054
		Eye state*drug	19.597	(4,560)	4.1e-15	0.123
GPe		Eye state	9.768	(1,409)	0.002	0.023
		Drug	7.418	(4,409)	9.0e-6	0.068
		Eye state*drug	13.034	(4,409)	5.3e-10	0.113
dIPFC	Beta AUC	Eye state	50.084	(1,560)	4.4e-12	0.082
		Drug	7.127	(4,560)	1.3e-5	0.048
		Eye state*drug	6.713	(4,560)	2.8e-5	0.046
GPe		Eye state	18.158	(1,409)	2.5e-5	0.043
		Drug	4.648	(4,409)	0.001	0.043
		Eye state*drug	13.189	(4,409)	4.1e-10	0.114

						dIPF	С								GPe				
		Beta	a frequ	ency	B	eta p	eak	1	Beta A	UC	Bet	a frequ	Jency	B	leta p	eak		Beta A	UC
Drug		mean	ste	P (o-c)	mean	Ste	P (o-c)	mean	ste	P (o-c)	mean	Ste	P (o-c)	mean	ste	P (o-c)	mean	ste	P (o-c)
S=1	o	14.45	0.47	0.025	.010	.001	0.570	.153	.004	2.1.5	15.25	0.28	C 20 10	.015	.002	0.079	.166	.005	6.20.15
291	c	13.48	0.62	0.055	.009	.001	0.570	.163	.004	2.1e-5	13.25	0.31	0.2e-10	.014	.001	0.078	.184	.005	0.2e-15
4	0	17.08	0.60	2.1.5	.007	.001	9 7 - 11	.124	.007	7.9	18.50	1.12	0.162	.009	.001	0 227	.129	.012	0.330
Amp	c	14.50	0.79	2.1e-5	.011	.001	0.5e-11	.138	.006	7.6e-5	17.25	1.22		.010	.001	0.527	.124	.011	0.550
41	0	15.92	0.55	4.0- 4	.007	.001	0.000	.136	.005	1 6- 10	16.78	0.32	7.5e-28	.012	.001	0.000	.165	.006	6.5 - 0
Abot	c	13.97	0.72	4.0e-4	.008	.001	0.098	.152	.004	1.66-10	13.46	0.35		.013	.001	0.020	.181	.006	6.5e-9
42	0	13.88	0.52	0.145	.009	.001	45-4	.140	.005	0.207	14.99	0.34	2.24.5	.017	.001	7 4 - 11	.178	.006	0.333
Apoz	c	13.14	0.69	0.145	.007	.001	4.58-4	.142	.004	0.597	13.79	0.38	2.2e-5	.013	.001	7.4e-11	.175	.006	0.555
	0	12.01	0.47	0.100	.012	.001	10-5	.163	.004	0.744	13.02	0.42	0.450	.019	.001	2.0- 6	.178	.006	0.001
Hal	с	12.85	0.62	0.102	.010	.001	1.0e-5	.164	.004	0.711	13.50	0.46	0.159	.016	.001	2.0e-6	.183	.006	0.081

Supplementary Table 6. Beta properties as a function of drug condition and eye-state. (a) Two-way mixed-design ANOVA results with beta properties as dependent factors, drug condition as between-observation independent factor, and eye-state as within-observation independent factor. Eye state*drug marks the interaction effect. The test was conducted separately for each beta property. Only sites that were oscillatory in both eye-state conditions were included in the beta frequency analysis. (b) Post-hoc results. Post-hoc test compared the beta properties between the two eye-states (open vs closed) within each drug condition, and used Bonferroni correction for multiple comparisons. Source data are provided as a Source Data file. o: open; c: closed; STE: standard error of the mean. dlPFC dorsolateral prefrontal cortex, GPe globus pallidis pars externa, Sal: saline, Amp: amphetamine, Apo: apomorphine, Hal: haloperidol, AUC: area under the curve, F: frequency, DF: degrees of freedom; o-c: open-closed, sig: significance

b

Impara Impara<				_								_				-			_	_	_		-		_			_					_
$ \frac{1}{14 + 1} $	aı	H	Apo	Аро	Apo	Am	Aml	Aml	Sal	Sal	Sal	Sal			Π	SO,	No.	/US	/US	Firi				SUZ	, c		200	2112	200	city]		
$\frac{1}{1000} \frac{1}{1000} \frac{1}{100} \frac$	l pt	abl	i2 Ha	1 На	1 Ap	рНа	p Ap	p Ap	На	Ą	Ap	An			Η	4 bet	Bet	A bet	A bet	ng ra				\ het:		hot:	4 Det		4 Det	1 hot	1819		
$\frac{ }{ } \frac{ }{ } \frac{ }{ } \frac{ }{ } \frac{ }{ } \frac{ }{ } \frac{ }{ } \frac{ }{ } \frac{ }{ } \frac{ }{ } \frac{ }{ } \frac{ }{ } \frac{ }{ $	palli	le S7	0.89	0.70	02 0.98	1 5.5e	02 3.9 e	01 4.7 e	1 1.00	02 0.87	01 0.68	np 2.8e	p		Н	a peak	AUC	a freq.	a freq.	te			-	a neak			a rreq.		a rreq.	a fran	Ĩ	5	
Image Image <th< td=""><td>dal</td><td>7. F</td><td>92 -0.</td><td>99 -0.</td><td>ö</td><td>4 0.</td><td>-5 0.:</td><td>4 0.</td><td>0.0</td><td>2 0.</td><td>6 0.</td><td>4</td><td></td><td>Firing</td><td></td><td></td><td></td><td>(all)</td><td>(osc)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>(all)</td><td>1-III</td><td>050</td><td>2000</td><td></td><td></td><td></td></th<>	dal	7. F	92 -0.	99 -0.	ö	4 0.	-5 0.:	4 0.	0.0	2 0.	6 0.	4		Firing				(all)	(osc)								(all)	1-III	050	2000			
$ \frac{y_{100}}{y_{100}} = \frac{y_{10}}{y_{100}} = y_{$	un	irir	06 0.	11 0.	05 0.	19 1.	24 6.	29 2.	03 0.	8	11 0.	14 0.		rate			╞	╞				Ц											
$\frac{1}{30} \frac{1}{30} \frac$	its) î	al Bl	.06	.09	.06	.32	32	.68	.04	.07	09	30	3F (os	bet	g	11.72	5.59	2.35	5.58	31.56	X ²		SD	Mear	SD	Mear	SD	Mear	SD	Mear	SD	Mear	
$ \frac{1}{210} 1$	and	ite	-										c) (a	A SL	tical v	(4,1	(4,1	(4,1	(4,	(4,1						-		1		1			
$ \frac{110}{1000} \frac{110}{1000} \frac{110}{1000} \frac{110}{1000} \frac{110}{10000} 1$	chr	and	<u> </u>										Ę ₽		vide ur	10)	(10)	.681)	570)	710)	₩	Corti	0.000	0.002	0.016	0.078	4.53	16.04	4.27	14.18	2.86	2.50	Sal
$ \frac{10}{10} \frac{10}{100} \frac{10}{10} \frac{10}{10}$	roni	l be	.0		11	0	.0	.0	0		.0	9	л П	eta 14	l 🗄	0.0	0.2	0.6	0.2	2.4	_	cal wi	7 0.0	8 0.0	0.0	³ 0.0	4.	1 16	4.	3 14	3.	3.	a
$ \frac{1}{216} \frac{1}{237} \frac{1}{236} \frac{1}{337} \frac{1}{36} \frac{1}{630} \frac{1}{327} \frac{1}{356} \frac{1}{630} \frac{1}{327} \frac{1}{536} \frac{1}{536} \frac{1}{326} \frac{1}{357} \frac{1}{356} \frac{1}$	c (S	ta p	285 0.	514 0.	000 0.	860 -0	037 -0	163 -0	996 -0	119 -0	338 -0	965 0.	P	SUA bet		961	516	715	330	e-6	Ľ	de unit	005 0	028 0	012 (978 (66	.33	50	.71	90	10	qu
$ \frac{992}{143} = \frac{912}{143} = \frac{913}{143} = \frac{915}{143} = \frac{905}{143} =$	F	rop	0 80	15 0	0 80	.14 0	.26 10	.34 13	.05 0	.13 0	.20 0	10 0	~	a pea		0.008	0.005	0.001	0.010	0.008	72	G	0008	0.003	0.016	0.081	4.78	16.43	4.71	15.36	2.35	2.18	Tode
$ \frac{1}{33} \frac{1}{3} \frac$	un	ert	.07	.14	.07	.31).52	3.11	.05	.20	.35	Ë	<u>۳</u>	×	Н		ب د.	2.0	7.5	24			0.0	0.0	.0	0	4	15	4	14	2	2	a
$ \begin{array}{ $	its)	ies	0.7	0.0	0.0	0.0	0.3	0.5	0.0	0.1	0.7	0.9	_	s R	$\left \right $	43	ů.	e-4	θů	44	Ť	Ц	0007	029	015	.08	.53	.91	.60	1.38	.41	.18	202
$ \frac{1}{3} 1$	lop	of	63 0	02 1	46 1	05 0.	00	24 -0	03 1	.77 0	0- 69	88	Ľ	UA be (o		8.2	12.6	18.3	23.7	7.78	X2		0.00	0.00	0.01	0.0	4.6	16.2	4.3	13.7	2.4	2.3	na
$ \frac{1}{100} \frac{1}{10} \frac{1}{$	pan	sing	.45 0	.70 37	.13 6	.89 4	.44 0	.64 0	.04 8	.61 1	.34 0	.22 0	<u>00</u>	sc)		F	ſ	5	6	Ē			0 80	29 0	.6 (8	6	3	0	1	5	3	
$ \frac{4 \pi m^2}{163} = 4 \pi m^2$	nine	gleı	.51 0	74.5 0	.45 0	4.8 0	.52 0	.66 0	2.8 0	.30 0	.26 0	.20	۳ ۳	- -		(4,31	(4,31	(4,29	(4,11	(4,31)	đ	្ន	0009	.0026	0.017	0.071	4.48	16.62	4.45	16.73	6.28	7.59	Sal
i jos	m	uni	.208	.001	.153	.014	.853	.514	.033	.965	.338	.996	٦	UA bet	ortical	Ľ	1	. <u> </u>	9	3		tical r	0.0	0.0	0.0	0.0	4.	16		15	5.	6.	a
opot spot spot <t< td=""><td>npc</td><td>tac</td><td>0.36</td><td>0.92</td><td>0.56</td><td>0.55</td><td>0.18</td><td>-0.39</td><td>0.48</td><td>0.12</td><td>-0.44</td><td>0.06</td><td>07</td><td>ta freq</td><td>narro</td><td>0.08</td><td>0.01</td><td>0.00</td><td>8.9e-</td><td>0.100</td><td>σ</td><td>harro</td><td>005</td><td>026</td><td>906</td><td>)71</td><td>34</td><td>.88</td><td>69</td><td>.82</td><td>41</td><td>61</td><td>-p</td></t<>	npc	tac	0.36	0.92	0.56	0.55	0.18	-0.39	0.48	0.12	-0.44	0.06	0 7	ta freq	narro	0.08	0.01	0.00	8.9e-	0.100	σ	harro	005	026	906)71	34	.88	69	.82	41	61	-p
$ \begin{array}{ $	lati	tivi	0.74	90.8	1.60	10.90	0.16	0.43	4.61	0.12	0.61	0.10	쀾	ı. (all)	Ŵ uni	L ⁴	ľ	-	ۍ ا	×		w uni	0.000	0.002	0.01	0.07	4.05	18.5	3.19	18.1	8.32	9.05	apo
$ \begin{array}{ $	on	ity.	0.226	1.000	0.659	0.685	0.004	0.758	0.993	0.361	1.000	0.324	σ	SUA	5	0.025	0.024	0.059	0.179	0.022	٦2	с т)6 0.	<u>6</u> 0.	4	0	2	6 1	-	7 1	. (-
$ \begin{array}{ $	exp	(a)	-0.40	-0.09	0.34	-0.09	0.50	0.04	-0.02	0.35	0.06	0.05	ο.	beta			18	ű	1,	23		1	0005	0024	.011	.066	1.53	6.08	3.5	14.2	5.55	1.12	2od
In Sol And Native Mirr Mirr <thm< td=""><td>erii</td><td>De</td><td>1.21</td><td>0.13</td><td>0.33</td><td>0.11</td><td>6.46</td><td>0.11</td><td>0.09</td><td>0.94</td><td>0.11</td><td>0.09</td><td>몎</td><td>AUC</td><td></td><td><u> </u></td><td>46</td><td>6</td><td>et2</td><td>.94</td><td>ñ</td><td>Ц</td><td>0.00</td><td>0.00</td><td>0.0</td><td>0.0</td><td>4.6</td><td>14.</td><td>3.1</td><td>12</td><td>6.7</td><td>9.5</td><td>n</td></thm<>	erii	De	1.21	0.13	0.33	0.11	6.46	0.11	0.09	0.94	0.11	0.09	몎	AUC		<u> </u>	46	6	et2	.94	ñ	Ц	0.00	0.00	0.0	0.0	4.6	14.	3.1	12	6.7	9.5	n
$ \frac{ \mathbf{n} }{ \mathbf{n} } = \frac{ \mathbf{n} }{ \mathbf{n} }$	ner	scri											pea	SU/ beta	11	64.2	6.7	52.30	105.5	80.94	×2		09	28 (17	72	õ	42	ω	.7	2	1	_
amp apor spot nal read	ıts (ptiv	2.2e	9.9e	1.9e	1.0e	0.16	0.01	6.0e	0.98	9.4e	0.02	÷		Η				2	-	\vdash		0.000	0.0014	0.013	0.043	3.52	16.79	2.59	15.87	24.89	59.02	sa
inp inp< inp< inp< inp inp< inp< i	[d]	/e s	4 0.3	.9 0.8	-5 0.5	-8 0.4	6 0.1	10 -0.:	4 0.2	32 -0.0	-7 -0.	-0.		Firin		ł,162.	1,16Z	1,149	4,222	1,162	đ		5 0.0	¢ 0.0	.0	0.	2.	17	4	17	31	66	a
apot apoz nativ Narie NPTY 74.53 60.08 52.17 23.50 29.95 17.80 14.84 13.65 17.49 11.52 3.82 1.82 1.86 4.06 2.72 17.51 16.76 15.84 17.35 14.09 3.82 1.82 1.86 4.06 2.72 17.51 16.76 15.84 17.35 14.09 0.033 0.04 0.005 0.001 0.001 0.002 0.001 0.012 0.017 0.005 0.009 0.004 0.009 0.001 0.002 1.645 1.77 19 4.066 0.73 3.167 2.6-16 0.05 2.445 1.77 19 4.066 0.73 3.167 2.6-16 0.05 2.447 2.38 1.33 0.004 0.04 4.58 .66-22 0.32 1.454 4.35 1.33 0.403 4.58	Res	tati	33 30	37 4.0	52 6.0	9.9 et	.9 0	27 1.	29 18	03	55 5.5	22 4.		g rate					6	12		Pallida	006	015	013	043	86	.34	.66	.04	.12	.32	dub
1 1 1 1 1 1 1 1 1 1 1 1 2 3 6 1 2 3 1 2 3 2 3 2 3 2 3 1	ults	stics	56.6	e+12 ()e+3 ()e+7 9	938 3	621	8.95 2	045	se+4	8 266				.6e-13	.6e-16	.2e-10	.6e-22	.1e-16	Ρ	al unit	0.000	0.001	0.01	0.033	3.72	17.51	3.82	17.80	26.55	74.53	lode
poz nat Native INTER Native	of	of	0.09	0.005	0.177	.9e-9	.0e-7	1.000	.4e-6	0.276	0.692	.6e-4	₽	SUA b				8	0.0		3	۳.	4 0.0	1 0.0	0	0	ω	1 1		1	5 2	3 6	
nar Naive MPL P 52.17 23.50 29.95 25.45 11.72 17.26 13.65 17.49 11.52 13.64 17.36 14.09 4.25 3.94 4.98 0.004 0.001 0.004 0.004 0.001 0.009 0.004 0.001 0.004 0.004 0.009	Kru	sin	0.65	2.00	1.35	1.94	1.28	-0.42	0.99	0.44	-0.70	-0.57	m	eta fre		4	N N	2	2 1.	5	<u> </u>	$\left \right $	0005	0013	012	.04	.66	5.76	.82	4.84	4.45	0.08	700
Naive Nitrip 7 23.50 29.95 5 11.72 17.26 5 17.49 11.52 5 0.021 0.024 7 0.005 0.007 16 0.0014 0.0019 9 0.0004 0.0024 7 0.005 0.007 16 0.0014 0.0019 9 0.0004 0.0023 -2.39 173 0.0043 -0.44 4.68 17.25 69 4.0e-6 0.73 3.1e+3 2.2.38 173 0.0136 -0.36 1.30 2.3.81 173 0.013 -0.13 1.5e+3 Pallidal units Pallidal units Value to the freq. (all) SUA beta AUC SUA beta peak 0.013 0.17 0.51 0.9975 -0.01 0.04 0.527 -0.08 0.07 0.224 0.20 0.31 9.9e-9 0.75 6.3e+9 1.2e-8 0.61 1.5e+8 0.021 <td>ıska</td> <td>gle</td> <td>6.26</td> <td>356.8</td> <td>5.81</td> <td>1.8e+1</td> <td>1.2e+</td> <td>0.18</td> <td>8.8e+</td> <td>0.745</td> <td>0.44</td> <td>11.7</td> <td>₩.</td> <td>q. (osc</td> <td></td> <td>.4e+8</td> <td>3e+12</td> <td>.6e+3</td> <td>8e+15</td> <td>4.14</td> <td>짞</td> <td></td> <td>0.00</td> <td>0.00</td> <td>0.01</td> <td>0.04</td> <td>4.2</td> <td>15.8</td> <td>1.8</td> <td>13.6</td> <td>25.4</td> <td>52.1</td> <td>na</td>	ıska	gle	6.26	356.8	5.81	1.8e+1	1.2e+	0.18	8.8e+	0.745	0.44	11.7	₩.	q. (osc		.4e+8	3e+12	.6e+3	8e+15	4.14	짞		0.00	0.00	0.01	0.04	4.2	15.8	1.8	13.6	25.4	52.1	na
NPT P 33.50 29.95 11.72 17.26 17.49 11.52 4.06 2.72 77.36 14.09 3.94 4.98 0.0014 0.0019 0.0014 0.0019 0.0014 0.0019 0.0014 0.0019 0.0014 0.0019 0.0014 0.0019 0.0014 0.0019 0.0014 0.0019 0.0014 0.0019 0.0014 0.0019 0.0014 0.0019 0.0014 0.0019 0.0014 0.0019 0.0014 0.0019 113 0.0186 0.36 113 0.136 0.31 113 0.131 0.949 0.73 113 0.131 0.949 0.527 0.08 113 0.131 0.949 0.527 0.08 0.07 124 0.25 0.13 0.404 0.22 3.02 139 0.41 0.535 <t< td=""><td>I-W</td><td>unit</td><td>0.0</td><td>6 1.9e</td><td>0.1</td><td>.8 1.0e</td><td>6 0.0</td><td>1.0</td><td>3 6.36</td><td>0.9</td><td>0.2</td><td></td><td>Ţ</td><td>) su</td><td>╏_╎</td><td>4</td><td>Ň</td><td>4</td><td>12</td><td>ż</td><td>4</td><td>Π</td><td>0 60</td><td>16 0</td><td>7 0</td><td>5 0</td><td>01</td><td>4 1</td><td>01</td><td>5 1</td><td>5 1</td><td>7 2</td><td></td></t<>	I-W	unit	0.0	6 1.9e	0.1	.8 1. 0e	6 0.0	1.0	3 6.36	0.9	0.2		Ţ) su	╏_╎	4	Ň	4	12	ż	4	Π	0 60	16 0	7 0	5 0	01	4 1	01	5 1	5 1	7 2	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	/alli	pro	06 0.2	2-5 0.4	73 0.2	2-8 0.4	11 0.1	00 -0.0	2-4 0.2	98 0.0	24 -0.2	13 -0.1	<u>m</u>	A beta f	allidal	5	8	3	ŭ	89 1		$\left \right $.0004	.0014	0.005).021	3.94	17.36	4.06	17.49	1.72	23.50	vaive
$\frac{95}{22}$ $\frac{95}{22}$ $\frac{96}{22}$ $\frac{97}{22}$ $\frac{909}{009}$ $\frac{909}{009}$ $\frac{909}{009}$ $\frac{909}{009}$ $\frac{909}{009}$ $\frac{9}{009}$ $\frac{9}{000}$ $\frac{9}{009}$ $\frac{9}{000}$ $\frac{9}{009}$ $\frac{9}{000}$ $\frac{9}{009}$ $\frac{9}{000}$ $\frac{9}{009}$ $\frac{9}{000}$ $\frac{9}{000}$ $\frac{9}{000}$ $\frac{1000}{000}$ $\frac{1000}{0000}$ $\frac{1000}{0000}$ $\frac{10000}{0000}$ $\frac{100000}{0000}$ $\frac{100000}{0000}$ $\frac{100000}{0000}$ $\frac{10000}$	s te	per	3 2.7	1 49.	0.3	1 4.56	8 0.5	5 0.0	5 9.1	1 0.0	0.3	7 0.6		req. (a	units	3	à	8	8	73	e		0.00	0.00	0.0	0.0	4.9	14.	2.7	11.	17.	29.	MP
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	st a	ties	15 1.9	83 9.9	31 2./	2+4 0.0	⁵³ 0.	9.9	15 0.6	94 0.	31 9.9	51 0.5	-)	$\left \right $	2.7e-	0.018	4.0e	4.6e-	0.004	σ	STN u	600	019	07	24	86	60	72	52	26	95	7
g BF 0.44 4.68 1.37 2.3e+7 0.73 4.5e+3 0.73 5.6e+9 1004 0.527 0.04 0.527 0.17 6.3e+9 1.25 12.13 0.40 0.22 3.040 0.22 3.041 0.2e-8 0.17 0.70 1.36 0.61 1.5e+1 1.5e+1 1.75 5.0e-4 0.20 1.16 0.43 0.8135<-0.13	nd	in .	9e-4 -(9e-9 -(te-5 -(825 -(0 600	9e-9 (5135 -0	017 0	9e-9 0	975 -(Ρ	SUA b		6	6	6	<u>6</u>	55 -	\vdash	nits											
BF 4.68 2.3e+7 3.1e+3 1.30 4.5e+3 9.01 0.021 0.022 0.020 0.31 0.42 0.527 0.040 0.22 0.040 0.22 0.041 0.22 0.042 0.43 0.43 0.44 0.43 0.43 0.43 0.44 0.43 0.44 0.45 0.45 0.46 0.47	two	HN).38 9).77 5).54 1).16	.25	.73 6).17	.25	.75 6	01	<u>09</u>	eta Al		0.73	0.36	0.73	.87	0.44	90												
SUA beta peak SUA beta peak SUA beta peak 0.527 -0.08 0.67 1.2e-8 0.61 1.5e+ 0.040 0.22 3.02 0.994 -0.20 1.86 9.9e-9 0.67 1.9e+ 0.044 0.22 3.02 0.934 -0.13 0.20 0.32e-4 -0.44 2022: 3.2e-4 -0.44 2022: 1.1e-8 -0.60 3.3e+ 1.1e-8 -0.60 3.3e+ 1.1	-Sid	Pac	.1e+3	.1e+9	.4e+4	0.43	9.05	.6e+8	0.70	12.13	.3e+9	0.04	쀾	JC		4.5e	1.3	3.1e	2.3e	4.6	먉												
g BF -0.08 0.07 0.61 1.5e+ 0.22 3.02 -0.13 0.201 -0.44 202.1 -0.36 1.9e+ -0.36 1.9e+ -0.36 1.9e+ -0.36 1.9e+ -0.44 202.3 -0.50 3.3e+ -0.36 1.9e+ -0.36 1.9e+ -0.36 1.9e+ -0.36 1.9e+ -0.37 1.9e+ -0.38 1.9e+ -0.34 202.3 -0.35 1.9e+	led	ute	0.018	1.1e-8	3.2e-4	0.8135	3.0e-4	9.9e-9	0.994	0.040	1.2e-8	0.527	σ	SU1		L d		1	1	Ľ													
Preak 1.5e+ 1.5e+ 1.9e+ 1.9e+ 1.9e+	stuc	(co	-0.36	-0.60	-0.44	-0.13	0.29	0.67	-0.20	0.22	0.61	-0.08	90	\ beta																			
	lent	rtic	1.9e+	3.3e+	202.1	0.203	61.1	1.9e+	1.86	3.02	1.5e+	0.07	뼊	peak																			

Sal: saline, Amp: amphetamine, Apo: apomorphine, Hal: haloperidol SUA: sngle unit activity, AUC: area under the curve, osc: oscillatory, dlPFC dorsolateral prefrontal cortex, GPe globus pallidis pars externa, didn't require post-hoc test are marked with ---. Results are presented in Fig. 3 and Fig. S6. Source data are provided as a Source Data file. of Tukey post-hoc test. g - effect size estimated by Hedge's g. BF: Bayes factor. Comparisons that did not reach statistical significance and t-test for the acute and chronic modulation experiments, respectively . η^2 – effect size. (c) Post-hoc comparison results. p - p value, result ent's rtical C

σ

ച

Cortical wide units

Cortical narrow units

Pallidal units

STN units

] "				Single	units		
		dIP	FC	B	Pe	Cortica	al wide	Cortical	narrow	Pall	idal
		drug	Sal	Drug naive	Sal	Drug	Sal	Drug naive	Sal	Drug naïve	Sal
	Mean	16.77	14.41	15.69	14.47	15.20	14.18	16.65	16.73	15.32	15.8
SOA beta Ireq. (osc)	SD	2.93	2.80	2.38	1.72	4.38	4.27	3.95	4.45	3.02	2.59
	Mean	16.77	14.41	15.66	14.47	16.40	16.04	16.95	16.62	16.58	3.92
30A beta ITed. (ali)	SD	2.93	2.80	2.41	1.72	4.55	4.53	4.38	4.48	16.79	3.52
	Mean	0.186	0.185	0.191	0.203	0.077	0.078	0.071	0.071	0.040	0.043
שטה מבום הטכר	SD	0.040	0.046	0.059	0.055	0.013	0.0155	0.014	0.017	0.013	0.013
	Mean	0.0105	0.0123	0.0181	0.0194	0.0028	0.0028	0.0026	0.0026	0.0013	0.001
30A heta beak	dS	0.0052	0.0062	0.0109	0.0084	9000.0	2000 U	8000 0	0.0009		000 0

t df p g t df df p g df df g df df g df df g g df df g df df g df df df g df df df df			<u>م</u>	IPFC		- FP		GPe			Cortic	al wide			Single	units				Palli	Pallidal
beta freq. (sc) 6.30 232 1.5e-9 0.82 5.17 389 3.8e-7 0.56 2.52 557 0.0120 0.23 -0.09 167 0.9288 - beta freq. (all) 6.30 232 1.5e-9 0.82 4.99 391 9.1e-7 0.54 1.40 1443 0.1617 0.08 349 0.5632 beta freq. (all) 6.30 252 0.7913 0.03 -1.92 398 0.554 0.21 1.403 0.1617 0.08 0.49 0.5632 0.477 0.54 1.403 0.463 0.576 0.119 0.58 0.497 0.5632 0.544 0.554 0.21 1.403 0.463 0.564 0.49 0.5632 0.477 0.544 0.554 0.554 0.255 0.0129 0.543 0.554 0.554 0.2559 0.123 1.463 0.0841 0.09 0.59 0.554 0.554		t	df	q	g	t	df	q	9 0	t	df	q	g	t	df	þ		σ0	g t	g t df	g t df P
A beta freq. (all) 6.30 232 1.5e-9 0.82 4.99 391 9.1e-7 0.54 1.40 1443 0.1617 0.08 0.58 349 0.5632 A beta freq. (all) 0.265 252 0.7913 0.03 -1.92 398 0.0554 -0.21 -1.90 1463 0.0576 -0.10 0.19 358 0.8477 - A beta peak -2.505 252 0.0129 0.32 -1.14 398 0.2559 -0.12 -1.73 1463 0.0941 -0.09 0.59 358 0.5554	UA beta freq. (osc)	6.30	232	1.5e-9	0.82	5.17	389	3.8e-7	0.56	2.52	557	0.0120	0.23	-0.09	167	0.9288	L.	0.02	0.02 -1.05	0.02 -1.05 121	0.02 -1.05 121 0.2976
A Beta AUC 0.265 252 0.7913 0.03 -1.92 398 0.0554 -0.21 -1.90 1463 0.0576 -0.10 0.19 358 0.8477 - A beta peak -2.505 252 0.0129 0.32 -1.14 398 0.2559 -0.12 -1.73 1463 0.0941 -0.09 0.59 358 0.5554	UA beta freq. (all)	6.30	232	1.5e-9	0.82	4.99	391	9.1e-7	0.54	1.40	1443	0.1617	0.08	0.58	349	0.5632	0	.07	.07 -0.92	.07 -0.92 1421	.07 -0.92 1421 0.3591
A beta peak -2.505 252 0.0129 0.32 -1.14 398 0.2559 -0.12 -1.73 1463 0.0841 -0.09 0.59 358 0.5554	UA Beta AUC	0.265	252	0.7913	0.03	-1.92	398	0.0554	-0.21	-1.90	1463	0.0576	-0.10	0.19	358	0.8477		02	02 - 3.74	02 -3.74 1551	02 -3.74 1551 0.0002
	UA beta peak	-2.505	252	0.0129	0.32	-1.14	398	0.2559	-0.12	-1.73	1463	0.0841	-0.09	0.59	358	0.5554	0	.07	.07 -4.13	.07 -4.13 1551	.07 -4.13 1551 3.8e-5

osc: iscillatory, SD: standard deviation, statistics (b) Results of two-samples student's t-test. p – p value. g – effect size estimated by Hedge's g. Results are presented in Fig.S8 dorsolateral prefrontal cortex, GPe: globus pallidis pars externa, Sal: saline, Amp: amphetamine, Apo: apomorphine, Hal: haloperidol, and S9. Source data are provided as a Source Data file. SUA: single unit activity, freq: frequency, AUC: area under the curve, dlPFC Table S8. Comparison of NHP LFP and single unit beta properties in drug-naïve and control-saline conditions. (a) Descriptive

obus pallidis pars externa, Sal: saline, Amp: amphetamine, Apo: apomorphine, Hal: haloperidol,	re provided as a Source Data file. LFP: local field potential, AUC: area under the curve, dlPFC dorsolateral prefrontal cortex, GPe	sults. p - p value, result of Tukey post-hoc test. g - effect size estimated by Hedge's g. Results are presented in Fig. 4. Source data	Table S9. Properties of LFP beta coherence. (a) Descriptive statistics (b) Results of Kruskal-Wallis test (c) Post-hoc comparison
--	---	---	---

Gpe-GPe beta AUC Beta p g p 0.033 -0.36 4.0e-5 0.001 -0.47 0.001 0.964 -0.11 1.000	Gpe-GPe Beta peak beta f beta AUC Beta peak beta f p g p g p p g p g p 0.033 -0.36 4.0e-5 -0.56 9.9e-9 0.001 -0.47 0.001 -0.43 2.9e-5 0.964 -0.11 1.000 -0.04 0.160	Gpe-GPe dlpFi dlpFi dlpFi beta AUC Beta peak beta freq. beta p g p g p g p p g p g p g p g p 0.033 -0.36 4.0e-5 -0.56 9.9e-9 -1.38 1.000 0.001 -0.43 2.9e-5 -0.74 0.003 0.964 -0.11 1.000 -0.04 0.160 0.44 0.260
B P 33 -0.36 4.0e-5 01 -0.47 0.001 64 -0.11 1.000	B P B P 33 -0.36 4.0e-5 -0.56 9.9e-9 01 -0.47 0.001 -0.43 2.9e-5 64 -0.11 1.000 -0.04 0.160	b b p b p b p g p
	peak beta f g p -0.56 9.9e-9 -0.43 2.9e-5 -0.04 0.160	peak beta freq. beta g p g p -0.56 9.9e-9 -1.38 1.000 -0.43 2.9e-5 -0.74 0.003

Sal	Amp	Apo1	C Apo2	Hal	Sal	Amp	GPe-GPe Apo1	Apo2	Hal	Sal	Amp	dIPFC-GP Apo1	e Apo	
n 15.39	17.3	15.89	15.16	13.74	14.96	17.53	16.48	15.23	13.19	14.28	16.69	14	.77	.77 13.49
2.07	1.73	3	2.55	2.09	1.73	1.29	2.56	2	0.62	2.12	1.38	2.5	ω	3 1.18
n 4.648	6.028	4.401	4.182	5.804	8.3	9.993	9.79	208'8	886'2	3.055	3.023	3.70	õ	8 3.526
3.755	4.023	3.538	3.275	4.267	4.677	4.722	5.306	4.746	3.973	1.395	1.347	1.894	-	1.66
n 0.247	0.333	0.22	0.217	0.302	0.453	0.563	0.504	0.461	0.453	0.209	0.261	0.25		0.256
0.17	0.177	0.161	0.152	0.191	0.206	0.184	0.215	0.19	0.175	0.108	0.12	0.117	1	7 0 1 1 1
	Sal n 15.39 2.07 2.07 1 4.648 3.755 3.755	d Sal Amp 15.39 17.3 2.07 1.73 2.07 1.73 4.648 6.028 3.755 4.023 3.33	dIPFC-dIPF Sal Amp Apo1 n 15.39 17.3 15.89 2.07 1.73 3 4.648 6.028 4.401 3.755 4.023 3.538 0.247 0.333 0.22	dIPFC-d	dIPFC-dIPFC Sal Amp Apo1 Apo2 Hal n 15.39 17.3 15.89 15.16 13.74 2.07 1.73 3 2.55 2.09 1 4.648 6.028 4.401 4.182 5.804 3.755 4.023 3.538 3.275 4.267 1 0.247 0.333 0.22 0.217 0.302	dIPFC-d	Image: Value of the state Amp Apo1 Apo2 Hal Sal Amp Sal Amp Apo1 Apo2 Hal Sal Amp n 15.39 17.3 15.89 15.16 13.74 14.96 17.53 2.07 1.73 3 2.55 2.09 1.73 1.29 n 4.648 6.028 4.401 4.182 5.804 8.3 9.993 3.755 4.023 3.538 3.275 4.267 4.672 4.722 1 0.247 0.333 0.22 0.217 0.302 0.453 0.563	dIPFC-dIPFC GPe-GPe Sal Amp Apo1 Apo2 Hal Sal Amp Apo1 n 15.39 17.3 15.89 15.16 13.74 14.96 17.53 16.48 2.07 1.73 3 2.55 2.09 1.73 1.29 2.56 1 4.648 6.028 4.401 4.182 5.804 8.3 9.993 9.79 3.755 4.023 3.538 3.275 4.267 4.677 4.722 5.306 1 0.247 0.333 0.22 0.217 0.302 0.453 0.563 0.504	Image: Pic-dipercy of the state	Image: Problem of the system Image: Problem of the system <th< td=""><td>Image: Constant of the constant of the</td><td>Image: Constant of the constant of the</td><td>Image: Normal System Image: N</td><td>Image: Normal System Image: System I</td></th<>	Image: Constant of the	Image: Constant of the	Image: Normal System Image: N	Image: Normal System Image: System I

LFP beta peak LFP Beta AUC LFP beta frequency

75.84 (4,1157) 1.3e-15 0.06 43.64 (4,1157) 7.6e-9

41.09 26.55

(4,740) (4,740) (4,740)

2.6e-8 2.4e-5 2.9e-85 Ρ

0.05 0.05 0.47

27.78

(4,475) (4,475)

1.4e-5 0.04

2.4e-5 4.6e-45

0.05 0.37 Π^2

281.07

(4,1157) 1.3e-59

0.18 0.03

399.93

×2

df dIPFC-dIPFC

σ

 Π^2

 \times_2

đf

 Π^2

×2

df dIPFC-GPe

Ρ

213.52 26.63

(4,475)

GPe-GPe

Ъ

c

LFP coherence mea beta frequency SD LFP coherence mea beta AUC SD LFP coherence mea beta peak SD	
SD mea SD mea	
" " " "	
Sal 15.781 1.602 6.115 4.084 0.29 0.159	
Amp 17.846 1.408 8.06 4.278 0.374 0.374	a
Apo1 15.881 2.354 5.808 4.143 0.264 0.161	IPFC-dIP
Apo2 15.212 1.8 5.397 3.737 0.254 0.147	8
Hal 14.033 1.892 7.426 4.551 0.343 0.173	
Sal 15.519 1.444 9.73 4.735 0.461 0.193	
Amp 17.975 0.908 11.996 4.512 0.57 0.165	
Apo1 16.559 1.985 11.445 4.924 0.514 0.514 0.18	GPe-GPe
Apo2 15.537 1.346 10.253 4.354 0.47 0.47 0.159	
Hal 13.852 0.725 9.526 3.931 0.46 0.16	
Sal 14.971 1.812 4.487 1.98 0.25 0.106	
Amp 17.044 1.48 4.959 2.093 0.306 0.118	
Apo1 15.22 2.072 5.446 2.364 0.296 0.109	IPFC-GP
Apo2 14.226 1.283 5.015 2.014 0.289 0.097	10
Hal 13.382 1.211 4.1 2.051 0.242 0.136	

LFP beta peak	LFP Beta AUC	LFP beta frequency		
76.48	60.30	329.26	X2	
4	4	4	₽	₽
9.7e-16	2.5e-12	5.3e-70	d	FC-dIPFC
0.063	0.045	0.268	η²	
52.31	44.16	414.20	X2	
4	4	4	df	6
1.2e-10	5.9e-9	2.4e-88	d	Pe-GPe
0.071	690'0	0.527	η²	
30.66	32.86	223.60	t	
4	4	4	đ	₫
3.6e-6	1.3e-6	3.1e-47	p	PFC-GPe
0.051	0.063	0.407	m	

σ

provided as a Source Data file. p - p value, result of Tukey post-hoc test. g - effect size estimated by Hedge's g. Results are presented in Fig. S11. Source data are Table S10. Properties of LFP beta PLV. (a) Descriptive statistics (b) Results of Kruskal-Wallis test (c) Post-hoc comparison results.

apomorphine, Hal: haloperidol, HF: high frequency, AUC: area under the curve freq: frequency, dlPFC dorsolateral prefrontal cortex, GPe: globus pallidis pars externa, Sal: saline, Amp: amphetamine, Apo:

C

പ

significance and didn't require post-hoc test are marked with --. Results are presented in Fig. 5. Source data are provided as a Source Data file. SD: standard deviation, Sal: saline, Amp: amphetamine, Apo: apomorphine, Hal: haloperidol, HF: high frequency, post-hoc test. $g - effect size estimated by Hedge's g. \Phi - effect size estimated by phi coefficient. Comparisons that did not reach statistical$ For CM test there is no defined effect size estimator for the best of our knowledge (c) Post-hoc comparison results. p - p value, result of Tukey KW: Kruskal-Wallis test. CM: circular median test. For each test the appropriate effect size estimator was selected. χ^2 : Cramer's v. KW: η^2 . Table S11. Properties of SUA-LFP beta entrainment. (a) Descriptive statistics (b) Results of statistical tests. χ^2 : Chi-square test

				wide				_	arrow					HED		
		Entrain	ment	Vect	٩	Preferred	Entrain	ment	Vec	ţ	Preferred	Entrain	ment	Vect	٩	Preferred
		probab	oility	leng	\$	phase	proba	bility	len	gth	phase	probab	oility	leng	\$	phase
		P	Φ	P	00	P	P	•	σ	m	P	P	•	P	m	P
Sal	Amp	0.0049	-0.12	0.955	0.07		1.0000	-0.08				0.0749	-0.10	1.0000	-0.15	0.274
Sal	Apo1	1.0000	-0.06	0.996	0.08		1.0000	-0.06				1.9e-4	-0.20	9.9e-9	0.68	0.273
Sal	Apo2	0.0017	-0.14	0.087	0.23		1.0000	-0.13				1.0000	-0.05	0.0047	0.16	0.359
Sal	Hal	0.4696	0.07	0.054	0.20		1.0000	-0.13				0.0452	0.11	0.0305	-0.25	0.486
Amp	Apo1	0.0018	-0.17	1.000	0.01		1.0000	-0.13				2.5e-8	-0.29	9.9e-9	0.60	0.110
Amp	Apo2	3.7e-10	-0.27	0.401	0.17		0.1523	-0.21				0.0017	-0.15	0.0049	0.27	0.123
Amp	Hal	2.0e-6	-0.19	0.343	0.13		1.0000	0.06				1.0000	0.01	0.0442	-0.07	0.274
Apo1	Apo2	2.0971	0.06	0.640	0.17		1.0000	0.05				0.0071	-0.17	2.0e-5	-0,48	0.273
Apo1	Hal	1.0000	-0.01	0.623	0.12		0.8143	-0.19			_	1.5e-8	0.31	9.9e-9	-0.76	0.597
Apo2	Hal	0.5619	-0.07	1.000	-0.04		0.0320	-0.26				0.0010	0.16	2.5e-8	-0.37	0.538

Ľ	0.004	10,004	20000 10101 10000	20000 2011	
5	2	04 13.87	04 13.87 0.0002	04 13.87 0.0002	04 13.87 0.0002 12.51
0.752		0.20	0.20 0.657	0.20 0.657	0.20 0.657 11.91
0.719		0.57	0.57 0.449	0.57 0.449	0.57 0.449 3.88
).0535		5.51	5.51 0.239	5.51 0.239	5.51 0.239 33.45
0.026	0.009	0.009 8.12	0.009 8.12 0.087	0.009 8.12 0.087 0.04	0.009 8.12 0.087 0.04 99.83
.5e-10	0.18	0.18 10.95	0 0.18 10.95 0.027	0 0.18 10.95 0.027 0.19	0.18 10.95 0.027 0.19 51.52
value	Effect size	Effect size value	Effect size value P value	Effect size value P value Effect size	Effect size value P value Effect size value
		Statistic	Statistic	Statistic	Statistic Statistic
alwide	units	e units Cortio	units Cortical narrow	units Cortical narrow units	units Cortical narrow units P

				phase						Vector lar	Ent. Proba			
aloop by crr bela (ali	Group by I ED hats (sll)	aroop of pere (an)	Group by bets (sll)	croab of acta (acti	Group by bata (Sal)		cional da destra	Group by drugs	6 1	ath	bility			
ang. SD	Mean	ang. SD	Mean	ang. SD	mean		ang. SD	mean	SD	mean				_
		_				5	0.65	-2.83	0.07	0.1	0.45	Sal		
0.84	2.73	0.75	2.81	0.62	2.82	w beta	0.63	-2.82	0.065	0.095	0.57	Amp	Descr	
							0.6	-2.96	0.063	0.095	0.37	Apo1	iptivesta	Wide
0.59	-2.91	0.71	-2.83	0.68	-2.82	High be	0.86	-2.83	0.057	0.085	0.31	Apo2	atistics	
	-		~		2	eta	0.87	-2.82	0.062	0.087	0.38	Hal		
						6	1.06	-2.11	0.075	0.101	0.66	Sal		
1.15	-1.65	1.16	-1.94	1.11	-1.66	w beta	0.74	-2.1	0.086	0.122	0.73	Amp	Desc	
							0.64	-2.47	0.044	0.079	0.59	Apo1	riptivest	narrow
0.67	-2.3	0.87	-2.2	1.04	-2.19	High b	0.85	-2.04	0.048	0.083	0.53	Apo2	atistics	
	7				Ű	eta	1.27	-2.2	0.073	0.111	0.78	Hal		
						5	1.37	2.24	0.016	0.018	0.42	Sal		
1.37	0.42	1.3	0.77	1.31	0.58	w beta	1.17	3.13	0.024	0.021	0.52	Amp	Desc	
							1.03	1.43	0.007	0.008	0.19	Apo1	riptivest	HED
1.2	2.9	1.3	2.9	1.3	2.6	High b	1.34	1.09	0.017	0.015	0.37	Apo2	atistics	
7	0		2	1	00	eta	1.35	-0.42	0.022	0.023	0.53	Hal		

		dIPFC	HF ampl	itude to (GPe beta	phase	GPe H	IF amplit	ude to dl	PFC beta	phase
		Sal	Amp	Apo1	Apo2	Hal	Sal	Amp	Apo1	Apo2	Hal
May DAC bata f	mean	15.41	17.35	17.64	15.27	12.93	15.525	14.80	16.08	15.23	15.03
IVIAX PAC Deta I	SD	3.62	4.72	4.21	4.15	3.26	5.03	4.96	5.41	5.20	4.62
May DAC	mean	6.701	5.649	4.960	4.957	8.009	3.055	3.926	2.895	2.978	3.420
IVIAX PAC	SD	3.803	3.202	2.874	2.727	5.138	1.160	1.785	0.818	1.019	1.724

b

		F	df1	df2	р	η²
	Max PAC frequency	17.71	4	454	1.6e-13	0.135
dipre Hr – Gre beta	Max PAC	10.12	4	454	7.5e-8	0.082
	Max PAC frequency	0.88	4	452	0.48	0.008
GPE HF - diPFC beta	Max PAC	10.07	4	452	8.2-8	0.082

С

		dIPFC	HF amplitude	e to GPe beta	phase	GPe H	F amplitude t	o dIPFC beta	phase
		Beta freq maximu	uency of Im PAC	Maxim	um PAC	Beta freq maximu	uency of Im PAC	Maxim	um PAC
		р	g	р	g	р	g	р	g
Sal	Amp	0.0032	-0.45	0.1727	0.30			2.6e-5	-0.56
Sal	Apo1	0.0028	-0.57	0.0112	0.51			0.9439	0.16
Sal	Apo2	0.9995	0.03	0.0115	0.51			0.9963	0.07
Sal	Hal	9.3e-4	0.71	0.1276	-0.30			0.4496	-0.26
Amp	Apo1	0.9875	-0.06	0.6629	0.22			3.2e-6	0.68
Amp	Apo2	0.0039	0.46	0.6630	0.23			2.2e-5	0.61
Amp	Hal	9.9e-9	1.03	7.6e-5	-0.59			0.1045	0.29
Apo1	Apo2	0.0030	0.56	1.0000	0.00			0.9960	-0.09
Apo1	Hal	9.9e-9	1.24	2.2e-6	-0.74			0.1574	-0.39
Apo2	Hal	0.0048	0.62	2.3e-6	-0.75			0.3097	-0.31

Supplementary Table 12. Properties of LFP HF beta PAC. (a) Descriptive statistics. (b) Results of one-way anova tests with PAC properties as dependent factors and drug condition as independent factor. Test was conducted for each PAC property (i.e. each row) separately. (c) Post-hoc Tukey test results. p-p value, results of Tukey post-hoc test. g-effect size estimated by Hedge's g. Comparisons that did not reach statistical significance and didn't require post-hoc test are marked with ---. Results are presented in Figure 6. Source data are provided as a Source Data file. PAC: phase amplitude coupling, f: frequency, SD: standard deviation, dlPFC dorsolateral prefrontal cortex, GPe globus pallidis pars externa, Sal: saline, Amp: amphetamine, Apo: apomorphine, Hal: haloperidol, HF: high frequency.

а

	Dependent variable	Factor	F	DF 1	DF 2	р
Beta nPSD	High-beta	Time	33.949	1	462	1.1e-08
	frequency	DRT	2.1604	1	462	0.1423
		Time x DRT	25.36	1	462	6.8e-07
	Low-beta	Time	0.101	1	414	0.7508
	frequency	DRT	3.736	1	414	0.0539
		Time x DRT	1.1366	1	414	0.287
	High-beta	Time	0.7346	1	736	0.3917
	AUC	DRT	3.3476	1	736	0.0677
		Time x DRT	3.558	1	736	0.0597
	Low-beta	Time	1.4921	1	665	0.2223
	AUC	DRT	40.934	1	665	2.9e-10
		Time x DRT	6.3891	1	665	0.0117
Beta coherence	High-beta frequency	Time	8.0614	1	120	0.0053
		DRT	3.266	1	120	0.0732
		Time x DRT	0.4526	1	120	0.5024
	Low-beta	Time	0.5466	1	201	0.4606
	frequency	DRT	0.6182	1	201	0.4327
		Time x DRT	2.0826	1	201	0.1505
	High-beta	Time	1.9532	1	200	0.1638
	AUC	DRT	2.5503	1	200	0.11185
		Time x DRT	5.6426	1	200	0.0185
	Low-beta	Time	0.0221	1	476	0.88185
	AUC	DRT	0.2927	1	476	0.5887
		Time x DRT	3.7752	1	476	0.0526

Supplementary Table 13: Time and DRT effects on beta properties in PD patients. To estimate the effect of time and DRT on beta properties in patients with PD, a mixed linear effect model (MLEM) was constructed for each dependent variable (columns 1 and 2). The model included fixed effect terms for time, DRT and their interaction (column 3). The resulted estimated coefficients are presented in column 4. One-way ANOVA was used on the model output to determine the significance of each factor. ANOVA results are presented in columns 4-7. Note that a separate model was constructed for high-beta and low-beta properties. Subjects were clustered as having low-beta, high-beta or both and traces were included in the analysis accordingly. i.e. If a subject had low-beta, all his traces were included in the low-beta analysis and the same for high-beta. Only traces with significant beta peaks were included in the frequency models. Time x DRT estimatedcoefficient represents time effect given on DRT condition, in addition to the main time effect. A significant positive estimated-coefficient indicated that time slope in the on DRT condition was significantly more positive (or less negative) than time slope in the off DRT condition, and vice versa for negative values. Source data are provided as a Source Data file. nPSD: normalized power spectral density, DF: degrees of freedom, AUC: area under the curve, DRT: dopamine replacement therapy

Pts.	Age	Gender	Duration of disease (years)	Baseline Medications (dose)	Levodopa Equivalent Dose (LED)	Baseline UPDRS III motor score (PD)	DBS Lead Target [x,y,z]	Optimal stimulation parameters: (Frequency (Hz); Pulse Duration (μs); Contact configuration; Voltage(V))
Jur 01	60-70	F	8-10	Stalevo 50 mg q4d Rasagiline 2 mg qid	1066	35	Left: [-12, -4, -4.5] Right: [12.25, -3.5, -5.5]	Left: (180; 60; c+9-; 2) Right: (180; 60; c+1-; 1.9)
Jur 03	50-60	М	8-10	Carbidopa 12.5 mg q3h Levodopa 125 mg q3h Biperiden 1mg q4h Ropinirole 4mg qid	1257.5	31	Left: [-11.25, -1.75, -4.5] Right: [11, -2.5, -5]	Left: (130; 60; c+9-; 2.1) Right: (130; 60; c+1-; 1.6)
Jur 05	50-60	F	8-10	Carbidopa 25 mg q6h Levodopa 250 mg q6h	1125	42	Left: [-10.5, -2.5, -4] Right: [10.75, -3.5, -5]	Left: (130; 60; c+8-11-; 1.9) Right: (130; 60; c+1-2-; 1.3)
Jur 06	50-60	F	8-10	Carbidopa 25 mg q5h Levodopa 250 mg q5h Rasagiline 1mg qid Ropinirole 8mg qid	2165	43	Left: [-11, -3, -4] Right: [11.5, -3, -4.5]	Left: (130; 60; c+9-11-; 2.2) Right: (130; 60; c+1-3-; 1.8)

Supplementary Table 14: Patient demographics and treatment.