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Peer Review File



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

In this manuscript, Hildebrandt and colleagues use Spatial Transcriptomics (ST) to study liver 

zonation. Liver zonation has been recently studied with landmark-gene guided single cell RNAseq 

or with laser capture microdissection sequencing. The ST approach is a complementary technique, 

which provides important new insights into the intriguing phenomenon of liver zonation. While 

spatial resolution is relatively low (150um between spots), the complete spatial coverage of the 

tissue with thousands of spots enables analyses that preserve the combined distances from both 

central veins and portal veins, as well as the distances from the liver capsule. This leads to some 

interesting discoveries, e.g. the fibrotic cells at the Glisson capsule (cluster 5). I particularly liked 

the way in which the authors overcame the spatial resolution limit with their ‘expression by 

distance’ method. This is a kind of ‘super-resolution’ approach that provides continuous detailed 

spatial expression profiles. I have a few suggestions for additional analyses to be addressed in a 

revision: 

 

1) A major power of the approach is the ability to simultaneously record the distances of each spot 

from both the portal vein and the central vein. This enables assessing how the expression of each 

gene is affected by these two distances, potentially leading to novel insights into regulation of 

hepatocyte zonation. Hepatocyte zonation is shaped by both morphogens secreted by the non-

parenchymal cells that surround the central vein (e.g. Wnt and Rspo3) as well as blood-borne 

factor such as hormones, nutrients and oxygen (for a list of some of these putative targets see 

PMID 28166538, Supplementary Table 4). It would be interesting to perform multi-linear 

regression of the expression of each gene vs. both the distance to the closest portal node and to 

the closest central vein. One could then use Bayesian Information Criterion or other methods to 

assess which of these distances is the stronger explanatory variable. I would expect classic Wnt 

target pericentral genes such as Axin2, Lgr5 and Cyp2e1, to be strongly affected by the distance 

to the central vein, classic glucagon targets should be periportal (PMID 29555772), whereas for 

some genes such as Cyp2f2, which is both a Wnt-inhibited gene and a RAS-activated gene 

(periportal signal) identifying the dominant distance could be very interesting. 

 

2) The fibrotic cluster 5 at the liver capsule is very interesting. Are there other genes that show 

zonated expression towards the liver capsule? This could be assessed systematically with the 

present data by seeking genes that are significantly correlated or anti-correlated with the distance 

from the capsule. Particularly interesting genes are markers of liver capsule macrophages (PMID 

30222169). 

 

3) The paper discusses pericentral hepatocyte genes and periportal hepatocyte genes, what about 

the mid-lobule-peaking genes such as Hamp, Hamp2 and Igfbp2. Are they expressed in the 

‘intermediate’ cluster 0? In a related note, Figure 1C does not show any markers for cluster 0, is 

this a real cluster or simply spots with low number of reads? A violinplot of log10 (numbers of 

reads) for each cluster + umap such as Figure 1b colored by log10(number of reads per cell) 

would be highly informative here. If cluster 0 spots consist of low-read spots I think they should be 

removed. 

 

4) The liver consists of zonated non-parenchymal cell populations (NPCs). The authors should 

attempt to produce an expression by distance plot for these as well. For example, highly zonated 

endothelial genes (PMID 30222169) include the pericentral genes Thbd and Cdh13 and the 

periportal Efnb2 and Ltbp4. Highly zonated hepatic stellate cell genes (PMID 31722201) include 

the pericentral Adamtsl2 and Sox4 and the periportal Ngfr and Tagln. The authors should explore 

whether these genes show up in the ST data and produce their zonation plots. In addition, the 

authors should explore the concept of immune zonation (PMID 33239787) – is there a higher 

summed expression of immune genes in periportal spots (this would be expected based on the 

increased abundance of periportal immune cells previously reported? Are there zonated Kupffer 

cell genes? One approach to address the zonation of NPCs would be to extract genes specific to the 

particular NPC population of interest and then perform DGE between spots in cluster 1 and 2 over 

the expression matrix normalized by the sum of these NPC-specific genes (for example see PMID 

32814046). 



 

Minor comments: 

1) Row 762 – what are the units of 210 and why was this threshold chosen? 

2) Figure 3b – the humps in Figure 3b are not real (e.g. see smFISH validations for genes such as 

Cyp2e1 and Cyp2f2 in PMID 28166538, these are clearly monotonic). The authors should consider 

a computational method to remove these artefacts. 

3) Lyve1 is considered in the manuscript a marker of lymphatic endothelial cells, is it really distinct 

from endothelial cells? Please examine the correlation with Cdh5. 

4) For the deconvolution the authors may want to consider other papers establishing cell-type 

references from single cell datasets that had more comprehensive coverage of liver NPCs 

compared to Tabula Muris, e.g. PMID 31398325, PMID 30222169 and PMID 31722201. 

5) Line 117- Something in these numbers does not add up, how can each spot contain 30 cells, yet 

only 5-10 of them are hepatocytes? Hepatocytes take up 80% of liver mass but 60% of the 

number of cells. Please check. 

 

Shalev Itzkovitz 

 

 

 

Reviewer #2: 

Remarks to the Author: 

With their work entitled Spatial Transcriptomics to define transcriptional patterns of zonation and 

structural components in the liver, Hildebrand et al make an important contribution to the basic 

understanding of the zonation of the liver via using Computational models. By applying the latest 

methods in the field of systems biology using spatial transcriptomic analysis, the authors were able 

to show a very deep insight into the expression signature depending on the spatial allocation of 

hepatocytes using cryosections of liver material. The assignment of structural functions to specific 

regions in the parenchyma is particularly interesting. 

However, the work also has some small weaknesses that I think should be taken into account in a 

Revision process. 

1. liver tissue from female mice was used as material. This fact is in not included in the discussion 

of the results. Since it is known that the dimophism of the liver can also have a strong influence on 

the zonation (also on the morphology within the parenchyma), this would be important to discuss. 

2. it would be good if the authors would carry out some additional experiments to confirm some of 

their results with regard to the uncharacterised structures found. 

3. it would be important to know whether this method could also be applied to human material in a 

relatively high throughput manner. Such a statement would certainly encourage other researchers 

in the field of liver zonation to apply this method to answer still open questions. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

This paper performed the spatial transcriptomics on a total of 8 sections of wild type adult mouse 

livers consisting of 19,017 genes across 4,863 spots (each covering 5-10 hepatocytes and up to 30 

cells), to study the zonation of liver lobules. In this paper, the unsupervised clustering on spot-

level gene expression revealed six unique clusters, where two correspond to periportal and 

pericentral regions, respectively, and one is claimed to be a previously uncharacterized liver 

structure. The further cell type identification using scRNAseq-derived cell type signatures found the 

co-locolization of multiple cell types, but differing from the previous scRNAseq-based observation, 

the liver is found to be predominantly constituted by zonated hepatocytes. Moreover, authors 

observed the dependency between spatial distance and gene expression along lobule axis, which 

further motivated the computational prediction of portal and central veins from spatial gene 

expression. 

 

This study is non-trivial. However, the low resolution (non-single cell level) of spots is the major 

concern, which may result in suspicious conclusions when conducting all clustering, biological 

interpretation and cell type identification. Further, this paper lacks in-depth analysis and 

validation, and some of the observations are over-interpreted, making the result and conclusion 



less solid. Followed are the detailed comments. 

 

1) Low cell resolution of spots: 

The technical artifacts of “doublet” in scRNAseq leads to suspicious biological conclusion, while this 

phenomenon is much more severe in the spatial transcriptome of this paper, where “each spot 

contains between 5-10 hepatocytes and up to 30 cells in total per spot”. It may largely bias the 

unsupervised clustering, resulting in suspicious cluster interpretation. 

1a) As the very first step, the authors are suggested to demonstrate the frequency of cell count in 

spots, e.g. histogram or density plot. 

1b) it is crucial to investigate whether the cell count in spots can influence the clustering. The 

authors are suggested to overlay the cell count in spots on the spot clustering. It is expected that 

the clusters with small cell count may give the more confident and accurate cluster interpretation, 

compared to those with high cell count, which are of the average expression of multiple cell types. 

1c) to further reduce the bias, authors are suggested to also directly use the spots with low cell 

count to conduct clustering, to see how many cluster can be made, followed by cell type 

identification and biological interpretation. 

 

2) previously uncharacterized structure Cluster 5 

Based on unsupervised clustering, authors found the cluster 5, which may suggest an 

uncharacterized liver structure. However, given the above concern about the low resolution, the 

cluster may not be a novel structure, but result from the mixed existing cell population within 

spots. Thus, the average expression of various cell types drive the high similarity within cluster 5 

and make them different from the others. 

 

3) Spot gene expression normalization 

Considering multiple cells in each spot, the Reviewer is curious about the gene expression 

normalization? Does it normalize to the cell count? This is not a standard step in the traditional 

single cell RNAseq gene expression normalization, but if not done, the gene expression of spots 

might be misestimated, i.e., overestimated for spots with higher cell count and underestimated for 

spots with lower cell count. This may cause problems when conducting differential gene expression 

analysis. 

 

4) Gene sets of interest 

It would be interesting to see if the well-known gene set enrichment can be reproduced along the 

lobule axis, for example, the gradually decreasing Nutrient- and oxygen-rich condition, 

Mitochondrial β-oxidation, Gluconeogenesis, Glycogen synthesis, and the gradually increasing WNT 

signaling, Glycolysis, Lipogenesis from zone1 to zone3. The similar expectation also includes the 

well-known cell types along lobule axis. 

 

5) inappropriate statistic 

In Fig 2a), authors calculated the Pearson correlation between cell type proportions that do not 

follow normal distribution. This is inappropriate, since the Pearson correlation might be largely 

biased by the outlier values from the data. 

 

6) overstatement of correlation analysis 

Due to mixed cells in spots, authors used the scRNAseq-derived signatures to estimate the cell 

type proportions for each spot, followed by the correlation between those proportions. As 

mentioned in this paper, “Pearson correlation scores between cell type proportions across the 

spots show positive correlation, to be interpreted as spatial co-localization of non-parenchymal 

cells”. 

However, the low values of cell type proportions may be only the noise, that is, those cell types do 

not exist in the spot. Meanwhile, the correlation herein, may be largely driven by the similarity 

between the scRNAseq-derived signatures, the gene sharing or co-expression among signatures. 

So, correlation may not be because of the real spatial co-localization, but just mathematical 

similarities. The above possibilities cannot be excluded with no solid validation. 

As a negative control, the same method is suggested to apply to a single cell RNAseq data. If no 

similar observation is made, then the co-localization could be partially supported. 

 

7) Discrepancy between spatial transcriptome and MCA 



As mentioned in the paper, “A large portion of spots is assigned to cluster 1 and cluster 2, and 

100% of the spots contain hepatocyte markers, showing that - spatially - the liver is 

predominantly constituted by zonated hepatocytes, while these cells only represent a very small 

fraction of the MCA data. This discrepancy illustrates the power of complementing single cell 

trancriptome data with spatial gene expression data to thoroughly delineate liver architecture and 

the transcriptional landscape of liver tissue, while simultaneously demonstrating the limits of 

scRNA-seq data integration.” 

However, the discrepancies may only result from the limit of spatial transcriptome rather than the 

limits of scRNA-seq. The spatial transcriptome spot is not at the single cell level, and cluster1/2 

may cover both zonated and non-zonated hepatocytes. Thus, it is possible that, even with only a 

very small proportion of zonated hepatocytes, cluster1/2 is still good enough to be distinguished 

from the clusters comprising non-zonated hepatocytes and cells other than hepatocytes. With that 

said, “A large portion of spots is assigned to cluster 1 and cluster 2” cannot exclude the possibility 

that the liver has only a small proportion of zonated hepatocytes, as suggested by MCA. More 

validation is needed to make the conclusion. 

 

8) Prediction accuracy of portal and central veins 

The authors predicted the portal and central veins based on gene expression. Although conducted 

cross validation, the Reviewer cannot find the relevant performance evaluation, failing to see how 

good the prediction is. 

First, regarding the prediction evaluation, the authors are suggested to provide the ROC curve; 

Second, regarding the prediction result, it is better to overlay the statics of prediction, eg., the log 

ratio on Fig 3c, so that others can see how confident the vein prediction is. 

 

9) Immunostaining of human liver tissue 

Considering the above concerns, in addition to H&E staining, some other Immunostaining with 

antibodies against liver zonation and cell types are also suggested, for example, CD73 for 

pericentral zonation and E-cadherin for periportal zonation. These might be overlaid on all 

clustering, cell types and vein prediction, which may serve as the orthogonal validation for multiple 

observations. 

 



“Spatial Transcriptomics to define transcriptional patterns of zonation and 

structural components in the liver”  

-  

 Responses to the reviewers  
 

We would like to first thank all reviewers for their constructive feedback provided to the 

manuscript entitled “Spatial Transcriptomics to define transcriptional patterns of zonation and 

structural components in the liver” and hope we have addressed all their comments adequately 

and to their satisfaction. 

 

We kindly note that several of the questions and comments provide rather extensive responses. 

The extent of these responses is explained by the fact that we have partially included main 

figures of the original manuscript as well as figures included in the revised manuscript to the 

respective responses for ease of inspection and interpretation and to clarify our strategy to the 

reviewers beyond what is written in the responses. Throughout the responses all figures are 

referred to as “Review Figure”. At the end of each response we clarify if and how we modified 

the text in response to each comment and specify which figures we included and how they will 

be referred to in the revised manuscript.  

 

Literature references are included in each individual response and respective links to these 

references can be found at the end of each response.  

 

Reviewer #1 

 

1) model gene expression and test against reduced models  

 

A major power of the approach is the ability to simultaneously record the distances of each spot 

from both the portal vein and the central vein. This enables assessing how the expression of 

each gene is affected by these two distances. potentially leading to novel insights into regulation 

of hepatocyte zonation. Hepatocyte zonation is shaped by both morphogens secreted by the 

non-parenchymal cells that surround the central vein (e.g. Wnt and Rspo3) as well as blood-

borne factors such as hormones. nutrients and oxygen (for a list of some of these putative 

targets see PMID 28166538. Supplementary Table 4). It would be interesting to perform multi-

linear regression of the expression of each gene vs. both the distance to the closest portal node 

and to the closest central vein. One could then use Bayesian Information Criterion or other 

methods to assess which of these distances is the stronger explanatory variable. I would expect 

classic Wnt target pericentral genes such as Axin2, Lgr5 and Cyp2e1, to be strongly affected by 

the distance to the central vein, classic glucagon targets should be periportal (PMID 29555772), 



whereas for some genes such as Cyp2f2, which is both a Wnt-inhibited gene and a RAS-

activated gene (periportal signal) identifying the dominant distance could be very interesting. 

 

We would like to express our gratitude towards the reviewer for an excellent suggestion which 

helped us to elevate the quality of our work substantially. Initially, we sought to convey 

information about the (potentially) synergistic effects between portal and central veins by use of 

our log-ratio plots, but the suggested multi-linear regression approach is to some extent superior 

to the log-ratio approach. However, as a consequence of the reviewer’s comment we have 

implemented a new approach that we believe is more appropriate to convey this information; we 

refer to this approach as the bivariate model and will describe it and our results more thoroughly 

below: 

 

Bivariate Model: Description 

 

As suggested (by the reviewer) we decided to model the (normalized) gene expression as a 

function of the two independent variables dc (distance to nearest central vein) and dp (distance 

to nearest portal vein). In addition, we included an intercept term in this model - to represent a 

“baseline” expression level. Since the model is small and only utilizes two covariates, we 

decided to not apply any regularization scheme to our model. Now, if we let yg represent the 

expression of gene g, our model then reads: 

 

 
 

Once the coefficient values are estimated, we can predict the expression level for any 

combination of distance values. Here, we chose to use the same distance threshold as for 

individual vein distances of 400 µm. This revised threshold describes the longest distance 

between adjacent spot centers in the same row. (Please refer to minor comment 1 for more 

detailed information on the threshold). While the reviewer kindly provided us with suggestions of 

genes to examine, we first sought to confirm that this approach gave the expected results when 

applied to the central and portal marker genes that we’ve already studied more carefully. Thus, 

we fit the model to our data and predicted expression values over a domain of various distance 

values. Although the formula above constitutes a 2D plane in 3D space, it can be visualized in 

2D plots by letting the color intensity represent the predicted “height” (expression values) of a 

given distance combination.  

 

Bivariate Model: Evaluation 

 

In order to assess whether this model produced reasonable results that aligned with our 

expectations, we first applied it to the known marker genes for central and portal veins. The 

results - displayed as 2D plots - for these 10 (5+5) portal and central marker genes are 

displayed in Review Figure 1, while a guide for interpretation of these plots is found in Review 

Figure 2. 

 



 
Review Figure 1 | Heatmaps representing predicted normalized gene expression value for each of the 

5+5 portal (top) and central (bottom) marker genes. The position in the xy-plane represents the distance 

to the nearest vein of a given type, while the intensity is proportional to the normalized gene expression. 

We will refer to these plots as bivariate expression by distance plots. Relative expression values for each 

gene are depicted in a color gradient ranging from low (dark) to high (light). 

 

 

 
 

Review Figure 2 | Guide to interpretation of the 2D plots given in Review Figure 1. The leftmost image 

represents the observed spatial domain and the colored crosses are certain reference positions, the right 

plot indicates the (approximate) position of these reference positions in the central vs portal distance 

plots. 

 

 



As can be observed, all marker genes displayed the expected patterns, i.e. highest intensity in 

the upper left corner and bottom right corner for central and portal genes, respectively. We 

interpret this as a positive affirmation of the model’s validity. Evidently, visual inspection can 

provide several insights such as the influence of a certain covariate on the gene expression, but 

we still sought to quantify these effects in a more formalized manner.  

 

 

Bivariate Model: Testing Model Performance 

 

Hence, in line with the reviewer’s suggestion of testing the performance between a more 

complex model including both distances as covariates (full model) and a reduced model 

(including only one distance as covariate) we also implemented a likelihood ratio test (LRT). 

Using the LRT we test both reduced models (dropping the central alternatively portal distance 

covariate) against the full model, to better understand which covariates that were informative 

and which were not. In the LRT the full model was (in both cases) taken as the model where 

both covariates (distance to central and portal vein) were included while the three reduced 

models were obtained by excluding either the central, portal vein or both distance covariates. 

That is: 

 

Full model :  

Reduced model 1 :   

Reduced model 2:   

Reduced model 3:  

 

To briefly explain how to interpret the result from the likelihood ratio test where the full model 

does not explain the data significantly better than any of the reduced models (accounting for the 

additional extra variable(s)):  

 

● If the full model does not outperform reduced model 1, distance to the portal vein does 

not have a significant impact on the gene expression of the gene of interest 

● If the full model does not outperform reduced model 2, distance to the central vein does 

not have a significant impact on the gene expression of the gene of interest 

● If the full model does not outperform reduced model 3, distance to neither of the vein 

types is informative of the gene’s expression. Effectively, this means that a gene 

expression is constant with respect to vein distances.  

 

When examining the expression of portal and central maker genes, the full model was favored 

in all cases. These results are presented in Appendix Table 1. Having established confidence 

and value in the use of these bivariate plots together with the LRT, we felt comfortable to start 

using them in order to answer questions where we did not know the answers a priori to the 

analysis. 

 

Bivariate Model : Further analysis 

 



 

Encouraged by this and inspired by the reviewer's comments, we looked at additional sets of 

genes which are known to influence hepatocyte zonation. These included selected gene sets for 

morphogens such as wnt and ha-ras target genes [1,2,6] as well as gene sets which are known 

to be regulated by blood-borne factors, such as hormones (pituitary hormone targets)[3,6], 

nutrients (glucagon targets) [4] and oxygen (chronic hypoxia targets) [5,6].  

 

We extracted a selection of genes for each set; wnt, ha-ras, glucagon, pituitary hormone, and 

chronic hypoxia targets and intersected them with the list of differentially expressed genes 

between the central and portal cluster in our spatial data. For glucagon targets we extracted a 

list of periportal genes which showed differential expression in glucagon deficient mice (Gcg -/-) 

[4].  

 

We then examined the full model of the two genes showing the highest upregulation (Mup20) or 

downregulation (Mmd2) in glucagon deficient mice, described by Cheng et al. [4], and an 

additional 10 genes displaying differential gene up-regulated gene expression with the highest 

log-fold change in the periportal area of our spatial data (Sds, Hal, Ctsc, Aldh1b1, Hsd17b6, 

Etnppl, Slc7a2, Apoa4, Gls2 and Cyp17a1).  

 

To study the influence of the distance to central and portal veins on wnt expression, we followed 

a similar approach, by intersecting genes considered to be wnt target genes [1,6], and our 

spatial data. For the bivariate plots we then chose genes depicting a high log-fold change in the 

pericentral area, which have not been shown in other bivariate plots, as well as the wnt target 

genes suggested by the reviewer (Axin2, Lgr5 and Cyp2e1). 

 

For ha-ras, pituitary hormone and chronic hypoxia targets we selected the 2 genes with the 

highest log-fold change (indicating enrichment around the central vein) and the 2 genes with the 

lowest log-fold change (indicating enrichment around the portal vein). The multi-linear 

regression analysis for these suggested gene sets obtained the following results: 

 

1) Glucagon target genes 

 

For the investigated glucagon target genes, the majority shows highest expression in 

close proximity to the portal vein and further distance to the central vein illustrated by the 

highest expression value in the lower right corner in the bivariate plots (Review Figure 

3). Mmd2 expression is decreasing in further distance to the portal vein and the results 

of the LRT of Mmd2 show no superior performance of the full model over reduced model 

2 (portal vein distance only) (Review Figure 3, Appendix Table 2). This indicates that the 

distance to the portal vein is sufficient to explain the variation in spatial gene expression 

of Mmd2 expression. For the spatial expression of Mup20 both reduced models and the 

intercept-only model perform better than the corresponding full models. Thus spatial 

gene expression of Mup20 seems to be expressed at relatively constant levels w.r.t vein 

distances and a model consisting of a single intercept would be a sufficient explanatory 

variable. In all other cases, where the highest expression close to the portal vein is 



observed (Sds, Hal, Ctsc, Aldh1b1, Hsd17b16, Etnppl, Slc7a2, Apoa4, Gls2 and 

Cyp17a1), the full model performs superior to both reduced models (central and portal) 

(Appendix Table 2). Hence, both distances are informative to predict spatial gene 

expression of these glucagon targets, i.e. increased expression in close proximity to the 

portal vein and increasing distance to the central vein.  

 

2) Wnt target genes 

 

In contrast to the expression of glucagon targets, most selected wnt target genes exhibit 

highest expression in closest proximity to the central vein and long distance to the portal 

vein (upper left corner in the bivariate plots) (Review Figure 4). The LRT results for all 

genes exhibiting this expression pattern show superior performance of the full model in 

comparison to the single covariate models, suggesting that distance to the central vein 

and the portal vein are informative to predict the expression of the wnt targets Slc1a2, 

Cyp2a5, Cyp2e1 Gulo, Slc22a1, Lect2, Cyp2c37, Alh1a1 and Cyp1a2 (Appendix Table 

3). In the case of Axin2 and Lgr5, the highest expression is observed along the portal 

axis and in close proximity to the central vein. The LRT shows inferiority of the full model 

in comparison to both reduced models (portal and central) and the full intercept for Lgr5 

expression. This observation indicates that Lgr5 expression can be predicted to be 

expressed relatively constant across the tissue. For Axin2 expression the full model 

outperforms the reduced portal model, suggesting that the distance to the central vein 

seems to be more influential in the prediction of Axin2 zonation along the lobular axis. 

However, the reduced intercept-only model outperforms the full model at a significance 

threshold of 0.05, suggesting that although the distance to the central vein is more 

influential for Axin2 expression, it is to a fairly small extent.  

 

 
Review Figure 3 | Bivariate expression by distance plots for a set of periportal glucagon targets. The 

distance thresholds are set to a threshold of 400 µm on the x- and y-axis. Expression values are depicted 

as a gradient from low (dark) to high (light). Numbers in curly brackets after the gene name indicate that 

{1} the full model does not perform significantly better than the reduced portal model, {2} the full model 



does not perform significantly better than the reduced central model, {3} the full model does not perform 

significantly better than either of the reduced models to explain gene expression along the lobular axis, 

{4} the full model does not outperform the most reduced model (intercept only), i.e., the gene expression 

can be taken as constant across the tissue w.r.t vein distances (p-value < 0.05). 

 

 
Review Figure 4 | Bivariate expression by distance plots for a set of wnt targets. The distance thresholds 

are set to a threshold of 400 µm on the x- and y-axis. Relative expression values are depicted as a 

gradient from low (dark) to high (light).  Numbers in curly brackets after the gene name indicate that {1} 

the full model does not perform significantly better than the reduced portal model, {2} the full model does 

not perform significantly better than the reduced central model, {3} the full model does not perform 

significantly better than either of the reduced models to explain gene expression along the lobular axis, 

{4} the full model does not outperform the most reduced model (intercept only), i.e., the gene expression 

can be taken as constant across the tissue w.r.t vein distances (p-value < 0.05).  

 

 

3) Ha-ras, chronic hypoxia and pituitary hormone target genes  

 

For selected ha-ras target genes we found that Cyp2f2 (also observed as a portal vein 

marker) and Apoa4 exhibit the highest expression closest to the portal vein and in further 

distance to the central vein. Oat shows the highest expression closest to the central vein 

and far from the portal vein, while Mup17 shows the highest expression far from the 

portal vein but remains expressed along the central axis (Review Figure 5a). All 

expression profiles along the centrilobular axis, except for Mup17 can be explained 

significantly better by the full model (Appendix Table 4). For Mup17 the univariate model 

of the portal vein outperforms the full model, suggesting that the central vein represents 

the stronger explanatory variable for Mup17 expression along the centrilobular axis than 

the portal vein.  

 

The chronic hypoxia targets Hal and Pck exhibit the highest expression in close 

proximity to the central vein and in distance to the portal vein. However, the bivariate 



model for Pck is outperformed by the reduced portal model as the distance to the portal 

vein alone explains the expression of Pck more accurately. In the case of the hypoxia 

targets Gstm3 and Slc1a2, highest expression is observed closest to the central vein, 

with the bivariate model being superior to both univariate models (Review Figure 5b, 

Appendix Table 5).  

 

The pituitary hormone targets Fmo3 and Igfbp2 display the highest expression closest to 

the portal vein, however the reduced portal model of Fmo3 expression outperforms the 

full model, indicating the distance to the portal vein explains spatial expression of Fmo3 

better. For Igfbp2 expression the bivariate model is not performing significantly better 

than either univariate model, indicating that the reduced models for the central and portal 

vein  influence Igfbp2 expression along the lobular axis but to a fairly small degree. For 

Cyp4a10 and Slc22a1 the highest expression can be observed closest to the central 

vein and far from the portal vein and the bivariate model performing significantly better 

for both genes, making both distances informative for the the expression of Cyp4a10 

and Slc22a1 along the lobular axis (Review Figure 5c, Appendix Table 6).  

 

 
Review Figure 5 | Bivariate expression by distance plots for a set of a) ha-ras [1], b) chronic hypoxia [2] 

and c) pituitary hormone targets [3]. The distance thresholds are set to a threshold of 400 µm on the x- 

and y-axis. Relative expression values are depicted as a gradient from low (dark) to high (light). Numbers 

in curly brackets after the gene name indicate that {1} the full model does not perform significantly better 

than the reduced portal model, {2} the full model does not perform significantly better than the reduced 

central model, {3} the full model does not perform significantly better than either of the reduced models to 

explain gene expression along the lobular axis (p-value < 0.05). 

 

Taken together, we would like to thank the reviewer again for the suggestion to include a 

bivariate regression model with an associated test to interpret the influence of the distances to 

central and portal veins on gene expression simultaneously.  



The results obtained from this additional analysis represent a substantial contribution to the 

manuscript and - in our opinion - explain the influence of different vein types on gene expression 

far better than the previously performed log-ratio plots.  

 

In general we observed that many classical glucagon targets with differential gene expression in 

the portal area are best explained by both the distance to the central and portal vein. The same 

trend was observed for classical wnt targets. For instance, the wnt targets Cyp2f2 and Cyp2e1 

are most highly expressed in close proximity to the portal or central vein, respectively. For both 

genes the central and portal vein are informative, as indicated by the LRT, suggesting 

synergistic effects of portal and central vein distance on the expression of these genes. For 

other wnt targets, such as Axin2 and Lgr5, our results demonstrate only one or even no 

dominant explanatory variable for gene expression along the centrilobular axis, respectively. 

These results are very informative for the investigation of genes which are known to be 

influenced by morphogenes in opposite venous regions, such as Cyp2f2 regulation by ha-ras 

and wnt [7].   

 

As we consider the analysis and results suggested by the reviewer as superior to the log-ratio 

analysis, we are exchanging all log-ratio plots described in the original manuscript with the 

bivariate plots (Figure 3c) and include all tables for the statistical LRT analysis as well as 

representative bivariate plots for the investigated pathways in the supplementary information.  

 

Figure 3b and the respective figure legend was changed to figure 3c in the manuscript, based 

on the reviewer’s suggestions:  

 

Line [1057 - 1064] 

 

“Figure 3c | Visualization of influence of distance to both vein types on expression by bivariate 

expression by distance plots (see methods for details). Gene expression values are depicted in 

a gradient from low (dark) to high values (light). The distance of each gene to central veins 

between 0 and 400 µm is represented on the x-axis. Simultaneously, distances to portal veins 

for the same distance are depicted on the y-axis for each gene. High values in the bottom right 

corner indicate gene expression is predominantly observed close to portal veins and far from 

central veins, while high values in the upper left corner indicate the reverse observation (below 

graphs).”  

 

Consequently, figure 3c has been changed to 3d and figure 3d has been changed to 3e in the 

revised version of the manuscript. 

 

We modified the manuscript text referring to the newly obtained results accordingly in the results 

section from line [262 - 278] in the revised manuscript. 

 

Further we consider the results of the bivariate expression analysis  along the PC-PP axis of 

zonation and metabolic pathway markers very relevant and a valuable addition to our study. 

Therefore, we made the following changes to the manuscript text and added representative 



bivariate plots and the LRT test results for all investigated metabolic genes in the 

Supplementary information (Supplementary Figure 14 and Supplementary table 5). 

 

We further refined the discussion of the manuscript, including conclusions drawn from the 

additional metabolic zonation results presented here as follows:  

 

Line [395 - 398] 

“We further affirm the established relevance of zonation of multiple metabolic pathways along 

the porto-central axis 5–7,10,11,13–15,53,54, by tracing expression gradients from outer vein borders 

and across physical space. 

” 

 

and  

 

Line [403 - 407] 

"Nevertheless, the results illustrate  the overall relationships of zonation markers, including 

NPC, metabolic pathway and immune markers with central and portal veins across the tissue, 

suggesting whether the distances to central and/or portal veins represent stronger explanatory 

variables for gene expression independent of the schematic organization of lobules in physical 

space.” 

 

Lastly, we have added a description of the bivariate expression analysis to the methods section 

of the manuscript from line [776 - 839]. 

 

 

[1] https://pubmed.ncbi.nlm.nih.gov/24214913/ 

[2] https://pubmed.ncbi.nlm.nih.gov/24535843/ 

[3] https://pubmed.ncbi.nlm.nih.gov/19943135/ 

[4] https://pubmed.ncbi.nlm.nih.gov/29555772/ 

[5]  https://pubmed.ncbi.nlm.nih.gov/20103700/ 

[6] https://www.nature.com/articles/nature21065 

[7] https://pubmed.ncbi.nlm.nih.gov/19275 
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https://pubmed.ncbi.nlm.nih.gov/24214913/
https://pubmed.ncbi.nlm.nih.gov/24535843/
https://pubmed.ncbi.nlm.nih.gov/19943135/
https://pubmed.ncbi.nlm.nih.gov/29555772/
https://pubmed.ncbi.nlm.nih.gov/20103700/
https://www.nature.com/articles/nature21065
https://pubmed.ncbi.nlm.nih.gov/19275549/


2) Investigate correlated/anti-correlated genes towards the liver capsule, zonated 

expression towards the liver capsule  

 

The fibrotic cluster 5 at the liver capsule is very interesting. Are there other genes that show 

zonated expression towards the liver capsule? This could be assessed systematically with the 

present data by seeking genes that are significantly correlated or anti-correlated with the 

distance from the capsule. Particularly interesting genes are markers of liver capsule 

macrophages (PMID 30222169). 

 

We are delighted to hear that the reviewer also considers cluster 5 of interest, and welcome the 

suggestion to further investigate the character of the tissue by looking at potentially zonated 

genes w.r.t. this structure. Thus, we constructed similar feature-by-distance plots as to what 

previously have been presented for the portal and central veins, but now using cluster 5 as a 

reference rather than the vein structures. 

 

First we assessed zonation patterns of marker genes associated with the liver capsule 

macrophages (LCMs), as suggested by the reviewer. To this end, we created a short list of 

intersecting marker genes of LCMs extracted from PMID 30222169 and markers of cluster 5 

attached here (Appendix Table 7). As can be seen in Review Figure 6, all the marker genes 

show a decreasing expression as the distance increases, implying the presence of zonation 

towards cluster 5. 

 

 



Review Figure 6 | feature-by-distance plots of the liver capsule macrophages, as given in PMID 

30222169. Each dot represents one spot, while the green line represents the smoothed curve of all 

observations within the set distance threshold of 800 µm. 

 

 

Next we acted upon the second request by the reviewer, to find genes with potential zonation 

patterns in a more unsupervised manner using measures of correlation. We chose to use 

Spearman correlation here as we are not only interested in linear relationships but rather 

monotonic ones, and p-values to test for significance are easier to calculate analytically as the 

Spearman correlation has no assumption on normality. To briefly describe the process we 

implemented: 

 

We selected all spots that were within a given distance threshold of 800 µm (which equals 

distance between four adjacent spot centers in the same row) to cluster 5. Next we calculated 

the Spearman correlation between the expression value of each gene and the distance to 

cluster 5. Since we are looking at a large set of genes and do not have an initial hypothesis that 

we test, we adjusted the p-values (for the Spearman correlation value) using the Holm–Šidák 

method. We removed all genes with an adjusted p-value larger than 0.05, and ranked the genes 

based on their correlation values. Genes whose expression level exhibit a positive Spearman 

correlation with the distance to cluster 5 increase in expression the further one gets from cluster 

5 and vice versa. We display the top 15 genes with highest negative and positive Spearman 

correlation values in Review Figure 7 (negative Spearman correlation) and Review Figure 8 

(positive Spearman correlation). 

 

 



Review Figure 7 | feature-by-distance plot using cluster 5 as reference, here the top 15 genes with largest 

negative magnitude of the Spearman correlation between expression and distance to cluster 5. Each dot 

represents one spot, while the green line represents the smoothed curve of all observations within the set 

distance threshold of 800 µm. 

 

 

 

 
Review Figure 8 | feature-by-distance plot using cluster 5 as reference, here the top 15 genes with largest 

positive magnitude of the Spearman correlation between expression and distance to cluster 5. Each dot 

represents one spot, while the green line represents the smoothed curve of all observations within the set 

distance threshold of 800 µm. 

 

Finally, to get a better understanding of what sort of biological processes the genes that seem to 

have a higher expression in the vicinity of cluster 5 are related to, we subjected the top 15 

genes to functional enrichment analysis using g:Profiler’s web service 

(https://biit.cs.ut.ee/gprofiler/gost), querying against GO:BP (GO Biological Processes). The 

results are shown in Review Table 1 below, where several of the enriched processes are 

associated with ECM function/structure and immunity.  

 

This independent GO:BP analysis performed here supports the analysis performed in the 

original manuscript (Figure 4c, attached here as Review Figure 9), using marker genes of 

cluster 5 identified by DGEA (Appendix Table 7). For instance, the GO:BP term “collagen fibril 

organisation” (GO:0097435), shows high enrichment in the results of both analyses.  

 

Following the same strategy, we were interested in illuminating the underlying biological 

processes of genes that seem to be more highly expressed upon higher distance to cluster 5 



(Review Table 2). Interestingly, the first 10 genes with the lowest adjusted p-value are 

associated with a variety of different metabolic processes, a hallmark function of liver tissue.  

 

 

 

 

 

 

Review Table 1 | GO:BP functional enrichment of the 15 genes shown in Figure 7.     

Database Term Name Term Id adjusted p-value 

GO:BP supramolecular fiber organization GO:0097435 8.280×10-3 

GO:BP Collagen fibril organization  GO:0030199 9.454×10-3 

GO:BP response to oxygen-containing compound GO:1901700 1.402×10-2 

GO:BP response to organic substance GO:0010033 2.175×10-2 

GO:BP response to cytokine GO:0034097 3.867×10-2 

GO:BP sequestering of actin monomers GO:0042989 4.967×10-2 

 

 

 
Review Figure 9 | Figure 4c, original manuscript : Gene-ontology (GO:BP) enrichment for markers 

present in cluster 5. The Enrichment is given as the negative log10 algorithm of the adjusted p-value 

(g:SCS correction, see methods) of the differentially expressed marker genes in cluster 5. 

 

 



Review Table 2 | GO:BP functional enrichment of the 15 genes shown in Figure 8. 

Database Term Name Term Id adjusted p-value 

GO:BP arachidonic acid metabolic process GO:0019369 2.547×10-9 

GO:BP lipid metabolic process GO:0006629 5.924×10-9 

GO:BP fatty acid metabolic process GO:0006631 3.778×10-8 

GO:BP long-chain fatty acid metabolic process GO:0001676 5.210×10-8 

GO:BP olefinic compound metabolic process GO:0120254 7.823×10-8 

GO:BP icosanoid metabolic process GO:0006690 1.254×10-7 

GO:BP unsaturated fatty acid metabolic process GO:0033559 1.254×10-7 

GO:BP carboxylic acid metabolic process GO:0019752 3.374×10-7 

GO:BP oxoacid metabolic process GO:0043436 3.833×10-7 

 

 

We observe overlapping GO terms associated with structural tissue formation and integrity 

between two independently conducted analyses. This further strengthens our claim that cluster 

5 is associated with mesenchymal structures and/or the Glisson’s capsule.  

 

Taken together, the results presented here suggest that cluster 5 may represent an important 

transitional structure between the architectural integrity of the liver tissue (including liver 

mesenchyme and the Glisson’s capsule) and the remaining metabolically diverse and highly 

active liver tissue. The additional results shown here reveals apparent zonation of LCM markers 

(e.g., H2-Eb1, Crip1, Tmsb4x, H2-Aa, H2-Ab1, Cd74), towards the structure underlying cluster 

5, further advocate for the presence of tissue from the Glissons’ capsule and the mesenchyme, 

as LCMs are often found in the mesenchyme and Glisson’s capsule [1,2]. Thus, the observed 

enrichment of immune related processes such as “response to cytokine” and “antigen 

processing and presentation of peptide or polysaccharide antigen via MHC class II”  in both GO-

term analyses can most likely be explained by the enrichment of LCM markers.  

 

To recognize the - in our opinion - very important suggestion for the additional characterization 

of cluster 5 in our data, we will include the results of this correlation analysis in the 



supplementary material as Supplementary Figure 17. To refer to these results, we edited the 

main text in the manuscript as follows to describe and interpret the results accordingly: 

  

Line [330 - 334] 

 

“Expression scores of markers involved in “collagen and fibril organization” are highestin spots of 

cluster 5 and in their direct proximity in the tissue and show low scores for the remaining tissue. 

This is supported by unsupervised Spearman correlation results, exhibiting negative correlation 

to the distance to cluster 5 and expression of Gsn, Col1a2, Col1a3 and Vim (Supplementary figure 

18). ”  

 

In addition, we describe the correlation analysis in an additional paragraph of the methods from 

line [635 - 670]. 

 

 

[1] https://pubmed.ncbi.nlm.nih.gov/20637938/ 

[2] https://pubmed.ncbi.nlm.nih.gov/27569723/ 

 

 

3) Investigate the significance of cluster 0 and mid-lobule-peaking genes/number of 

reads/cluster  
 

The paper discusses pericentral hepatocyte genes and periportal hepatocyte genes, what about 

the mid-lobule-peaking genes such as Hamp, Hamp2 and Igfbp2. Are they expressed in the 

‘intermediate’ cluster 0? In a related note, Figure 1C does not show any markers for cluster 0, is 

this a real cluster or simply spots with low number of reads? A violin plot of log10 (numbers of 

reads) for each cluster + umap such as Figure 1b colored by log10(number of reads per cell) 

would be highly informative here. If cluster 0 spots consist of low-read spots I think they should 

be removed. 

 

Response: 

 

The reviewer raises a valid point by mentioning genes belonging to the previously described 

mid-lobule zone between the periportal and pericentral zone. These genes include as stated by 

the reviewer: Hamp, Hamp2 and Igfbp2 [1,2].  We understand the reviewer's concern that 

cluster 0 does not represent a cluster annotation based on expression but differences in read 

number. Hence, we have tried to address the reviewer's concerns about the annotation of 

cluster 0, by executing an analysis in concordance with the provided suggestions. 

 

As observed by the reviewer Figure 1c in the original manuscript attached here as Review 

Figure 10, DGEA between clusters did not result in any markers for cluster 0. Based on this 



note, we would like to thank the reviewer for bringing this missing information in the figure 

legend to our attention we changed it accordingly:   

 

Line [1012 - 1015] 

 

“Figure 1c | Heatmap depicting expression values of the five most variable genes for each 

cluster after subjecting the six clusters to DGEA, with the exception of cluster 3, which resulted 

in only four significantly differentially expressed genes and cluster 0 which did not result in any 

significantly differentially expressed genes with the given parameters (Methods).” 

 

In our previous analysis only genes with a log-fold change larger than 0.5 and significant 

adjusted p-value were considered as differentially expressed, in order to produce distinct sets of 

marker genes that would promote a less ambiguous assignment of identities to the clusters. 

However, genes exhibiting lower positive log-fold change values than the threshold value of 0.5 

could still be considered as differentially expressed, but with less prominent changes than the 

genes we chose to consider as marker genes. 

Thus, to further address the reviewer's comments, we performed a DGEA with  a more 

permissive log-fold change threshold value - 0.25 instead of 0.5 -  to also include weakly 

differentially expressed genes.   

 

For cluster 0, this adjustment resulted in 3 significantly DEGs, being: Hamp2, Hamp and 

Cyp3a44 (Review Table 3, Review Figure 11).  Indeed, two of the genes, Hamp2 and Hamp 

exhibit elevated mid-lobule expression, as expected by the reviewer. 

 

 



 
Review Figure 10 | Figure 1c, original manuscript : Heatmap depicting expression values of the five most 

variable genes for each cluster after subjecting the six clusters to DGEA, with the exception of cluster 3, 

which resulted in only four significantly differentially expressed genes and cluster 0  without any 

significantly differentially expressed genes using defined parameters (see methods, original manuscript). 

 

 

Table 3 | Cluster 0 markers with adjusted effect size. Results of DGEA of the spatial gene expression 

data with a lowered log-fold threshold identified 3 genes with elevated expression in cluster 0 in 

comparison to the remaining clusters (Hamp2, Hamp and Cyp3a44). The effect size of elevated 

expression ranges from 0.26 to 0.30 (avg_log2FC) and is significant for all 3 genes (p_val_adj < 0.05).  

 p_val avg_log2FC pct.1 pct.2 p_val_adj 

Hamp2 7.41E-70 0.26 1.00 1.00 7.05E-66 

Hamp 8.26E-57 0.30 1.00 1.00 7.85E-53 
Cyp3a44 5.25E-22 0.26 0.67 0.56 4.99E-18 

 



 
Review Figure 11 | Heatmap showing the 3 most variable genes of cluster 3 resulting from DGEA with an 

adjusted log-fold change of 0.25. Expression values of the 3 genes with elevated expression in cluster 0 

(Hamp2, Hamp and Cyp3a44) are depicted as a color gradient from purple (low) to yellow (high). 

 

 

To further confirm the validity of cluster 0, we followed the reviewers suggestion to visualize the 

number of reads across clusters by violin plots and in a UMAP projection. To compare orders of 

magnitude in the amount of reads we used the log 10 of the total number of reads for the 

visualization in both cases. Both visualizations display a comparable and even number of reads 

across all clusters and an uniform distribution, without a higher number of reads present in 

cluster 0 (Review Figure 12 a,b), indicating cluster 0 is based on differential gene expression 

and not on read count. 

 

Based on the reviewers question on the presence of the mid-lobule-peaking genes Hamp, 

Hamp2 and Igfbp2, we regarded it appropriate to elucidate further on the distribution of these 

genes within our data and investigate their distribution across the annotated clusters. Thus, we 

visualized the distribution of expression levels across clusters in violin plots. As expected from 

the adjusted DGEA of cluster 0, Hamp and Hamp2 show the highest expression in cluster 0, 

with almost equally high expression in cluster 3 and cluster 4. Meanwhile, expression in cluster 

1 and cluster 2 is reduced for both, Hamp and Hamp2. Furthermore, Hamp also shows reduced 

expression in cluster 5 (Review Figure 12 c,d). However, Igfp2 generally shows lower overall 

expression in comparison to the other two genes, with the lowest expression observed for 

cluster 2 and an otherwise equal expression across clusters (Review Figure 12 e).  

 

To summarize, we conclude that cluster 0 represents a real cluster based on differential gene 

expression based on the following 4 observations:  

1) Cluster 0 does not exhibit a lower number of reads in comparison to the remaining 5 

clusters. 



2) Reads across all spots show a uniform distribution independent of their cluster 

annotation. 

3) Differentially expressed genes can be extracted from Cluster 0, but with a lower fold 

change than for the remaining clusters. 

4) The majority of identified genes with elevated expression in cluster 0 are also marker 

genes for mid-lobule layers, as would be expected by the spatial distribution of cluster 0 

within the tissue. 

 

The distinction of cluster 0 is less clear than that of the remaining clusters, as the effect sizes of 

the markers of cluster 0 are not large enough to be detected by the DGEA performed in the 

original manuscript. This observation, together with the fact that cluster 0 represents the cluster 

comprising the largest assembly of spots - in our opinion - do not represent enough evidence to 

confidently annotate cluster 0 as the mid-lobule layer, but rather suggests that cluster 0 includes 

the mid-lobule layer since it still exhibits DGE of classic mid-lobule peaking genes [1,2]. Based 

on the small effect size of differentially expressed markers in cluster 0, the multidimensional 

structure of the investigated tissue section and the gradual nature of zonated expression, we 

believe that extensive characterisation of cluster 0 is outside of the scope of this study, but is 

nevertheless very interesting and could be a potential objective in future research projects. Thus 

we believe including the extended DGEA of cluster 0 should not be included in this study.   

 

However, the reviewers comments on the nature of cluster 0 are very valuable and the results 

from the analyses suggested by the reviewer provide an initial interpretation of cluster 0 and 

confirm its validity in our spatial dataset. We hope the reviewer agrees with us that we present 

interesting results that could act as inspiration for  future studies on the mid-lobule regions in 

liver tissue. These will be critical to extend our current knowledge on the importance of the 

transcriptional landscape in the space between the portal and central area.  

 

To highlight the relevance of the analysis suggested by the reviewer, we are including violin 

plots showing the distribution of transcript numbers per across clusters in Supplementary figure 

1 of the original manuscript and refer to the analysis in the manuscript as follows:  

 

 

 

 

Line [122-125] 

“Subsequently, we decomposed the data into correlation vectors by canonical correlation analysis 

(CCA)  and clustered it in an unsupervised manner using a graph-based approach, which 

identified 6 clusters, exhibiting uniform distribution of unique transcripts (Figure 1b, top panel, 

Methods for details, Supplementary figure 1)” 

 

 



  

 
Review Figure 12 | Distribution of the number of unique transcripts and transcript counts of genes of 

interest across clusters. a The logarithmic number of unique transcript (base10) for each cluster reveals 

equal numbers of unique transcripts for each cluster. b The log10 of unique transcripts exhibits a uniform 

distribution in the UMAP embedding of spatial data and across cluster annotations ranging from low (light) 

to high (dark). c Violin plot showing the normalized expression level of Hamp for each cluster, depicting 

slightly elevated levels in cluster 0. 

d  Violin plot showing the normalized expression level of Hamp2 for each cluster, depicting slightly 

elevated levels in cluster 0. e Violin plot showing the normalized expression level of Igfbp2 for each 

cluster, depicting uniform distribution of expression for each cluster and relatively low expression values.   

 

 

 

 

 

 

 

 

[1] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5321580/  

[2] 

https://science.sciencemag.org/content/371/6532/eabb1625?elqTrackId=d6c890a6e9b1447ca229

282b1c3814a8 

 

 

4) Expression by distance plots for non-parenchymal marker genes  

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5321580/
https://science.sciencemag.org/content/371/6532/eabb1625?elqTrackId=d6c890a6e9b1447ca229282b1c3814a8
https://science.sciencemag.org/content/371/6532/eabb1625?elqTrackId=d6c890a6e9b1447ca229282b1c3814a8


The liver consists of zonated non-parenchymal cell populations (NPCs). The authors should 

attempt to produce an expression by distance plot for these as well. For example, highly 

zonated endothelial genes (PMID 30222169) include the pericentral genes Thbd and Cdh13 

and the periportal Efnb2 and Ltbp4. Highly zonated hepatic stellate cell genes (PMID 31722201) 

include the pericentral Adamtsl2 and Sox4 and the periportal Ngfr and Tagln. The authors 

should explore whether these genes show up in the ST data and produce their zonation plots.  

 

In addition, the authors should explore the concept of immune zonation (PMID 33239787) – is 

there a higher summed expression of immune genes in periportal spots (this would be expected 

based on the increased abundance of periportal immune cells previously reported? Are there 

zonated Kupffer cell genes? 

 

One approach to address the zonation of NPCs would be to extract genes specific to the 

particular NPC population of interest and then perform DGE between spots in cluster 1 and 2 

over the expression matrix normalized by the sum of these NPC-specific genes (for example 

see PMID 32814046). 

 

Response:  

 

We would like to thank the reviewer for the highly constructive suggestions to include additional 

analysis on non-parenchymal cells (NPCs) and to elaborate further on the concept of immune 

zonation. We believe that the suggestions contribute a substantial amount of additional 

information to our study.  

 

As suggested by the reviewer we explored the zonation of NPCs, namely endothelial and 

hepatic stellate cells. Previously described highly zonated endothelial cells included the 

pericentral genes Thbd and Cdh13 and the periportal genes Efnb2 and Ltbp4 [1]. Adamtsl2 and 

Sox4 have been described as zonated pericentral markers for hepatic stellate cells, while Ngfr 

and Tagln show periportal expression in this cell-type [2]. Therefore, we created expression by 

distance as well as bivariate expression by distance plots for the requested marker genes. 

 

We were only able to generate the requested plots for 6 out of the 8 genes, as Cdh13 and 

Efnb2 are not present in our data. The results of the expression by distance plots do not show 

obvious distinct differences in expression along the lobular axis for these genes as expected by 

the reviewer (Review Figure 13 a). However, upon investigation of the bivariate plots, taking 

distances to portal and central veins into account simultaneously the expression trends for some 

genes become more obvious. For instance, expression of Ltbp4 can be better explained as the 

highest expression is observed in close proximity to both vein types and superior performance 

of the bivariate model in comparison to the reduced models. Hence, Ltbp4 seems to be 

expressed between veins, located within 400 µm of each other. Spatial Adamtsl2 expression is 

sufficiently explained by the reduced central model, indicating the distance to the central vein 

represents the stronger explanatory variable for Adamtsl2 expression (Review Figure 13 b, 

Appendix Table 8). Surprisingly, we find Sox4 expression along the central axis, in close 

proximity to the portal vein and not as expected close to the central vein and the LRT suggests 



expression is explained better by the univariate portal model, although to a weak amount as the 

full model is also outperformed by the single intercept models. These observed differences to 

published data make Sox4 an interesting target for further studies on NPC zonation across 

tissue. The reported portal marker Ngfr shows highest expression furthest from the portal vein 

and in closer proximity to the central vein, which is in contrast to the expectations of the 

reviewer and the literature [2]. However, the bivariate model is not able to explain the observed 

distances to either vein better than the reduced models and similar to Sox4, expression of Ngfr 

is quite low compared to other zonated genes in our data. Merely, Thbd expression shows an 

expected trend with high expression far from the portal vein and slightly closer to the central 

vein. However, the LRT of the portal and central vein distances do not perform better in 

comparison to the central and portal reduced models, making the observations for the bivariate 

models less relevant for the interpretation of spatial expression along the lobular axis of these 

genes.  

 

Conclusively, zonation patterns of markers genes suggested by the reviewer (pericentral Thbd, 

Cdh13, Adamtsl2, Sox4 and periportal Efnb2, Ngfr, Tagln, Ltpb4) in our spatial data deviate 

from previous observations. This most likely can be explained by two reasons. 1) All suggested 

genes show either no or very low expression along the lobular axis, making assumptions on 

their expression profile unreliable. As the suggested genes result from scRNA seq data, they 

are more efficiently captured by the nature of this method, e.g. through enrichment by sorting. 

Hence, transcript abundance of certain genes is relatively low in comparison to the remaining 

liver transcripts 2) ST encompasses expression profiles across whole liver sections, zonated or 

unzonated expression of lowly abundant genes might be enriched or present in limited locations 

within the tissue.  

 

However, we wanted to investigate further on the DGEA of NPCs as suggested by the reviewer. 

To this extent we used publicly available single-cell data from Halpern et al. [1] with a more 

detailed description, generously provided by the authors of the paper. Using the provided data, 

we performed DGEA between the annotated cell types (Endothelial cells, T cells, Kupffer cells, 

B cells, Plasmacytoid dendritic cell (pDCs)  and Neutrophils). This analysis resulted in a list of 

marker genes for each annotated non parenchymal cell (NPC) type. We then cross-referenced 

this list with our normalized spatial data and subsetted the expression matrix according to the 

cell type list of choice.  

We considered the normalization method suggested by the author but believe it more 

appropriate for bulk RNA-seq data rather than data of the same character as ours. Differences 

between gene expression of NPCs are accounted for by the normalization approach used in this 

study (see materials and methods section in the main manuscript).   

Therefore, we directly performed DGEA between cluster 1 (portal) and cluster 2 (central). We 

used a log-fold change threshold of 0.01 to also detect elevated gene expression with a 

relatively small fold change, in both spatial clusters. We obtained differential expression results 

for the following NPC types:  

 

1) Liver endothelial cells   

 



For portal endothelial cell markers our analysis identified Sepp1, Aass and Ctsl with the 

highest significantly elevated expression levels. Central endothelial cell markers are 

higher in number and include Ndrg1, Lifr and Tsc22d1, exhibiting the highest 

significantly elevated expression levels in the central zone (Review Figure 13 c (left), 

Appendix Table 9, Appendix). For Sepp1 including the distance to the central and portal 

vein to assess zonation is preferred, showing the highest expression close to the portal 

and far from the central vein (Review Figure 13 c (right)). Ass1 expression however can 

be explained better by the univariate model of the portal vein as the highest expression 

is observed close to the portal vein and along the central axis (Appendix Table 10). Even 

Though Ctsl expression is observed highest close to the portal vein and far from the 

central vein, the LRT of the biviarate model does not outperform neither the portal nor 

central model. Hence, the orientation within the lobular axis does not seem to be a 

significant explanatory factor for Ctsl expression.  

 

2) Plasmacytoid dendritic cells (pDCs) and Neutrophils 

 

pDCs exhibit elevated central zonation for Dirc2, Upb1, Ctsh, Rnf187 and Lgals1. Portal 

zonation is observed for Atp1b1 (Appendix Table 11). In addition, we also observe high 

expression elevation of the pDC markers Mpeg1, Lgals, Atp1b1 and Rnf187 in cluster 5 

(Review Figure 13 d, (left)). The small number of neutrophil markers (Grina, Dgat2 and 

Gsr) show highest elevation in the central zone (Review Figure X+1d) (Review Figure  

13 d, (right), Appendix Table 12).  

 

Taken together we can observe zonated expression of NPC marker genes along the lobular 

axis. The zonated NPC markers suggested by the reviewer are either not detected at all 

(Cdh13, Efnb2) at very low levels (Thbd, Ltbp4, Adamtsl2, Sox4, Ngfr and Tagln) in our data. 

Therefore, we are not able to reliably use these genes to confirm NPC zonation.  

However, we determine a number of zonated NPC markers for multiple cell types (Endothelial 

cells, Plasmacytoid dendritic cells (pDCs)  and Neutrophils). Based on the sparsity of marker 

genes for these cell types in the central and portal area of spatial data, we can only identify a 

small number of zonated genes for each cell type. Nevertheless the results presented here 

complement previous studies with additional zonation markers for endothelial cells, pDCs and 

Neutrophils. 

 

Kupffer cells, the liver resident macrophages, represent an additional NPC type in the liver. 

They are a vital part of the immune response, which was reported to be organized in a zonated 

fashion [3]. Inspired by the reviewer’s highly relevant comment on immune zonation within the 

liver we gladly performed additional analyses to investigate this concept.  

To this end we investigated the potential zonation of Kupffer cell genes between the portal and 

central gradient across spots. We extracted Kupffer cell markers as described for other NPC 

populations above and performed DGEA between zone 1 (portal) and zone 3 (central) (Review 

Figure 14 a (left), Appendix Table 13).  

Selecting the three DEG with the highest significant log-fold change we find Ctsc, Igf1 and Ctsb 

to be highly expressed in close proximity to the portal vein. For Ctsc and Igf1, increasing 



distance to the central area is associated with elevated expression levels. Ctsb is expressed 

along the central axis but always in close proximity to a portal vein, making the distance to the 

central vein a relevant explanatory variable for gene expression.   

For the DEG in the central area Hpgd, Creg1 and Apoe, our data suggests the highest 

expression of the first two genes in close proximity to the central vein and far from the portal 

vein. Apoe is expressed close to the central vein and along the portal vein. However the results 

of the multivariate model suggest that distances to the central or portal vein do not perform 

significantly better than either both (Hpgd, Creg1) or only the central model (Apoe) (Review 

Figure 14 a (right), Appendix Table 14). This suggests that the distances along the lobular axis 

are not as informative to predict gene expression of these markers as for Kupffer cell markers, 

which were found to be differentially expressed in the portal area.  

 

In addition to exploring the contribution of Kupffer cells to immune zonation, we analyzed 

whether established genes involved in immune responses are zonated in our spatial data. 

Therefore, we extracted genes belonging to the GO-term “immune system processes” and 

performed DGEA between cluster 1 and cluster 2 (as described above for cell type zonation 

analysis) (Appendix Table 15). We found that more genes show upregulation in the portal area 

compared to the central area, which is in line with the previously reported dominant role of the 

portal area for immune zonation (Review Figure 14 b (left)). Comparing the expression by 

distance the three most significant DEG of the portal and central cluster, DEG genes of the 

portal area (Arg1, C9 and Hc) share the distance to the portal vein as a significant explanatory 

variable. In the case of Arg1 and C9 the distance to the central vein also represents a significant 

factor to predict their expression along the zonation gradient. The immune markers Psma1 and 

Mbl1 with elevated expression levels in the central cluster are expressed along the portal axis. 

Only in the case of C4bp the multivariate model suggests the distance to the central vein as the 

dominant explanatory factor for gene expression along the lobular axis (Review Figure 14 b 

(left), Appendix Table 16). Hence, the results of the DGEA and bivariate expression by distance 

supports the dominant role of the portal area for zonation of immune related processes.  

 

Collectively, our results of the investigation of  immune zonation further support the hypothesis 

of immune zonation and that the distance to the portal area represents the stronger explanatory 

variable for Kupffer cells and general immune related processes. We would like to thank the 

reviewer again for his excellent suggestion to explore NPC and immune zonation further using 

our spatial data. We believe these additional results - especially in regard to immune zonation - 

represent an important addition to our study. Therefore, we are including the heatmap results of 

differential gene expression of NPCs and immune system processes in Supplementary Figure 

8. Further we will include results of the bivariate expression by distance analysis of NPCs and 

immune system processes in Supplementary Figure 14 and Supplementary table 5. We also  

performed the following modifications to the main text in the manuscript:  

 

Line [216-222] 

 

“Based on these observations, we further investigated the zonation of reported markers of 

NPCs 13,27 (endothelial cells, HSCs, plasmacytoid dendritic cells, neutrophils and Kupffer cells) 



in our data (Methods) and found several differentially expressed cell type markers between the 

PPC and PCC (Supplementary Figure 8).  In the context of reported immune zonation 40, we 

also investigated DEG of immune system process associated genes (GO:0002376) and found 

more genes with periportal than pericentral zonation (Supplementary Figure 8).”  

 

We further discuss the observed results in regard to NPC zonation and immune zonation as 

follows: 

  

Line [360-362] 

 

“First, we assessed expression of characteristic marker genes within a wide range of expression 

levels and investigated zonation patterns of established cell type markers 13,27. ”  

and  

Line [365 - 375] 

“A recent study suggests predominant localisation of Kupffer cells in the periportal area of the 

liver lobule and neutrophil recruitment upon bacterial infection 40. While, our data does not 

indicate elevated Kupffer cell proportions in the periportal cluster compared to the remaining 

clusters, we found a number of Kupffer cell marker genes exhibiting portal but also central 

zonation. In addition, we found more genes related to immune system processes with periportal 

enrichment in comparison to the pericentral zone and colocalization of neutrophils and periportal 

hepatocytes,already in unperturbed conditions, all supporting implications of previously 

proposed immune zonation 40.” 

 

In addition, we modified the methods section of the manuscript to include the description of the 

performed analysis in detail:  

 

Line [594 - 605] 

 

“Zonation based DGEA of cell type markers   

 

To infer on DEG of NPCs between cluster 1 and cluster 2, DGEA between annotated cell types 

(Endothelial cells, T cells, Kupffer cells, B cells, Liver Capsular Macrophages (LCMs), 

Plasmacytoid dendritic cell (pDCs)  and Neutrophils of data and respective annotations, 

generously provided by  Halpern et al. [cite], as well as LCMs, provided by  Dobie et al. [cite] 

(see scRNA-seq data) was performed. This analysis resulted in a list of marker genes for each 

https://www.zotero.org/google-docs/?bk8Hkr


annotated non parenchymal NPC type. Each resulting list was cross-referenced with the 

normalized spatial data and the expression matrix was subsetted according to the respective 

cell type followed by DGEA between cluster 1 (portal) and cluster 2 (central) with a log-fold 

change threshold of 0.01 and significance (p_val_adj) below 0.05. ” 

 

Line [622 - 626] 

 

“Three datasets were considered for this purpose. The scRNA-seq data set of cells originating 

from liver tissue from the Mouse Cell Atlas was (accessed 2020-10-06) 39 and the detailed 

gene expression data of annotated cell types from the single cell spatial reconstruction of 

mouse liver 13 and expression data on mesenchymal liver 27 was generously shared as a 

Seurat object by the authors of the respective publications ” 

 

Line [836 - 846] 

 

“We selected genes to be subjected to bivariate expression by distance analysis in two different 

ways. First, in the case of metabolic pathway gene markers for glucagon and Wnt targets, we 

extracted 12 known Wnt pathway markers 11 genes with most elevated expression levels in the 

central cluster (cluster 2) in the spatial data. For glucagon target we chose 10 known marker 

genes with the most elevated levels in the portal cluster (cluster 1) and 2 genes with highest up- 

or downregulation (Mup20,Mdm2) in glucagon deficient mice 45. Secondly, for the remaining 

bivariate expression by distance analyses of gene markers (Endothelial cells, Kupffer cells, 

HSCs, immune system process, ha-rasm chronic hypoxia, pituitary hormones), we selected 2-3 

genes exhibiting most elevated expression levels for each,  the central (cluster 2) and the portal 

cluster (cluster 1). These markers were identified as described in the Methods section  

“Zonation based DGEA of cell type and metabolic pathway markers. ”  

 

 

 



 
 

Review Figure 13 | Zonation and expression by distance of selected NPC markers. a Expression by 

distance of selected NPC markers of central endothelial cells (Thbd) and liver capsular macrophages 



(LCMs) (Sox4 and Adamtsl2) as well as portal endothelial cells (Ltbp4) and LCMs (Ngfr, Tagln) within 400 

µm distance to each vein border. The blue line describes expression by distance from the border of the 

portal vein and the red line exhibits expression by distance from the border of the central vein. Ribbons 

around the lines indicate standard deviations of the smoothed curves. b Bivariate expression of genes the 

same as in (a) within 400 µm distance to the portal (y-axis) and the central vein (x-axis). Numbers in curly 

brackets after the gene name indicate that {1} the full model does not perform significantly better than the 

reduced portal model, {2} the full model does not perform significantly better than the reduced central 

model, {3} the full model does not perform significantly better than either of the reduced models to explain 

gene expression along the lobular axis, {4} the full model does not outperform the most reduced model 

(intercept only), i.e., the gene expression can be taken as constant across the tissue w.r.t vein distances. 

Relative expression values for each gene are depicted in a color gradient ranging from low (dark) to high 

(light). c Heatmap depicting differentially expressed endothelial cell markers [1] (left). Genes exhibiting 

highest expression elevation in either the central (cluster 2) or the portal area (cluster 1) are surrounded 

by a red box. These genes were selected to perform expression by distance (middle) and bivariate 

expression by distance (right) analysis as described in (a) and (b). d Heatmaps of DGEA between cluster 

1 (portal) and cluster 2 (central) of spatial data for markers plasmacytoid dendritic cells (pDCs) (left) and 

neutrophil (right) markers.  

 



 
Review Figure 14 | Immune zonation exemplified by DGEA and expression by distance of Kupffer cell and 

immune system process markers. a Heatmap displaying DE Kupffer cell markers between cluster 1 

(portal) and cluster 2 (central) (left). Markers with highest expression elevation in cluster 1 or cluster 2 are 



surrounded by a red box. This gene selection was subjected to expression by distance analysis (middle) 

and within 400 µm of the vein border. The blue line shows expression by distance from the portal vein 

border while the red line shows expression from the central vein border. Ribbons around the lines indicate 

standard deviations of the smoothed curves.  bivariate expression by distance analysis was performed 

within the same distance (400 µm) to the portal vein (y-axis) and central vein (x-axis) simultaneously 

(right). Numbers in curly brackets after the gene name indicate that {1} the full model does not perform 

significantly better than the reduced portal model, {2} the full model does not perform significantly better 

than the reduced central model, {3} the full model does not perform significantly better than either of the 

reduced models to explain gene expression along the lobular axis, {4} the full model does not outperform 

the most reduced model (intercept only), i.e., the gene expression can be taken as constant across the 

tissue w.r.t vein distances. Relative expression values for each gene are depicted in a color gradient 

ranging from low (dark) to high (light). b Heatmap displaying DEG genes associated with the GO term 

“immune system processes” (GO:0002376). Markers with highest expression elevation in cluster 1 or 

cluster 2 are surrounded by a red box (right). This gene selection was subjected to expression by 

distance analysis (left, top panel) and bivariate expression by distance analysis (left, right panel). 

 

[1] https://pubmed.ncbi.nlm.nih.gov/30222169/ 

[2] https://pubmed.ncbi.nlm.nih.gov/31722201/ 

[3] https://pubmed.ncbi.nlm.nih.gov/33239787/ 

 

Minor comments: 

 

1) Row 762 – what are the units of 210 and why was this threshold chosen? 

 

Response:  

 

We thank the reviewer for drawing our attention to the distances and chosen thresholds for 

these distances. To elaborate on the reviewer’s comment we provide more explanatory details 

on the expression by distance plot construction in the following:  

 

“In this study, we set the distance threshold (TN to 210). Having formed the neighborhoods, their 

associated expression profiles for a feature (xN(t)) were assembled accordingly” 

 

For the generation of expression by distance and the expression-based classifier we set 

distance thresholds from the borders of each respective neighbourhood. The original units refer 

to pixels from the high-resolution Hematoxylin and Eosin (H&E) images of the tissue and the 

images of the fluorescently labeled probes under the tissue after tissue removal. The process of 

image alignment is described in further detail in the materials and methods section:  

 

Line [534 - 541] 

 

“The staining, visualization and imaging acquisition of spots printed on the ST slides were 

performed as previously described [1]. Briefly, spots were hybridized with fluorescently labeled 

probes for staining and subsequently imaged on the Metafer Slide Scanning system, similar to 

the previous acquisition of the HE images. The previously obtained brightfield of the tissue 

https://pubmed.ncbi.nlm.nih.gov/30222169/
https://pubmed.ncbi.nlm.nih.gov/31722201/
https://pubmed.ncbi.nlm.nih.gov/33239787/


slides and the fluorescent spot image were then loaded in the web-based ST Spot Detector tool 

[2]. Using the tool, the images were aligned and the spots under the tissue were recognized by 

the built-in recognition tool. Spots under the tissue were slightly adjusted and spots under the 

tissue were extracted.” 

 

As the pixel and the actual physical distances can be extracted from the fluorescent image of 

the probes in the spots under the tissue, the actual physical distances between spots can be 

converted from pixel to µm on the tissue. 

 

To determine the neighbourhoods of each morphological structure we created masks covering 

all pixels belonging to each structure of interest.  

 

Line [767 - 768] 

 

“Using the brightfield H&E-images, a mask was created for each morphological structure. These 

masks covered all pixels considered to belong to the structure.” 

 

The conversion of pixels to µm resulted in a conversion factor of 0.28. When generating the 

objects for the further expression by distance analysis, we stored all images (HE-images and 

respective masks) at 10% of their original size to keep necessary computing power for the 

downstream analysis minimal. Therefore the conversion factor was multiplied by a factor of 10, 

to reflect the actual distances in the tissue, resulting in a factor of 2.8. We would like to thank 

the reviewer for drawing our attention to these conversion factors, since we noticed the lacking 

multiplication by the scaling factor only during the revision process and have therefore changed 

Figure 2 and Figure 4 of the original manuscript accordingly:  

 



 
Figure 3 | a) Enlarged view of a superimposed visualization of Sds, Cyp2f2 expression in the portal vein 

module, consisting of selected DEGs of cluster one (supplementary table 1), all with high values around 

the histological annotation of a portal vein (top). Expression of Glul, Cyp2e1 as representative marker-

genes of the central vein module expression (supplementary table 1), consisting of DEGs of cluster 2 with 

high values around the histological annotation of a central vein (bottom). 

b)Visualization of the average expression by distance to vein-type measured within 50 µm from the vein. 

The top row shows expression by distance of portal markers Sds, Cyp2f2, Hal, Hsd17b13 and Aldh1b1 to 

portal veins in blue and central veins in red, while the bottom row shows distances of central vein markers 

Glul, Oat, Slc1a2, Cyp2e1 and Cyp2a5 to portal veins in blue and central veins in red (top panel). c) 

Visualization of influence of distance to both vein types on expression by bivariate expression by distance 

plots (see methods for details). Gene expression values are depicted in a gradient from low (dark) to high 

values (light). The distance of each gene to central veins between 0 and 400 µm is represented on the x-

axis. Simultaneously, distances to portal veins for the same distance are depicted on the y-axis for each 



gene. High values in the bottom right corner indicate gene expression is predominantly observed close to 

portal veins and far from central veins, while high values in the upper left corner indicate the reverse 

observation (below graphs). d) Visual histological annotations (left) of central (red) and portal (blue) veins, 

including ambiguous visual annotations (green), compared with computational prediction, using the 10 

marker genes from 3b (right). The classification of vein types is based on a weighted (by distance) 

average expression of the genes’ expression profiles in the neighborhood of each vein. In addition, the 

spatial expression data of spots neighboring uncertain morphological vascular annotations (green) can be 

used to deduce periportal or pericentral vein-types in the cases where visual annotations are ambiguous. 

e) Expression by distance of portal - (top panel) and central - (bottom panel) markers. Probabilities for 

each class (central and portal) can be extracted from the logistic regression model, here given as 

P(central) or P(portal) (scale bar indicates 500µm). 

 

 

 

Consequently, we also changed the distance threshold in the plots from 210 pixels (which 

referred to 50 µm in the original plots) to 142 pixels (referring to 400 µm in the revised plots). 

This threshold of 210 pixels was originally chosen since it referred to the radius of one capture 

region and showed the biggest difference in expression along the lobular axis. The revised 

threshold was chosen because it represents the longest distance between adjacent spot centers 

in the same row. In theory this threshold would depict the expression between the two furthest 

neighbouring spots, if the border of the vein would always go through the spot center (Review 

Figure 15).  

 

 
Review Figure 15 | Schematic of spot-distance for lowest chosen distance threshold in expression by 

distance plots. Spots on ST arrays are arranged in a hexagonal pattern. The longest distance between 

spot-centers in the same row measures approximately 200 µm, referring to 71 pixels (px) in the image 

files, used for image alignment. Measuring the distance to two adjacent spots in the same row therefore 

results in a distance of approximately 400 µm, the chosen threshold for expression by distance analysis 

for veins.  

 



We revised the method section in the original manuscript to correct the pixel threshold and 

added the unit of the threshold so that it now reads: 

 

Line [862 - 864] 

 

“In this study, we set the distance threshold (TN to 142 pixels). This threshold refers to 400 µm 

and represents the longest distance between adjacent spot centers in the same row.” 

 

[1] https://pubmed.ncbi.nlm.nih.gov/31501547/ 

[2] https://pubmed.ncbi.nlm.nih.gov/29360929/ 

 

 

2) Figure 3b – the humps in Figure 3b are not real (e.g. see smFISH validations for genes such 

as Cyp2e1 and Cyp2f2 in PMID 28166538, these are clearly monotonic). The authors should 

consider a computational method to remove these artefacts. 

 

We appreciate the reviewer pointing out this flaw in our previous attempt to illustrate the 

combined influence of the portal and central vein distance, we fully understand - and agree - 

that the “humps” easily can lead to erroneous conclusions. We have therefore replaced the log-

ratio plots with the bivariate expression by distance plots (based on multivariate regression), as 

suggested by the reviewer in Major Comment 1. These plots are not burdened with the same 

introduction of artificial signals, and - we believe - better represent the information we sought to 

convey. We hope that the reviewer agrees with us and is satisfied with the changes. 

 

3) Lyve1 is considered in the manuscript a marker of lymphatic endothelial cells, is it really 

distinct from endothelial cells? Please examine the correlation with Cdh5. 

 

Response: 

 

We thank the reviewer for drawing our attention to the use of Lyve1 as a lymphatic endothelial 

marker.   

 

As correctly observed by the reviewer, Lyve1 is reported as a lymphatic endothelial cell marker 

in the literature but also as a marker for midlobular endothelial cells [1-4]. However, we consider 

it expressed more rarely, i.e. in a subset of endothelial cells compared  to the common 

endothelial cells with Cdh5 as a common marker. We would also like to emphasize that the data 

presented in our study is not suitable to establish distinct cell type annotations, since each 

capture location (spot) consists of a small mixture of cells, but rather to explore marker gene 

expressions of cell types across liver tissue.  

 

To further elucidate whether we can support the assumption that Lyve1 expression is distinct 

from the expression of the endothelial cell marker Cdh5, we performed two additional analyses 

according to the reviewer’s suggestion: 

 



 1) To see whether the relationship between Lyve1 and Cdh5 expression is monotonic, we 

performed a two-sided Spearman rank test between Lyve1 and Cdh5 across the spots under 

the tissue. Spotwise correlation between these two genes resulted in correlation of 0.043 (p-

value = 0.0032), indicating that the expression of one gene is marginally positively correlated 

with the expression of the other. 

 

 2) Additionally we wanted to assess whether a count of Lyve1 larger than zero (indicating 

expression of Lyve1) is independent of Cdh5 being zero (indicating no expression of Cdh5) or larger 

than zero (indicating expression of Cdh5) and vice versa. Therefore, we created a contingency 

table of sum for spots (Review Table 4) showing expression of Cdh5 and Lyve1 and performed 

a Fisher’s exact test. The resulting p-value of 9.635x105  (raw count data, count threshold > 0), 

accepts the null hypothesis that Cdh5 and Lyve1 are expressed independently. 

 

Review Table 4: Contingency table for Lyve1 and Cdh5 expression across spots. 

Gene expression Cdh5 

 
 

Lyve1 

 Spot sum  0 > 0  

0   2760  1399 

 > 0 413 291 

 

 

 

These results indicate that expression of Cdh5 and Lyve1 is independently expressed across 

spots and exhibit a weak monotonic relationship. Therefore, Cdh5 and Lyve1 expression 

coincides by random chance within the same capture region. If the expression of both genes 

would represent a characteristic signature for one specific cell type, we would expect a stronger 

correlation between the investigated genes. Thus, we conclude that Cdh5 and Lyve1 are not 

characteristic markers for the same cell type.  

 

Based on the obtained results we changed the description of Lyve1 as a marker for a subset of 

endothelial cells to the following in the main manuscript:  

 

Line [153 - 155] 

 

“Lymphatic liver endothelial cell and liver midlobular endothelial cell marker Lyve1 30–32 showed 

expression in a smaller fraction of 698 spots (~14%).” 

 

We hope the reviewer agrees with our adjusted interpretation of Lyve1 and Cdh5 expression 

across the liver and is convinced of our argumentation.  

 



[1] https://pubmed.ncbi.nlm.nih.gov/17626278/ 

[2] https://pubmed.ncbi.nlm.nih.gov/33340713/ 

[3] https://pubmed.ncbi.nlm.nih.gov/30027142/ 

[4] https://pubmed.ncbi.nlm.nih.gov/11278811/ 

 

4) For the deconvolution the authors may want to consider other papers establishing cell-type 

references from single cell datasets that had more comprehensive coverage of liver NPCs 

compared to Tabula Muris, e.g. PMID 31398325, PMID 30222169 and PMID 31722201. 

 

Response:  

 

We fully agree with the reviewer that it’s of interest to explore other single cell data sets that 

would offer a more comprehensive coverage of the cell types we are interested in, this is 

actually something we wanted to do already before the review process. We also appreciate that 

the reviewer compiled a list of suggested publications that may contain relevant single cell data.  

 

After contacting the corresponding authors of all the three suggested publications, two of them 

granted us access to the necessary expression and metadata (clustering results), these being 

PMID 30222169 [1] and PMID 31722201 [2]. Using the two provided data sets we could map 

each of them onto our spatial transcriptomics data, according to the procedure described in the 

Materials and Methods section (original manuscript). A summary of the results, in the shape of 

correlation matrices, from each of these mappings are shown in Review Figure 16. 

 

We would however like to explain why we did not include these data sets in our initial 

submission, nor feel inclined to do so in this second iteration. The issue here lies not in the 

quality of the single cell data, but rather in its composition. To elaborate, in most probabilistic 

methods that are designed to use single cell data in order to deconvolve/decompose spatial 

transcriptomics data, one tries to explain the observed spatial gene expression using the 

expression profiles learnt from the single data. In short, what is meant with “learning expression 

profiles for single data”, is to associate a certain expression profile to each of the cell 

types/states present in our single cell data, for example by learning the parameters for a 

statistical distribution that describes the gene expression.  

 

Of course, we rarely expect a perfect match between the single cell and spatial data in terms of 

which cell types/states that are present in the single cell data, but we operate with the 

assumption that the single cell data to some extent is representative of the cell type population 

in the spatial data. This assumption reduces the problem of spatial data decomposition into a 

much simpler one, namely to find the combination of cells (from the cell types/states defined in 

the single cell data) that most likely generated the spatial expression data. Violations of this 

assumption are to some extent accepted, the stereoscope method for example accounts for 

asymmetries between the two modalities by introducing an artificial cell type that (with some 

restrictions) adapts to the data. Still, if the discrepancies between the cell type/state population 

in the single cell and spatial transcriptomics data is too large, there is a risk of generating 

unreliable results since one tries to explain gene expression using missing or incorrect cell 

https://pubmed.ncbi.nlm.nih.gov/17626278/
https://pubmed.ncbi.nlm.nih.gov/33340713/
https://pubmed.ncbi.nlm.nih.gov/30027142/
https://pubmed.ncbi.nlm.nih.gov/11278811/


types. As an analogy, this would be similar to an attempt of recreating a painting using a palette 

with different or missing colors compared to that of the original artist. 

 

It is based on this desire to have relatively well-matched data, that we argue that none of the 

two data sets that we were given access to [1,2] constitute as good of a representation of the 

liver cell composition as the Mouse Cell Atlas (MCA). Notable, [2] only lists 3 cell types in the 

metadata while [1] hosts a slightly larger number of 7 cell types. In addition to having fairly 

broad cell type labels, both these data sets - in contrast to MCA - lack important cell types such 

as: Hepatocytes (zonated and non-zonated) as well as additional immune cells such as 

macrophages. Especially the lack of hepatocytes makes the results in the single cell integration 

unreliable, as they are the most abundant cell type in the liver, by numbers as well as by 

volume.  

 

We hope that, in the light of the above discussion, the reviewer finds it justifiable to not include 

the proposed data sets. Still, we would like to emphasize that we recognize the reviewer’s 

attempt to help us present a more holistic view of the spatial cell type organization in our data, 

and are thankful for it. 

 

 

 

 
Review Figure 16 | Visualization of cell type co-localization by Pearson correlations. a Depiction of cell 

type co-localization in liver tissue based on stereoscope integration of single cell data set from [1]. 

Positive correlation values indicate spatial co-localization of cell types while negative values represent 

spatial segregation. b Co-localizations of cell type proportions annotated in [2], interpreted the same way 

as in (a).  

 



[1] https://pubmed.ncbi.nlm.nih.gov/30222169/ 

[2] https://pubmed.ncbi.nlm.nih.gov/31722201/ 

 

5) Line 117- Something in these numbers does not add up, how can each spot contain 30 cells, 

yet only 5-10 of them are hepatocytes? Hepatocytes take up 80% of liver mass but 60% of the 

number of cells. Please check. 

 

Response:  

 

We fully agree with the reviewer that it is necessary to investigate the number of cells - in 

particular hepatocytes - within one spot in further detail. We would like to refer the reviewer to 

the histogram, showing the number of cells per spot across the tissue, which we performed 

upon request of reviewer 3 (Review Figure 18). These results show that the majority of spots 

are estimated to contain between 30 and 60 cells. Based on the reviewers comment we sought 

to determine the number of hepatocytes in comparison to other cell types in our data.  

 

To this end we performed additional sectioning and DNA staining of frozen livers used for our 

ST experiments. Manual counting of stained cells resulted in an average of approximately 42 

cells per spot (110 µm diameter). However, the imaging quality of cryo-presevered tissue 

sections used for ST experiments remains inferior to e.g. imaging quality paraffin preserved 

tissue sections. Thus, in tissue sections from ST experiments it remains challenging to 

differentiate hepatocytes from other non parenchymal cells (NPCs) with absolute certainty.  

However, to To investigate the number of hepatocytes compared to NPCs further we also 

performed manual counting on paraffin embedded liver sections of slightly younger (5 weeks 

old) female mice. We observed between 14 and 40 cells per 100 µm diameter spot, of which 60-

70% were hepatocytes. Only around regions of the portal vein hepatocytes constituted about 

50% of total cells.  

 

The results obtained from the additional analysis on the number of hepatocytes confirm and 

agree with the reviewer that the estimation of the number of hepatocytes should be adjusted to 

the observed percentages reported here. Hence, we adjusted the respective section in the 

original manuscript to the following:  

 

Line [119 - 122] 

 

“Each spot is covered by a small mixture of liver cells. From the hematoxylin-stained nuclei we 

estimated that a majority of spots contain between 30-50 cells, of which 60-70% are considered 

to be hepatocytes.” 

 

We hope the reviewer is satisfied with the performed adjustments and agrees with the 

performed changes to the manuscript.  

 

 

 

https://pubmed.ncbi.nlm.nih.gov/30222169/
https://pubmed.ncbi.nlm.nih.gov/31722201/


 

 

Reviewer #2 

 

With their work entitled Spatial Transcriptomics to define transcriptional patterns of zonation and 

structural components in the liver, Hildebrandt et al make an important contribution to the basic 

understanding of the zonation of the liver via using Computational models. By applying the 

latest methods in the field of systems biology using spatial transcriptomic analysis, the authors 

were able to show a very deep insight into the expression signature depending on the spatial 

allocation of hepatocytes using cryosections of liver material. The assignment of structural 

functions to specific regions in the parenchyma is particularly interesting. 

However, the work also has some small weaknesses that I think should be taken into account in 

a Revision process. 

 

1) Discuss dimorphism and influence on data and prachymal morphology 

liver tissue from female mice was used as material. This fact is not included in the discussion of 

the results. Since it is known that the dimorphism of the liver can also have a strong influence 

on the zonation (also on the morphology within the parenchyma), this would be important to 

discuss.  

 

The reviewer draws attention to the very interesting and relevant point of the influence of sexual 

dimorphisms in liver tissue. As the reviewer highlights, previous transcriptomics studies 

discussed the influence of sexual dimorphisms on zonation, e.g. [1]. Thus, we agree with the 

reviewer that we should include the discussion of the possible influence of sexual dimorphism, 

in light of the fact that we are only investigating material of female mice in our study. Still, albeit 

interesting, the main focus of our study is not to investigate potential differences in spatial gene 

expression and zonation between male and female individuals. Therefore, we addressed the 

reviewer’s request by emphasizing the fact that we exclusively investigated female liver 

material, while providing future implications for the potential of using Spatial Transcriptomics to 

studying the impact of sexual dimorphisms on metabolic zonation in liver tissue:  

 

Line [99 - 100] 

 

“Here, we perform ST on female mouse liver tissue sections, assessing spatial factors 

contributing to spatial liver heterogeneity at the transcriptional level.”  

 

Line [114-115] 

 

“We used a total of 8 sections of wild type adult, female mouse livers from the caudate and right 

liver lobe for histological staining, library preparation and sequencing.” 

 



and 

Line [453-457] 

“This study constitutes a compelling initial exploration of the benefits that spatial transcriptomics 

provides for studies of the liver and we consider it a valuable data resource for the hepatology 

field. We further anticipate that ST will be highly beneficial for future studies addressing liver 

development, sexual dimorphisms of liver zonation, immunity and general pathology in the 

mammalian liver, including humans.” 

 

We thank the reviewer for his comment to complement our discussion. We hope the revised 

discussion addressed the reviewer’s comment sufficiently by highlighting the limitations of our 

study to address spatial sexual dimorphisms. We anticipate that our study will provide a 

valuable resource for future studies addressing this research question, which we consider 

important to mention in this context.  

 

[1] https://pubmed.ncbi.nlm.nih.gov/23791742/  

 

2) Validation of cluster 5 structure (comparison with single cell data) 

it would be good if the authors would carry out some additional experiments to confirm some of 

their results with regard to the uncharacterised structures found.  

 

We have conducted further computational experiments based on the reviewer’s suggestion to 

support our characterization of cluster 5. For an in-depth statement on the reason why 

additional laboratory experiments on the liver sections used in our study are inaccessible, we 

would like to refer the reviewer to our response to comment 9 of reviewer 3. However, peer-

reviewed and elaborate scRNA-seq studies, including thorough orthogonal validations of their 

findings, are already available. Therefore, we considered it appropriate to perform additional 

computational experiments to address the reviewer’s comment. 

 

Well annotated and extensive single cell data sets of healthy liver mesenchyme [1] and liver 

endothelial cells (LECs) [2] were generously shared with us by the respective authors, enabling 

us to perform additional single cell comparisons with the spatial data of cluster 5, as suggested 

by the reviewer. 

 

To the extent of comparing annotated single cell data with the uncharacterised structure 

identified in our spatial data, we first extracted the intersection of marker genes of cluster 5 

(Appendix Table 8) and all marker genes of each annotated cell type in [1] and [2]. As expected, 

the marker gene signature of cluster 5 did not consist of a signature that can be attributed to 

one single cell type, since each spot consists of a small mixture of cells. However, some cell 

type marker genes are more highly represented in cluster 5 (e.g., fibroblasts of liver capsular 

macrophages (LCMs)  than others (e.g., T cells, Kupffer cells, neutrophils or plasmacytoid 

dendritic cell (pDCs) (Review Table 5).  

  



 

 

Review Table 5 | Intersection of marker genes of cluster 5 and annotated NPC types and mesenchymal 

cell types. The list of cluster 5 markers from the ST data (yellow) was compared to markers of annotated 

cell types from [1] in blue and [2] in green. Shared markers between cluster 5 and cell types of [1] and [2] 

are marked with a cross in the respective cell.  

 PMID: 30222169 PMID: 31722201 

Gene 

Endothelial 

cells T cells Kupffer cells B cells LCMs pDCs Neutrophils HSCs Fibroblasts VSMCs 

Gsn      X   X  

Dpt         X  

Mgp         X  

Col1a1         X  

Tagln          X 

Col3a1         X  

Vim         X  

Col1a2         X  

H2-Eb1    X X      

Crip1     X     X 

Acta2          X 

Ahnak         X  

Tmsb4x     X      

Timp2         X  

Dcn        X   

H2-Aa    X X      

Lum         X  

H2-Ab1    X X      

Cd74    X X      

Igfbp7 X       X   

Sparc X          

Bgn X       X   

Col14a1        X   

Spp1           

Timp3 X        X X 

Txnip         X  

 

 

Next, we wanted to expand further on the degree to which individual marker genes of cluster 5  

were expressed in the annotated cell types in the single cell data. To this end, we visualized  the 

12 marker genes of cluster 5 with the highest log-fold change in the scRNA-seq t-SNE 

embeddings conducted in [1] and [2]  (Review Fig 17a and 17b). Our results show that most 

cluster 5 markers, if expressed in the liver endothelial cell data set generated by Halpern et al., 

exhibit the highest values in LCMs or B cells (e.g. H2-Eb1 and Crip1), while all 12 genes show 

relatively high expression in the annotated cell types in the mesenchyme single cell data set by 

Dobie et al. Especially high expression can be observed for Tagln, Crip1 and Acta2 in vascular 

smooth muscle cells and Gsn, Dpt and Vim in fibroblasts.  

 

In summary, marker genes of cluster 5 are expressed to varying degrees in annotated cell types 

of both datasets and share markers with cell types of at least one of the datasets, with the 

largest overlap in LCMs and B cell  in liver endothelial cells and fibroblasts, vascular smooth 



muscle cells and hepatic stellate cells in the liver mesenchyme. These results indicate and 

support that cluster 5 indeed consists of a mixture of cells which constitute the environment of 

the mesenchyme and/or liver capsular environment.  

 

We believe this addition contributed significantly to our ability to interpret the nature of the 

uncharacterised structure underlying cluster 5. Consequently, we are including the results 

depicted in table 5 as Supplementary Figure 18 of the original manuscript and modified the text 

in the manuscript accordingly:  

 

Line [340-345] 

 

“Moreover, we compared markers of cluster 5 with markers of annotated cell types of scRNA-Seq 

data and found high overlap with mesenchymal cell types (fibroblasts, HSCs and vascular smooth 

muscle cells (VSMCs) (Supplementary Figure 20). 

Taken together, correlation analysis of cluster 5 markers,histological morphology in the respective 

tissue area and high overlap with mesenchymal cell markers advocates for the spatial 

organization of cluster 5, independent of liver zonation.” 

 

and  

 

Line [419-421] 

 

“Cluster 5 consists of a small number of spots with distinct spatial localization, which exhibit 

expression of mesenchymal cell marker genes 13,27 and are associated with  “collagen fibril 

organization” pathways.”  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Review Figure 17 | Expression of cluster 5 marker genes displayed in t-SNE embeddings of annotated 

scRNA-seq data. a Projection of the 12 DE markers of cluster 5 exhibiting the highest log fold-change in t-

SNE embedding of the annotated NPC types described in the paired-cell sequencing from Halpern et al. 

[2]. b  Projection of 12 markers of cluster 5 with highest log fold-change in t-SNE embedding of the 

annotated mesenchymal cell types described in [1]. 



  

[1] https://pubmed.ncbi.nlm.nih.gov/31722201/ 

[2] https://pubmed.ncbi.nlm.nih.gov/30222169/ 

 

 

3) Discuss relevance for experiments on human material  

it would be important to know whether this method could also be applied to human material in a 

relatively high throughput manner. Such a statement would certainly encourage other 

researchers in the field of liver zonation to apply this method to answer still open questions.  

 

We are pleased about the interest of the reviewer in the possibility to apply spatial 

transcriptomics to investigate human material. In his/her comment he/she additionally inquires 

about the possibility to implement the method in a relatively high-throughput manner.  

To answer the first part of the question we would like to first confirm that ST can be applied to 

human material and has already been performed in multiple human organs [1-10].  A recently 

published pre-print even includes spatial transcriptomics data of the human liver [11]. 

To further extrapolate on the possibility of applying the method in high-throughput, we would like 

to briefly reiterate at the current technical limitations of the method: These include the number 

and size of the sub-arrays on each ST slides (6 subarrays à 6,4 x 6,4 mm, see Methods and 

[12]). With the introduction of commercially available experimental kits, we anticipate an even 

broader spread of the technique to a more diverse set of laboratories that could apply this to 

various tissue types and address a high variety of biological questions [13]. In addition, we 

would like to highlight the currently high costs of performing ST experiments, which may further 

complicate the performance of ST experiments of human material at high throughput levels, 

given the aforementioned current technical limitations of the method.  

 

To address the reviewers remark on the applicability, specifically the future applicability of the 

method presented in our study on human liver material, we modified the manuscript text to the 

following:  

 

Line [455 - 457] 

 

“We further anticipate that ST will be highly beneficial for future studies addressing liver 

development, sexual dimorphisms of liver zonation, immunity and general pathology in the 

mammalian liver, including humans.” 

 

[1] https://www.sciencedirect.com/science/article/pii/S0092867419312826 

[2] https://science.sciencemag.org/content/364/6435/89 

[3] https://www.biorxiv.org/content/10.1101/2020.07.14.200600v1 

[4] https://www.nature.com/articles/s41551-020-0578-x 

[5] https://pubmed.ncbi.nlm.nih.gov/32579974/ 

[6] https://www.nature.com/articles/s41598-019-55441-y#Sec20 

[7] https://cancerres.aacrjournals.org/content/78/20/5970.long 

[8] https://www.nature.com/articles/s41467-018-04724-5 

https://pubmed.ncbi.nlm.nih.gov/31722201/
https://pubmed.ncbi.nlm.nih.gov/30222169/
https://www.sciencedirect.com/science/article/pii/S0092867419312826
https://science.sciencemag.org/content/364/6435/89
https://www.biorxiv.org/content/10.1101/2020.07.14.200600v1
https://www.nature.com/articles/s41551-020-0578-x
https://pubmed.ncbi.nlm.nih.gov/32579974/
https://www.nature.com/articles/s41598-019-55441-y#Sec20
https://cancerres.aacrjournals.org/content/78/20/5970.long
https://www.nature.com/articles/s41467-018-04724-5


[9] https://www.nature.com/articles/s41598-018-27627-3 

[10] https://www.nature.com/articles/s41598-017-13462-5 

[11] https://doi.org/10.1101/2021.03.27.436882 

[12] https://pubmed.ncbi.nlm.nih.gov/27365449/ 

[13] https://www.10xgenomics.com/products/spatial-gene-expression 

 

 

Reviewer #3 

 

This paper performed the spatial transcriptomics on a total of 8 sections of wild type adult 

mouse livers consisting of 19,017 genes across 4,863 spots (each covering 5-10 hepatocytes 

and up to 30 cells), to study the zonation of liver lobules. In this paper, the unsupervised 

clustering on spot-level gene expression revealed six unique clusters, where two correspond to 

periportal and pericentral regions, respectively, and one is claimed to be a previously 

uncharacterized liver structure. The further cell type identification using scRNA-seq-derived cell 

type signatures found the co-localization of multiple cell types, but differing from the previous 

scRNA-seq-based observation, the liver is found to be predominantly constituted by zonated 

hepatocytes. Moreover, authors observed the dependency between spatial distance and gene 

expression along the lobule axis, which further motivated the computational prediction of portal 

and central veins from spatial gene expression.  

 

This study is non-trivial. However, the low resolution (non-single cell level) of spots is the major 

concern, which may result in suspicious conclusions when conducting all clustering, biological 

interpretation and cell type identification. Further, this paper lacks in-depth analysis and 

validation, and some of the observations are over-interpreted, making the result and conclusion 

less solid. Followed are the detailed comments. 

 

Before addressing the reviewer’s comments in depth below, we would like to start by thanking 

the reviewer for correctly pointing out the current lack of single cell resolution of the ST method.  

We would like to  clarify that our ambition is not to put forth ST as a method to challenge 

scRNA-seq, but rather to highlight the benefits of applying ST to liver tissue, which can be 

largely attributed to the spatial component this method provides. Further, we describe ST and 

scRNA-seq as two highly complementary methods, which we believe benefit highly from being 

analyzed in tandem.  

In our study we are not attempting to perform cell type identifications across the tissue, as the 

current resolution of ST does not allow us to make such interpretations. We rather provide a - in 

our opinion - strong complementary method to scRNA-seq, as we retain spatial information of 

small mixtures of cells across tissue and exemplify how this data can be combined with pre-

existing scRNA-Seq data.  

 

Although ST currently lacks the resolution of analysis down to the single cell level , we strongly 

believe that ST represents an important tool for transcriptomics analyses of liver and other 

https://www.nature.com/articles/s41598-018-27627-3
https://www.nature.com/articles/s41598-017-13462-5
https://doi.org/10.1101/2021.03.27.436882
https://pubmed.ncbi.nlm.nih.gov/27365449/
https://www.10xgenomics.com/products/spatial-gene-expression


tissues in general, and an appropriate method to answer the research questions posed in this 

study. It is our firm opinion that the analyses of ST data performed in this study provide reliable 

clustering results and biological interpretations, which we are addressing in more detail in the 

reviewer’s comments below. We realize now that certain parts of the manuscript could have 

been more clear in highlighting the fact that we are not investigating gene expression at the  

single cell level. We apologize for these unclarities and have provided clarification by 

implementing the following modifications in the manuscript:  

 

Line [70 - 73] 

 

“However, all previous studies either performed laser capture microdissection 15 or perfusion 

techniques 11,13, ultimately requiring tissue dissociation prior to sequencing, resulting in single 

cell resolution but also altering the physiological transcriptional landscape 16–18.” 

 

Line [92 - 95] 

 

“Hence, the generation of Spatial Transcriptomics data from liver sections in their bona fide 

tissue context, together with pre-existing knowledge of liver zonation enables spatial annotation 

of structures consisting of small mixtures of cells in the liver microenvironment (lobule) and liver 

macroenvironment (tissue section).” 

 

Line [108 - 110] 

 

“We anticipate that our results from small mixtures of cells, complement previous findings of 

different cell types constituting the overall transcriptional landscape of liver tissue and enhance 

our current understanding of liver tissue organization.” 

 

Line [360 - 363] 

 

“Here, we estimated cell type information in the spatial data in two different ways. First, we 

assessed expression of characteristic marker genes within a wide range of expression levels 

and investigated zonation patterns of established cell type markers 13,27. Secondly, we 

deconvolved gene expression profiles of the mixed cells in spots using stereoscope.” 

 

 

We hope the reviewer regards these modifications as appropriate and that they are already able 

to resolve some of the reviewer’s concerns, which we are addressing carefully in response to 

the detailed comments below.  

 

 

1) Low cell resolution of spots:  

The technical artifacts of “doublet” in scRNA-seq leads to suspicious biological conclusions, 

while this phenomenon is much more severe in the spatial transcriptome of this paper, where 



“each spot contains between 5-10 hepatocytes and up to 30 cells in total per spot”. It may 

largely bias the unsupervised clustering, resulting in suspicious cluster interpretation.  

 

 

Response: 

 

We appreciate the reviewer’s comment and understand his/her worry regarding the presence of 

doublets, or rather “multiplets”, in our spatial transcriptomics data given how this is often listed 

as a common source of unwanted artifacts in single cell analysis. However, we would like to 

elaborate on why we do not believe that this is an issue when conducting our data analysis 

which is inherently different from scRNA-seq data and ask the reviewer to consider our analysis 

in the light of these arguments. 

 

First, for the sake of context, we see it fit to recapitulate on why doublets are necessary to 

remove in single cell data. The very premise of single cell RNA-seq is that each data point 

represents the transcriptome of an individual cell, and if the concentration of cells in the droplet 

loadings is correctly adjusted such is the case for a majority of the observations, meaning 

doublets are rare occurrences deviant from the majority of the collected data points. If the 

doublets are homotypic (host two cells of similar states and types), they aren’t of too much 

concern as the captured transcripts would be uniformly sampled from both cells thus being near 

equivalent to sampling from a single cell of said type. In contrast, heterotypic doublets 

(containing cells of different states and/or types) will give a transcriptional profile that is a hybrid 

of the two which would emerge as a potentially new (relatively rare) cell state/type. Such 

heterotypic doublets may cause issues in several downstream analyses such as clustering and 

differential gene expression analysis, or even in the initial stages of dimensionality reduction if 

their abundance is high enough, as seen in [1,2]. 

 

While single cell RNA-seq and spatial transcriptomics data share many similarities on a 

superficial level, one key difference is how we expect and assume that each observation in the 

latter consists of contributions from multiple cells, as the captured transcripts are sampled from 

all cells covering the spot (capture location). This means that observations that represent a 

mixture of multiple cells are actually the rule rather than the exception. Next, when one analyzes 

the spatial transcriptomics data, we do not seek to identify groups of observations 

(clusters) that represent cell types or states, instead the aim is to find observations that 

seem to exhibit similar expression profiles, indicating that these have a similar composition of 

cell types. Of course, the clusters that emerge from the analysis of spatial transcriptomics can’t 

be taxonomically indexed with the same ease as cell types in single cell data, but they still 

represent biological entities that are informative of the tissue being studied, and allows one to 

identify transcriptionally similar regions in the tissue. 

 

Furthermore, we also make sure to regress out the total number of UMI’s observed in each spot 

using the SCTransform, which will account for differences in cell abundance at each spot and 

potentially more transcriptionally active cells. Also, in [3] the authors describe how the total UMI 

count is largely dependent on the number of cells present in a spot, which suggests that 



regressing out the former should account for any bias that could be expected by the latter. We 

will nevertheless pursue this question of the cell count’s influence on the downstream analysis 

more in the answers below. 

 

As a final comment, we would like to add that the Spatial Transcriptomics (ST) method we are 

using has been published in a peer-reviewed journal and featured in multiple publications after 

this, and it’s successor is now a commercial product sold in large masses, attesting to the 

validity of the results that emerge in studies based on this data [4,5,6,7]. 

 

We hope that these comments have clarified our stance and relieved the reviewer of his/hers 

worries about the potential negative impact of the mixed data. If we have failed to do this, we 

ask the reviewer to be more specific in exactly how he/she believes the mixed character of our 

data would confound the downstream analysis, so that we can address these worries in a more 

targeted manner. 

 

 

[1] :https://www.sciencedirect.com/science/article/pii/S2405471220301952  

[2]: https://www.sciencedirect.com/science/article/pii/S2405471219300730 

[3]: https://academic.oup.com/jmcb/article/12/11/906/5861536 

[4]: https://academic.oup.com/jmcb/article/12/11/906/5861536  

[5]: https://www.cell.com/cell/pdf/S0092-8674(19)31282-6.pdf  

[6]: https://www.cell.com/cell/pdf/S0092-8674(20)30672-3.pdf  

[7]: https://www.10xgenomics.com/products/spatial-gene-expression  

 

 

1a) cell count frequency/spot  

 

As the very first step, the authors are suggested to demonstrate the frequency of cell count in 

spots, e.g. histogram or density plot.  

 

We welcome the suggestion of the reviewer to visualize the cell count across spots in the tissue, 

as an approach to address the concern of the potential influence of the cell count on the 

observed expression profiles of each spot. As previously stated, each spot consists of multiple 

cells of various cell types. Hence, spots are expected to contain differing amounts of cells, 

which is largely influenced by the cell type composition within the spot [1].  

 

In order to quantify distribution of cell counts across the ST spots we developed a segmentation 

workflow using image processing and analysis tools available from the EBImage R package [2]. 

The segmentation workflow is largely inspired by tutorials provided by the EBImage package 

developers and is available as a command line tool on GitHub [3]. A summary of the workflow is 

described below: 

  

First, an RGB encoded image of an H&E stained tissue section (Review Figure 18 a) is 

imported and converted to grayscale by merging the red and blue color channels (these color 

https://www.sciencedirect.com/science/article/pii/S2405471220301952
https://www.sciencedirect.com/science/article/pii/S2405471219300730
https://academic.oup.com/jmcb/article/12/11/906/5861536
https://academic.oup.com/jmcb/article/12/11/906/5861536
https://www.cell.com/cell/pdf/S0092-8674(19)31282-6.pdf
https://www.cell.com/cell/pdf/S0092-8674(20)30672-3.pdf
https://www.10xgenomics.com/products/spatial-gene-expression


channels were found to be the most informative to delineate cell nuclei based on visual 

inspection). Intensity values in the grayscale image are then reversed, resulting in a 

representation where nuclei appear bright on a dark background (Review Fig 18 b). 

Segmentation of nuclei is conducted on the inverted image using adaptive thresholding, a 

method that compares the original image with a filtered version and returns a binary image. In 

this binary image, nuclei are represented by a value of 1 and the background by a value of 0 

(Review Fig 18 c). From the binary image, merged nuclei were split and labelled using a 

watershed transformation (Review Fig 18 d). At this step, a nucleus is represented by a set of 

connected pixels sharing the same label. 

  

To quantify the number of nuclei per ST spot, we first calculated the pairwise distances between 

ST spot centers and nuclei centroids. Then, for each spot we counted the number of nuclei 

within a distance of 50 microns, corresponding to the radius of an ST spot (Review Fig 18 e and 

f). Review Fig 18 g depicts an example of the cell count distribution across a whole liver tissue 

section. For a more detailed description of the segmentation workflow and cell counting, we 

refer to the documentation in the rmarkdown notebook provided on GitHub. 

 

 
Review Figure 18 | Visualization of cell segmentation workflow. The original H&E image in a is first 

converted to grayscale and inverted resulting in b. c The binary image created using adaptive 

thresholding to distinguish nuclei in white and the background in black. d Each nuclei is labeled in color 

using watershed transformation. e shows the ST spots projected on the HE image (black circles) to 

identify which nuclei should be considered for the cell counting. f depicts the spot spot selection of e in 

the inverted binary image, where positions that are outside of spots are converted to black background 

color. d represents an example of the resulting cell count distribution with the original H&E image to the 

left and the corresponding cell count distribution to the right, where the number of cells are indicated by a 

color gradient from light (low cell count) to dark (high cell count).  



 

 

To ensure that our segmentation workflow produced reliable results, we compared our approach 

with a peer-reviewed and published cell segmentation method relying on machine learning 

(Ilastik + Fiji) [4] (Review Figure 19), and found a high correlation (Pearson) between the 

results. 

 

 
Review Figure 19 | Pearson correlation of different cell segmentation and cell count distribution methods. 

The machine learning based cell segmentation tool (llatik + Fiji) (y-axis) shows a strong correlation (0.96) 

with the segmentation method designed in the results presented here (EBIImage) (x-axis).  

 

 

This cell segmentation approach resulted in an estimation of the number of cells for each spot, 

which we then used to generate a histogram depicting the frequency of the cell number per spot 

across the tissue.  

We observed the highest frequency for spots containing between 30 and 60 cells, followed by 

spots containing between 10 - 20 or > 60 cells (Review Figure 20). We expect most spots to 

have a similar amount of cells. Nonetheless biliary ducts, venous structures and other 

potentially uncharacterised structures and/or smaller cells of the same type may result in a 

higher cell density within some spots. Consequently, the same principle applies to spots which 

might contain larger cells, resulting in smaller count of cells in the respective spot.  

 

To further answer the reviewer’s comment, we consider it important to note that the tissue 

integrity can vary between different tissue sections as seen in H&E images (Review Figure 21). 

Other technical artifacts might also be present in the HE images, for example folds, bubbles and 



cracks. All such technical artifacts increase the risk of  biases in the cell count estimates and 

further support that the inclusion of cell counts in the normalization procedure can introduce an 

unwanted source of technical noise.  

 

 

 

 
Review Figure 20 | Histogram depicting the frequency of cell numbers across spots under the tissue for 

all analyzed samples. The number of counted cells per spot, received by the cell segmentation tool 

designed for this study is shown on the x-axis. The frequency of cell counts per spot across the tissue is 

shown on the y-axis, showing that more than 1000 spots across tissue sections contain 40 or 50 cells.   

 

 



 
Review Figure 21 | Comparison between HE stainings of different sections used for ST experiments. 

Representative subsets (100x100 pixels) of H&E images of two different sections used in the ST 

experiment to exemplify differences in staining quality between different sections. Due to technical 

differences during sample preparation, the cellular cytosol can look more pitted and hollow (a), or more 

even (b).  

 

 

We hope we have addressed the reviewer’s request to demonstrate the number of cells counted 

in individual spots sufficiently by: 

 

1)  implementing a method to assess the number of spots.  

2) Visualizing the frequency of cells per spot across the tissue in a histogram.  

 

  

[1] https://academic.oup.com/jmcb/article/12/11/906/5861536 

[2] https://bioconductor.org/packages/release/bioc/html/EBImage.html 

[3] https://github.com/ludvigla/liver_cell_segmentation 

[4] https://doi.org/10.1093/jmcb/mjaa028 

 

1b) Investigate the influence of cell count on clustering 

 

It is crucial to investigate whether the cell count in spots can influence the clustering. The 

authors are suggested to overlay the cell count in spots on the spot clustering. It is expected 

that the clusters with small cell count may give the more confident and accurate cluster 

interpretation, compared to those with high cell count, which are of the average expression of 

multiple cell types.  

 

Response:  

https://academic.oup.com/jmcb/article/12/11/906/5861536
https://bioconductor.org/packages/release/bioc/html/EBImage.html
https://github.com/ludvigla/liver_cell_segmentation
https://doi.org/10.1093/jmcb/mjaa028


 

The reviewer highlights the legitimate concern about the influence of a variety of factors on 

clustering of sequencing data, including the number of cells per spot. We consider it beneficial 

to briefly reiterate on the normalization and clustering approach performed in this study. 

First the data was normalized to account for potential batch effects of different sections and 

sequencing depth for each experiment. This step was performed for all sections of each 

experiment (referring to one ST slide). Next, we performed data integration for all three 

experiment datasets using CCA (canonical correlation analysis). CCA finds a gene correlation 

structure that is conserved between datasets and aligns these datasets into a low-dimensional 

space represented by a set of correlation vectors [1]. We then used the canonical correlation 

vectors to perform shared-nearest-neighbor (SNN) graph based clustering. This approach, 

described in further detail in the materials and methods section of the original manuscript, 

resulted in 6 clusters across all investigated liver sections.  

 

To address the reviewer's concern about the specific influence of the cell count we performed 

additional analyses, starting with his/her suggestion to overlay the cell count in spots on the spot 

clustering. To this end, we investigated the distribution of cell counts across spots, derived from 

the cell segmentation described in the response to comment 1a) across each cluster and the 

dimensionality reduction projection of spots (UMAP).  

Our results exhibit a uniform distribution of spots with different cell counts across all identified 

clusters. This indicates that spots do not cluster based on the number of cells present within 

spots (Review Figure 22 a,b).  

 

 
Review Figure 22 | Distribution of cell counts across clusters. a depicts the distribution of cell counts 

(ranging from 0 - 150 on the y-axis) grouped by cluster (0-5) (x-axis). The color for each cluster 

corresponds to the respective color in the UMAP projection in the main manuscript. b Depiction of  the 

number of spots across clusters in the UMAP embedding with cell count values ranging from 0 (low cell 

count, light) to 150 (high cell count, dark).  

 

[1] https://www.nature.com/articles/nbt.4096 

 

 

https://www.nature.com/articles/nbt.4096


1c) Follow up on question 1b 

 

To further reduce the bias, authors are suggested to also directly use the spots with low cell 

count to conduct clustering, to see how many clusters can be made, followed by cell type 

identification and biological interpretation.  

 

We appreciate the reviewer’s comment to address his/her concerns about the influence on cell 

count on the downstream clustering of our data.  

 

To answer the reviewer’s request we first would like to emphasize again that our spatial data is 

not equivalent to scRNA-seq data as each observation (spot) represents a composition of 

multiple cells and thus various types. The results requested by the reviewer show that the great 

majority of spots contain between 20 and 60 cells (Review Figure 20). As we are suggested to 

conduct clustering on spots exhibiting low cell count, followed by cell type identification and 

biological interpretation, we would like to give a detailed explanation why we believe that the 

suggested analysis would not result in the reduction of bias from differences in cell-count across 

spots expected by the reviewer.  

 

As previously mentioned, we show that the majority of spots contain between 20 and 60 cells. If 

we only included spots with low cell counts we would discard a substantial amount of data, for 

example; excluding spots with more than 5 cells would leave only 1% of the data to be 

analyzed. Even when considering 10 cells per spot as the threshold, more than 98% of our 

transcription data would be lost. The clustering strategy employed in this study is based on the 

assumption that the constructed nearest-neighbour graph represents an adequate 

approximation of the data manifold. Removing the vast majority of data points would make the 

constructed graph more sparse and thus would not be able to reflect this assumption anymore. 

Hence,clustering of spots containing only few cells would not render an accurate depiction of 

the inherent groups found in the data.  In our opinion, given the relatively small size of our 

dataset, any analysis where we exclude between 95-99% of the data would not produce results 

that could be compared to the results obtained from the complete data set. 

 

Nevertheless we believe that the remaining analysis performed to address the reviewer’s 

concern of the impact of the cell count in the previous and following responses will be able to 

relieve the reviewer from her/his worry. 

 

2) Extrapolate on Cluster 5 characterization  

 

previously uncharacterized structure Cluster 5. Based on unsupervised clustering, authors 

found the cluster 5, which may suggest an uncharacterized liver structure. However, given the 

above concern about the low resolution, the cluster may not be a novel structure, but result from 

the mixed existing cell population within spots. Thus, the average expression of various cell 

types drive the high similarity within cluster 5 and make them different from the others.  

 

 



We value the reviewer's comment and hope we understand his/her concern accurately, that 

cluster 5 might not result from the expression of a single cell type. As correctly stated by the 

reviewer and described in our manuscript, each spot consists of a mixture of contributions from 

multiple cells. Therefore, we can never assume that one spot consists of only one cell type. We 

would like to use this opportunity to emphasize again that we do not make the assumption that a 

spot in the spatial data refers to a single cell or single cell type for this matter. Hence, the 

reviewer is correct in his/her statement that the average expression of various cell types is 

driving the transcriptional similarities between spots within cluster 5, distinguishing it from the 

remaining clusters.  

 

Consequently, when referring to the uncharacterized liver structure we are describing a 

structure with a distinct composition of multiple cells and cell types rather than single cells and/ 

or cell types. To further illustrate this structural pattern forming the part of the tissue annotated 

as cluster 5, we refer the reviewer to additional results from comparative analysis of cluster 5 

and two different single cell studies (Review Figure 17, Review Table 5), requested by reviewer 

2. These additional results will be included in the supplementary material of the original 

manuscript.  

 

To recapitulate the relevance of these results presented here in brief, we were asked to include 

additional single cell comparative analyses to further validate our results and conclusions on the 

identification and interpretation of the uncharacterized structure in cluster 5. We gladly 

incorporated the suggested additional analysis and consider the results highly informative and 

relevant for this reviewer's comment.   

 

Incorporating single cell data sets, which are each focusing on a different subset of cell types, 

we can explore intersecting marker genes expressions of cluster 5 and all annotated cell types. 

Based on the presence and  frequency of intersection cluster 5 and cell type markers, we i) 

imply the presence of several cell types within the tissue defined by the cluster 5 expression 

profile and ii) hint on the putative overall contribution of this cell type to the structure (Review 

Table 5). 

 

To further interpret the importance of the marker genes present in cluster 5 in single cell data, 

we can visualize the cluster 5 marker gene expression in the respective t-SNE expression 

(Review Figure 17). This result marks i) the confinement of each marker to the annotated cell 

types and ii) the expression levels of each marker.  

 

 

The additional analysis performed to characterize cluster 5 in more detail will be included in 

Supplementary figure 18 and we address the obtained results in the main manuscript by 

modifying the manuscript text as shown in the response to question 2 of reviewer 2.  

 

 



Taken together, the additional results presented here contribute - in our opinion -  significantly to 

the understanding of the composition of the tissue within cluster 5. We hope the reviewer 

agrees with us and considers our answer sufficient to address his/her concerns. 

 

3) Spot gene expression normalization - refer to 1a,b 

 

Considering multiple cells in each spot, the Reviewer is curious about the gene expression 

normalization? Does it normalize to the cell count? This is not a standard step in the traditional 

single cell RNAseq gene expression normalization, but if not done, the gene expression of spots 

might be misestimated, i.e., overestimated for spots with higher cell count and underestimated 

for spots with lower cell count. This may cause problems when conducting differential gene 

expression analysis.  

 

 

We appreciate the reviewer’s suggestions and understand why normalizing by cell count - or at 

least accounting for this number - seems appealing when working with spatial transcriptomics 

(ST). As the reviewer points out, the observations in ST data consist of contributions from 

several cells, where the number of cells varies between the different locations; a feature that 

one might suspect to influence the observations. In the following discussion, we seek to explain 

why we deem it more appropriate to normalize by the total number of unique transcripts rather 

than cell count. 

 

In short, the main objective for any normalization process - designed for transcriptomics data - is 

to remove technical noise and biases in the data while preserving true biological signals. One 

such bias, and perhaps the most obvious, is the sequencing depth (for which total count of 

unique transcripts is often used as a proxy); if two samples are sequenced at varying depth, 

comparing their raw read counts could lead to erroneous conclusions, such as upregulation of 

genes in the sample with more reads. In addition to sequencing depth, one may also attempt to 

correct for other - unwanted - sources of variation by adding more covariates to the 

normalization process. These covariates are dependent on the specific study but common 

examples are: batch id, individual, and disease state. Taken together, we seek to produce 

normalized data where effects from non-informative sources of variation have been removed, or 

at least significantly reduced. 

 

Next, we will examine what technical biases that need to be considered in ST data compared to 

single cell data. In single cell data we aim to account for differences in sequencing depth 

between cells that may arise as a consequence of the experimental setup, where it’s hard to 

obtain consistent library preparation with the minimal starting material found in each cell. Since 

the ST technique uses a capture based approach, where all probes are sequenced 

simultaneously, varying sequencing depth between spots is not a confounding factor. However, 

we expect other sources of bias in our data, such as: 

 

i) the capture efficacy of our spatial capture locations (spots) 

ii) inhomogeneous transcript density across the tissue 



 

For (i) we might assume that there are some slight differences in the capture efficacy of each 

spot, which for example could be due to irregularities in the printing process or array damage. 

However, the differences in capture efficacy could be considered negligible as the method’s 

robustness have been proved in previous publications[1]. Furthermore, these differences - even 

if they were significant - are something we can’t quite account for a priori to analysis, since they 

aren’t systematic and would vary between each array. Hence, we will not discuss (i) from a 

normalization perspective. 

 

Of more interest is (ii), where the transcript density may vary across the tissue. Three main 

contributors to this variation are: a) differences in the number of cells contributing with 

transcripts to a given location, b) differences in tissue permeability during the experimental 

procedure, and c) cells exhibiting different levels of transcriptional activity. Regardless of the 

origin of the variation in transcript density, we still want to account for it in our analysis, since it 

allows us to investigate changes in relative gene expression between regions.  

 

Normalizing with respect to cell counts may reduce some bias introduced by the stated sources 

a)-c), but it is accompanied by a certain degree of uncertainty and limitations. Firstly, the cell 

count is not exact, but only an estimate of the number of cells that contributes with transcripts to 

a spot. It is well-known that different methods of cell segmentation and counting strategies can 

render fairly different estimates, which also are highly dependent on image quality and 

resolution. Next, only viable cells that were properly permeabilized will actually contribute to the 

transcript count of a spot, meaning that the observed cell count does not correspond to the 

actual number of contributing cells. Since permeability and viability is not homogeneous across 

the tissue, we are not justified to state that the cell count is proportional to the number of 

contributing cells. Finally, the number of cells cannot by any means capture the permeabilization 

aspect of the transcript density, hence this would have to be accounted for by other means. 

Thus, cell count is not only an inexact measure of our true covariate (number of contributing 

cells), but by using it we are also at risk of introducing further uncertainty (from the estimation 

step) into our data. 

 

In contrast, the total UMI count is immediately calculated from the observed data and could act 

as a proxy for all of the three aforementioned contributors (a-c), as all of them affect the total 

amount of captured transcripts.  

 

The method we apply for normalization, sctransform, is designed to both normalize the data as 

well as to apply a variance stabilizing step; it is widely used in the single cell community and 

implemented in the Seurat suite [2]. We refer to the main publication for a detailed outline of the 

sctransform method, but in its most basic form, it uses a GLM-like (Generalized Linear Model) 

approach to model the count data, according to: 

 

𝑙𝑜𝑔 (𝐸[𝑥𝑖𝑗])  =  𝛽0𝑗 + 𝛽1𝑗 𝑙𝑜𝑔 (𝑚𝑖)  

 



Where xij is the expression of gene j in cell i, mi is the total count of unique transcripts in cell i, 

and the error function is taken to be the Negative Binomial. The normalized counts are then 

obtained by calculating the Pearson residuals, which are supposed to represent the part of the 

expression that the cell’s total number of unique transcripts can’t account for. In the original 

publication, the total unique transcript count figures as a proxy for the sequencing depth. 

However, in the context of ST data it acts as to account for differences in transcript density; 

which - as mentioned above - is exactly what we aim to do. 

 

As per the reviewer’s request, we conducted several additional analyses to investigate the 

influence and effect of including cell counts in our normalization process (Review Figure 23, 

Review Table 6), and made the following observations:  

 

● Upon regression of cell count during normalization we can obtain the same number of 

clusters, namely 6. Upon visual inspection the clustering results after normalizing for cell 

count per spot look very similar to the original clustering results.  

● Upon more detailed inspection of the differences in cluster annotations between data 

normalized for cell count per spot and original normalization, the number of spots 

assigned to each cluster is very similar. Spots which were assigned to belong to cluster 

0 show the highest number of spots being either assigned to cluster 1 (428 spots) or 

cluster 2 (106 spots), making cluster 1 the largest cluster in size (Review Table 6). 

 

Thus, we can acknowledge differences for cluster annotations when considering the cell count 

for normalization but we do not believe they improve the clustering results, as we observe the 

same number of clusters as without normalization. In addition, most spots observed to switch 

cluster identity originally belong to cluster 0. Cluster 0 is the biggest cluster in our original 

analysis and also describes the most unspecific cluster, as we don’t observe significantly 

differentially expressed genes to the same extent as for the remaining clusters (Figure 2c, 

original manuscript, attached here as Review Figure 10). Since we validated cluster 1 and 

cluster 2 in depth as central and portal clusters, for instance by DGEA of well established 

landmark genes, comparison to published and peer-reviewed spatial gene expression data on 

zonation [3,4,5] and histological annotation, we are confident that our clustering approach 

reflects the spatial information of the transcriptome accurately.  

 

In summary, we found that the inclusion of cell count in the normalization process, requested by 

the reviewer, did not substantially improve our results. In addition, we provide a more theoretical 

argumentation for our approach and why we still consider it superior to cell count-based 

normalization. To us, these arguments provide a strong justification for our choice of analysis 

strategy, but are open for further discussion if the reviewer is of a different opinion. We would 

nevertheless, then ask him/her to further elaborate exactly why cell counts would be preferable 

to include in the analysis. 

 

 

 



 
Review Figure 23 | Comparison of clustering results considering cell-count as a covariate for clustering 

analysis. a Depiction of original UMAP embedding as shown in the main manuscript. b UMAP embedding 

of clustering results upon regression of the observed cell counts per spot during normalization.  

 

Review Table 6 | Intersection of spot cluster annotation with and without cell count normalization. To 

compare the cluster annotations across spots when cell counts are included as a variable to regress 

during normalization, we intersected the spots with original cluster annotations (A) and cluster 

annotations after cell count normalization (B). Matching cluster cells are colored in the original colors 

used in the UMAP projection (Review Figure 23). Cluster cells depicting the highest differences in non-

matching spot count for the cluster annotation are labeled in grey. 

 

B 

cluster 2 cluster 0 cluster 5 cluster 3 cluster 4 cluster 1 

A cluster 2 661 44 0 13 0 2 

cluster 0 106 1568 13 63 5 428 

cluster 5 0 7 100 0 0 3 

cluster 3 29 8 1 357 0 69 

cluster 4 13 3 1 1 67 78 

cluster 1 6 34 2 10 0 1171 

 

 

[1] https://science.sciencemag.org/content/353/6294/78 

[2] https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1874-1 

[3] https://pubmed.ncbi.nlm.nih.gov/32579974/ 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1874-1
https://pubmed.ncbi.nlm.nih.gov/32579974/


[4] https://pubmed.ncbi.nlm.nih.gov/32637622/ 

[5] https://pubmed.ncbi.nlm.nih.gov/28166538/ 

 

 

4) Elaborate on gene set enrichment for liver metabolic processes along the lobular axis  

 

Gene sets of interest It would be interesting to see if the well-known gene set enrichment can be 

reproduced along the lobule axis, for example, the gradually decreasing Nutrient- and oxygen-

rich condition, Mitochondrial β-oxidation, Gluconeogenesis, Glycogen synthesis, and the 

gradually increasing WNT signaling, Glycolysis, Lipogenesis from zone1 to zone3. The similar 

expectation also includes the well-known cell types along the lobular axis. 

 

Response:  

 

We appreciate the reviewers interest in the enrichment of genes with previously described 

differential expression between the periportal (zone1) and pericentral (zone3) zone. To answer 

his/ her comment on the enrichment of the requested set of genes (Nutrient- and oxygen-rich 

condition, Mitochondrial β-oxidation, Gluconeogenesis, Glycogen synthesis, WNT signaling, 

Glycolysis and Lipogenesis) we performed additional analyses and generated results 

investigating the zonation of these gene sets in our spatial data.  

 

As a first step we compared the requested pathways against the KEGG database. We 

considered this database a good fit as it contains a collection of manually drawn pathway maps 

and genes representing our knowledge of the molecular interaction, reaction and relation 

networks [1], including gene sets of various metabolic pathways which are active and have been 

described to be zonated in mouse liver tissue [2]. 

 

To this end we used the R package EnrichmentBrowser to extract a list of mouse specific 

KEGG pathways and their respective enriched gene sets. We then selected individual pathways 

of interest and determined the proportions of gene sets in the central (cluster 2) and portal area 

(cluster 1) of our spatial data for each pathway.  

Upon request of the reviewer and in comparison with previous publications investigating 

zonation of gene set enrichment of metabolic pathways [3], we included the analysis of the 

following KEGG pathways:  

 

- WNT signaling 

- glycolysis/gluconeogenesis (representative for gluconeogenesis, glycogen synthesis, 

glycolysis) 

- fatty acid metabolism (representative for mitochondrial β-oxidation and lipogenesis) 

- glycerolipid metabolism (representative for lipogenesis) 

- oxidative phosphorylation and pentose phosphate pathway (representative for oxygen-

rich conditions) 

- glucagon signaling pathway and fructose and mannose metabolism (representative for 

energy metabolism) 

https://pubmed.ncbi.nlm.nih.gov/32637622/
https://pubmed.ncbi.nlm.nih.gov/28166538/


 

In agreement with the data from Ben-Moshe and colleagues, our results show that KEGG 

pathways representative for oxygen-rich conditions (oxidative phosphorylation and pentose 

phosphate pathway) and energy metabolism (glucagon signaling pathway and fructose and 

mannose metabolism) show enrichment in the portal area (cluster 1). While central pericentral 

processes such as high WNT signaling, gluconeogenesis, glycogen synthesis and glycolysis 

(glycolysis/gluconeogenesis), lipogenesis (fatty acid metabolism,glycerolipid metabolism), 

mitochondrial β-oxidation (fatty acid metabolism) are enriched in the central areas of the tissue 

(cluster 2) (Review Figure 24).  

 
Review Figure 24 | Gene set enrichment of selected KEGG pathways for periportal and pericentral 

regions. Enrichment of established zonated metabolic pathways was determined and proportions of 

enriched genes sets were compared between the PP zone (cluster 1) and the PC zone (cluster 2) in our 

data. Negative values (red bars) represent enrichment in the central zone, while positive values (blue 

bars) represent enrichment in the portal area.  

 

To expand further on the zonation of metabolic pathways between the central and portal venous 

area we would like to refer the reviewer to additional bivariate expression by distance analysis 

of selected wnt, glucagon, ha-ras, chronic hypoxia and pituitary hormone activated genes, 

performed in Review Figure 3 - 5. For a detailed description of the results and their 

interpretation we refer to response 1 of the reviewer 1. In brief, we observed expected 



expression by distance trends for selected wnt markers and glucagon activated genes in the 

central and portal area, respectively. Similar observations were made for ha-ras, chronic 

hypoxia and pituitary hormone marker genes. The investigation by bivariate plots allowed us to 

investigate the influence of the distance to portal and central veins simultaneously and shows 

that distances to both vein types are instrumental to understanding gene expression profiles of 

these genes and therefore also these metabolic pathways.  

 

Further, we appreciate the reviewer’s suggestion to look deeper into the cellular composition 

along the periportal-pericentral (PP-PC) axis. It should be highlighted again that our data allow 

us only to infer the relative proportion of cell-type-specific transcripts found within the respective 

region (spot with known distance from the closest vein) and not the annotation of cell types to 

individual spots. To address the reviewer’s question we would like to refer him/her to the 

analysis performed for comment 4 of the reviewer 1. In short, we selected marker genes of 

different non parenchymal cell (NPC)  types, some of which have been reported to be typically 

zonated. The most prominent NPC types exhibiting zonation include liver endothelial cells and 

Kupffer cells but also hepatic stellate cells and cholangiocytes.  

 

Our results confirm zonated expression of a number of zonated markers for each cell type 

(Review Figure 13 - 14a, response 4, reviewer 1 and Review Figure 25). The bivariate distance 

analysis we performed also allowed us to investigate in more detail how the distance to both 

veins can explain the expression profiles of marker genes along the lobular axis. For instance 

the hepatic stellate cell (HSC) marker Hsd22b1 is expressed in close proximity to the portal vein 

and far from the central vein, while Lye6e exhibits high expression when the central and portal 

vein are in close proximity to each other (within 400 µm). Fgfr2 expression is highest in close 

proximity to the portal vein but is also expressed if a central vein is located in close proximity 

(Review Figure 14 a, Appendix Table 17).   

We can observe equally interesting expression patterns of zonated marker genes of Kupffer 

cells (Review Figure 14 a, reviewer 1, response 4), endothelial cells (Review Figure 13 c,  

reviewer 1, response 4), and for the cholangiocyte marker Spp1 (Review Figure 25 b). As 

Kupffer cell and endothelial cell marker zonation is described in detail in response 4 of the 

reviewer 1, we would like to refer reviewer 3 to response 4 of reviewer 1. We would like to point 

out that Ctsc is a shared marker between Kupffer cells and HSCs and shows portal zonation 

with highest elevation in close proximity to the portal vein while being absent close to the central 

vein (Review Figure 14a, reviewer 1, response 4).  

The cholangiocyte marker Spp1 [7] exhibits high expression close to the portal vein but is also 

expressed along the central axis. This indicates that the close distance to the portal vein is 

necessary for Spp1 expression irrespective of the distance to the next central vein  (Review 

Figure 25 b, Appendix Table 18). As cholangiocytes are constituting cells of the bile duct, which 

only form next to the portal vein [8], we expect that the distance to the portal vein for markers of 

this cell type to be the stronger explanatory variable in comparison to the central vein distance.  

 

In addition, we investigated zonated expression of additional NPC markers previously reported 

to exhibit zonated expression. These included additional markers for endothelial cells [5] and 

hepatic stellate cells [4] with the periportal markers Ltbp4 and Ngfr  as well as pericentral Thbd 



and Adamtsl2, shown in response 4 of the reviewer 1 (Review Figure 13 a,b, reviewer 1 answer 

4). We also attempted to investigate the zonation profile of the endothelial cell markers Cdh13 

for portal and Efnb2 for central zonation. However, we were unable to detect these genes in our 

spatial data, most likely due to their relatively scarce abundance in comparison to the remaining 

transcripts in the tissue. This observation highlights the importance and high relevance of spatial 

transcriptomics and scRNA Seq data integration, allowing for a more complete understanding of 

the tissue landscape. Apart from these endothelial cell markers, we also attempted to 

investigate zonation of smaller NPC populations of the liver, which are expected to be enriched 

in the portal area [6]. Therefore we sought to explore zonation of the following markers:  

 

- Cd3d,Cd4 and Cd8 for T-cells 

- Cd19, Cd79a/b for B-cells  

- Nkg7, Cd69, Cd7 for NKT-like cells 

- Ly6g for Granulocytes  

 

Similar to the expression of the endothelial markers Cdh13 and Efnb2 we were not able to 

detect these markers in our expression data, due to their relatively scarce expression when 

compared to the remaining transcripts in the liver tissue.  

 



 
Review Figure 25 | zonation of Hepatic stellate cell markers present in spatial data and Cholangiocyte 

marker Spp1. a Heatmap displaying DE hepatic stellate cell markers between cluster 1 (portal) and 

cluster 2 (central) (left). Markers with highest expression elevation in cluster 1 or cluster 2 are surrounded 

by a red box. This gene selection was subjected to expression by distance analysis (middle) and within 

400 µm of the vein border. The blue line shows expression by distance from the portal vein border while 

the red line shows expression from the central vein border. Ribbons around the lines indicate standard 

deviations of the smoothed curves. Bivariate expression by distance analysis was performed within the 

same distance (400 µm) to the portal vein (y-axis) and central vein (x-axis) simultaneously (right). 

Numbers in curly brackets after the gene name indicate that {1} the full model does not perform 

significantly better than the reduced portal model, {2} the full model does not perform significantly better 

than the reduced central model, {3} the full model does not perform significantly better than either of the 

reduced models to explain gene expression along the lobular axis, {4} the full model is outperformed by 

the baseline intercept value, i.e. not significantly (p >0.05) influenced by either covariate. Relative 

expression values for each gene are depicted in a color gradient ranging from low (dark) to high (light).b 

Expression by distance (left) and bivariate expression by distance (right) for cholangiocyte marker Spp1. 

Plots can be interpreted as described in sub-figure a.  



 

Collectively, we would like to express our appreciation of the reviewer's suggestions to expand 

on the zonation of metabolic pathways and cell type markers along the lobular axis. We hope 

the reviewer can agree with us that we are able to validate the previously observed zonation of 

liver metabolism and cell type marker genes. In our view, the suggested analysis yields new  

insights, and provides additional validation of our data. 

 

Therefore, we are including the barplot depicting pathway enrichment (Review Figure 24) as 

Supplementary figure 10 in the main manuscript and refer to these results as follows:  

 

Line [238 - 241] 

 

“These described genes belong to a small subset of liver metabolic processes. However, we 

were also able to confirm that a general trend of enrichment of known zonated metabolic 

pathways 6,45 can be observed between the PPC and PCC  (Supplementary figure 10).” 

 

We further include the heatmaps, illustrating the results of the DGEA for HSCs (Review Figure 

25a (left)) in Supplementary Figure 8, as well as the bivariate expression by distance analysis of 

HSCs and Spp1 in Supplementary Figure Supplementary Figure 14 and Supplementary table 5. 

As these results fall in line with requests from reviewer one we would like to refer reviewer 3 to 

the answer of  comment 4 of reviewer 1 for the modifications made to the manuscript regarding 

the results for NPC zonation.  

 

 

[1] https://www.kegg.jp/kegg/pathway.html  

[2] https://pubmed.ncbi.nlm.nih.gov/31535084/  

[3] https://pubmed.ncbi.nlm.nih.gov/30936469/ review 

[4] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856722/ 

[5] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546596/ 

[6] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197289/ 

[7] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715535/ 

[8] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4483763/ 

 

5) Elaborate on statistical method used in Fig 2a)  

 

inappropriate statistic: In Fig 2a), authors calculated the Pearson correlation between cell type 

proportions that do not follow normal distribution. This is inappropriate, since the Pearson 

correlation might be largely biased by the outlier values from the data.  

 

We commend the reviewer for looking through our data and rigorously assessing the statistics 

that we apply in our methods, and are most appreciative of  the given feedback. However, we 

are inclined to argue that our use of the Pearson correlation coefficient (hereafter Pearson’s r) to 

assess co-localization between cell types is justified, and ask him/her to allow us to explain our 

reasoning below:  

https://www.kegg.jp/kegg/pathway.html
https://pubmed.ncbi.nlm.nih.gov/31535084/
https://pubmed.ncbi.nlm.nih.gov/30936469/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546596/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197289/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715535/


 

In essence, the Pearson’s r measures the strength of the relationship between two variables 

which we assume to have a linear relationship, i.e. Y = aX + b. Note that we do not impose any 

assumptions regarding the underlying distribution of the variables (X and Y). If we have N paired 

observations of two continuous variables X and Y denoted as xi and yi respectively. We may 

apply the linear transformation (often known as a z-transformation): 

 

 
 

without changing the shape of the distributions. Here the “bared” values represent the mean of 

each variable. We now assume that a similar linear relationship exists between our transformed 

values: 

 

 
 

 and aim to find the values of a and b that minimize the residual sum of squares for our 

estimates, that is: 

 

 
 

To find these optimal values of a and b we take the partial derivatives of the objective function 

w.r.t, each parameter. 

 

 
 

 
 

Setting each partial derivative to zero and manipulating the expression we have: 

 

 

 
 

Since the transformed variables have been mean centered, their mean (and any multiple of it) 

will be zero, hence: 

 

 
 

And 

 



 
 

Where, due to division with the standard value in the transformation:  

 

 
 

Using the full expression for our transformed variables we see that: 

 

 
 

Which is one of the many ways by which Pearson’s r is defined. Hence we see that, without any 

assumptions of a specific distribution, Pearson’s r will measure the strength of a linear 

relationship between two variables. Which is what we seek to do in our analysis. This derivation 

is further discussed in the publication “The needless assumption of normality in Pearson’s r”.[1] 

 

Still, the reviewer is correct in some sense that normal data is required to compute p-values and 

construct confidence intervals (CIs) according to the Fisher z’ method (analytical).[2] Since we 

fully agree with the reviewer that not only effect size but also significance are of relevance and 

should be taken into consideration into the analysis, we actually used a bootstrap approach to 

obtain confidence intervals for our correlation coefficients, but failed to describe in the methods 

section, something we apologize for. We have now added the following paragraph to the 

Method: 

 

Line [719 - 728] 

 

“Pearson Correlation of cell type proportions 

 

The estimated cell type proportion values do not comply with most of the assumptions to 

analytically compute confidence intervals for (e.g., normality and heteroskedasticity). Therefore, 

we used a bootstrap approach to compute confidence intervals, and thus be able to call signals 

as significant (zero not being included in the CI) or not (zero being included in the CI). For each 

pair of cell types we generated 10000 bootstrap samples and let the mean of these samples 

constitute a representative correlation value, while a 95% confidence interval was constructed 

around this by using the 2.5th and 97.5th percentiles as lower and upper limits. Pairs where the 

confidence interval overlaps with zero, i.e., being non-significant, are indicated with a gray 

border.” 

 

The code used to generate these plots can be found in the associated github repository and is 

named corrplot.R. 

 



We hope that the reviewer finds this motivation satisfying and agrees with us that the Pearson’s 

r is an appropriate metric to use to assess potential interactions and patterns of co-localization 

between cell types. 

 

[1] DOI: 10.1037/h0048216 

[2] DOI: 10.3758/s13428-016-0702-8 

 

 

6) Elaborate/Justify correlation analysis of stereoscope single cell integration  

 

overstatement of correlation analysis  

Due to mixed cells in spots, authors used the scRNA-seq-derived signatures to estimate the cell 

type proportions for each spot, followed by the correlation between those proportions. As 

mentioned in this paper, “Pearson correlation scores between cell type proportions across the 

spots show positive correlation, to be interpreted as spatial co-localization of non-parenchymal 

cells”. 

However, the low values of cell type proportions may be only the noise, that is, those cell types 

do not exist in the spot. Meanwhile, the correlation herein, may be largely driven by the similarity 

between the scRNA-seq-derived signatures, the gene sharing or co-expression among 

signatures. So, correlation may not be because of the real spatial co-localization, but just 

mathematical similarities. The above possibilities cannot be excluded with no solid validation. 

As a negative control, the same method is suggested to apply to a single cell RNAseq data. If 

no similar observation is made, then the co-localization could be partially supported.  

 

The reviewer is fully correct in the statement that we use single cell data to deconvolve the 

mixed contributions in the spatial data, however we would like to emphasize that we do not use 

any signatures for the cell type deconvolution. 

 

The method we are using, stereoscope, models both single cell and spatial data as distributed 

according to a Negative Binomial (NB) distribution (as is praxis when working with gene 

expression data [1]). For each gene and every cell type we use maximum likelihood estimation 

to learn the NB parameters (rate and success probability [2]) that provides the best fit w.r.t. the 

data; these parameters are learnt from the single cell data, where no mixing occurs, each 

observation has a single label (cell type) associated with it.  

 

Importantly, the first parameter of the NB distribution is additive between variables with a shared 

second parameter (when parameterized as described above). We leverage this additive 

property to model the mixed spatial data’s distribution as a linear combination of the rates 

inferred from the single cell data, where the objective is to find the combination of (positive) 

coefficients that best explain the observed gene expression. For more details, we refer to the 

original manuscript [3]. 

 

Indeed had we operated with gene signatures, it would have been a very strategic approach to 

make sure that these signatures did not spuriously correlate with each other in the single cell 



data, but as such is not the case we must make a slight modification to this request. Rather than 

looking at correlations between gene signatures, we compiled an average expression profile for 

each cell type in the single cell data (mean of normalized expression values), and produced 

similar correlation plots as for the spatial data using these representative average profiles. 

 

If the patterns of co-localization and segregation that we claim to be present in our tissues were 

solely driven by gene expression, we would expect the single-cell based correlation matrices to 

exhibit a similar pattern to those matrices generated from the spatial data. However, as can bee 

seen when comparing Review Figure 26 with Figure 2a in the manuscript (included here as 

Review Figure 27), the two matrices exhibit very different patterns. These differences imply that 

our results actually capture true signals of spatial co-localization and segregation, and are 

driven by expression similarity between cell types. 

 

 



Review Figure 26 | Correlation between average normalized expression profiles for each cell type in 

single cell data. Correlations between cell types based on their expression profile are depicted in red for 

positive and in purple for negative correlations. Grey boxes replace correlations within the same cell type.  

 
Review Figure 27 | Figure 2a (left), original manuscript : Correlation matrix between average cell type 

proportions across the tissue. Positive correlation values are depicted in red while negative correlation 

values are shown in purple. Grey boxes replace correlations within the same cell type.  

 

We hope that the reviewer finds the above explanation and additional analysis provides a 

sufficient amount of support for our use of the Pearson’s r to gauge cell type co-localization. 

 

[1] https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8 

[2] https://en.wikipedia.org/wiki/Negative_binomial_distribution 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8
https://en.wikipedia.org/wiki/Negative_binomial_distribution


[3] https://www.nature.com/articles/s42003-020-01247-y  

 

7) Elaborate on reason for  discrepancy between spatial transcriptome and MCA 

 

As mentioned in the paper, “A large portion of spots is assigned to cluster 1 and cluster 2, and 

100% of the spots contain hepatocyte markers, showing that - spatially - the liver is 

predominantly constituted by zonated hepatocytes, while these cells only represent a very small 

fraction of the MCA data. This discrepancy illustrates the power of complementing single cell 

transcriptome data with spatial gene expression data to thoroughly delineate liver architecture 

and the transcriptional landscape of liver tissue, while simultaneously demonstrating the limits of 

scRNA-seq data integration.” 

 

However, the discrepancies may only result from the limit of spatial transcriptome rather than 

the limits of scRNA-seq. The spatial transcriptome spot is not at the single cell level, and 

cluster1/2 may cover both zonated and non-zonated hepatocytes. Thus, it is possible that, even 

with only a very small proportion of zonated hepatocytes, cluster 1/2 is still good enough to be 

distinguished from the clusters comprising non-zonated hepatocytes and cells other than 

hepatocytes. With that said, “A large portion of spots is assigned to cluster 1 and cluster 2” 

cannot exclude the possibility that the liver has only a small proportion of zonated hepatocytes, 

as suggested by MCA. More validation is needed to make the conclusion.  

 

 

The reviewer is absolutely correct in the statement that more validation would be needed to 

estimate the actual proportion of zonated hepatocytes in the liver tissue and we understand that 

the phrasing we used to describe the results and conclusion of the single cell data integration 

can be misinterpreted. Therefore, we would like to thank the reviewer for pointing out this 

unclarity and elaborate on the conclusions we draw from the single cell integration accordingly. 

 

As the reviewer highlights very importantly, the spatial transcriptomics data does not reach 

single cell resolution and capture regions (spot) constitute a small mixture of cells as opposed to 

single cell data, which on the other hand lacks spatial resolution. We would like to emphasize 

that our study demonstrates the power of combining spatial data and single cell data to 

delineate transcription profiles across the liver. The data also illustrates the limits of the 

aforementioned combination of these different approaches, and not the limits of scRNA-seq. 

To clarify, we have no intention to attribute the limitations of the integrative analysis to the 

scRNA-seq data, and have revised our text to make this more clear. 

 

To elaborate on the limitations of the integration approach we believe a clear reiteration of our 

conclusions to be constructive.  

Cluster 1 and cluster 2 of the spatial transcriptomics data each refer to the zonated regions 

around the portal and central vein, respectively. Each of this region comprises a number of 

capture regions exhibiting a similar expression profile. The reviewer is correct in the statement, 

that it is not possible for us to be certain that this expression profile is exclusively generated by 

zonated hepatocytes. Therefore, we can not assume that these clusters are mainly constituted 

https://www.nature.com/articles/s42003-020-01247-y


of zonated hepatocytes which would be in contrast to the relatively small amount of zonated 

hepatocytes in the MCA data.  

The stereoscope integration performed in our study shows the highest proportion values for 

pericentral and periportal hepatocytes closest to the respective vein. This is visualized in the 

right panel of Figure 2a in the original manuscript, which we attach here (Review Figure 28 a). 

Furthermore, a large number of spots with a zonated expression profile (i.e. cluster 1 or cluster 

2 annotation) with decreasing proportion values of zonated hepatocytes upon increasing 

distance to the respective vein. This is exemplified by supplementary figure 9 of the original 

manuscript, attached here (Review Figure 28 b). 

 

We interpret these data to demonstrate two different possibilities: First the spots belonging to 

cluster 1 and cluster 2 include a small number of zonated hepatocytes, dominating the 

expression profile of the respective capture region, due to e.g. high numbers of mRNA contents 

of transcripts responsible for the observed zonation.  

 

Secondly, it might indicate that many cells within the spots exhibit an expression profile of 

zonated hepatocytes annotated in the MCA single cell dataset.  

 

 
Review Figure 28 | a Figure 2a (right), original manuscript:  Quantile scales of cell-proportions annotated 

as pericentral and periportal hepatocytes (see methods) are mapped on spatial transcriptomics spot data 

(top).  UMAP embedding of single-cell data of the Mouse Cell Atlas (MCA) 39 grouped by annotated cell 

types (bottom right). Numeration behind the cell types represent annotation of MCA data (B cell-1 : Fcmr 

high, -2 : Jchain high, Dendritic cell-1 : Cst3 high, -2 : Siglec high, Epithelial cell-1 : Spp1 high, -2 : /, 

Erythroblast-1 : Hbb-bs high, -2 : Hbb-bt high, Hepatocyte-1 : Fabp1 high, -2 : mt-Nd4 high, T cell-1 : 

Gzma high, -2 : Trbcs2 high).  Encircled clusters in the plot refer to pericentral or periportal hepatocytes of 

MCA data. Quantile scales of cell-proportions annotated as pericentral and periportal hepatocytes 

(Methods) are mapped on Spatial Transcriptomics spot data (top right). b Supplementary Figure 11, 

original manuscript: Expression by distance of annotated cell types of MCA single cell datafrom the outer 



portal and central vein borders. Distances of pericentral hepatocytes from central to portal veins are 

depicted in the figure on the left. Distances of periportal hepatocytes from portal to central veins are 

depicted in the figure on the right. 

 

 

Given the relatively small number of annotated pericentral and periportal hepatocytes in the 

MCA for liver tissue we speculate the first possibility of zonated hepatocytes giving rise to a high 

proportion value in the respective spots. Our conclusion highlights the limits of single cell data 

integration on current spatial transcriptomics data of liver tissue, which we are not able to 

resolve within the scope of this study. This emphasizes the importance of the consideration and 

integration of  transcription data generated by diverse methods to vasten our current knowledge 

on tissue biology. 

 

To address the reviewers concerns and clarify our conclusions of the scRNA-seq integration we 

adjusted the text in the manuscript to the following:  

 

Line [177 - 182] 

 

“A large portion of spots were assigned to cluster 1 and cluster 2, while these cells only represent 

a very small fraction of the MCA data. This discrepancy implies that a relatively small cell type 

population identified by scRNA-seq can constitute a large proportion of the spatially profiled cells, 

illustrating the power of complementing single cell transcriptome data with spatial gene 

expression data to thoroughly delineate liver architecture and the transcriptional landscape of liver 

tissue.”  

 

and  

 

Line [378 - 382] 

“The observed discrepancies between ours and the MCA data may result from the different 

technical limitations that scRNA-seq and spatial data generation face, emphasizing the current 

limits of scRNA-seq data integration. For instance, transcriptionally highly active or physically 

large cells might mask cell types with moderate to low transcriptional levels in ST data. ” 

 

We hope the detailed explanation above and the performed changes to the manuscript text 

clarify the interpretation of our performed analysis and provide enough additional information for 

the reviewer to be able to agree with our conclusions. 

 



 

8) Prediction accuracy of portal and central veins 

 

The authors predicted the portal and central veins based on gene expression. Although 

conducted cross validation, the Reviewer cannot find the relevant performance evaluation, 

failing to see how good the prediction is.  

First, regarding the prediction evaluation, the authors are suggested to provide the ROC curve; 

Second, regarding the prediction result, it is better to overlay the statistics of prediction, eg., the 

log ratio on Fig 3c, so that others can see how confident the vein prediction is.  

 

Based on the reviewer’s request we here provide additional performance metrics for the binary 

vein type classifier presented in our study. More precisely we show the ROC (receiver operating 

characteristic) curve and report the AUC score. 

 

In line with our previous analyses, we use a “leave one out cross validation” (LOOCV) scheme 

to evaluate the model’s performance. We describe the cross validation more thoroughly in the 

Methods section of the main text, but in brief: in each iteration we train the classifier on the 

annotated veins from all sections except one, to then predict the vein type of the veins within the 

left-out section. 

 

To summarize the results from each fold, we assembled an average ROC curve by - for each 

fold - interpolating the TPR (true positive rate) over a set of FPR (false positive rate) values in 

the closed interval [0,1], results are shown in Review Figure 29. The average AUC score, here 

approximately 0.85, is the arithmetic mean of all the individual AUC scores, see Review Table 7.  

 

Both the AUC and, unexpectedly, the accuracy was fairly high (>0.8) for a majority of the 

samples except for the sample CN65-E1. We have not fully established why the accuracy drops 

so severely for CN65-E1, since the other samples from the same individual CN65-D1 and 

CN65-D2 have much higher accuracies of 1.0 respectively 0.8. Possible reasons include poor 

sample quality, which can also complicate manual annotations considerably. 

 

We hope the reviewer finds this extended evaluation of the classifier satisfactory. As we agree 

with the reviewer that extensive performance evaluation is important to include, we added the 

requested ROC curve and AUC scores as well as the previously conducted cross validation in 

the supplementary material as Supplementary Figure 15. We refer to the results of the classifier 

evaluation as follows:  

 

 

Line [299 - 302] 

 

“The model constructed in this study (Methods) corresponds convincingly to manually annotated 

central and portal veins based on the expression profile of their respective neighborhood across 



all sections from different biological origins (caudate and right liver lobe) (Supplementary Figure 

15).” 

 
Review Figure 29 | ROC curve illustrating the performance of the expression-based vein type classifier. 

The blue line represents the average AUC taken over all the folds in the cross validation analysis. The red 

dashed line corresponds to the curve obtained from a completely random classifier. The gray shaded 

area represents the interval of the mean plus/minus one standard error.  Av, AUC stands for average 

AUC and is the arithmetic mean taken across all folds. 

 

 

Review Table 7 | Performance validation of binary vein classifier | For each sample prediction 

performance was evaluated by training according to an LOOCV. The performance is illustrated by the 

results of the accuracy of the cross validation analysis and AUC. A value of 1 denotes highest accuracy, 

while a value of 0 denotes lowest accuracy.  

predict on train on accuracy AUC 

CN73-D1 

CN65-E1, CN73-E2, CN65-D1, CN73-C1, CN16-D2, CN65-D2, 

CN16-E2 0.9333 0.9444 



CN16-E2 

CN65-E1, CN73-E2, CN65-D1, CN73-C1, CN16-D2, CN65-D2, 

CN73-D1 1 1 

CN65-D2 

CN65-E1, CN73-E2, CN65-D1, CN73-C1, CN16-D2, CN16-E2, 

CN73-D1 0.7143 0.8 

CN16-D2 

CN65-E1, CN73-E2, CN65-D1, CN73-C1, CN65-D2, CN16-E2, 

CN73-D1 0.9473 0.9886 

CN73-C1 

CN65-E1, CN73-E2, CN65-D1, CN16-D2, CN65-D2, CN16-E2, 

CN73-D1 0.9375 0.9524 

CN65-D1 

CN65-E1, CN73-E2, CN73-C1, CN16-D2, CN65-D2, CN16-E2, 

CN73-D1 1 1 

CN73-E2 

CN65-E1, CN65-D1, CN73-C1, CN16-D2, CN65-D2, CN16-E2, 

CN73-D1 0.8077 0.8333 

CN65-E1 

CN73-E2, CN65-D1, CN73-C1, CN16-D2, CN65-D2, CN16-E2, 

CN73-D1 0.2222 0.2857 

 

 

 

9) Immunostaining of liver tissue  

 

Considering the above concerns, in addition to H&E staining, some other Immunostaining with 

antibodies against liver zonation and cell types are also suggested, for example, CD73 for 

pericentral zonation and E-cadherin for periportal zonation. These might be overlaid on all 

clustering, cell types and vein prediction, which may serve as the orthogonal validation for 

multiple observations. 

 

We agree with the reviewer that an additional cross-validation of the vein prediction and 

clustering on the tissue sections we used for the Spatial Transcriptomics experiment would be 

beneficial to additionally confirm the observation made in our study. To address this comment 

properly we consider it important to briefly reiterate the most crucial steps of the peer-reviewed 

ST protocol, carried out in this study. This protocol is described more extensively in the main 

manuscript and in [1]. 

The preparation of spatially resolved sequencing libraries begins with fixation for RNA 

preservation and Hematoxylin and Eosin (H&E) staining for visualization. Subsequently, the 

tissue is permeabilized allowing the mRNA transcripts to hybridize to the spatially and 

individually barcoded probes on the array surface under the tissue. Then, after the cDNA 

synthesis, the tissue is enzymatically digested from the array.  

Thus, immunostaining of the same tissue sections used in the experiments presented here is 

not feasible to optimize for this platform.  

 

The reviewer mentions the additional validation via immunostaining on two distinctive levels; 

first the liver zonation, i.e. immunostaining for protein markers (CD73 and E-cadherin) at the 

central and portal vein. Secondly, he/she suggests immunostaining for specific cell types.  



We would like to emphasize that we have considered performing additional orthogonal 

validations using immunostaining for zonation markers and/or cell types during generation of the 

data presented in our study. Unfortunately, staining protocols for the ST platform presented here 

are not readily available and optimized. However, we would like to address these suggestions 

and elaborate in detail why we believe the current validations presented are sufficient for the 

scope of our study.  

 

1) Immunostaining against pericentral and periportal zonation markers 

 

The reviewer requests the potential overlay of immunostaining against pericentral and periportal 

protein markers to serve as an orthogonal validation for clustering and vein predictions. 

Generally, the ability of the methods presented here to reliably capture the transcripts in the 

capture regions has been validated extensively in multiple peer-reviewed papers [eg. 2-9]. 

Based on the aforementioned limitation of the ST method used in this study we performed the 

following validations of our observations made for pericentral and periportal zonation:  

 

● As a first validation we performed histological annotations of central and portal veins on 

the H&E stained images. These annotations were performed by a trained histology 

expert and the process is described in detail in the materials and methods section of the 

main manuscript. 

● Secondly we overlaid the clustering results from our analysis to validate the histological 

and clustering observations as observed in Figure 2b of the main manuscript (attached 

here as Review Figure 30 a). These cluster annotations aligned well with the performed 

histological annotations. 

● Further, we explored marker gene expression profiles of cluster 1 and cluster 2 shown in 

the heatmap in Figure 1c of the main manuscript (attached here as Review Figure 10) .  

Pearson correlation analysis of cluster 1 and cluster 2 markers, revealed strong 

anticorrelation of markers of cluster 1 and cluster 2, interpreted as spatial segregation 

between marker gene expression of annotated central and portal areas, demonstrated in 

Figure 2c of the original manuscript, attached here as Review Figure 30 b. 

● Importantly the reported markers for the central and portal area have been validated 

extensively by previous spatial studies on transcription along the centrilobular axis. For 

instance, studies performed by Halpern et al. [10] have used smFISH experiments for 

orthogonal validation of expression of portal and central marker genes in various 

distances to the central and/or portal veins. Thus we are able to use this peer-reviewed 

external data to cross-validate gene expression along the lobular axis of our data. To 

illustrate this further we would like to refer to the Supplementary figure 8 a,b of our 

manuscript attached here as Review Figure 31 and Review Figure 32. Here, we 

visualized the periportal (cluster 1) and pericentral (cluster 2) marker genes identified by 

unsupervised clustering and DGEA of our spatial data on the reconstructed spatial 

layers of the single cell data. Our data is highly similar to the data by Halpern et al. 

showing that the portal markers of our data display the lowest expression in layer 1 (the 

most central layer in the single cell study) with increasing expression towards the most 



portal layer (layer 9). The opposite expression gradient applies to central ST markers 

along the reconstructed single cell layers. 

 

Therefore the comparison of our data to the single-cell reconstruction work by Halpern et al. 

represents an indirect orthogonal validation of our spatial data by smFISH and the performed 

histological annotations provide direct validation on the tissue analysed here. This - in our 

opinion - provides sufficient validation of pericentral and periportal clustering and computational 

vein prediction based on gene expression.  

 

 
Review Figure 30 | a Figure 2b: Visualization of spots representing gene expression profiles of cluster 1 

(portal vein, blue) and cluster 2 (central vein, red) on H&E stained tissue (right), compared with visual 

histology annotations of central- (red circles) and portal- (blue circles) veins (left) (scale bar indicates 500 

µm)., b Figure 2c: Pearson correlations of genes expressed in cluster 1 and 2 ordered by their first 

principal component (see methods). Genes with high expression in the pericentral cluster (cluster 2) show 

negative correlation with genes highly expressed in the periportal cluster (cluster 1) and vice versa. 

Genes present within cluster 1 or cluster 2 exhibit positive correlation with genes in the same cluster. 

 

 

 



 
Review Figure 31 | Supplementary Figure 8a : Visualization of expression of periportal marker genes 

identified by unsupervised clustering and DGEA of ST data across reconstructed spatial layers (1-9) of 

single cell data zonation matrix [11]. 

 



 
Review Figure 32 | Supplementary Figure 8b : Visualization of expression of pericentral marker genes 

identified by unsupervised clustering and DGEA of ST data across reconstructed spatial layers (1-9) of 

single cell data zonation matrix [11]. 

 

 

2)  Immunostaining against cell types   

 

In the context of cell type validation, we would like to emphasize that we do not assign cell type 

labels to the spots, which constitute transcripts of mixed cell populations. The single cell 

integration performed in this study rather provides information about cell type proportions across 

the tissue than annotating a cell type to each spot. For instance, if the single cell integration 

predicts a high proportion of Kupffer cells in a single spot, this does not imply that this spot 

either consists exclusively of Kupffer cells nor that this spot contains unusually high numbers of 

Kupffer cells compared to other cell types. It rather implies that based on the provided single cell 

data set the spot in question exhibits a proportional similarity to single cell dataset’s cell type 

annotations between 0 and 1 when compared to the remaining tissue. Thus, we agree with the 



reviewer that immunostaining against cell types would confirm the general presence of cell 

types across the tissue. However, the binary results on cell type presence received from 

immunostaining are not expected to correlate directly with the observed cell type proportions 

based on gene expression patterns across the tissue [11,12].  

Given the comment raised above, the incentive of this study does not include the detailed 

annotation of cell type distributions within spots and therefore across the tissue. Therefore, we 

believe the requested cell type validation is outside the scope of this study. Nonetheless, 

conclusions on the distributions of cell type proportions presented in this study are still highly 

informative for future research on e.g. further detailed scRNA Seq studies of the liver.  

 

Taken together, we hope the reviewer is satisfied with the detailed explanation of the 

undertaken steps in this study to validate the observed portal and central zonation in our data 

and can agree with us that immunostaining against cell types will be more suitable for potential 

future spatial studies with resolution on the single cell level and targeted single cell studies. To 

highlight the importance of the external validation (e.g. by using spatially reconstructed scRNA-

seq data by Halpern et al. [10]) we revised the original manuscript as follows:  

 

Line [256 - 258] 

 

“These results are in agreement with the observed expression gradients in spatially reconstructed 

layers in Halpern et al. 11, which are orthogonally validated by smFISH (Supplementary figure 

12).” 

 

[1] https://pubmed.ncbi.nlm.nih.gov/27365449/ 

[2] https://science.sciencemag.org/content/353/6294/78 

[3] https://www.nature.com/articles/s41598-018-27627-3 

[4] https://www.nature.com/articles/s41467-018-04724-5 

[5] https://science.sciencemag.org/content/364/6435/89 

[6] https://www.cell.com/cell/fulltext/S0092-8674(19)31282-6?rss=yes 

[7] https://www.sciencedirect.com/science/article/pii/S0092867420306723?via%3Dihub  

[8] https://www.sciencedirect.com/science/article/pii/S0092867420308151?via%3Dihub 

[9] https://www.sciencedirect.com/science/article/pii/S2589004220307483 

[10] https://www.nature.com/articles/nature21065 

[11] https://pubmed.ncbi.nlm.nih.gov/32709985/ 

[12] https://pubmed.ncbi.nlm.nih.gov/21179022/ 
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Appendix  

 

Appendix Table 1 | LRT results for central and portal area markers. Central_sig and portal_sig 

columns indicate whether including the central respectively portal vein distance covariate 

significantly improves a reduced model that only uses the intercept and the other distance 

covariate. 

Gene p-value 

only 

central 

p-value 

only 

portal 

p-value 

only 

intercept 

Central 

sig 

Portal 

sig 

Inter- 

cept 

Sds 1.39E-14 8.77E-05 6.31E-21 TRUE TRUE TRUE 

Cyp2f2 1.49E-13 1.03E-03 2.69E-18 TRUE TRUE TRUE 

Hal 7.91E-09 3.21E-05 6.63E-15 TRUE TRUE TRUE 

Hsd17b13 8.10E-08 2.42E-07 2.37E-16 TRUE TRUE TRUE 

Aldh1b1 1.14E-10 4.39E-02 1.07E-12 TRUE TRUE TRUE 

Glul 2.58E-05 3.00E-20 5.80E-28 TRUE TRUE TRUE 

Oat 2.32E-10 1.38E-13 8.27E-27 TRUE TRUE TRUE 

Slc1a2 1.91E-05 1.34E-12 1.48E-19 TRUE TRUE TRUE 

Cyp2e1 3.90E-16 1.68E-10 6.83E-30 TRUE TRUE TRUE 

Cyp2a5 1.88E-07 1.72E-14 2.77E-24 TRUE TRUE TRUE 

 

 

Appendix Table 2 | LRT results for selected glucagon targets. Central_sig and portal_sig columns 

indicate whether including the central respectively portal vein distance covariate significantly 

improves a reduced model that only uses the intercept and the other distance covariate. 

Gene p-value 

only 

central 

p-value 

only 

portal 

p-value 

only 

intercept 

Central 

sig 

Portal 

sig 

Inter- 

cept 

Mup20 0.6703 0.3110 0.5898 FALSE FALSE FALSE 



Sds 1.39E-14 8.77E-05 6.31E-21 TRUE TRUE TRUE 

Hal 7.91E-09 3.21E-05 6.63E-15 TRUE TRUE TRUE 

Ctsc 3.12E-10 7.62E-06 2.42E-17 TRUE TRUE TRUE 

Aldh1b1 1.14E-10 4.39E-02 1.07E-12 TRUE FALSE TRUE 

Hsd17b6 3.06E-07 7.36E-02 1.44E-08 TRUE FALSE TRUE 

Etnppl 7.36E-05 7.51E-06 6.39E-11 TRUE TRUE TRUE 

Slc7a2 7.73E-06 6.05E-03 1.81E-08 TRUE TRUE TRUE 

Apoa4 6.50E-09 5.46E-06 5.55E-16 TRUE TRUE TRUE 

Gls2 2.24E-05 1.10E-02 1.34E-07 TRUE FALSE TRUE 

Cyp17a1 6.67E-03 1.91E-04 8.47E-07 TRUE TRUE TRUE 

Mmd2 6.88E-04 1.18E-01 0.0001 TRUE FALSE TRUE 

 

 

Appendix Table 3 | LRT results for selected wnt targets. Central_sig and portal_sig columns 

indicate whether including the central respectively portal vein distance covariate significantly 

improves a reduced model that only uses the intercept and the other distance covariate. 

Gene p-value 

only 

central 

p-value 

only 

portal 

p-value 

only 

intercept 

Central 

sig 

Portal 

sig 

Inter- 

cept 

Axin2  0.7522 0.0365 0.0762 FALSE TRUE FALSE 

Lgr5 0.9487 0.1700 0.3731 FALSE FALSE FALSE 

Slc1a2 1.91E-05 1.34E-12 1.48E-19 TRUE FALSE TRUE 

Cyp2a5 1.88E-07 1.72E-14 2.77E-24 TRUE TRUE TRUE 



Mup17 5.73E-06 0.3668 3.68E-06 TRUE FALSE TRUE 

Cyp2e1 3.90E-16 1.68E-10 6.83E-30 TRUE TRUE TRUE 

Gulo 1.03E-11 1.93E-09 1.58E-23 TRUE TRUE TRUE 

Slc22a1 6.73E-06 1.15E-11 4.51E-19 TRUE TRUE TRUE 

Lect2 6.88E-11 2.59E-11 8.70E-25 TRUE TRUE TRUE 

Cyp2c37 2.76E-15 1.90E-06 6.54E-24 TRUE TRUE TRUE 

Aldh1a1 7.53E-05 0.0001 2.10E-09 TRUE TRUE TRUE 

Cyp1a2 3.54E-09 1.98E-06 7.61E-17 TRUE TRUE TRUE 

 

 

 

Appendix Table 4 | LRT results for selected ha-ras targets. Central_sig and portal_sig columns 

indicate whether including the central respectively portal vein distance covariate significantly 

improves a reduced model that only uses the intercept and the other distance covariate. 

Gene p-value 

only 

central 

p-value 

only 

portal 

p-value 

only 

intercept 

Central 

sig 

Portal 

sig 

Inter- 

cept 

Cyp2f2  1.49E-13 0.0010 2.69E-18 TRUE TRUE TRUE 

Apoa4 6.50E-09 5.46E-06 5.55E-16 TRUE TRUE TRUE 

Mup17 5.73E-06 0.3668 3.68E-06 TRUE FALSE TRUE 

Oat 2.32E-10 1.38E-13 8.27E-27 TRUE TRUE TRUE 

 

 

Appendix Table 5 | LRT results for selected chronic hypoxia targets. Central_sig and portal_sig 

columns indicate whether including the central respectively portal vein distance covariate 

significantly improves a reduced model that only uses the intercept and the other distance 

covariate. 



Gene p-value 

only 

central 

p-value 

only 

portal 

p-value 

only 

intercept 

Centr

al sig 

Portal 

sig 

Inter- 

cept 

 Hal  7.91E-09 3.21E-05 6.63E-15  TRUE TRUE TRUE 

Pck1 2.55E-05 0.1737 6.34E-06 TRUE FALSE TRUE 

Gstm3 0.0069 4.55E-08 6.08E-11 TRUE TRUE TRUE 

Slc1a2 6.73E-06 1.34E-12 1.48E-19 TRUE TRUE TRUE 

 

 

Appendix Table 6 | LRT results for selected pituitary hormone targets. Central_sig and portal_sig 

columns indicate whether including the central respectively portal vein distance covariate 

significantly improves a reduced model that only uses the intercept and the other distance 

covariate.        

Gene p-value 

only 

central 

p-value 

only 

portal 

p-value 

only 

intercept 

Centr

al sig 

Portal 

sig 

Inter- 

cept 

 Fmo3  0.0003 0.0526 2.16E-05 TRUE FALSE TRUE 

Igfbp2 0.1386 0.0542 0.0197 FALSE FALSE TRUE 

Cyp4a10 0.0306 0.0002 6.42E-06 TRUE TRUE TRUE 

Slc22a1 6.73E-06 1.15E-11 4.51E-19 TRUE TRUE TRUE 

 

 

 
 

Appendix Table 7 | Results of differential gene expression for cluster 5  

 p_val avg_logFC pct.1 pct.2 p_val_adj 
Gsn 1.56E-109 1.69 0.96 0.21 1.49E-105 
Dpt 2.73E-107 0.94 0.67 0.08 2.59E-103 
Mgp 3.66E-78 0.58 0.39 0.03 3.48E-74 
Col1a1 4.90E-76 0.93 0.67 0.12 4.66E-72 

Tagln 2.90E-75 0.68 0.51 0.06 2.76E-71 

Col3a1 4.05E-75 1.61 0.94 0.36 3.85E-71 
Vim 4.02E-54 1.02 0.81 0.27 3.82E-50 



Col1a2 7.19E-53 0.99 0.71 0.20 6.83E-49 
H2-Eb1 3.53E-52 0.76 0.59 0.12 3.35E-48 
Crip1 2.35E-50 0.64 0.56 0.11 2.24E-46 

Acta2 9.76E-49 0.54 0.32 0.04 9.28E-45 

Ahnak 7.97E-48 0.75 0.66 0.17 7.57E-44 
Tmsb4x 1.28E-42 0.96 0.99 0.86 1.21E-38 
Timp2 2.28E-41 0.57 0.52 0.12 2.17E-37 
Dcn 1.43E-40 0.75 1.00 0.94 1.36E-36 

H2-Aa 5.48E-36 0.61 0.59 0.17 5.21E-32 
Lum 1.29E-35 0.64 0.64 0.20 1.23E-31 

H2-Ab1 1.13E-30 0.57 0.55 0.16 1.07E-26 
Cd74 5.89E-30 0.65 0.66 0.25 5.59E-26 
Igfbp7 1.25E-28 0.72 0.95 0.71 1.19E-24 

Sparc 1.89E-28 0.72 0.84 0.49 1.80E-24 

Bgn 6.64E-25 0.73 0.78 0.45 6.32E-21 
Col14a1 3.47E-23 0.51 0.64 0.27 3.29E-19 
Spp1 2.48E-21 1.08 0.56 0.23 2.36E-17 

Timp3 5.35E-19 0.54 0.50 0.20 5.08E-15 
Txnip 4.99E-18 0.55 0.78 0.51 4.74E-14 

 

 

Appendix Table 8 | LRT results for selected non-parenchymal cell markers. Central_sig and 

portal_sig columns indicate whether including the central respectively portal vein distance covariate 

significantly improves a reduced model that only uses the intercept and the other distance 

covariate.        

Gene p-value 

only 

central 

p-value 

only 

portal 

p-value 

only 

intercept 

Central 

sig 

Portal 

sig 

Inter- 

cept 

Thbd 0.2214 0.0779 0.0475 FALSE FALSE TRUE 

Ltbp4 0.0076 0.0041 0.0023 TRUE TRUE TRUE 

Adamtsl2 0.3904 0.0286 0.0869 FALSE TRUE FALSE 

Sox4 0.0204 0.9431 0.0587 TRUE FALSE FALSE 

Ngfr 0.6859 0.2514 0.3991 FALSE FALSE FALSE 

Tagln 0.0701 0.2849 0.1596 FALSE FALSE FALSE 

 

Appendix Table 9 | Results of differential gene expression of endothelial marker genes  



(PMID: 30222169) between cluster 1 and cluster 2.  

 p_val 
avg_log

2FC pct.1 pct.2 p_val_adj 

Sepp1 1.69E-81 0.28 1.00 1.00 2.82E-79 
Aass 2.15E-15 0.27 0.94 0.86 3.59E-13 

Ctsl 3.17E-20 0.22 1.00 1.00 5.29E-18 
Tcn2 1.26E-04 0.15 0.66 0.62 2.11E-02 
Ntn4 6.10E-13 0.15 0.17 0.05 1.02E-10 

Man2a1 8.46E-05 0.15 0.78 0.75 1.41E-02 
Adam23 9.70E-07 0.11 0.18 0.10 1.62E-04 
Ramp2 2.09E-04 -0.08 0.12 0.18 3.50E-02 
Lamp2 3.16E-05 -0.09 1.00 1.00 5.28E-03 

Egfl7 4.08E-05 -0.10 0.13 0.20 6.81E-03 

Slc43a3 9.14E-05 -0.11 0.14 0.21 1.53E-02 

Stab1 2.63E-04 -0.11 0.26 0.34 4.38E-02 
Mylip 6.43E-07 -0.11 0.11 0.19 1.07E-04 
Calcrl 2.45E-05 -0.12 0.18 0.26 4.09E-03 
F2r 6.35E-07 -0.12 0.16 0.25 1.06E-04 
Crip2 2.57E-04 -0.13 0.41 0.49 4.29E-02 

Dhrs3 4.49E-05 -0.14 0.90 0.92 7.49E-03 
Slc29a1 1.09E-05 -0.14 0.77 0.83 1.83E-03 
Xdh 1.73E-05 -0.15 0.38 0.47 2.88E-03 
Cd36 1.34E-06 -0.16 0.36 0.46 2.24E-04 
Fermt2 1.62E-05 -0.16 0.45 0.53 2.71E-03 

Ptprb 2.97E-04 -0.16 0.53 0.58 4.96E-02 

Gas6 7.24E-07 -0.16 0.24 0.34 1.21E-04 
Eng 4.95E-08 -0.19 0.36 0.48 8.26E-06 
Kit 9.99E-23 -0.24 0.09 0.25 1.67E-20 
Tsc22d1 2.12E-34 -0.44 0.27 0.52 3.54E-32 

Lifr 2.46E-55 -0.5146 0.89 0.974 4.12E-53 

Ndrg1 3.05E-55 -0.5298 0.215 0.544 5.09E-53 

 

 

Appendix Table 10 | LRT results for selected zonated endothelial cell markers. Central_sig and 

portal_sig columns indicate whether including the central respectively portal vein distance covariate 

significantly improves a reduced model that only uses the intercept and the other distance 

covariate. 

Gene p-value 

only 

central 

p-value 

only 

portal 

p-value 

only 

intercept 

Central 

sig 

Portal 

sig 

Inter- 

cept 

 Sepp1  0.0004 6.02E-07 2.64E-11 TRUE TRUE TRUE 



Aass 0.0005 0.9113 0.0013 TRUE FALSE TRUE 

Ctsl 0.0774 0.1662 0.0349 FALSE FALSE TRUE 

Tsc22d1 0.6480 0.0150 0.0510 FALSE TRUE FALSE 

Lifr 0.0056 0.0248 0.0002 TRUE TRUE TRUE 

Ndrg1 0.0179 0.0266 0.0009 TRUE TRUE TRUE 

 

 

Appendix Table 11 | Results of differential gene expression of plasmacytoid dendritic cell (pDC) 

marker genes (PMID: 30222169) between cluster 1 and cluster 2.  

 p_val avg_log2FC pct.1 pct.2 p_val_adj 

Atp1b1 1.78E-14 0.01 0.61 0.47 8.00E-13 
Lgals1 1.14E-08 0.00 0.08 0.17 5.13E-07 

Upb1 2.52E-07 -0.01 0.83 0.87 1.13E-05 
Rnf187 3.51E-06 -0.01 0.62 0.71 1.58E-04 
Mpeg1 2.00E-04 0.00 0.41 0.32 9.00E-03 
Dirc2 4.59E-04 0.00 0.22 0.28 2.07E-02 
Ctsh 1.06E-03 -0.01 0.88 0.91 4.75E-02 

 

 

Appendix Table 12 | Results of differential gene expression of neutrophil marker genes  

(PMID: 30222169) between cluster 1 and cluster 2.  

 p_val avg_log2FC pct.1 pct.2 p_val_adj 
Dgat2 5.75E-12 -0.04 0.96 0.98 1.73E-10 

Grina 1.90E-08 -0.01 0.62 0.72 5.69E-07 
Gsr 3.59E-05 -0.01 0.60 0.67 1.08E-03 

 

 

Appendix Table 13 | Results of differential gene expression of Kupffer cell marker genes  

(PMID: 30222169) between cluster 1 and cluster 2.  

 p_val 
avg_l

og2FC pct.1 
pct.

2 p_val_adj 
Ctsc 5.31E-129 0.03 0.93 0.63 5.74E-127 
Blvrb 5.35E-60 -0.01 0.50 0.78 5.77E-58 
Plbd1 5.22E-41 0.00 0.25 0.54 5.63E-39 

Hpgd 1.66E-33 -0.01 0.89 0.96 1.79E-31 

Creg1 2.46E-14 -0.02 0.98 1.00 2.66E-12 
Ctsb 4.63E-11 0.02 0.99 0.99 5.00E-09 



Igf1 3.86E-09 0.03 1.00 1.00 4.17E-07 
C6 5.16E-09 0.00 0.05 0.12 5.57E-07 
Cd81 1.63E-08 -0.01 0.96 0.98 1.76E-06 

Lpl 4.09E-07 0.00 0.21 0.31 4.42E-05 

Slc40a1 5.07E-07 0.00 0.64 0.56 5.48E-05 
Cd302 1.43E-05 -0.01 0.99 1.00 1.54E-03 
Cd5l 1.83E-05 0.00 0.43 0.33 1.98E-03 
Lipa 3.01E-05 0.00 0.91 0.92 3.26E-03 

Apoe 3.13E-05 -0.10 1.00 1.00 3.38E-03 
St3gal5 1.07E-04 0.00 0.27 0.20 1.15E-02 

Smpdl3a 1.63E-04 0.00 0.46 0.38 1.76E-02 
Mpeg1 2.00E-04 0.00 0.41 0.32 2.16E-02 
Lgmn 2.07E-04 0.00 0.53 0.45 2.24E-02 

Axl 4.52E-04 0.00 0.18 0.12 4.88E-02 

 

 

Appendix Table 14 | LRT results for selected zonated Kupffer cell markers. Central_sig and 

portal_sig columns indicate whether including the central respectively portal vein distance covariate 

significantly improves a reduced model that only uses the intercept and the other distance 

covariate. 

Gene p-value 

only 

central 

p-value 

only 

portal 

p-value 

only 

intercept 

Central 

sig 

Portal 

sig 

Inter- 

cept 

Ctsc 3.12E-10 7.62E-06 2.42E-17 TRUE TRUE TRUE 

Igf1 0.0011 0.0010 6.37E-07 TRUE TRUE TRUE 

Ctsb 0.0063 0.8824 0.02 TRUE FALSE TRUE 

Hpgd 0.3060 0.1117 0.09 FALSE FALSE FALSE 

Creg1 0.0722 0.0526 0.01 FALSE FALSE TRUE 

Apoe 0.9284 0.0017 0.01 FALSE TRUE TRUE 

 

 

Appendix Table 15 | Results of differential gene expression of immune marker genes (GO:0002376 

, immune system processes) between cluster 1 and cluster 2.  

 p_val avg_log2FC pct.1 
pct.

2 p_val_adj 
Arg1 4.79E-161 0.72 1.00 1.00 1.26E-158 



C9 1.36E-87 0.70 0.97 0.83 3.58E-85 
Hc 1.71E-35 0.34 1.00 0.99 4.50E-33 
Cfi 4.48E-40 0.34 1.00 1.00 1.18E-37 

H2-Q10 7.53E-60 0.32 1.00 1.00 1.98E-57 

Fgb 1.91E-63 0.27 1.00 1.00 5.04E-61 
C3 3.57E-47 0.25 1.00 1.00 9.40E-45 
Cfh 5.20E-23 0.25 1.00 1.00 1.36E-20 
Lbp 7.97E-09 0.24 0.67 0.58 2.09E-06 

Fga 2.79E-40 0.20 1.00 1.00 7.34E-38 
Hp 1.21E-12 0.19 1.00 1.00 3.20E-10 

H2-K1 2.28E-16 0.19 1.00 1.00 6.00E-14 
Fgg 5.14E-30 0.17 1.00 1.00 1.35E-27 
Alcam 1.63E-06 0.17 0.46 0.36 4.30E+01 

Pglyrp2 1.11E-05 0.16 0.53 0.43 2.90E+01 

C2 4.03E-05 0.15 0.64 0.56 0.01 
Zap70 1.88E-06 0.13 0.21 0.13 4.90E+01 
H2-Q7 1.34E-05 0.13 0.28 0.20 3.50E+01 

Cd5l 5.37E-05 0.13 0.39 0.30 1.40E+01 
C8g 3.95E-06 0.11 1.00 1.00 1.00E+00 

B2m 1.78E-08 0.08 1.00 1.00 4.68E-06 
C6 5.16E-09 -0.10 0.05 0.12 1.35E-06 
Spon2 3.42E-06 -0.11 0.11 0.18 8.90E+01 
Irgm1 3.47E-05 -0.13 0.33 0.42 9.10E+01 

Cd81 4.67E-14 -0.19 0.99 1.00 1.23E-11 

Msrb1 1.88E-23 -0.28 0.97 0.99 4.96E-21 
Psma1 3.69E-14 -0.30 0.67 0.77 9.72E-12 
Mbl1 1.17E-20 -0.34 0.73 0.85 3.07E-18 
C4bp 4.45E-43 -0.36 1.00 1.00 1.17E-40 

 

 

Appendix Table 16 | LRT results for selected zonated immune marker genes (GO:0002376 . 

immune system processes). Central_sig and portal_sig columns indicate whether including the 

central respectively portal vein distance covariate significantly improves a reduced model that only 

uses the intercept and the other distance covariate. 

Gene p-value 

only 

central 

p-value 

only 

portal 

p-value 

only 

intercept 

Central 

sig 

Portal 

sig 

Inter- 

cept 

Arg1 0.0002 3.33E-05 1.06E-09 TRUE TRUE TRUE 

C9 0.0012 0.0004 2.60E-07 TRUE TRUE TRUE 



Hc 0.1794 0.0201 2.60E-07 FALSE TRUE TRUE 

Psma1 0.8961 0.4787 0.7386 FALSE FALSE FALSE 

Mbl1 0.4480 0.213E-05 1.99E-05 FALSE TRUE TRUE 

C4bp 0.0379 0.1573 0.0155 TRUE FALSE TRUE 

 

 

Appendix Table 17 | Results of differential gene expression of hepatic stellate cell (HSC) markers 

(PMID: 31722201) between cluster 1 and cluster 2.  

 p_val avg_log2FC pct.1 pct.2 p_val_adj 

Ctsc 2.29E-172 1.24 0.95 0.60 4.05E-170 

Hsd11b1 8.70E-96 0.45 1.00 1.00 1.54E-93 
Ly6e 1.48E-15 0.31 0.82 0.69 2.62E-13 

Fgfr2 2.23E-12 0.24 0.32 0.19 3.95E-10 

Cp 9.67E-16 0.23 1.00 0.99 1.71E-13 

Slc40a1 2.62E-08 0.22 0.60 0.50 4.63E-06 

G0s2 3.31E-07 0.20 0.63 0.52 5.86E-05 
H2-K1 2.28E-16 0.19 1.00 1.00 4.04E-14 

H2-D1 2.15E-04 0.15 0.82 0.77 3.80E-02 
Lgmn 2.72E-04 0.14 0.49 0.40 4.82E-02 

H2-Q7 1.34E-05 0.13 0.28 0.20 2.38E-03 
Rasgrp2 1.09E-07 0.11 0.16 0.07 1.93E-05 

Tmem141 2.28E-05 0.10 0.18 0.11 4.04E-03 

B2m 1.78E-08 0.08 1.00 1.00 3.15E-06 
Tmem47 1.93E-05 -0.08 0.07 0.13 3.41E-03 

Lamp2 3.16E-05 -0.09 1.00 1.00 5.60E-03 
Apoe 3.07E-19 -0.09 1.00 1.00 5.43E-17 

Pam 3.48E-05 -0.10 0.18 0.25 6.16E-03 
Calcrl 2.45E-05 -0.12 0.18 0.26 4.33E-03 

Acaa2 9.01E-09 -0.14 1.00 1.00 1.59E-06 

Tgfbi 7.73E-06 -0.15 0.28 0.38 1.37E-03 

Fermt2 1.62E-05 -0.1592554459 0.451 0.533 0.00287230 

Agtr1a 4.39E-06 -0.1625722413 0.553 0.644 0.0007774 
Ecm1 2.33E-05 -0.1630426595 0.621 0.679 0.00412169 

Dnaja1 3.29E-05 -0.16 0.44 0.53 5.82E-03 
Abcc9 2.80E-09 -0.1663416632 0.124 0.224 4.96E-07 

Eng 4.95E-08 -0.1940398674 0.363 0.476 8.76E-06 

Dusp6 3.94E-12 -0.2143529298 0.257 0.4 6.98E-10 



Reln 1.72E-14 -0.2542355471 0.335 0.499 3.05E-12 

Rspo3 2.89E-30 -0.2669879087 0.051 0.219 5.12E-28 

Lifr 2.46E-55 -0.5146051212 0.89 0.974 4.36E-53 

Dcn 2.33E-45 -0.5241378902 0.899 0.963 4.12E-43 

 

Appendix Table 18 | LRT results for selected zonated hepatic stellate cell (HSC) markers and 

Cholangiocyte marker Spp1. Central_sig and portal_sig columns indicate whether including the 

central respectively portal vein distance covariate significantly improves a reduced model that only 

uses the intercept and the other distance covariate. 

Gene p-value 

only 

central 

p-value 

only 

portal 

p-value 

only 

intercept 

Central 

sig 

Portal 

sig 

Inter- 

cept 

Hsd11b1 1.24E-05 3.81E-05 5.18E-11 TRUE TRUE TRUE 

Ly6e 0.0008 0.1644 0.0033 TRUE FALSE TRUE 

Fgfr2 0.2158 0.8261 0.3985 FALSE FALSE FALSE 

Rspo3 0.1655 1.01E-05 2.15E-06 FALSE TRUE TRUE 

Lifr 0.0056 0.0248 0.0002 TRUE TRUE TRUE 

Dcn 0.1962 0.0787 0.0423 FALSE FALSE TRUE 

Spp1 1.88E-20 0.9632 1.19E-20 TRUE FALSE TRUE 

 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors have done a great job in improving their paper. Particularly, the addition of the bi-

variate model and the thorough analysis of the impact of signaling pathways greatly strengthen 

the paper. I only have one comment that should be addressed before final acceptance: 

The analysis of the NPC markers (Supplementary figures 8, 14) is problematic. The authors find 

deviations from previous reported zonation profiles but many of these discordances can be 

explained by the fact that the markers selected are not specific enough, given that the spatial 

transcriptomics method averages multiple cell types within the same spot. For example, even 

though Sox4 is pericentrally zonated in HSCs, it is most highly expressed in the liver in 

cholangiocytes, explaining the portal zonation the authors observe (particularly since 

cholangiocytes are spatially clustered, leading to dominating effects in portal spots). Furthermore, 

many of the NPC markers in Supplementary Figures 8 and 14 are expressed at very high levels in 

hepatocytes, including Arg1 and Apoe. Arg1 is expressed more than an order of magnitude higher 

in hepatocytes compared to any other NPC. For genes like Apoe, which are expressed in 

hepatocytes at lower fractional amounts than in immune cells, the mRNA content of each spot 

would still be dominated by the hepatocytes, as their volumes and mRNA contents are more than 

20-fold higher than NPCs (see https://pubmed.ncbi.nlm.nih.gov/30222169/). Consequently, any 

zonated NPC analysis can only be performed on genes that are expressed at lower than 20-fold in 

hepatocytes compared to the other NPCs (to avoid biases such as for Apoe and Arg1), and 

expressed at sufficiently high levels in the relevant NPC compared to any other NPC cells type (to 

avoid biases such as for Sox4). Given the spatial resolution issue, I believe it is better to focus on 

the very few genes that are massively more highly expressed in the NPC of interest than in any 

other liver cell type (e.g. see the selection of endothelial genes in 

https://pubmed.ncbi.nlm.nih.gov/30222169/). Alternatively, the authors should remove this 

analysis altogether and leave it for future work, I think the paper is sufficiently strong without this 

section. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

With reference to the extensive investigations carried out in the revised manuscript, my questions 

have also been sufficiently clarified. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The Reviewer appreciated the authors’ hard work and detailed response, but there is still concern 

about the cell type proportion-related discoveries. The detailed comments are as following: 

 

Comment 1): cell count frequency 

It is good that authors estimated the cell count within each spot and excluded the impact of cell 

count on the clustering. It would also be helpful if authors can discuss or explain how the spot with 

diameter of 100um can by average host ~50 hepatocytes with diameter of 30um, from the angles 

of slide thickness, nuclei detection, etc. 

 

Comment 5): Elaborate on statistical method used in Fig 2a) 

It is good that authors provided the detailed mathematic derivation, and the Reviewer totally 

agrees that the calculation of Pearson correlation coefficient does not need to satisfy the normal 

distribution, except when computing p value analytically. Therefore, it is good that authors 

alternatively proposed to use bootstrap to evaluate the significance. 

However, without assumption of normal distribution, the Pearson correlation coefficients might not 

be comparable between statistical tests, for example, the r1 is larger than r2, but by bootstrap, 

the corresponding pval1 is less significant than pval2. Moreover, the large Pearson correlation 

might not even be significant, either. As such, the visualization of Pearson correlation would be 



misleading, i.e., Fig2a. The Reviewer would suggest authors directly visualize the signed –log10 

pvalues to make it easier to interpret. 

Btw. Authors mentioned that “Pairs where the confidence interval overlaps with zero, i.e., being 

non-significant, are indicated with a gray border.” But the Reviewer failed to find those borders. 

 

Comment 6): Elaborate/Justify correlation analysis of stereoscope single cell integration 

Due to mixed cells in spots, authors used the scRNA-seq-derived signatures to estimate the cell 

type proportions for each spot, followed by the correlation between those proportions. As 

mentioned in this paper, “Pearson correlation scores between cell type proportions across the 

spots show positive correlation, to be interpreted as spatial co-localization of non-parenchymal 

cells”. However, the low values of cell type proportions may be only the noise, that is, those cell 

types do not exist in the spot. Meanwhile, the correlation herein, may be largely driven by the 

similarity between the scRNA-seq-derived signatures, the gene sharing or co-expression among 

signatures. So, correlation may not be because of the real spatial co-localization, but just 

mathematical similarities. The above possibilities cannot be excluded with no solid validation. 

To this end, Reviewer suggested that “as a negative control, the same method and same 

scRNAseq-based signature should be applied to the scRNAseq data.” On the one hand, when 

estimating cell type proportion, the single cell as an individual cell type is supposed to have no 

small value, but if small values are indeed observed, it may suggest those values estimated by the 

tool is not confident or just noise; on the other hand, if similar correlation patterns between the 

spatial transcriptome and the single cell data were observed, it might suggest that the spatial 

transcriptome data might not provide additional information beyond scRNAseq data, or that the 

cell type correlation could be simply driven by the correlation or underlying indirect correlation 

between cell type signatures. 

Authors make a modification to the request: ”Rather than looking at correlations between gene 

signatures, we compiled an average expression profile for each cell type in the single cell data 

(mean of normalized expression values), and produced similar correlation plots as for the spatial 

data using these representative average profiles.” 

The Reviewer appreciate the modification. But it still cannot fully address the concern. The cell 

type proportion is learned from cell type signatures, and therefore, the correlation of cell type 

proportions is largely driven by cell types signatures i.e., “a small group of genes”, while the gene 

expression correlation between single cell types proposed by authors is based on “the whole 

transcriptome”. The underlying correlation between signatures might be largely diluted by a large 

number of other genes. Therefore, the difference of two correlation analysis might not result from 

the difference between gene expression and spatial co-localization (as claimed by the authors), but 

from the difference between a small group of signatures and whole transcriptome. Without 

excluding the possibility of the latter, it is still not convincing to reach the conclusion that “the cell 

type proportion correlation matrix capture the true signals of spatial co-localization and 

segregation”. 

 

Comment 9) Immunostaining of liver tissue 

Authors discussed the technical challenge of immunostaining of liver tissue, and clarified some of 

the concepts, both of which are appreciated by the Reviewer. However, some points in the 

response are still unclear and unconvincing: 

a) The authors mentioned that “The single cell integration performed in this study rather provides 

information about cell type proportions across the tissue than annotating a cell type to each spot. 

… … It rather implies that based on the provided single cell data set the spot in question exhibits a 

proportional similarity to single cell dataset’s cell type annotations between 0 and 1 when 

compared to the remaining tissue.” 

If the Reviewer understand the response correctly, the estimation is in the paper is not the cell 

type proportion for a given spot but “a proportional similarity to single cell dataset’s cell type 

annotations between 0 and 1”, which sounds more like a likelihood. But by looking into the original 

paper of the tool used in the paper (stereoscope, Andersson et al. Communications Biology, 2019), 

the Reviewer noticed that the tool aims to estimate the parameter “Wsz = Nsz/sum_z(Nsz)”, 

where Nsz is the number of cells from cell type z at capture location s, and based on Wsz, the 

Pearson correlation was used to estimate the cell-type co-localization. By the definition of the 

formula, Wsz is exactly the proportion of cell count of type z out of all cells within the spot s. 

b) The authors mentioned that “Given the comment raised above, the incentive of this study does 

not include the detailed annotation of cell type distributions within spots and therefore across the 



tissue”. 

However, according to a), authors indeed estimated the Wsz of cell type z within each spot z, 

inferred the cell-type co-localization, and accordingly, claimed the contribution of spatial 

transcriptome, which should be one of the major discovery of the paper. 

c) Authors mentioned that “we agree with the reviewer that immunostaining against cell types 

would confirm the general presence of cell types across the tissue. However, the binary results on 

cell type presence received from immunostaining are not expected to correlate directly with the 

observed cell type proportions based on gene expression patterns across the tissue [11,12].” 

It is good that authors agreed with the benefits of immunostaining against cell types. But when 

claiming the challenge that “immunostaining is not expected to directly correlate with the observed 

cell type proportions”, two papers cited by the authors are not relevant, both of which talked about 

the correlation between mRNA and protein levels. Of note, the requested validation is to 

investigate consistent cell type estimation by two methods: mRNA expression (proposed by 

authors) and immunostaining (suggested by the Reviewer). It does not necessarily rely on the 

correlation between the mRNA and protein markers, and even does not require the mRNA and 

protein of the same gene. 

Put together, the clarification and discussion are still not sufficient to convince the Reviewer. The 

Reviewer suggests authors do the solid independent validation to confirm the cell type-related 

observation. Two detailed comments are as followed: 

a) immunostaining: it is understood that it is technically challenging to do the immunostaining on 

the same slide section, but it would also be helpful to investigate the serial section. 

b) cell count estimation: Immunostaining density of cell types are proportional to the cell count, 

while stereoscope-estimated cell type proportion within each spot is a percentage, and not 

comparable to the cell count. However, the total cell count within spots can be estimated (claimed 

in comment #1), i.e., sum_z(Nsz), and therefore, the cell count of cell type Nsz can be simply 

calculated via Nsz=Wsz* sum_z(Nsz). 

Thus, the correlation between two independent methods can be calculated. The good correlation 

will validate the cell type proportion estimation and to a great extent support discovery of cell type 

co-localization in the paper. 

 

Additional comment 1): 

The liver spatial transcriptome data is a good resource for other researchers to explore and utilize. 

But it seems that the link (https://zenodo.org/deposit/4399655) cannot be accessed with 

permission requested. 

a) As for the data sharing, authors are recommended to share the comprehensive data and 

information, for example, fastq files, raw images, and point out the spaceranger parameter 

settings, like slide serial, capture area arguments, etc. 

b) In addition, the manually annotated and predicted petriportal and petricenteral are also 

necessary. 

c) As for the code sharing, authors should provide the code, which can be run on the above data to 

reproduce the observations in the paper. 
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ST Liver 
- 

2nd Revision  
 

Reviewer 1 
Comment 1  
The authors have done a great job in improving their paper. Particularly, the addition of the bi-
variate model and the thorough analysis of the impact of signaling pathways greatly strengthen 
the paper. I only have one comment that should be addressed before final acceptance: 
 
The analysis of the NPC markers (Supplementary Figures 8, 14) is problematic. The authors find 
deviations from previous reported zonation profiles but many of these discordances can be 
explained by the fact that the markers selected are not specific enough, given that the spatial 
transcriptomics method averages multiple cell types within the same spot. For example, even 
though Sox4 is pericentrally zonated in HSCs, it is most highly expressed in the liver in 
cholangiocytes, explaining the portal zonation the authors observe (particularly since 
cholangiocytes are spatially clustered, leading to dominating effects in portal spots). Furthermore, 
many of the NPC markers in Supplementary Figures 8 and 14 are expressed at very high levels 
in hepatocytes, including Arg1 and Apoe. Arg1 is expressed more than an order of magnitude 
higher in hepatocytes compared to any other NPC. For genes like Apoe, which are expressed in 
hepatocytes at lower fractional amounts than in immune cells, the mRNA content of each spot 
would still be domi NPCs (see https://pubmed.ncbi.nlm.nih.gov/30222169/). Consequently, any 
zonated NPC analysis can only be performed on genes that are expressed at lower than 20-fold 
in hepatocytes compared to the other NPCs (to avoid biases such as for Apoe and Arg1), and 
expressed at nated by the hepatocytes, as their volumes and mRNA contents are more than 20-
fold higher than sufficiently high levels in the relevant NPC compared to any other NPC cells type 
(to avoid biases such as for Sox4). Given the spatial resolution issue, I believe it is better to focus 
on the very few genes that are massively more highly expressed in the NPC of interest than in 
any other liver cell type (e.g. see the selection of endothelial genes in 
https://pubmed.ncbi.nlm.nih.gov/30222169/). Alternatively, the authors should remove this 
analysis altogether and leave it for future work, I think the paper is sufficiently strong without this 
section. 
 
We would like to thank the reviewer for his constructive suggestions and feedback to the revised 
version of our manuscript and very happy to hear that the vast majority of the additionally 
performed analyses were satisfactory. 
 
We agree with the reviewer that the mixed cell type population within spots represents a major 
caveat to reliably define non-parenchymal cell (NPC) zonation within our ST data, as the 
expression of certain marker genes such as Apoe and Arg1 are not restricted to NPCs but shows 
high levels of expression in hepatocytes, described in detail in the reviewer’s comment. We also 
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agree with the reviewer that it will be more beneficial and of high interest to address zonated NPC 
expression profiles in future ST studies. Therefore, to avoid confusion and provide clarity with 
regard to the conclusions we are able to make in this study, we decided to omit the presented 
data on NPC zonation in Supplementary Figures 8 and 14 as suggested by the reviewer. 
However, we believe the analysis of the zonation profile of the GO-term “immune system 
processes'' (GO: 0002376) and metabolic pathways presented in Supplementary Figure 8 and/or 
Supplementary Figure 14, remains informative, as it not based on specific cell types but a 
biological process, similar to the general observed zonation between central and portal veins 
presented in our study. Consequently, we only kept the analysis on the general zonation of 
immune system processes and metabolic pathways in Supplementary Figure 8 and 
Supplementary Figure 14, of which we attach the revised versions here as Review figure 1 and 
Review figure 2. We also revised Supplementary table 5 and the manuscript text accordingly: 
 
Line [228 - 232]: 
“Based on these observations, we further investigated the zonation of reported marker genes in 
the context of reported immune zonation 42 . To this end, we investigated DEGs associated with 
immune system processes (GO:0002376) and found more genes with periportal than pericentral 
zonation (Supplementary figure 8).” 
 
Line [381 - 385]: 
“While our data does not indicate elevated Kupffer cell proportions in the periportal cluster 
compared to the remaining clusters, we found more genes related to immune system processes 
with periportal enrichment in comparison to the pericentral zone providing initial support for 
implications of previously proposed immune zonation 42.” 
 
and the methods describing the zonation based differential gene expression from line 615-624. 
 
 
We thank the reviewer again and hope the implemented modifications are to the reviewers 
satisfaction and that they could remove any further objections to the data presented in the 
manuscript.  
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Review figure 1 | Revised version of Supplementary Figure 8.  



4 

 
Review figure 2 | Revised version of Supplementary Figure 14.  
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Reviewer 2 
With reference to the extensive investigations carried out in the revised manuscript, my 
questions have also been sufficiently clarified. 
 
We are delighted to hear that the reviewer's questions were sufficiently clarified during the first 
revision. We would like to thank the reviewer again for his/her constructive comments and 
suggestions during the revision, which we believe have increased the quality of our study 
substantially. 

Reviewer 3 
 
Comment 1 - cell count frequency 
 
It is good that authors estimated the cell count within each spot and excluded the impact of cell 
count on the clustering. It would also be helpful if authors can discuss or explain how the spot 
with diameter of 100um can by average host ~50 hepatocytes with diameter of 30um, from the 
angles of slide thickness, nuclei detection, etc. 
 
We are glad to hear that the reviewer appreciates the cell count estimation we performed and 
agrees with us to exclude this covariate from our normalization and clustering approach.  
We are also happy to elaborate on the question asked by the reviewer on the reason for a 
relatively high average cell density within 100 µm spot diameter. Indeed, when speaking about 
areas the 50 hepatocytes with an estimated diameter of 30 µm each would not be able to fit into 
the spot area with a 100 µm diameter. 
 
This can be easily estimated when considering a section being a 2D plane with zero thickness: 
 
Area of one 100 µm spot 3,14 x (50)^2 = 7853.98 µm2  
Area of one 30 µm hepatocyte = 3,14 x(15)^2 = 706.86 µm2  
This would mean that only 11.11 hepatocytes would fit into the spot. 
And the average cell diameter of 50 cells/spot would need to be around 14.14 µm 
 
Or when calculating in more realistic 3D volumes: 
Volumes for sphere - for cells : [V] = 4/3 * pi * r^3, where r = diameter / 2.  
Volume of a cylinder - for each spot: [V] = pi * r^2 * h, where r = diameter / 2, and h is the height 
(10µm) 
 
Hepatocytes: r=15;  [V] =14 130 µm^3 needs to be divided by 3 as the tissue (including 
Hepatocytes) is sectioned at 10µm thickness, thus [V] =42 390 / 3 = 4 710 µm^3 
Tissue over spot: r=50; 78 500µm^3 
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Which leads to an estimate of ~16,6 hepatocytes per spot.   
 
It should be noted that the true shape of hepatocyte in unaltered tissue is much closer to the liquid 
crystal shape, rather than a sphere [1]. And that the average volume of the mouse hepatocyte is 
approximately 8000 µm^3 [2], with asymmetrical “crystal-like” dimensions of ~ 30 x 10 µm [1], 
getting the number of hepatocytes per spot to ~9.8-28.4 depending on the angle of the 10 µm 
section and therefore orientation of the cells (Review figure 3).  
 

 
Review figure 3 | Schematic illustrating the potential effect of a) the dimensionality of the liver sections 
used in our experiments and for cell segmentation and estimation. The nuclei visualized in the images 
potentially originate from multiple z-planes. In addition cell-size and cytoplasmic size between hepatocytes 
can differ as illustrated in b) which can increase the cell count additionally while simultaneously considering 
the 3-dimensional structure of the section. 10 µm thick sections are indicated as red boxes. Each blue dot 
denotes a hepatocyte with the surrounding cytoplasm in grey.  
 
It is worth mentioning that the observed 30-50 cells/spot do not only include hepatocytes but also 
other cell types, such as highly compressed endothelial cells and a variety of other non-
parenchymal cells such as Kupffer cells, neutrophils and other blood cells with small diameter 
(diameter 10-12 µm), as we are estimating the total cell count by the presence of nuclei and not 
only the presence of hepatocytes. 
  
Thus, starting from the range of 30-50 cells per spot we report in the manuscript, the corrected 
average estimation of hepatocytes per spot should be 21-35, based on the assumption that 
hepatocytes comprise ~ 70% of the total liver volume. Nevertheless, we were not satisfied with 
the argumentation based on available literature, and decided to quantify the cells manually using 
the consecutive cryosections of the same cryopreserved tissue used for the spatial 
transcriptomics experiments. 
 
To this end, we performed immunofluorescence assays (IFAs) for established marker proteins of 
three different cell types. These cell types included: Kupffer cells (F4/80 +), hepatocytes (HNF4ɑ 
+) and endothelial cells (CD31+). The Kupffer cell marker F4/80 is encoded by Adgre1, the 
hepatocyte marker HNF4ɑ by Hnf4ɑ and the endothelial marker CD31 by Pecam1. As a result of 
the technical limitations posed by the limited number of fluorescence filters of the microscope 
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used in our experiment and the cross-reactivity of some antibody combinations, we were unable 
to perform multi-immunostainings exceeding two antibodies simultaneously and were limited in 
the combination of cell type stainings. Thus, we performed a dual-immunostaining of the following 
cell type combinations:  
 
Kupffer cells and Hepatocytes (F4/80 +, HNF4ɑ +) as well as Kupffer cells and endothelial cells 
(F4/80 +, CD31 +). For both assays we also performed a DNA counterstain, using Hoechst 
(Review figure 4 a,b). 100µm spots were randomly assigned across the imaged sections to 
estimate the total number of cells. In total 224 spots were counted for nuclei and Kupffer cells 
and 110 and 114 spots were counted for Hepatocytes and Endothelial cells, respectively. 
Counts were visualised as histograms (Review figure 4 c-f). Quantification revealed the range of 
total cell counts (Hoechst+) per spot is 10-60 with a mean value of 32.1 cells per spot . For 
HNF4ɑ+ hepatocytes specifically, these numbers are 2-30 hepatocytes per spot with mean value 
of 18.3. These numbers are also in strong agreement with the data used for the volumetric 
calculation [1,2].    
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Review figure 4 | Quantification of cell type proportions by immunofluorescence assay (IFA). a 
depicts a representative fluorescence image of a spot used for manual counting of Kupffer cells and 
hepatocytes. The white circle indicates the area of a spot on an ST array. DNA (left) was stained using 
Hoechst. Kupffer cells (middle left in green) were counted based on a positive signal for DNA and F4/80 
signal. Hepatocytes were counted based on a positive signal for HNF4ɑ and Hoechst signal (middle, right, 
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red). The merged image to the right depicts the overlay of all three signals within the region of interest. b 
similar to a, depicts a representative fluorescence image of a spot used for manual counting of Kupffer cells 
and endothelial cells in the region of interest (white circle). DNA is represented in blue to the left, Kupffer 
cells are represented in green (middle left). Endothelial cells were counted based on a positive signal for 
CD31 and Hoechst signal (middle, right, red). The merged image to the right depicts the overlay of all three 
signals within the region of interest. c shows the distribution of the manual counting of 100 µm spots for 
nuclear Hoechst staining. 250 spots were randomly selected, 26 spots were excluded due to tissue damage 
or spots assigned outside of the tissue area, resulting in 224 counted spots. staining for d HNF4ɑ/Hoechst-
positive hepatocytes were counted in 110 spots, e the Kupffer cells were counted based on a positive signal 
for DNA and F4/80 signal (224 spots), f the endothelial cells counted based on a positive signal for CD31 
and Hoechst signal (114 spots). 
 
Thanks to the reviewer's comment we have carefully considered the volumetric calculations ~9.8-28.4 
hepatocytes/spot, hepatocyte to other cell type average ratio of 60-70% per spot, as well as our new 
quantifications of stained sections and decided to modify the manuscript in the following way.  
We changed the sentence in lines [120 - 121] ”From the hematoxylin-stained nuclei we estimated that a 
majority of spots contain between 30-50 cells, of which 60-70% are considered to be hepatocytes.” to “For 
a select set of cell types, we used immunofluorescence staining to estimate the number of cells present in 
a subset of projected spot areas in liver cryosections. We performed stainings for nuclei (Hoechst), 
hepatocytes (HNF4ɑ), Kupffer cells (F4/80), and endothelial cells (CD31). Quantification of Hoechst+ nuclei 
revealed the range of cell count per spot is 10-60 cells with a mean value of 32.1 +/- 8.73 cells per spot, 
out of which 56.9% +/-15.8% are hepatocytes, 12.7% +/- 7.4% are Kupffer cells, and ~ 30.8% +/- 17.0% 
endothelial cells (Supplementary figure 21, Supplementary Table 9)”  lines [126 - 132] and added the 
corresponding figure to the supplementary materials, and all the accompanying information to the methods 
part of the manuscript  in lines [519 - 526]. 
 
[1]https://elifesciences.org/articles/44860 
[2]https://elifesciences.org/articles/11214 
 
 
Comment 5 - Elaborate on statistical method used in Fig 2a)  
 
It is good that authors provided the detailed mathematic derivation, and the Reviewer totally 
agrees that the calculation of Pearson correlation coefficient does not need to satisfy the normal 
distribution, except when computing p value analytically. Therefore, it is good that authors 
alternatively proposed to use bootstrap to evaluate the significance. 
However, without assumption of normal distribution, the Pearson correlation coefficients might 
not be comparable between statistical tests, for example, the r1 is larger than r2, but by 
bootstrap, the corresponding pval1 is less significant than pval2. Moreover, the large Pearson 
correlation might not even be significant, either.  
 
As such, the visualization of Pearson correlation would be misleading, i.e., Fig2a. The Reviewer 
would suggest authors directly visualize the signed –log10 p values to make it easier to 
interpret. 
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Btw. Authors mentioned that “Pairs where the confidence interval overlaps with zero, i.e., being 
non-significant, are indicated with a gray border.” But the Reviewer failed to find those borders. 
 
We are delighted to hear that the reviewer agrees with us that the Pearson correlation 
coefficient is an appropriate measure to apply to our data, despite it (our data) not following a 
normal distribution, as long as p-values are not computed analytically.  
 
In addition we would like to highlight the fact that we are actually not computing p-values in 
our bootstrap procedure, but rather confidence intervals; though, of course the bootstrap 
samples could easily be used to produce p-values as well. However, we would like to argue that 
p-values are not superior to the correlation values due to the following two reasons: 
 

1. Usefulness : A p-value is always associated with a hypothesis test, and in the case of 
the Pearson correlation coefficient the two competing hypotheses would be: 

● H0 : r = 0 (null) 
● HA : r ≠ 0 (alternative) 

The p-value thus gives the probability of obtaining the observed correlation value if the 
true population correlation value was actually zero, while the alternative hypothesis 
states that the true correlation coefficient is not zero. The p-value does not convey 
information about the magnitude of the effect, i.e., effect size, the only thing it informs us 
about is whether an effect is present or not. A more thorough account of this 
argument can be found in “Using Effect Size—or Why the P Value Is Not Enough” by 
Sullivan and Feinn.[1] Hence, by definition - the p-value does not convey the information 
we seek to present to our readers. 
 

2. Interpretability : The reviewer states that displaying the log10(p-values) would increase 
the interpretability of our results, here we would  humbly like to disagree. As mentioned 
in (1) the p-value only reflects the answer to whether there is an effect or not, meaning 
that notions of directionality are completely lost, to clarify: an anticorrelation with a p-
value of 0.001 would be given the same representation in the suggested approach as a 
positive correlation signal with a p-value of 0.001. Since an anticorrelation (indicative of 
spatial segregation) and a correlation signal (indicative of spatial co-localization) have 
vastly different interpretations, we believe it’s important to include this information of 
directionality in our results.  

 
The reviewer also states that 
 
“[..]the Pearson correlation coefficients might not be comparable between statistical tests, for 
example, the r1 is larger than r2, but by bootstrap, the corresponding pval1 is less significant 
than pval2.” 
 
We believe the two arguments above address this concern, but to give a direct answer: we fail 
to fully see how the p-values would be more relevant to display — given the character of the 
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hypothesis test — than the actual correlation values together with information regarding their 
significance (here presented through the confidence intervals). 
 
Finally, the reviewer mentions how no gray borders can be seen in Figure 2A; in fact, the gray 
borders are there (Review figure 5), but we fully admit that they are hard to discern from the 
“normal” borders and easily could give an impression of homogenous border color. Therefore, 
we’ve replaced the gray coloring with magenta - hoping that this makes the presentation of our 
results more clear. Revisiting the analysis in detail also revealed a minor mistake in our data, 
which does not impact the main conclusions of our study and for which we accounted for in the 
revised figure and by changing the manuscript text in lines [366] - [372] from “ While, our data 
does not indicate elevated Kupffer cell proportions in the periportal cluster compared to the 
remaining clusters, we found a number of Kupffer cell marker genes exhibiting portal but also 
central zonation. In addition, we found more genes related to immune system processes with 
periportal enrichment in comparison to the pericentral zone and colocalization of neutrophils and 
periportal hepatocytes,already in unperturbed conditions, all supporting implications of 
previously proposed immune zonation 40.” to “While our data does not indicate elevated Kupffer 
cell proportions in the periportal cluster compared to the remaining clusters, we found more 
genes related to immune system processes with periportal enrichment in comparison to the 
pericentral zone providing initial support for implications of previously proposed immune 
zonation 42.”  lines [381-385]). We thank the reviewer for bringing this to our attention, allowing 
us to improve our figures. Consequently, we exchanged the original correlation plot in Figure 2a 
with the updated figure (attached here as Review figure 6, for ease of inspection and adjusted 
the figure legend as follows:  
 
Line [1054] 
 
“[...] Non-significant correlations are highlighted with magenta borders. [...]” 
 

 
Review figure 5 | Left: excerpt from the original correlation plot. Right : Excerpt from the updated 
correlation plot. Red arrow points to the borders in question. 
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Review figure 6 | Updated version of Figure 2a in the revised manuscript.  
 
[1] : https://doi.org/10.4300/JGME-D-12-00156.1 
 
Comment 6 - Elaborate/Justify correlation analysis of stereoscope single cell integration 
 
Due to mixed cells in spots, authors used the scRNA-seq-derived signatures to estimate the cell 
type proportions for each spot, followed by the correlation between those proportions. As 
mentioned in this paper, “Pearson correlation scores between cell type proportions across the 
spots show positive correlation, to be interpreted as spatial co-localization of non-parenchymal 
cells”. However, the low values of cell type proportions may be only the noise, that is, those cell 
types do not exist in the spot. Meanwhile, the correlation herein, may be largely driven by the 
similarity between the scRNA-seq-derived signatures, the gene sharing or co-expression among 
signatures. So, correlation may not be because of the real spatial co-localization, but just 
mathematical similarities. The above possibilities cannot be excluded with no solid validation. 
To this end, Reviewer suggested that “as a negative control, the same method and same 
scRNAseq-based signature should be applied to the scRNAseq data.”  
 
On the one hand, when estimating cell type proportion, the single cell as an individual cell type 
is supposed to have no small value, but if small values are indeed observed, it may suggest 
those values estimated by the tool is not confident or just noise; on the other hand, if similar 
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correlation patterns between the spatial transcriptome and the single cell data were observed, it 
might suggest that the spatial transcriptome data might not provide additional information 
beyond scRNAseq data, or that the cell type correlation could be simply driven by the 
correlation or underlying indirect correlation between cell type signatures. 
 
Authors make a modification to the request: ”Rather than looking at correlations between gene 
signatures, we compiled an average expression profile for each cell type in the single cell data 
(mean of normalized expression values), and produced similar correlation plots as for the spatial 
data using these representative average profiles.” 
 
The Reviewer appreciate the modification. But it still cannot fully address the concern. The cell 
type proportion is learned from cell type signatures, and therefore, the correlation of cell type 
proportions is largely driven by cell types signatures i.e., “a small group of genes”, while the 
gene expression correlation between single cell types proposed by authors is based on “the 
whole transcriptome”. The underlying correlation between signatures might be largely diluted by 
a large number of other genes. Therefore, the difference of two correlation analysis might not 
result from the difference between gene expression and spatial co-localization (as claimed by 
the authors), but from the difference between a small group of signatures and whole 
transcriptome. Without excluding the possibility of the latter, it is still not convincing to reach the 
conclusion that “the cell type proportion correlation matrix capture the true signals of spatial co-
localization and Segregation”. 
 
We appreciate that the reviewer is so meticulous in his/her examination of the methods we 
apply, it’s evident that much thought has been given to this issue. We therefore apologize if 
we’ve been unclear in our description of stereoscope and wish to clarify certain aspects of the 
method. 
 
Firstly, stereoscope does not operate with any form of signatures specific to each cell type, 
as other deconvolution (e.g., MIA by Moncada et al.).[1] Instead, from the single cell data we 
learn the rate (r) and success probability (p) parameters for a negative binomial distribution 
describing the expression of all genes included in the analysis, for every cell type, that is: 
 

𝑦!"! ∼ 𝑁𝐵(𝑟!#, 𝑝!) 
 
Where ygc_z is the expression of gene g in a cell (c) of cell type z. Having learnt these 
parameters from the single cell data, where each observation belongs to a single cell type (no 
mixing), we then use them to infer the cell type proportions in each spatial location. This is done 
by leveraging the additive property of the first argument in the NB distribution when the second 
parameter is shared among all components, that is: 

𝑥!$	 = , 𝑥!"	

	

"∈'"

↔ 𝑥!$
	

∼ 𝑁𝐵(,𝑣$#𝑟!#, 𝑝!

	

#

) 

Where Cs is the set of cells residing at spot s. Here estimates of vsz are obtained through MAP 
(maximum a posteriori) estimation. The proportion values are then derived from these MAP 



14 

estimates. For a full account of the model we refer to the original stereoscope publication, which 
the reviewer seems to be already familiar with. 
 
Secondly, we would like to express our appreciation of  the reviewer’s previous suggestion, that 
is to deconvolve the scRNA-seq data with stereoscope. However, we must admit that we did not 
fully understand the request and had no intentions of “modifying” this, but rather thought we 
acted according to the proposed procedure. Our main confusion stemmed from the fact that we 
were requested to apply a method designed for deconvolution, to a non-convoluted data set, but 
understand the reviewer’s intention and present analyses in line with this suggestion below. To 
us, deconvolution of transcriptional profiles obtained from single-cell data would be a task 
slightly different from what stereoscope initially was designed for, and performance would not be 
fully transferable to the scenario where the data is mixed. 
 
Therefore, in an attempt to show that the correlations we observe are not simply due to 
similarities between expression profiles among the cell types we generated synthetic mixed data 
based on the single cell data. The synthetic data also highly resembles the real data presented 
in our manuscript, which we believe makes results from any evaluation using this data more 
applicable to our discussion. We then analyzed the synthetic data using stereoscope in a 
fashion similar to what we present in the paper. Below, we will first describe the generative 
process and then continue with an account of our analysis: 
 
Synthetic Data Generation 
We here aimed to generate synthetic data with a character similar to the spatial transcriptomics 
data, but with a random (patternless) distribution of cells across the tissue. Hence, we devised 
the following procedure to generate such a data set: 
 

1. Sample a number of cells (ns) that should be present at spot s according to: 𝑛$ ∼
𝑁𝑜𝑟𝑚𝑎𝑙(50,10). With the additional criteria that ns needs to be larger or equal to ten; 
effectively this means that we draw samples until this criteria is fulfilled.  

2. Sample ns members from the Z cell types present in the data, by drawing a vector ms 
from a multinomial distribution according to: 𝑚$ ∼ 𝑀𝑢𝑙𝑡(𝑛$,𝑝), 𝑝	 = 	 [1/𝑍, . . . ,1/𝑍]. 
Element z of ms (msz) represents how many cells of cell type z that are found at spot s. 

3. From every cell type z randomly pick msz cells (with replacement), add these to the set of 
cells belonging to spot s (Cs) 

4. Compute the relative abundance (ps) of UMIs from each gene within Cs, that is: 
𝑝!$	 = �̄�!$/∑ �̄�!)$	

	!) 	 with �̄�!$ =	∑ 𝑦!"	
	",∈'"  

Where ygc is the expression of gene g in cell c. 
5. Sample the number of UMI’s (ns,UMI) that should be observed in spot s from the discrete 

uniform distribution according to : 𝑛$,*+,	 ∼ 𝐼𝑛𝑡𝑈𝑛𝑖𝑓(2000,10000) 
6. Finally, sample the transcription observed in spot s from a multinomial distribution 

according to: 
𝑥$	 ∼ 𝑀𝑢𝑙𝑡(𝑛$,*+, , 𝑝$) 

7. Repeat step 1-6 for every spot in the synthetic data set 
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Here the cells (c) and their associated expression vectors (yc) are taken from the single cell 
data. The data set we generated consisted of 5000 synthetic spots in total.  
 
 
Analysis of synthetic data 
 
The generative process produces a set of artificial “spots'' where cell types are evenly and 
randomly distributed, meaning that any form of co-localization analysis should only give very 
weak signals (due to spurious correlations) and share no obvious similarity with the observed 
correlations analysis that we present in the manuscript. Therefore, to confirm that this was 
indeed the case, we first ran our synthetic data set through stereoscope using the exact same 
parameters for the proportion estimation as was used to generate the results presented in the 
main text. We then performed the same co-localization analysis using bootstrap estimates of the 
Pearson correlation value. The result from this analysis is presented in Review figure 7, where it 
is evident that the correlation values from the synthetic data oscillates around zero with no 
major peaks or troughs, while the corresponding observed values associated with the real data 
show large fluctuations and much larger magnitudes. Also discernible from Review figure 7 is 
how the correlation values in the synthetic and observed data are independent of each other, as 
we expected.

 
Review figure 7 | Comparison of Pearson correlation values for the real observed (black solid line) and 
the synthetic data (red dashed line). The y-axis represents the calculated correlation coefficient, while 
pairs of cell types are found along the x-axis. 

 
We also want to emphasize that several significant signals with a confidence interval excluding 
zero (i.e., being significant) were observed in the analysis of our synthetic data. Still, we do not 
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consider this a major flaw of our approach —  with large sample sizes even the smallest of 
effects will be considered significant (including spurious ones) — instead we take this as a 
strong argument in favor of the choice to mainly focus on effect size in our discussion. As 
already mentioned and being observable in Review figure 7, the effect sizes are small for all 
pairs in the synthetic data and would not have been given much attention if they had emerged in 
analysis of any real data. 
 
We hope that these efforts are sufficient to convince the reviewer that the co-localization 
patterns are not driven by similarities in gene expression between cell types.  A notebook 
outlining the generation step and the analysis step has been added to the github repository. 
 
[1] https://www.nature.com/articles/s41587-019-0392-8?proof=t 
 
Comment 9 - Immunostaining of liver tissue 
 
Authors discussed the technical challenge of immunostaining of liver tissue, and clarified some 
of the concepts, both of which are appreciated by the Reviewer. However, some points in the 
response are still unclear and unconvincing: 
 
a) Stereoscope cell type estimation  
The authors mentioned that “The single cell integration performed in this study rather provides 
information about cell type proportions across the tissue than annotating a cell type to each 
spot. … … It rather implies that based on the provided single cell dat set the spot in question 
exhibits a proportional similarity to single cell dataset’s cell type annotations between 0 and 1 
when compared to the remaining tissue.” 
If the Reviewer understand the response correctly, the estimation is in the paper is not the cell 
type proportion for a given spot but “a proportional similarity to single cell dataset’s cell type 
annotations between 0 and 1”, which sounds more like a likelihood. But by looking into the 
original paper of the tool used in the paper (stereoscope, Andersson et al. Communications 
Biology, 2019), the Reviewer noticed that the tool aims to estimate the parameter “Wsz = 
Nsz/sum_z(Nsz)”, where Nsz is the number of cells from cell type z at capture location s, and 
based on Wsz, the Pearson correlation was used to estimate the cell-type co-localization. By 
the definition of the formula, Wsz is exactly the proportion of cell count of type z out of all cells 
within the spots. 
 
We would like to introduce our answer by stating that in the sections of the first revision, 
referenced by the reviewer in comment a) and b) we were aiming to clarify the same issue. This 
issue concerned highlighting the difference between cell type annotations in scRNA-seq data 
and cell type proportion estimations in ST data. In the previous revision, we got the impression 
that this difference was not clarified sufficiently, which is why we wanted to explain it repeatedly 
and in multiple ways. However, we realize that we seem to have created more confusion than 
clarity, which we will try to counteract in our answers to comment 9a and comment 9b in the 
following paragraphs.   
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The reviewer is correct in his/her observation that stereoscope estimates the proportions of cell 
types within each spot. We understand that the first statement of our response:  
 
 “The single cell integration performed in this study rather provides information about cell type 
proportions across the tissue than annotating a cell type to each spot. [...] It rather implies that 
based on the provided single cell data set the spot in question exhibits a proportional similarity 
to single cell dataset’s cell type annotations between 0 and 1 when compared to the remaining 
tissue.” 
 
Was not clearly formulated and could be easily misinterpreted, which is why we would like to 
clarify what the single cell integration analysis performed in our study is able to show and what 
the current limit of this analysis includes.  
 

1) As stated in the original manuscript and in our initial response to the reviewer, 
stereoscope estimates cell type proportions in spots across the tissue. These 
proportions are obtained using MAP (maximum a posteriori) estimation as described in 
more detail in the response to comment 6 and in the original publication of the method. 
The resulting proportion values do not represent a similarity score to the single cell data, 
but rather the estimated fraction of cells residing at a given spot that belong to each cell 
type. These fractions range from 0, indicating that the cell type is not present in a spot, 
and 1, indicating the spot only contains this cell type. We apologize for creating this 
confusion and hope we are able to clarify it here.  
 

2) With our statement -  
 “The single cell integration performed in this study rather provides information about cell 
type proportions across the tissue than annotating a cell type to each spot.”   
- we sought to emphasize that the stereoscope method applied in our manuscript does 
not assign a single cell type to the spots in the tissue (“hard classification”), but rather 
provides a form of “soft classification” where proportion estimates of each cell type at 
every location are presented. Something we were keen on clarifying, as the reviewer 
was concerned about the resolution of the method presented in our manuscript.  
 

We apologize for creating this confusion and hope our answer clarifies our previous statements 
sufficiently and relieves the reviewer of his/her concerns about the correct estimation of cell type 
proportions in our study.  
 
 
b) Cell type annotation  
 The authors mentioned that “Given the comment raised above, the incentive of this study does 
not include the detailed annotation of cell type distributions within spots and therefore across the 
tissue”. 
However, according to a), authors indeed estimated the Wsz of cell type z within each spot z, 
inferred the cell-type co-localization, and accordingly, claimed the contribution of spatial 
transcriptome, which should be one of the major discovery of the paper. 
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We appreciate the reviewer’s comment and thank the reviewer for drawing our attention to the 
potentially confusing statements in our previous reply. The reviewer is correct in this statement 
that we are estimating the cell type distribution within every spot and therefore implicitly across 
all spots. This is achieved by using the stereoscope tool, described more thoroughly in our 
response to comment 6. 
 
With our comment:  
 “Given the comment raised above, the incentive of this study does not include the detailed 
annotation of cell type distributions within spots and therefore across the tissue”  
 
We sought to express that the incentive of this study does not include the assignment of a 
single cell type to each individual spot and would like to refer the reviewer to our answer to 
comment 9a for a more detailed explanation.  
 
We hope we were able to explain our argumentation for the integration of scRNA-seq data in 
our study sufficiently and that this response removed the previously introduced confusion on the 
interpretation of our discoveries. 
 
c) Immunostaining of consecutive/serial liver sections 
 
Authors mentioned that “we agree with the reviewer that immunostaining against cell types 
would confirm the general presence of cell types across the tissue. However, the binary results 
on cell type presence received from immunostaining are not expected to correlate directly with 
the observed cell type proportions based on gene expression patterns across the tissue 
[11,12].” 
It is good that authors agreed with the benefits of immunostaining against cell types. But when 
claiming the challenge that “immunostaining is not expected to directly correlate with the 
observed cell type proportions”, two papers cited by the authors are not relevant, both of which 
talked about the correlation between mRNA and protein levels. Of note, the requested validation 
is to investigate consistent cell type estimation by two methods: mRNA expression (proposed by 
authors) and immunostaining (suggested by the Reviewer). It does not necessarily rely on the 
correlation between the mRNA and protein markers, and even does not require the mRNA and 
protein of the same gene. 
Put together, the clarification and discussion are still not sufficient to convince the Reviewer. 
The Reviewer suggests authors do the solid independent validation to confirm the cell type-
related observation. Two detailed comments are as followed: 
 
We appreciate the reviewer’s suggestion to perform immunostaining on liver sections 
consecutive to the sections used in our study in order to confirm cell type related observations. 
We agree with the reviewer that immunostainings would be supportive in validating consistent 
cell type estimations. However, the request is challenging since we do not have access to 
consecutive liver sections linked to our original sections used in this study, but merely sections 
in close proximity to one of our reference sections. 
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As pointed out by reviewer 1, “The analysis of the NPC markers (Supplementary Figures 8, 14) 
is problematic. The authors find deviations from previous reported zonation profiles but many of 
these discordances can be explained by the fact that the markers selected are not specific 
enough, given that the spatial transcriptomics method averages multiple cell types within the 
same spot”. In accordance with reviewer #1’s suggestion we have decided to omit the 
presented data on NPC zonation in Supplementary Figures 8 and 14, since this data is outside 
the major scope of this study, and we agree with reviewer #1 that this is better suited for a future 
study. 
 
Nevertheless, to accommodate the reviewer’s suggestion we have performed the requested 
immunostainings of markers related to zonation and selected cell types and discuss our results 
and conclusions in light of our manuscript.   
 
a) immunostaining 
It is understood that it is technically challenging to do the immunostaining on the same slide 
section, but it would also be helpful to investigate the serial section. 
 
First, we produced immunostainings of sections from the remaining tissues used in our ST 
experiments. It is important to note, that the number of consecutive high quality sections was 
limited and as distance to the reference sections increased, differences in morphology became 
more pronounced. To illustrate this observation further, the sections of sample 1, section 1 and 
sample 2, section 3 used in our study originated from the same tissue but differ considerably in 
their morphology. This is especially true when comparing the organization of venous structures 
(central and portal veins) across the tissue. We attached the H&E images of two representative 
sections to demonstrate this argument in Review figure 8. However, immunofluorescence 
stainings for the caudate lobe were in close enough proximity to section 3, sample 2(Review 
figure 9, right). Therefore, our results will be compared to this section.  
As stated above, the differences in tissue morphology between the tissue sections used in our 
experiments changed rapidly with increasing distance to each other and due to the three 
dimensional structure of the tissue, fine structures can easily escape out of the field of view. An 
additional factor to consider is the technical difficulty of sectioning and placement of the tissue, 
which represented a major challenge. For instance, the delicacy of the tissue was increased by 
repeated cryo-sectioning procedures and thus temperature changes of the specimen. Further, 
the reproduction of the same sectioning angle after refreezing the sample was technically 
challenging. 
 
In brief, to perform the cross-validation requested by the reviewer, we performed 
immunofluorescence staining assays (IFAs) for the established central vein marker glutamine 
synthetase (GS), expressed by pericentrally located hepatocytes and the SOX9 transcription 
factor expressed by cholangiocytes in the bile ducts accompanying the portal veins [1,2]as well 
as a nuclear counterstain of 10 µm sections of the remaining tissue. 
 
To visualise the positions of the veins in the tissue as well as to compare them to the manually 
and computationally annotated veins, we performed the immunostaining of central veins and 
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periportally-located bile ducts in consecutive sections and overlaid the images based on the 
nuclear counterstain. Generally, the GS staining resulted in a stronger signal than the SOX9 
staining, which made it easier to identify central veins with high confidence. Despite the weaker 
SOX9 signal, we were able to show that both antibodies marked the associated vein type  
exclusively. (Review figure 9b).  
 
Despite the fact that tissue sections of the ST experiments and IFAs are not fully overlapping, 
larger structures can be assessed and compared more easily and accurately. Here, the largest 
annotated venous structure in the investigated H&E images of the ST sample can be compared 
to the largest structure observed in the immunostained image (Review figure 9 a,b, white box). 
Interestingly, the manual and computational annotation differ for this structure, as it is annotated 
as a portal vein in the manual annotation and predicted to be a central vein by the 
computational annotation (Review figure 9a). The comparison to the immunological staining of 
this structure suggests that this structure most likely is a central vein, supporting the 
computational annotation of the structure. The immunological stainings of the proximate 
sections also agree with the computational predictions for the two ambiguously annotated veins 
in the sample (Review figure 9 a,b white box).  
 
In other cases, the stainings are in agreement with the manual annotation over the 
computational predictions and some structures in the tissue, including mainly structures which 
have been annotated as portal veins in the computational annotation and which are mostly 
located close to the edges of the tissue, were not at all detected in the immunological stainings. 
(Review figure 9 a,b). There are several possible explanations for this observation. Structures 
close to the tissue edges are smaller and more delicate and thus more prone to escape the field 
of view. Further, the efficiency of immunological staining across the tissue is oftentimes not 
entirely uniform and general specificities of the antibody to the epitope may differ, thus smaller 
structures might not be stained sufficiently to be visible using the given magnification and 
resolution in our experiments. 
 
The immunological staining also shows that the large identified central vein is in direct proximity 
to a portal vein, which was not identified as separate blood vessel in the manual annotation and 
is masked by the central vein profile in the computational annotation, as it not annotated as a 
separate vein and in very close to the larger identified central vein. For ease of inspection we 
enlarged the structure in Review Figure 10. The close proximity of central and portal veins 
presented here, illustrates a major difficulty of manual as well as computational annotations, as 
this produces mixed portal and central vein "signals" in the structures' neighborhoods for 
computational annotation.  
 
This observation also highlights that the vein structures must be identified a priori to their 
computational annotation, i.e., our classifier cannot discriminate between veins and other parts 
of the tissue. In this case, central, portal or ambiguous veins were selected based on the H&E 
image. Some veins may be challenging to detect in an H&E image, while they are easily defined 
using immunological stainings. This observation represents an additional potential explanation 
for discrepancies between the annotations in the ST slide and the immunological staining 
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presented here. Thus, it will be desirable to generate unsupervised computational annotations in 
future experiments, which does not necessitate manual annotations of the new tissue 
specimens. 
 
Conclusively, the results of the immunological staining of serial sections requested by the 
reviewer here largely support the predictions of the computational vein annotations in our study. 
However, even though we agree with the reviewer that stainings of consecutive sections are 
informative, we believe that the serial sections presented here are already too distant from the 
sections used in our original experiments to consider them as ground-truth of the venous 
architecture let alone detailed cell type observations within these structures.  
 
Nevertheless, we hope we were able to address the reviewer’s comment sufficiently and that  
the reviewer considers the staining of the sections presented here convincing. As we find that 
these results of the orthogonal validation, suggested by the reviewer, are highly informative, we 
decided to include these results in the original manuscript. The additional data from Review 
figure 9a and Review figure 9b in Supplementary figure 22.1-22.2 of the original manuscript and 
refer to the images in the main text as follows:  
 
Line [316] - [319] 
 
"For proximate tissue sections of selected samples, we also show that the majority of 
computational predictions is supported by immunofluorescence staining for the respective 
central and portal protein markers GS and SOX9, serving as an orthogonal validation of our 
results (Supplementary figure 22.1 - 22.2).” 
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Review figure 8 | Comparative HE image of distant sections of the same caudate lobe. To the left, a 
representative section of sample 1, which includes three sections in close proximity to each other and 
were placed on the same slide. The right depicts a representative section of sample 2, sectioned from the 
same tissue as shown to the left but in a more distant location.  
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Review figure 9 | Orthogonal validation of central and portal veins of proximate sections to tissue 
sections used in Spatial Transcriptomics experiments via IFA.  
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Review figure 10 | Enlarged view of orthogonal validation of selected central and portal veins of images 
shown in Review figure 9. For ease of inspection the figure shows an enlarged view of the area marked 
with a white box in Review figure 9. a depicts the overlay of the immunological staining for GS (left) and 
SOX9 (right) on the computationally annotated section 3 of sample 2(caudate lobe). b shows the same 
structure in the immunologically stained images only, with the nuclear staining (left), the staining for 
central veins (GS, middle left), bile ducts (SOX9, middle right) and the overlay of all stainings (merged, 
right).  
 
[1] https://www.gastrojournal.org/article/S0016-5085(09)00300-X/fulltext 
[2] https://www-sciencedirect-com.ezp.sub.su.se/science/article/pii/S001216061500281X 
 
b) cell count estimation 
Immunostaining density of cell types are proportional to the cell count, while stereoscope-
estimated cell type proportion within each spot is a percentage, and not comparable to the cell 
count. However, the total cell count within spots can be estimated (claimed in comment #1), i.e., 
sum_z(Nsz), and therefore, the cell count of cell type Nsz can be simply calculated via 
Nsz=Wsz* sum_z(Nsz). 
Thus, the correlation between two independent methods can be calculated. The good 
correlation will validate the cell type proportion estimation and to a great extent support 
discovery of cell type co-localization in the paper. 
 
Assuming we understand the reviewer’s comment correctly, we agree that computing 
correlation coefficients between cell type proportion estimates obtained from independent 
methods - namely stereoscope proportions and immunostaining assays - would serve to support 
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our discoveries of cell type co-localization signals. 
 
We appreciate the reviewer’s suggestion to apply the formula to compare proportion estimates 
between different methods. Simultaneously, we would also like to point out that this comparison 
is accompanied by several challenges which we will elaborate on in further detail throughout the 
following paragraphs.  
 
To be able to assess cell type correlations across spots and therefore estimate co-localization, 
we performed dual-immunostainings of two cell types in each immunofluorescent assay as 
described in detail in our answer to comment 1. To be able to calculate reliable proportions we 
only considered images from the same antibody combination.  
F4/80 and CD31 are both expressed in the cytoplasm of the respective cell type, while HNF4ɑ is 
present in the nucleus of hepatocytes. The inconsistent distribution of the signal and it’s intensity 
as well as the variable size of endothelial and Kupffer cells and the potential presence of staining 
artifacts made it difficult to adapt the cell segmentation strategy, which was only designed to 
detect nuclei and not cytoplasm, which is why we decided to perform manual counting instead.  
  
From the manually estimated cell counts we calculated the proportion of cell type z in spot s 
(wsz) according to: 

𝑤$# = 𝑛$#	/	,𝑛$-

	

-

 

 
Where nsz is the number of cells of cell type z located at spot s. 
 
We then compared the proportion estimates of the manual counting with the stereoscope 
proportion estimates of section 3 of sample 2, which exhibits the shortest distance and thus 
similarity to the sections used in the IFAs. We could observe similar frequencies of proportion 
values across spots between methods for hepatocytes proportions, with higher proportions in 
the stereoscope estimates, in some cases constituting all cells present in a spot indicated by a 
the maximal value of 1 (Review figure 11a, left). For Kupffer- and endothelial cells we observed 
a difference of a magnitude of approximately 10-fold between proportions of the two methods 
(Review figure 11a + b).  
 
We explain the observed difference in magnitude of the calculated proportion values between 
immunofluorescence and stereoscope data by the nature of our data. In brief, stereoscope 
estimates cell type proportions using annotated single cell data sets. It is possible that in our ST 
data, the NPCs’ expression profiles constitute a very weak signal due to their low abundance 
and lower transcriptional activity in comparison to for example hepatocytes. This means that 
their presence easily could be underestimated by methods based on gene expression. For 
instance, hepatocytes which cover the majority of the surface in a spot and are present in high 
numbers are also highly metabolically active, resulting in a high number of hepatocyte specific 
transcripts. Other non-parenchymal cells (NPCs), such as Kupffer- and endothelial cells on the 
other hand are smaller in size, lower in number and expected to exhibit less activity, especially 
in the naive, i.e. unperturbed state for Kupffer cells. Hence, transcripts solely expressed by 
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NPCs are expected to be present at a much lower number than the average hepatocyte marker 
transcript in the original sequencing library [1]. This in term can lead to a potential 
underestimation of actual NPC proportions on the transcriptional level and in consequence lead 
to an underestimation of NPC numbers within a spot. 
 
However, when we calculated the correlation between Kupffer cells and hepatocytes from the 
proportions of the immunofluorescent assays (IFAs) and compared it to the correlation from 
stereoscope proportion estimates of the reference section (section 3 of sample 2), we observed 
a correlation of -0.092 for IFAs with a p-value of 0.39 after bootstrapping. This indicates that 
these cell types do not inhabit a significant spatial correlation in either direction, i.e . spatial 
segregation or spatial co-localization (Review figure 11d). For the stereoscope proportions of 
section 3 we can perform a more distinguished correlation analysis of the reference section and 
generally see few significant correlations between individual cell types, including no significant 
correlation between Kupffer cells and any of the different types of hepatocytes (Review figure 
11c), supporting the observed correlation trend of Kupffer cells and hepatocytes in 
immunostainings.   
 
We observe a similar trend for the correlation between endothelial and Kupffer cell proportion 
values in the stereoscope results of section 3, where endothelial cells show almost no 
significant correlation to any of the remaining cell types. If significant correlations are observed, 
the effect size is very small with values around 0 (Review figure 11c). In contrast to this 
observation we observed a significant negative correlation between endothelial- and Kupffer cell 
proportions in the manual derived proportion estimated of the IFAs of sections in proximity to the 
ST experiment (Review figure 11e). In the correlation analysis presented in Figure 2a of the 
manuscript (Review figure 6 for ease of inspection), we observe a positive correlation trend 
between Kupffer cells and endothelial cells. It is important to stress that the proportion values in 
the original manuscript include the averaged proportion estimates of cell types across all eight 
sections of our data. The estimated cell type proportions and corresponding correlations 
presented here represent only individual sections and therefore too few data points to consider 
most cell type correlations as significant. The celltype proportion correlations in the manuscript 
(Figure 2a, Review figure 6), similar to our statement in the original manuscript on the 
description of the novel structure in cluster 5: 
 
Line [452 - 454] 
“Considering the sample size used in this study, we can provide initial indications rather than 
general claims of the function of this proposed structure.”   
 
rather serve the purpose to provide a valuable resource for general trends of cell type 
proportions in liver tissue than general statements.  
 
Thus, the observed differences in correlations between NPCs, namely Kupffer cells and 
endothelial cells can most likely be explained by differences of NPC distributions between 
individual tissue sections and differences in sample size. In more detail the variations in NPC 
distributions between tissues might arise by : I) technical reasons based on differences in 
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capture efficiency across spots and staining efficiency, as explained in extensive detail in the 
first revision and briefly in the following paragraphs and/or II) biological differences based on 
differences in distribution of NPCs between sections.  
As shown in our calculations in comment 1, hepatocytes in our tissue compose 56.9% +/-15.8% 
of cells in liver tissue while NPCs compose the remaining cells, which aligns well with previously 
reported numbers [2,3]. As described in our manuscript we also find a more widespread and 
scattered distribution of NPCs in liver tissue based on the expression of selected marker genes: 
 
Line [171 - 173]  
“These results demonstrate that highly abundant, or bigger cells are widespread, while smaller 
and rarer cell types are found more scattered across the liver tissue.” 
 
In this context, in our response to comment a) we mention that tissue morphology differs upon 
increasing distance to the reference section which would also affect cell type compositions. 
Therefore, we don’t consider it surprising that some sections exhibit spatial segregation 
between NPCs while others exhibit spatial correlation or no spatial distribution of cells. 
 
The investigation of a potential underlying phenomenon of differences in NPC distributions 
between sections is without doubt interesting but beyond the scope of this study. As we already 
stated in the previous revision; at the current state of the technology, we do not consider the 
estimation of cell counts in the ST data as robust enough to include conclusions drawn from this 
data into the overall conclusion of our manuscript. 
 
Nonetheless, we are grateful for the reviewer’s suggestion and consider the results presented 
here to be informative and the research questions highly relevant in general. However, we 
believe that the inclusion of the results presented in this revision exceeds the scope and the 
research questions we aim to address within our study. Including these will - in our opinion - be 
more confusing than clarifying to the reader in the context of our main findings and discussion. 
We believe the detailed investigation of the reviewer’s questions on cell type proportions or cell 
count estimates of different cell types is more suitable for future studies using additional and/or 
different methods, especially in regard to the study of NPCs. This we also emphasize in the 
conclusive remarks of the discussion in the original manuscript:  
 
Line [465 - 466] 
“With expected future advances in the spatial genomics field, increased resolution will promote 
detailed investigations of rare cell types in tissue space.”  
 
We hope that our response is to the reviewer’s satisfaction, that the results presented here 
suffice as the requested external validation of our description of cell type co-localization and 
relieved the reviewer from his/her remaining concerns.  
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Review figure 11 | Estimation of cell type proportions by independent immunofluorescence assay (IFA) 
and correlation with stereoscope proportion estimates. a shows the frequency (y-axis) of stereoscope 
proportion estimates (x-axis) across spots for sample 2 section3 of the ST for hepatocytes (left), Kupffer 
cells (middle) and endothelial cells (right). b shows the frequency (y-axis) of proportion estimates from 
manual counting (x-axis) across spots for immunostained tissue for hepatocytes (left), Kupffer cells 
(middle) and endothelial cells (right).c depicts cell type co-localization by Pearson correlations 
exclusively in section 3 of sample 2 of the ST data (right), red arrows mark cell types which we 
considered for comparison, as these cell types are expected to express the immunological markers used 
for the performed immunostainings (HNF4ɑ for hepatocytes, F4/80 for Kupffer cells and macrophages 
and CD31 for endothelial cells). d depicts correlation tables with the respective p-value of the calculated 
correlation for proportion estimates of manually counted hepatocytes and kupffer cells and e depicts 
correlation tables with the respective p-value of the calculated correlation for proportion estimates of 
manually counted endothelial- and kupffer cells. 
 
[1] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546596/ 
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[2] https://pubmed.ncbi.nlm.nih.gov/2472341/ 
[3] https://pubmed.ncbi.nlm.nih.gov/20159590/ 
 
Additional comment 1 - data availability  
 
The liver spatial transcriptome data is a good resource for other researchers to explore and 
utilize. But it seems that the link (https://zenodo.org/deposit/4399655) cannot be accessed with 
permission requested. 
a) As for the data sharing, authors are recommended to share the comprehensive data and 
information, for example, fastq files, raw images, and point out the spaceranger parameter 
settings, like slide serial, capture area arguments, etc. 
b) In addition, the manually annotated and predicted periportal and petricenteral are also 
necessary. 
c) As for the code sharing, authors should provide the code, which can be run on the above 
data to reproduce the observations in the paper. 
 
We would like to thank the reviewer for drawing our attention to the incomplete data and code 
availability. We agree with the reviewer that all data should be shared in open access format to 
ensure maximal data transparency and reproducibility and apologize for any missing 
information. Therefore we would like to provide a more detailed description on where and how 
the data used in this study can be accessed by the reviewer and any other researcher who is 
interested in our data. We updated the zenodo link and changed it in the original manuscript to a 
new repository link: https://zenodo.org/record/5045689 [1].  
 
Line [925 - 928] 
“The datasets generated during and/or analyzed during the current study are available in the 
doi-minting zenodo repository “Spatial Transcriptomics to define transcriptional patterns of 
zonation and structural components in the liver” and can be accessed at 
https://zenodo.org/record/5045689.“ 
 
This link includes the H&E stained images, scaled to 10% of the original size as used in our 
analysis and (as per request in additional comment 1a) we added an additional folder containing 
the raw H&E images as well as the manually annotated periportal and pericentral images (as 
per request in 1b). We would also like to highlight that the created masks, necessary for any 
expression by distance analysis, are stored at 10% of the original size in the same Zenodo 
repository. We provide a detailed description of the data structure in the Zenodo repository and 
hope the reviewer will find this description satisfactory. In light of this revision we also included 
the original fluorescence images described and analyzed to answer comment 1 and comment 9.  
 
The fastq files, requested by the reviewer can be found on the Gene Expression Omnibus 
(GEO) database, which complies with data availability requirements of this journal, and has the 
accession code GSE165141: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165141 
[2]. We thank the reviewer for drawing our attention to this missing reference in the data 
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availability section of the manuscript. We now have changed this part of the manuscript 
accordingly.  
 
Line [928 - 930]  
 
“The raw expression data and spot files can be accessed at the Gene Expression Omnibus 
database with the accession code GSE165141 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165141).” 
 
 
We also included files containing the selection of spots under the tissue from the spot detection 
output [3], described in the methods section of the main manuscript between line 533 and line 
541 in the metadata of the GEO database accession code GSE165141, as our data is not 
generated by using spaceranger but the STpipeline, as described in the materials and methods 
section between line 546 and 550 of the manuscript and in more detail in [4] as well as in the 
repository of the package [5].  
 
For the request of the reviewer to code availability, we would like to refer him/her to the Github 
repository (https://github.com/almaan/ST-mLiver), containing all necessary scripts to reproduce 
the results presented in our manuscript, which we also refer to in the code availability section in 
our manuscript between line [924] and line [934]. In this Github repository, for which we included 
an additional doi minted repository (DOI: 10.5281/zenodo.5517601), we included a detailed 
description of the structure of the repository and reference to external repositories containing 
necessary data for the analysis as well as the usage of the hepaquery package. 
 
We hope this - in our opinion - comprehensive data and code source is to the reviewer's 
satisfaction and would like to ask him for any further specific missing data or code for the 
reproduction of the observations made in our study, which we will provide with pleasure.  
 
[1] https://zenodo.org/record/5045689 
[2] https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165141 
[3] https://github.com/SpatialTranscriptomicsResearch/st_spot_detector_singularity 
[4] https://academic.oup.com/bioinformatics/article/33/16/2591/3111847 
[5] https://github.com/SpatialTranscriptomicsResearch/st_pipeline 
[6] https://github.com/almaan/ST-mLiver 
 
 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors have addressed all of my concerns, the paper in my view is ready for publication. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The paper has been significantly improved and more convincing with the substantially additional 

efforts, especially the immunofluorescence assays of cell types and veins. The Reviewers has only 

a few comments before final acceptance. 

 

1. spot size: 

The spot size is claimed to be 100nm in diameter in this paper, but by checking the 10X Genomics 

documents, the spot is ~50nm in diameter (55nm). Not sure if this is the version issue of spatial 

transcriptome, but the Reviewer would like to confirm with the authors, since a few analyses in 

this paper were based on the spot size, which may largely influence the result, e.g., cell counting. 

 

2. Data access: 

By checking the data, a few problems were seen, which authors should address before publication: 

a) /sample_2/img/high_resolution/CN16_Liver_HE_E2.jpg seems not the high-resolution image 

due to very small file size. 

b) supplementary Figure 2, the images do not match the data. The sample 2 and sample 3 seem 

to swap. 

c) in /Immunofluorescence, the Reviewer saw the folder of C1, C2, D2, E2, but failed to find the 

sample id, indicating which sample they are from. 

d) the files in /Immunofluorescence/Celltypes /manual_counting are all empty in zero file size. 

Authors might fail to upload. 

e) Not sure if the images were modified. The area beside the tissue is blurry, and the four 

boundaries of spots for image alignment seems missing. Please refer to the images of “Spatial 

Gene Expression” from the link: https://www.10xgenomics.com/resources/datasets 
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3rd revision

Reviewer 1

We would like to thank reviewer 1 again for his contribution to our manuscript. We are delighted
to hear that we were able to address all of his concerns and that he considers our manuscript
publication ready.

Reviewer 3

First, we would like to thank the reviewer for their meticulous revision of our manuscript. We
believe that the reviewer’s suggestions helped improve our manuscript substantially and are
glad the reviewer is convinced by the additional results we provided in response to his/her
review. We further addressed all additional minor comments the reviewer has in the following.

1. Spot size

The spot size is claimed to be 100nm in diameter in this paper, but by checking the 10X
Genomics documents, the spot is ~50nm in diameter (55nm). Not sure if this is the version issue
of spatial transcriptome, but the Reviewer would like to confirm with the authors, since a few
analyses in this paper were based on the spot size, which may largely influence the result, e.g.,
cell counting.

We appreciate the reviewers attention to detail in our manuscript. Assuming the reviewer refers
to a diameter of 50 µm (not 50 nm), he/she is correct that the spot diameter for a 10X Genomics
Visium slide is approximately 50 µm in diameter.
However, as also correctly assumed by the reviewer, we are not using 10X Visium in this
manuscript but the previous version of the Spatial Transcriptomics protocol, which has a spot
diameter of 100 µm, and a minimal distance of 100 µm and maximal distance of 150 µm
between spot centers [1,2]. Therefore, all conclusions in the manuscript which are dependent on
the spot size on the array are accurate.

[1] https://www.sciencedirect.com/science/article/pii/S0092867420306723?via%3Dihub
[2] https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-020-6631-z

https://www.sciencedirect.com/science/article/pii/S0092867420306723?via%3Dihub


2. Data access

By checking the data, a few problems were seen, which authors should address before
publication:

a) /sample_2/img/high_resolution/CN16_Liver_HE_E2.jpg seems not the high-resolution image
due to very small file size

We thank the reviewer for drawing our attention to the incorrect upload of a low resolution image
instead of the high resolution image. We corrected for the mistake and updated the zenodo
repository including the image with the image of the correct resolution.

The updated data can be found in a new version of the zenodo repository (doi:
10.5281/zenodo.5595907) [1].

[1] https://zenodo.org/record/5595907

b) supplementary Figure 2, the images do not match the data. The sample 2 and sample 3
seem to swap.

We thank the reviewer for drawing our attention to the observed inconsistency in the data
description. We corrected the observed error in the zenodo repository by renaming the folders
from “sample_2/” to “sample_3/” and from “sample_3/” to “sample_2/”  , so that they match the
corresponding data.

c) in /Immunofluorescence, the Reviewer saw the folder of C1, C2, D2, E2, but failed to find the
sample id, indicating which sample they are from.

If we understand correctly, the reviewer failed to correlate the images of the
immunofluorescence images in “/immunofluorescence” to the images in
the“/immunofluorescence/manual_counting” folder. We apologize for any confusion and hope
that we are able to clarify in the following.

In the case the reviewer is under the impression that the sample ids of the immunofluorescence
images and the ST experiments are the same, we would like to emphasize that the sample ids
(sample1, sample 2 and sample 3) correspond to the corresponding ST experiment and not the
tissue samples used for immunofluorescence stainings.

In more detail, we used the same frozen tissue of the caudate liver lobe to generate ST sample
1 and ST sample 2 . To generate the immunofluorescence images we used this frozen caudate
liver lobe again (as for sample 1 and sample 2 of the ST experiments) but the sections were in
another position within the tissue  (Review Figure 1a).
However, the sections used in the immunofluorescence assay are in closest proximity to
sample 2 of the ST experiments. The file descriptions “C1, C2, D2, E2”, refer to the position on

https://zenodo.org/record/5595907


the slide used for imaging. C1 represents the section on the top left, while E2 represents the
section on the bottom right (Review Figure 1b).

To clarify the description and relation to the results and images of the images in the manual
counting folder we changed the file names in the zenodo folder “/immunofluorescence” from
“C1”, “C2”,” D2”, “E2” to “caudate_F480_green_HNF4a_red_C1”,
“caudate_F480_green_CD31a_red_C2”, “pcaudate_F480_green_CD31a_red_D2”,
“caudate_F480_green_HNF4a_red_E2”. We use the same description of the selected spots of
the generated overlay of the spot coordinates described in the manuscript  (line [124] to line
[130]) and our previous response to the reviewer. Each image in “/manual_counting” refers to
the position of the selected region in the respective tissue (Review figure 2). We added the
following description in the zenodo repository to clarify the content of the respective folder:

“The Celltypes folder contains a folder with the original image of each section of the IFA and a
subfolder "manual counting", with the randomly selected 100 µm openings on each of the
corresponding images. The 100 µm openings are adapted from the grid of the ST experiments
(Supplementary figures 1-2).”

We hope this change clarifies the file description and makes the data easier to access for the
reviewer.

The updated data can be found in a new version of the zenodo repository (doi:
10.5281/zenodo.5595907) [1]

Review Figure 1 | Schematic representation of sectioning and experimental setup for ST and IFAs. a
Schematic representation of sectioning progression for the tissue of the caudate lobe used for ST (sample
1 and sample 2), sample 2 was obtained from tissue further into the tissue block in the direction of
sectioning (indicated by the grey arrow on the bottom right). The sections used for IFAs were obtained
from positions further down the sectioning direction. b Schematic representation of slide setup with the
first section placed on the top left (C1) and the last section on the bottom right (E2). arrows indicate the
direction of section placement on the slide.



Review figure 2 | Example for generation of spots for manual counting of cells of IFA validations. As
described in the methods section of the main manuscript and our previous reply to the reviewer, we
performed additional IFAs to perform manual counting of cells and cell types. We overlaid a grid
corresponding to the ST setup (including coordinates) on the image and randomly selected up to 100
spots per image for manual counting. The left image shows the sample
“caudate_F480_green_CD31a_red_C2” , where stainings for Kupffer cells (F4/80), endothelial cells
(CD31) and nuclei (Hoechst) were performed. Randomly selected spots are highlighted with white circles
and spot-coordinates are depicted above each spot. The right panel shows an excerpt of the tissue (white
box in the left panel), with an enlarged view of selected spots and their corresponding coordinates in the
grid.

[1] https://zenodo.org/record/5595907

d) the files in /Immunofluorescence/Celltypes/manual_counting are all empty in zero file size.
Authors might fail to upload.

We thank the reviewer for noticing the missing files in the folder:
“/Immunofluorescence/Celltypes/manual_counting” of the zenodo repository. We apologize for
failing to provide the files and have corrected this error now in an updated version of the
repository (doi: 10.5281/zenodo.5595907) [1].

[1] https://zenodo.org/record/5595907

https://zenodo.org/record/5595907
https://zenodo.org/record/5595907


e) Not sure if the images were modified. The area beside the tissue is blurry, and the four
boundaries of spots for image alignment seems missing. Please refer to the images of “Spatial
Gene Expression” from the link: https://www.10xgenomics.com/resources/datasets

As stated in our response to comment 1, we did not use 10x genomics Visium slides to study
spatial gene expression in our manuscript but the previous Spatial Transcriptomics protocol.
Image alignment was performed as described in the materials and methods section “Spot
visualization and image alignment” of our manuscript between line [553] and line [561] of our
manuscript. In brief, spots were hybridized with fluorescently labeled probes for staining and
imaged [1]. The brightfield images of the tissue slides and the fluorescent spot image were then
loaded and aligned in the ST Spot Detector tool [2].

Therefore, we can relieve the reviewer from his/her concern that the Hematoxylin and Eosin
(H&E) images were modified and can assure him/her that these are the original H&E images, as
this version of the Spatial Transcriptomics slides uses different slides and a different alignment
method than the slides the reviewer is referring to in
https://www.10xgenomics.com/resources/datasets.

[1] https://pubmed-ncbi-nlm-nih-gov.ezp.sub.su.se/27365449/
[2] https://pubmed.ncbi.nlm.nih.gov/29360929/

https://www.10xgenomics.com/resources/datasets
https://www.10xgenomics.com/resources/datasets
https://pubmed-ncbi-nlm-nih-gov.ezp.sub.su.se/27365449/
https://pubmed.ncbi.nlm.nih.gov/29360929/
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