iScience, Volume 24

Supplemental information

Murine cerebral organoids develop

network of functional neurons

and hippocampal brain region identity

Francesca Ciarpella, Raluca Georgiana Zamfir, Alessandra Campanelli, Elisa Ren, Giulia Pedrotti, Emanuela Bottani, Andrea Borioli, Davide Caron, Marzia Di Chio, Sissi Dolci, Annika Ahtiainen, Giorgio Malpeli, Giovanni Malerba, Rita Bardoni, Guido Fumagalli, Jari Hyttinen, Francesco Bifari, Gemma Palazzolo, Gabriella Panuccio, Giulia Curia, and Ilaria Decimo

Figure S1 – PROGRESSIVE MATURATION OF MOUSE SGZ-NSCS-DERIVED ORGANOIDS. RELATED TO FIGURE 2. (**A**) Percentage of successful organoids generation, disintegration or no aggregation up to 32d *in vitro* for 7 different mNSCs batches (n=732, number inside each bar indicates the number of organoids evaluated for each mNSCs batch). (**B-G**) Graphs representing the percentage of

Vimentin (B), SOX2 (C), DCX (D), TUBB3 (E), MAP2 (F) and GFAP (G) positive cells over total cell nuclei at different time points. Data in all graphs are expressed as mean \pm SEM. Analysis was performed on n \geq 3 different organoids and at least on 3 entire sections for each organoid. p < 0.05 was considered statistically significant. Statistical differences between marker expression at different time point were calculated by ordinary one-way ANOVA followed by Tukey's multiple comparison test. ****p < 0.0001; **p < 0.01; *p < 0.05; ns not statistically significant. (H) Part-to-whole graphs showing the percentage of cells belonging to different cell populations over the total cells populations' number. Stem cells refers to SOX2 positive cells, Neuronal progenitors refers to DCX positive cells, Immature neurons refers to TUBB3 positive cells, Mature neurons refers to MAP2 positive cells and Astrocytes identify GFAP positive cells. (I) Representative confocal immunofluorescence Z stack-projection image of whole mount early (7d) NSCs-derived organoid showing the presence and widespread distribution of Vimentin, SOX2, and DCX positive cells. Total nuclei are visible in blue (TOPRO3). (J) Representative confocal immunofluorescence Z stackprojection image of whole mount mature (32d) NSCs-derived organoid showing the distribution of TUBB3 and MAP2⁺ positive cells. (K) Heat map of RNAseq data from organoid samples at different stages of differentiation (7 days: n=3; 14 days: n=3; 32 days: n=3) generated based on mature neurons gene list dataset. (L) Representative confocal immunofluorescence Z stack-projection image of whole mount mature (32d) NSCs-derived organoid showing the presence of neuronal cells (TUBB3, in green) connected with astrocytes (GFAP, in red). Total nuclei are visible in blue (TOPRO3). The white box highlights a magnified zone reported also in the green and red split channels. (M) Heat map of RNAseq data from organoid samples at different stages of differentiation (7 days: n=3; 14 days: n=3; 32 days: n=3) generated based on astrocytes gene list dataset.

Figure S2 – SYNAPSE DEVELOPMENT WITHIN MATURE MURINE BRAIN ORGANOIDS. RELATED TO FIGURES 4 AND 6. (A) Representative maximum Z-projection of confocal images of sliced organoids immunostaining performed at 7d, 14d and 21d for the Synaptophysin (red) and the MAP2 (green) markers, showing colocalization between neuronal cells and the synaptic marker starting from 21d. No evident expression of Syn was found at 7d and 14d. White box highlight the colocalization

between Syn and MAP2 at 21d, also reported in enlarged images. (B-C) Heat maps of RNAseq data from organoid samples at different stages of differentiation (7 days: n=3; 14 days: n=3; 32 days: n=3) generated based on an inhibitory (B) and excitatory (C) synapses gene lists. Blue boxes highlight the most upregulated genes in mature organoids (32d) respect to early organoid (7d and 14d). Specifically, the most up regulated inhibitory synapses genes in 32d organoids respect to 7d and 14d organoids are related to GABA receptors and transporters (i.e. Gabra4, Gabrb1, Camk4, Gabrg3, Gabra1, Slc32a1, Gabra5, Gabrg2, Gad2). The most up regulated excitatory synapsis genes in 32d organoids respect to 7d and 14d organoids are related to glutamate reception and reuptake (i.e., Grin2b, Grin1, Grm4, Grin2a, Grik1) and K-voltage gate channels, NMDA and cholinergic receptors (i.e., Kcnc4, Chrm3, Kcna3, Chrm1, Chrm4). (D) Representative confocal images of sliced organoid immunostaining performed at 32 days for the GAD65-67 and TUBB3 markers. The white box highlights the double positive cells reported also in the red and green split channels. (E) Representative confocal images of sliced organoid immunostaining performed at 21 days for the NMDA and TUBB3 markers. The white box highlights the double positive cells reported also in the red and green split channels. (F) Representative confocal images of sliced organoid immunostaining performed at 21 days for the GFAP and Glutamine Synthetase (Gln Syn) markers. The white box highlights the double positive cells reported also in the red and green split channels. (G-H) Representative confocal immunofluorescence maximum intensity Z stack projections images of sliced adult (8-weeks) murine brain tissue and mature (32d) murine brain organoids showing the expression of NKX2.1 (G) and GSX2 (H) ganglionic eminences markers. White insets represent a sketch of coronal mouse brain sections while red boxes highlight the brain region of the murine tissue staining. (I) Representative maximum Z-projection of confocal images of organoids transfected only with the EnvARv (rabies-virus) showing no expression of red spots.

Figure S3 – ORGANIZATION AND SPATIAL DISTRIBUTION OF CELLS IN MURINE BRAIN ORGANOIDS AFTER WNT3A SUPPLEMENTATION. RELATED TO FIGURE 7. (A) Heat map of RNAseq data generated on selected hippocampal gene dataset. By evaluating the genes expression profile on murine P0 and adult cerebral tissues and on organoids at different developmental stages, the analysis

reveals no expression of some crucial genes required for the hippocampal genesis (Lef1, Wnt3a) into the 3D structures at all the evaluated time points. Blue box highlights the most down regulated hippocampal related genes (Neurod6, Lef1, Trp73, Kcna1, Fezf2, Mdk, Wnt3a, Lmx1a, Lhx5, Dlx2, Drd1, Alk) in organoids respect to the tissue. (B) Schematic rendition of the three-phases organoids generation protocol showing the WNT3a 5ng/ml administration period (expansion and induction phases). In all the three phases, organoids were maintained on an orbital shaker (dynamic culture). Pictures in (B) are representative brightfield images of WNT3a-treated organoids at different stage of the protocol. (C) Representative confocal immunofluorescence images of sliced NSCs-derived Wnt3a-treated organoids at 7d, 14d, 21d and 32d showing cells positive for Ki67, Vimentin, Sox2, DCX, TUBB3, GFAP, MAP2 and Synaptophysin. (D-K) Graphs showing the percentage of Ki67 (D), Vimentin (E), SOX2 (F), DCX (G), TUBB3 (H), MAP2 (I) positive cells over total cell nuclei, the synaptic density (% Syn⁺ area in MAP2⁺ cells area) (J) of Wnt3a-treated organoids and GFAP (K) positive cells at different time points. Analysis was performed on $n\geq 3$ different organoids and at least on 3 entire sections for each organoid. Data in all graphs are expressed as mean \pm SEM. Statistical differences between marker expression at different time point were calculated by ordinary one-way ANOVA followed by Tukey's multiple comparison test. ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; *ns* not statistically significant.

	Neural Stem Cells		Neuronal Progenitors	Mature Neurons
Abcg2	Acot1	Slc4a1	Tbr2/Eomes	Neun
Bmi-1	Lxn	Gm12222	Mash1/Ascl1	Snap25
Chd2	Mut	Asrgl1	Neurog2	Syt1
Cxcr4	Tpbg	Etv4	Neurog1	Scn2a
Ctnnb1	Decr1	Abcd3	Tacc2	Vamp1
Fabp7	Cldn12	Slc15a2	Blbp	CdkI5
Fzd-1	Slc9a3r1	Mfge8	Grm5	Rab3a
Fzd-2	Slitrk2	Acadl	Ly6h	Basp1
Hes5	Cpne2	Gas1	Lrp8	Runx1t1
Msi 1	Polr3h	Grm3	Prox1	Hpcal1
Msi 2	Luzp2	Lrrc16a	Nes	Pkm
Nes	Paqr7	Cnih2	Vim	Acot7
Notch1	Bcl2	Ctnnd2	Neurod1	Trim67
Nr2f1	Prom1	Trim9	Sox11	Bcat1
Neurod4	Ccdc80	Traf3	Foxg1	Sdc2
Pax6	Sardh	Adgrb1	Dcx	Sarm1
Pax3	Cdc42ep1	Sorbs1	Tbr1	Lancl2
Prom1	Tspan12	Ezr	Aplp1	Gdap1
Rest	Lfng	Fabp7	Stathmin 1	Smpd3
Slc1a3	Fam181b	Ptprz1	Ncam	Crmp1
Smad1/2	Sall3	Trib2	Tubb4a	Stmn2
Sox2	Nr2e1	Kcnj10	Tubb3	Srrm3
Sox11	Rlbp1	Ttyh1	Мар6	Mllt11
Vim	Fjx1	Rgma	Dbn1	Cttn
Sox8	Gramd4	Cspg5	Tagln3	Kctd13
Sox9	Car2	Slc1a2		Map1b
Tst	Mt3	Atp1a2		Nsg2
Creb5	Tmem98	Plpp3		
Cbr3	Eepd1	Fbln2		
Bcar3	Hes5	Ednrb		
Rgcc	Abcb9	Lrig1		
Palld	Thbs4	Bcan		
	Trim47	Ddah1		
		Aldh1l1		
		Nsg1		

Table S1 – List of genes related to neural stem cells, neuronal progenitors andmature neurons phenotype used for GSVA. Related to Figure 1.

|--|

Gene	padj	log2FoldChange
Cttn	5,49E-05	0,604238035
Nsg2	7,35E-49	1,727314216
Syt1	7,61E-13	2,227795404
Snap25	3,64E-16	2,029859858
Srrm3	4,64E-09	2,730721037
Stmn2	3,77E-09	5,992616238
Trim67	3,04E-24	1,812663846
Vamp1	0,000220385	1,924336274
Map1b	2,15E-07	0,794654091
Nsg1	0,297850458	0,209721151
Sdc2	4,11E-52	1,808401762
Mllt11	0,195099757	0,202658043
Rab3a	0,638534197	0,112657704
Gdap1	1,42E-09	1,1904085
Scn2a	0,000377824	0,873899441

Table S2 – SUMMARY OF GENES RELATED TO NEURONAL DIFFERENTIATION. RELATED TO FIGURE 2. The table reports the up-regulated genes related to neuronal differentiation obtained by RNAseq analysis. Padj: adjusted p-values for multiple comparisons using Benjamini-Hochberg method; log2FoldChange: transcript expression fold-changes estimated for each expressed transcript comparing early and mature organoids.

Gene	padj	log2FoldChange
Slc1a2	4,94E-05	0,658058139
Aqp4	1,71E-159	4,837930849
Gfap	3,21E-90	8,579001665
Slc1a3	0,423719767	0,105205933
Slc4a4	0,076303712	0,23595097
Втрб	2,44E-25	5,425047152
Paqr6	0,000495747	6,123786905
Ccdc80	1,94E-26	3,708314486
Itih3	1,13E-31	4,280860113
S100b	6,30E-93	3,332617766
Fgfr3	0,37888097	0,095574269
Bmpr1b	1,94E-07	0,723439631
Mlc1	8,69E-49	1,804347648

Table S3 – SUMMARY OF GENES RELATED TO ASTROCYTES MATURATION. RELATED TO FIGURE 2. The table reports the up-regulated genes related to astrocytes specification and maturation obtained by RNAseq analysis. Padj: adjusted p-values for multiple comparisons using Benjamini-Hochberg method; log2FoldChange: transcript expression fold-changes estimated for each expressed transcript comparing early and mature organoids.

Gene	padj	log2FoldChange
Ndufa13	1,96E-09	0,579612369
Ndufa1	9,21E-05	0,485793112
Ndufa3	0,389560593	0,000146566
Ndufb7	0,000584419	0,337754699
Ndufv1	0,00058828	0,340111982
Cox7a1	0,00070363	1,967445617
Ndufa6	0,001096148	0,456180369
Cox7b	0,007337685	0,527524247
Ndufa2	0,010621595	0,342780332
Ndufa7	0,012868154	0,316526053
Sdhaf2	0,02248562	0,343630353
Atp5k	0,024527403	0,326084878
Ndufb10	0,02526666	0,283391207
Sdhc	0,046640279	0,321295658
Sdha	0,081350186	0,200270153
Ndufaf7	0,087155821	0,264375515
Pparg	7,56E-08	3,680015045
Acox2	0,02919019	3,068473817
Acox1	2,81E-41	0,986916873
Lbp	4,65E-20	7,488102566
Dbp	9,33E-71	2,4342719
Ech1	7,99E-22	0,977763635
Acad11	1,39E-12	0,945714818
Acad12	1,33E-05	1,283203566
Acadsb	2,67E-10	1,421285689
Slc25a20	5,51E-07	0,653743564
Cpt1c	2,05E-14	0,772569274
Echdc2	4,85E-11	1,952724424
Hadhb	0,000356887	0,405122041

Table S4 – SUMMARY OF GENES RELATED TO MITOCHONDRIAL METABOLISM, OXPHOS AND BETA-OXIDATION. RELATED TO FIGURE 3. The table reports the up-regulated genes related to mitochondrial metabolism, OXPHOS and beta-oxidation pathways obtained by RNAseq analysis. Padj: adjusted p-values for multiple comparisons using Benjamini-Hochberg method;

log2FoldChange: transcript expression fold-changes estimated for each expressed transcript comparing early and mature organoids.

Gene	padj	log2FoldChange
Chrm1	0,136379601	0,617163002
Chrm4	0,217145943	0,563989234
Grin2b	NA	0,162510622
Grin1	0,087245674	0,58285698
Grm4	0,024267454	0,881524425
Grik1	5,42E-06	1,652355096
Gabra4	3,05E-22	5,054167025
Gabrb1	8,47E-15	5,002966532
Camk4	0,37045951	0,452115506
Gabra1	2,56E-06	5,404443403
Slc32a1	2,27E-09	8,089790215
Gabra5	9,04E-10	3,736376851
Gabrg2	3,89E-21	6,425753483
Gad2	1,49E-12	5,63162592
Kcc2	5,84E-13	3,108971239

Table S5 – SUMMARY OF GENES RELATED TO EXCITATORY AND INHIBITORY SYNAPSES. RELATED TO FIGURES 4. The table reports the up-regulated genes related to excitatory and inhibitory synaptic components obtained by RNAseq analysis. Padj: adjusted p-values for multiple comparisons using Benjamini-Hochberg method; log2FoldChange: transcript expression fold-changes estimated for each expressed transcript comparing early and mature organoids.

Gene	padj	log2FoldChange
Ywhae	0,005424201	3,069025528
Bcan	5,10E-25	10,57776201
Ptprs	1,88E-08	5,897610719
Usp9x	0,424854451	1,001908583
Nr2e1	0,094932196	1,935368493
Uba6	0,252404414	1,381840478
Gli3	0,062419944	2,135685348
Dcx	3,96E-39	13,31853782
Plxna3	4,07E-12	7,200959936
Btg2	1,86E-08	5,898859373
Kdm6b	0,004022945	3,164903452
Hdac1	6,86E-12	7,126560033
Cdk5r1	5,01E-109	-22,38809832
Srf	1,13E-12	-7,379351954
Nr4a3	7,98E-18	-8,857228097
Prox1	6,31E-16	-8,342593401
Lef1	0,022549229	-2,565965341
Drd1	0,051259239	-2,225130449
Dlx2	0,009572507	-2,878319862
Neurod6	2,64E-145	-25,86811259
Alk	0,718873648	-0,485848463
Dlx1	3,81E-08	-5,774644064
Fgf13	1,18E-145	-25,90031399
WNT3a	0,113906933	-1,84109367

Cdk5r2	2,14E-120	-23,5363099
Trp73	1,42E-07	-5,540736952
Kcnal	5,76E-36	-12,75493809
Fezf2	3,18E-45	-14,34023151
Mdk	1,49E-50	-15,17601342
Lmxla	0,001758385	-3,417015204
Lhx5	0,501319578	-0,857810381

Table S6 – **SUMMARY OF GENES RELATED TO HIPPOCAMPAL SPECIFICATION AND DIFFERENTIATION. RELATED TO FIGURE 7.** The table reports the down-regulated and up-regulated genes related to hippocampal specification and differentiation obtained by RNAseq analysis. Padj: adjusted p-values for multiple comparisons using Benjamini-Hochberg method; log2FoldChange: transcript expression fold-changes estimated for each expressed transcript comparing mature organoids and adult cerebral tissue.

mNeurod1GAGGAACACGAGGCAGACAAGTCTCCCCCGTTTCTCAGAGAmTgfb2GCCCCTGCTGTACCTTCGTGGTGCCATCAATACCTGCAAmGria1GGGCCAGATTGTGAAGCTAGAGGCTGGGATCGTGTCTGTGTmNrp2GCATGGCAAAAACCACAAGAAGCAGTGGCATGTGGAGCTTmFzd9CTCCTTGGCCTTCCTGATCACAGGGTGCAGCCTGTGTTTmNectin3CAATGGCCTGATGGTTTATTGGTCTGCGTAAGCGGGATGTCTmSpock1CAGCCCGCACAAAGTATGTGCTTCTTCTGCCTGGGCAACAmDkk3ACTGCCAGTTCTCCAGCTTCATCTCGGGTGCATAGCATCTGmElavl2GGCAGCATTGGCGAGATAGACCCAAGCTCTGCCCTGTATTmElavl4AGTCCCCCAACAGGCGATACGCAAATTGTCCAGCCTGAATC	
mTgfb2GCCCCTGCTGTACCTTCGTGGTGCCATCAATACCTGCAAmGria1GGGCCAGATTGTGAAGCTAGAGGCTGGGATCGTGTCTGTGTmNrp2GCATGGCAAAAAACCACAAGAAGCAGTGGCATGTGGAGCTTmFzd9CTCCTTGGCCTTCCTGATCACAGGGTGCAGCCTGTGTTTmNectin3CAATGGCCTGATGGTTTATTGGTCTGCGTAAGCGGGATGTCTmSpock1CAGCCCGCACAAAGTATGTGCTTCTTCTGCCTGGGCAACAmDkk3ACTGCCAGTTCTCCAGCTTCATCTCGGGTGCATAGCATCTGmElavl2GGCAGCATTGGCGAGATAGACCCAAGCTCTGCCTGTATTmElavl4AGTCCCCCAACAGGCGATACGCAAATTGTCCAGCTTGAATC	
mGria1GGGCCAGATTGTGAAGCTAGAGGCTGGGATCGTGTCTGTGTmNrp2GCATGGCAAAAAACCACAAGAAGCAGTGGCATGTGGAGCTTmFzd9CTCCTTGGCCTTCCTGATCACAGGGTGCAGCCTGTGTTTmNectin3CAATGGCCTGATGGTTTATTGGTCTGCGTAAGCGGGATGTCTmSpock1CAGCCCGCACAAAGTATGTGCTTCTTCTGCCTGGGCAACAmDkk3ACTGCCAGTTCTCCAGCTTCATCTCGGGTGCATAGCATCTGmElavl2GGCAGCATTGGCGAGATAGACCCAAGCTCTGCCTGTATTmElavl4AGTCCCCCAACAGGCGATACGCAAATTGTCCAGCCTGAATC	
mNrp2GCATGGCAAAAAACCACAAGAAGCAGTGGCATGTGGAGCTTmFzd9CTCCTTGGCCTTCCTGATCACAGGGTGCAGCCTGTGTTTmNectin3CAATGGCCTGATGGTTTATTGGTCTGCGTAAGCGGGATGTCTmSpock1CAGCCCGCACAAAGTATGTGCTTCTTCTGCCTGGGCAACAmDkk3ACTGCCAGTTCTCCAGCTTCATCTCGGGTGCATAGCATCTGmElavl2GGCAGCATTGGCGAGATAGACCCAAGCTCTGCCCTGTATTmElavl4AGTCCCCCAACAGGCGATACGCAAATTGTCCAGCCTGAATC	
mFzd9CTCCTTGGCCTTCCTGATCACAGGGTGCAGCCTGTGTTTmNectin3CAATGGCCTGATGGTTTATTGGTCTGCGTAAGCGGGATGTCTmSpock1CAGCCCGCACAAAGTATGTGCTTCTTCTGCCTGGGCAACAmDkk3ACTGCCAGTTCTCCAGCTTCATCTCGGGTGCATAGCATCTGmElavl2GGCAGCATTGGCGAGATAGACCCAAGCTCTGCCCTGTATTmElavl4AGTCCCCCCAACAGGCGATACGCAAATTGTCCAGCCTGAATC	
mNectin3CAATGGCCTGATGGTTTATTGGTCTGCGTAAGCGGGATGTCTmSpock1CAGCCCGCACAAAGTATGTGCTTCTTCTGCCTGGGCAACAmDkk3ACTGCCAGTTCTCCAGCTTCATCTCGGGTGCATAGCATCTGmElavl2GGCAGCATTGGCGAGATAGACCCAAGCTCTGCCCTGTTATTmElavl4AGTCCCCCCAACAGGCGATACGCAAATTGTCCAGCCTGAATC	
mSpock1CAGCCCGCACAAAGTATGTGCTTCTTCTGCCTGGGCAACAmDkk3ACTGCCAGTTCTCCAGCTTCATCTCGGGTGCATAGCATCTGmElavl2GGCAGCATTGGCGAGATAGACCCAAGCTCTGCCCTGTTATTmElavl4AGTCCCCCAACAGGCGATACGCAAATTGTCCAGCCTGAATC	
mDkk3 ACTGCCAGTTCTCCAGCTTCA TCTCGGGTGCATAGCATCTG mElavl2 GGCAGCATTGGCGAGATAGA CCCAAGCTCTGCCCTGTTATT mElavl4 AGTCCCCCCAACAGGCGATAC GCAAATTGTCCAGCCTGAATC	
mElavl2 GGCAGCATTGGCGAGATAGA CCCAAGCTCTGCCCTGTTATT mElavl4 AGTCCCCCAACAGGCGATAC GCAAATTGTCCAGCCTGAATC	
mElayl4 AGTCCCCCAACAGGCGATAC GCAAATTGTCCAGCCTGAATC	
mKif14 TGAGGCCTTTCAGCAAAAGAG CATATCGGGATGCTCCACAGT	
mProx1 CTGAAGACCTACTTCTCGGACG GATGGCTTGACGCGCATACTT	С
mSct GCAGCGAGCAGGACACAGA GTGTTCGACCACAGCAAGCA	
mAlk ATCTTCGGGACGGGACACA TCATCGTCCAGGTCAGATTCC	
mPou3f1 TTGGGCTAGAGAAGGATGTGGTT GGAAAAGGGACTGAGTAGAG	TGTGG
mZbtb20 CCTCATCCACTCGACACATTCAC GAAGGTTGATGCTGTGAATGC	GC
mGrik4 TCTCCAGGAGTCTGGCTCTTCA CGCACAAGGATGTGGACTGTA	١C
mSox5 TACAAGGCTGGGTCCAGTGA TGGGCCTAAGCCTGGTGTT	
mSox1 GCCGAGTGGAAGGTCATGTC TGTAATCCGGGTGTTCCTTCA	
mSlc1a3 ACCCCTGGGTTTTCATTGGA GGGTAGGGTGGCAGAACTTG	
mDach1 CCATGGCAATGAGTCAGATGA TCGGGAACACGCTCCTTAAT	
mStat3 GGGCACGAACACAAAAGTGA CTCCCTAAGGGTCAGGTGCTT	
mCdh1 TCCTGGGCAGAGTGAGATTTG TCTGTCGCCACTTTGAATCG	
mKlf4 CTATGCAGGCTGTGGCAAAA GGTTTCTCGCCTGTGTGAGTT	2
mOct3/4 CTGGGCGTTCTCTTTGGAAA TGTTCTTAAGGCTGAGCTGCA	4
mNanog AAGCGGTGGCAGAAAAACC GTGCTGAGCCCTTCTGAATCA	
mMusashi GTTTGAGAGCGAGGACATCGT CTTGCATTCCACCATTTTGTT	
mNes TGTCCCTTAGTCTGGAAGTGG GGTGTCTGCAAGCGAGAGTT	
mDcx TTGGACATTTTGACGAACGA CCCTTCTTCCAGTTCATCCA	
mSox2 GCACATGAACGGCTGGAGCAACG TGCTGCGAGTAGGACATGCTG	TAGG
mVim AGGAGGCCGAGGAATGGT CATCGTTGTTCCGGTTGG	
mPax6 CAGCCCACCACACCTGTCT ATGGGTGGCAAAGCACTGTAG	

Table S7 – List of primers used for SGZ-derived NSCs and HippocampalCharacterization. Related to Figures 2A and 7A.