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Host-specific asymmetric accumulation of mutation

types reveals that the origin of SARS-CoV-2

is consistent with a natural process
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MATERIALS AND METHODS 

Identification of de novo RNA mutations in SARS-CoV-2 

We identified de novo RNA mutations in SARS-CoV-2 from the nanoball-based RNA 

sequencing data reported in a previous study,1 which were generated for the Vero cells 

infected by SARS-CoV-2 BetaCoV/Korea/KCDC03/2020, at a multiplicity of 

infection (MOI) of 0.05 for 24 h. The 305,065,029 high-throughput sequencing read 

pairs (2×100-nucleotide) were retrieved from the Open Science Framework under the 

digital object identifier number 10.17605/OSF.IO/8F6N9. The bioinformatics pipeline 

can be found in Figure S2, and we describe specific parameters below.  

Since the Vero cell was isolated from African green monkey kidney,2 the sequencing 

read pairs were first mapped to the Chlorocebus sabaeus genome (Ensembl: 

ChlSab1.1) using STAR 2.7.1a3 under the parameters supplied by Kim et al. (--

outFilterMultimapNmax 1000000 --outFilterType BySJout --alignSJoverhangMin 8 --

outSJfilterOverhangMin 12 12 12 12 --outSJfilterCountUniqueMin 1 1 1 1 --

outSJfilterCountTotalMin 1 1 1 1 --outSJfilterDistToOtherSJmin 0 0 0 0 --

outFilterMismatchNmax 999 --outFilterMismatchNoverReadLmax 0.04 --

scoreGapNoncan -4 --scoreGapATAC -4 --chimOutType WithinBAM HardClip --

chimScoreJunctionNonGTAG 0 --alignSJstitchMismatchNmax -1 -1 -1 -1 --

alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax 1000000).  

The read pairs mapped to the C. sabaeus genome were discarded, and the remaining 

ones were mapped to SARS-CoV-2 BetaCoV/Korea/KCDC03/2020 genome 

(GISAID: EPI_ISL_407193) using the same set of parameters as described above. 

Based on the junction barcode (i.e., a pair of upstream and downstream junction 

sites), these read pairs were grouped into 269,125 read families, among which the 

majority were present at a low frequency in the transcriptome (e.g., 264,613 read 

families each including ≤20 read pairs, 258,356 each including ≤10 read pairs, and 

244,294 each including ≤5 read pairs). The read pairs mapped to multiple positions in 



the SARS-CoV-2 genome were also discarded. The read pairs that contained exactly 

one junction and were mapped end-to-end along the full length of the read pair were 

used to identify de novo RNA mutations (Figure S2).  

Single-nucleotide mismatches were detected by samtools mpileup v1.94 with the 

parameters (-d 0 --output-BP --output-QNAME). These mismatched bases were then 

retained as candidate RNA mutations (Figure S2). It is worth noting that the 

mismatch frequency of C>G was much higher than the others, suggesting a C>G 

sequencing bias in the nanoball-based high-throughput sequencing (Figure S3D).  

Among these mismatches, we identified bona fide RNA sequence variation extant in 

the negative-sense subgenomic RNA by applying three criteria (Figure S2). First, we 

discarded any mismatches that were supported by only one sequencing read, as such a 

mismatch could have been created through errors in high-throughput sequencing, 

PCR amplification, or reverse transcription. Similarly, mismatches were also 

discarded if all supportive read pairs appeared likely to be artifacts of PCR 

amplification or reverse transcription during library preparation, as indicated by 

identical mapping positions of the 5′- and 3′-ends of the read pair in the reference 

genome. Second, to be conservative, we kept only mismatches that were unanimously 

supported by all sequencing reads in a family (Figure S2). Third, we observed a 

greater number of mismatches immediately adjacent to junction sites which decreased 

in frequency through ~15 nucleotides up- and down-stream of the junction site 

(Figure S2). Most of these mismatches were likely alignment artifacts,5,6 and 

therefore, we excluded all mismatches located less than 15 nucleotides away from the 

junction site.  

It is also noteworthy that the detected sequence variations could also result from 

extant polymorphisms in the viral population used to infect the Vero cells. If a 

sequence variation was observed in multiple transcripts, we surmise that it was likely 

derived from a viral polymorphism rather than a de novo mutation. To this end, we 

fitted two normal distributions to the distribution of background mismatch frequency 



(i.e., among all reads covering a site, whether or not bearing a junction), and found 

that a cut-off of 0.2% in background mismatch frequency would result in a false 

discovery rate of ~2% in identification of de novo mutations (Figure S2D). Therefore, 

we further discarded mismatches that appeared at >0.2% background frequency.  

Note that although we detected mutations present in the negative-sense subgenome, 

these mutations could arise in the positive-sense genome due to exposure to mutagens 

after the virus infected a cell. 

To estimate the molecular spectrum of de novo mutations in SARS-CoV-2, we divided 

the number of mutations of each of the 12 base-substitution types by the total number 

(N) of the particular nucleotide type (A, C, G, or U) where such mutation type could 

have arisen. Provided that various regions in the viral genome are presented at 

different frequencies in the transcriptome (subgenomes), we estimated N from the 

total coverage in the transcriptome for all sites in the reference genome that exhibits 

the particular nucleotide type. For example, when mutation type G>U is under 

consideration, we identified all guanines in the reference genome and counted their 

total coverage estimated from the transcriptome data. Similar to the identification of 

de novo mutations, the coverage here was defined within each read family, only for 

the sites that were covered by at least two non-duplicate reads, that the nucleotide 

type was unanimously supported by all reads in the family, and that located at least 15 

nucleotides away from the junction site.  

A total of 37,129 junction-containing read pairs showed insertions or deletions of a 

few nucleotides (indels). These read pairs were used to detect de novo indels, using 

the same cut-off as that for the detection of de novo point mutations. Indels existing in 

multiple read families were counted only once. 

Comparison of the mismatch frequency between the junction-barcoding 

approach and the conventional computational approach 

We compared the accuracy of our junction-barcoding approach in identifying 



mutations with the conventional computational approach that treats all mismatches 

called from the sequencing data as mutations. Specifically, we estimated the overall 

mismatch frequencies as a function of Phred quality score, as described in a previous 

study.7 To make the comparison fair, we used the same read families for the 

conventional computational approach as those used for the junction-barcoding 

approach, except that the conventional computational approach treats reads 

individually while the junction-barcoding approach treats read family as a whole. The 

30-nucleotide region centered at the junction sites was similarly discarded for both 

approaches.  

We obtained the base quality scores for each nucleotide on individual reads using 

samtools mpileup under the parameters (-d 0 --output-BP --output-QNAME -Q 0 -B). 

For the conventional approach, for each Phred quality score from 1–40, we divided 

the number of mismatches supported at the confidence level indicated by a particular 

quality score, by the total number of sites showing this quality score across all 

individual reads; this ratio was defined as the mismatches frequency. For the junction-

barcoding approach, the mismatch frequency was similarly estimated, except that the 

Phred quality score of each site is the average rounded quality score of all reads 

covering a particular site in a read family. The mismatch frequencies were not 

estimated for average Phred quality score of 1, 2, or 3 because less than 10 sites 

exhibited such quality scores across all read families. 

The mismatch frequency estimated using the junction-barcoding approach was lower 

than the estimate generated by conventional computational approaches for the same 

dataset (Figure 1C). These results indicated that sequencing errors were effectively 

removed using our strategy (although sometimes two or more independent de novo 

mutations might be treated as one by our algorithm). Moreover, the mismatch 

frequency was largely stable over a range of sequencing quality scores (Figure 1C, 

from 28 to 40), suggesting that our approach was not heavily dependent on an 

extremely low sequencing error rate. 



Characterization of the molecular spectra of among-patient polymorphisms for 

three virus species 

A total of 34,852 complete genome sequences of SARS-CoV-2 variants were 

downloaded from GISAID (Global Initiative on Sharing All Influenza Data, 

https://www.gisaid.org/)8 on Jun 29, 2020. 1839 complete genome sequences of 

Influenza A virus variants, which were collected during the 2009 H1N1 pandemic, 

were also downloaded from GISAID. 258 complete genome sequences of MERS-

CoV variants isolated from patients were downloaded from NCBI Virus 

(https://www.ncbi.nlm.nih.gov/labs/virus/vssi/).9  

We performed MUSCLE v3.8.155110 to align each virus variant to its corresponding 

reference genome and aggregated individual alignments into a single multiple 

sequence alignment. We reconstructed the sequence of the last common ancestor for 

each virus species using FastML v3.11 under the default parameters.11 We compared 

the sequence of each virus variant with that of the last common ancestor to identify 

sequence variations. Sequence variations supported by at least two virus variants were 

considered as polymorphisms, to reduce the possibility of potential sequencing errors 

being recognized as polymorphisms. Sequence variations that were identified in 

multiple patients were counted only once to minimize the influence of positive 

selection. 

Characterization of the molecular spectrum of RNA mutations in Saccharomyces 

20S RNA narnavirus and yeast endogenous mRNAs 

We identified the RNA mutations in Saccharomyces 20S RNA narnavirus and in 

endogenous mRNA from the ARC-seq data for the budding yeast.12 The processed 

consensus sequences were downloaded from NCBI under the accession number of 

BioProject PRJNA396053. These sequences were mapped to the yeast genome 

(Ensembl, R64-1-1) and the Saccharomyces 20S RNA narnavirus genome (GenBank: 

NC_004051.1) using STAR with the default parameters. RNA mutations were 



detected by samtools mpileup with the parameters as follows: -d 0 --output-BP --

output-QNAME -Q 30, and were polarized according to the coding strand, based on 

the yeast genome annotation (Ensembl, R64-1-1, version 48). The RNA mutations 

that locate at the genome positions with >1% mismatch frequency were discarded, as 

they might be caused by polymorphisms among individual yeast cells. Endogenous 

RNA mutations that located in the mitochondrial genome were discarded.  

Endogenous mRNA mutations were also identified in the budding yeast using 

CirSeq.13 We downloaded the raw sequences from NCBI under the accession number 

of BioProject PRJNA430448 and called mRNA mutations using the pipeline provided 

by the authors. 

Retrieval of reported molecular spectra of de novo mutations for Ebola virus and 

poliovirus 

The molecular spectrum of de novo mutations in Ebola virus was retrieved from a 

previous study,14 in which 293T cells were infected by Ebola virus at an MOI of 0.1. 

The molecular spectrum of de novo mutations in poliovirus was retrieved from a 

previous study,7 in which HeLa S3 cells were infected by poliovirus at an MOI of 0.1 

for 6–8 h. In both studies, CirSeq were applied to identify de novo mutations in RNA 

viruses.  

Characterization of molecular spectra of somatic mutations in 36 human tissues 

We retrieved the somatic mutation data identified for 36 human tissues from a 

previous study (Garcia-Nieto et al., 2019). Somatic mutations were polarized 

according to the coding strand DNA based on the human genome annotation 

(Ensembl, GRCh37, version 84). Somatic mutations located in the overlapping 

regions between two genes were discarded, as the DNA strand in which these 

mutations arose could not be determined. We discarded mutations detected in multiple 

humans to reduce the interference from the potential standing polymorphisms in the 

population. We also discarded somatic mutations that existed in multiple tissues of the 



same human to exclude potential RNA editing events. The frequencies of mutations 

were normalized by the nucleotide content in the transcribed regions. 

Characterization of the molecular spectra of mutations that accumulated in the 

evolution of SARS-CoV-2, SARS-CoV, and MERS-CoV and their related 

coronaviruses 

We retrieved the genomic sequences of six SARS-CoV-2-related coronaviruses: 

RaTG13 (GenBank: MN996532.1) isolated from R. affinis,15 RshSTT200 (GISAID: 

EPI_ISL_852605) from R. shameli,16 ZC45 (GenBank: MG772933.1) from R. 

pusillus,17 Rc-o319 (GenBank: LC556375.1) from R. cornutus,18 GD-1 (GISAID: 

EPI_ISL_410721) from M. javanica,19 and GX-P5L (GISAID: EPI_ISL_410540) 

from M. javanica.20 We retrieved the genomic sequences of six SARS-CoV-related 

coronaviruses: Tor2 (GenBank: NC_004718.3) isolated from a patient,21 Civet020 

(GenBank: AY572038.1) from Paguma larvata,22 WIV1 (GenBank: KF367457.1) 

from R. sinicus,23 Rp3 (GenBank: DQ071615.1) from R. pearsoni,24 HKU3-1 

(GenBank: DQ022305.2) from R. sinicus,25 and BM48-31 (GenBank: NC_014470.1) 

from R. blasii.26 We retrieved the genomic sequences of five MERS-CoV-related 

coronaviruses: NRCE-HKU270 (GenBank: KJ477103.2) isolated from Camelus 

dromedarius in Egypt,27 PML-PHE1 (GenBank: KC869678.4) from Neoromicia 

zuluensis,28 SC2013 (GenBank: KJ473821.1) from Vespertilio superans,29 VMC 

(GenBank: KC545386.1) from Erinaceus europaeus,30 and HKU4 (GenBank: 

NC_009019.1) from Tylonycteris pachypus.31 We used MUSCLE to separately create 

multiple alignments for SARS-CoV-2, SARS-CoV, and MERS-CoV. We built the 

maximum likelihood trees and reconstructed the ancestral sequence for each internal 

node using FastML under the default parameters. 

We labeled putative host species for each branch according to the parsimony principle 

(Figures 6A and 7A). There are three cases worth noting. First, since multiple MERS-

CoV variants were independently transmitted from camels to humans,32 the viral 

polymorphisms detected among human patients reflected its evolutionary history in 



both camels and humans. Second, similar to other previously published phylogenetic 

trees for SARS-CoV-related viruses,33 our phylogeny did not show a clear transmission 

route from civets to humans. Thus, in light of previous work which proposed that bats 

were likely to serve as the natural reservoirs of coronaviruses,24,34,35 we reasoned that 

node N6 represented a host status in bats. Note that due the paucity of mutations that 

accumulated in branches B10 and B11, we were not able to exclude the possibility that 

the host of node N6 was civets, which would better reflect the conventional 

understanding that civets were the intermediate host for SARS-CoV.36 Third, given the 

paucity in full-length sequences of SARS-CoV among patients, we used only one 

SARS-CoV variant, Tor2,21 in the analysis, and the branch leading to this variant (B10) 

represented its mixed evolutionary history in bats and humans.  

Bootstrapping 

To determine if two correlations in molecular spectra are significantly different, we 

performed resampling tests using bootstrapping (Figure 6C). Specifically, we 

randomly sampled the identified mutations in each branch 10,000 times with 

replacement, keeping the number of mutations unchanged. P value and the 95% 

confident intervals (CI) of r were estimated based on the 10,000 paired bootstrapped 

observations.  

Principal component analyses 

We performed a principal component analysis (prcomp function in R) with the 

proportions of the 12 base-substitution types as the input. We projected molecular 

spectra into a two-dimensional space according to the first two principal components. 

We estimated the 95% confidence ellipses (stat_ellipse option in R) from the 17 bat-

exclusive branches, 13 Rhinolophus-exclusive branches, or six human-related spectra 

(B10, pSCV2, pMERS, mEbola, mSCV2 and mPV), in an effort to define the 

borderlines of cellular environments for bats, Rhinolophus bats, and humans, 

respectively. Note that the Vero cell, where the de novo mutations of SARS-CoV-2 



were detected, was isolated from African green monkey, and here is also considered 

human-related. 

Code and data availability 

All scripts used to analyze the data and to generate the figures are available at 

https://github.com/kjshan/SARS-CoV-2-Mutation-Spectrum/ and Zenodo 

(https://doi.org/10.5281/zenodo.5203190). All data that were used to support the 

findings of this study are available in the public databases. 

  



SUPPLEMENTAL DISCUSSION 

It is noteworthy that in previous studies, differences between mRNA and genomic DNA 

sequences have been termed “transcription errors”.13,37 In this study, we show that a 

proportion of G>U and C>U mutations arise independently of the transcription process, 

and therefore, we used the term “RNA mutation” instead to clarify the origin of such 

mutations. This new term echoes previous observations in poliovirus made by 

Korboukh et al., who found that the mutation rates of C>U and G>U were not 

significantly affected by a defect in RdRp (H273R) that could significantly increase the 

mutation rate generated during transcription.38  

There are some caveats to the conclusions drawn from our results. First, our junction-

barcoding approach requires at least two independent mismatches in a sequencing read 

family to call a mutation. While this requirement has reduced errors associated with 

high-throughput sequencing by up to four orders of magnitude, from 10−4 to 10−8 false 

positives per nucleotide, the false positive rate for detecting mutations is higher than 

that reported (10−12 false positives per nucleotide) for CirSeq.7 Nevertheless, the rate of 

10−8 false positives per nucleotide is approximately two orders of magnitude below that 

of the previously estimated RNA mutation rate,37,39 indicating that this junction-

barcoding approach provides an accurate gauge of the molecular spectrum of de novo 

mutations.  

Second, although we discarded the mismatches that appeared at >0.2% background 

frequency (Figure S2) because we suspected that they were extant polymorphisms in 

the viral population used to infect the Vero cells. Nevertheless, the molecular 

spectrum of these polymorphisms was highly correlated with that of the de novo 

mutations (Pearson’s correlation coefficient, r = 0.80, P = 3×10−3, Figure S3E), 

indicating that the molecular spectrum of de novo mutations dominates the base 

substitution types of within-individual polymorphisms in SARS-CoV-2 during its 

evolution. Note that the C>G base substitution type were excluded in this analysis due 

to its high sequencing error rate (Figure S3D).  



Third, the mutations in SARS-CoV-2 we detected were those in the intermediate 

negative-sense subgenomes and appeared to be non-heritable. Nevertheless, we reason 

that they can be used to infer the molecular spectrum of the heritable mutations in the 

genomic RNA since both genomic and subgenomic RNAs were synthesized by the 

same polymerase and shared the same cellular environment. Consistent with this 

hypothesis, the asymmetric emergence of G>U and C>U RNA mutations were observed 

in the heritable genomes of other single-strand RNA viruses, such as Ebola virus 

(Figure 3E) and 20S RNA narnavirus (Figure 4B), with respect to their respective 

genomic strands. 

Fourth, based on the assumption that single-strand RNA and DNA are sensitive to 

similar (or the same) mutagens, such as ROS, we inferred differences in cellular 

environments using somatic DNA mutations as a reliable proxy for mutagenesis of the 

same mechanism in viral RNA (Figure 5). These somatic mutations were identified in 

a previous study6 from the transcriptomic data collected by the GTEx project.40 

Although some of the identified somatic mutations could, in principle, have resulted 

from editing or damage specific to single-strand RNA,6 the cellular environment that 

can induce RNA editing or damage is exactly what we aimed to investigate initially, 

because these are the mechanisms that drive the evolution of RNA viruses.  

Fifth, we reported that the cellular environment of the lung could induce both G>U and 

C>U mutations in RNA viruses, using the somatic mutations identified from 345 lung 

samples collected in the GTEx project. However, the cellular environment can vary 

among individuals. A previous study41 identified within-patient polymorphisms among 

SARS-CoV-2 virions isolated from bronchoalveolar lavage fluids of eight patients.42,43 

Although on average G>U and C>U polymorphisms were more abundant than their 

respective complement polymorphisms, it was not always the case for each patient. 

Although the numbers of these within-patient polymorphisms were generally low for 

statistical tests, this observation suggests variability in the cellular environment among 

individuals that can influence the accumulation of G>U or C>U mutations.  



SUPPLEMENTAL REFERENCES 

1. Kim, D., Lee, J.Y., Yang, J.S., et al. (2020). The architecture of SARS-CoV-2 

transcriptome. Cell 181, 914-921 e910. 

2. Rhim, J.S., Schell, K., Creasy, B., and Case, W. (1969). Biological 

characteristics and viral susceptibility of an African green monkey kidney cell 

line (Vero). Proc Soc Exp Biol Med 132, 670-678. 

3. Dobin, A., Davis, C.A., Schlesinger, F., et al. (2013). STAR: ultrafast universal 

RNA-seq aligner. Bioinformatics 29, 15-21. 

4. Li, H., Handsaker, B., Wysoker, A., et al. (2009). The Sequence 

Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079. 

5. Carey, L.B. (2015). RNA polymerase errors cause splicing defects and can be 

regulated by differential expression of RNA polymerase subunits. Elife 4, 

e09945. 

6. Garcia-Nieto, P.E., Morrison, A.J., and Fraser, H.B. (2019). The somatic 

mutation landscape of the human body. Genome Biol 20, 298. 

7. Acevedo, A., Brodsky, L., and Andino, R. (2014). Mutational and fitness 

landscapes of an RNA virus revealed through population sequencing. Nature 

505, 686-690. 

8. Shu, Y., and McCauley, J. (2017). GISAID: Global initiative on sharing all 

influenza data - from vision to reality. Euro Surveill 22, 30494. 

9. Hatcher, E.L., Zhdanov, S.A., Bao, Y., et al. (2017). Virus Variation Resource - 

improved response to emergent viral outbreaks. Nucleic Acids Res 45, D482-

D490. 

10. Edgar, R.C. (2004). MUSCLE: a multiple sequence alignment method with 

reduced time and space complexity. BMC Bioinformatics 5, 113. 

11. Ashkenazy, H., Penn, O., Doron-Faigenboim, A., et al. (2012). FastML: a web 

server for probabilistic reconstruction of ancestral sequences. Nucleic Acids 

Res 40, W580-584. 

12. Reid-Bayliss, K.S., and Loeb, L.A. (2017). Accurate RNA consensus 

sequencing for high-fidelity detection of transcriptional mutagenesis-induced 

epimutations. Proc Natl Acad Sci U S A 114, 9415-9420. 

13. Gout, J.F., Li, W., Fritsch, C., et al. (2017). The landscape of transcription 

errors in eukaryotic cells. Sci Adv 3, e1701484. 

14. Whitfield, Z.J., Prasad, A.N., Ronk, A.J., et al. (2020). Species-specific 

evolution of Ebola virus during replication in human and bat cells. Cell Rep 

32, 108028. 

15. Zhou, P., Yang, X.L., Wang, X.G., et al. (2020). A pneumonia outbreak 

associated with a new coronavirus of probable bat origin. Nature 579, 270-

273. 

16. Hul, V., Delaune, D., Karlsson, E.A., et al. (2021). A novel SARS-CoV-2 

related coronavirus in bats from Cambodia. bioRxiv 

10.1101/2021.1101.1126.428212. 

17. Hu, D., Zhu, C., Ai, L., et al. (2018). Genomic characterization and infectivity 



of a novel SARS-like coronavirus in Chinese bats. Emerg Microbes Infect 7, 

154. 

18. Murakami, S., Kitamura, T., Suzuki, J., et al. (2020). Detection and 

characterization of bat sarbecovirus phylogenetically related to SARS-CoV-2, 

Japan. Emerg Infect Dis 26, 3025-3029. 

19. Xiao, K., Zhai, J., Feng, Y., et al. (2020). Isolation of SARS-CoV-2-related 

coronavirus from Malayan pangolins. Nature 583, 286-289. 

20. Lam, T.T., Jia, N., Zhang, Y.W., et al. (2020). Identifying SARS-CoV-2-related 

coronaviruses in Malayan pangolins. Nature 583, 282-285. 

21. He, R., Dobie, F., Ballantine, M., et al. (2004). Analysis of multimerization of 

the SARS coronavirus nucleocapsid protein. Biochem Biophys Res Commun 

316, 476-483. 

22. Wang, M., Yan, M., Xu, H., et al. (2005). SARS-CoV infection in a restaurant 

from palm civet. Emerg Infect Dis 11, 1860-1865. 

23. Ge, X.Y., Li, J.L., Yang, X.L., et al. (2013). Isolation and characterization of a 

bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535-538. 

24. Li, W., Shi, Z., Yu, M., et al. (2005). Bats are natural reservoirs of SARS-like 

coronaviruses. Science 310, 676-679. 

25. Lau, S.K., Woo, P.C., Li, K.S., et al. (2005). Severe acute respiratory 

syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad 

Sci U S A 102, 14040-14045. 

26. Drexler, J.F., Gloza-Rausch, F., Glende, J., et al. (2010). Genomic 

characterization of severe acute respiratory syndrome-related coronavirus in 

European bats and classification of coronaviruses based on partial RNA-

dependent RNA polymerase gene sequences. J Virol 84, 11336-11349. 

27. Chu, D.K., Poon, L.L., Gomaa, M.M., et al. (2014). MERS coronaviruses in 

dromedary camels, Egypt. Emerg Infect Dis 20, 1049-1053. 

28. Ithete, N.L., Stoffberg, S., Corman, V.M., et al. (2013). Close relative of 

human Middle East respiratory syndrome coronavirus in bat, South Africa. 

Emerg Infect Dis 19, 1697-1699. 

29. Yang, L., Wu, Z., Ren, X., et al. (2014). MERS-related betacoronavirus in 

Vespertilio superans bats, China. Emerg Infect Dis 20, 1260-1262. 

30. Corman, V.M., Kallies, R., Philipps, H., et al. (2014). Characterization of a 

novel betacoronavirus related to middle East respiratory syndrome coronavirus 

in European hedgehogs. J Virol 88, 717-724. 

31. Woo, P.C., Wang, M., Lau, S.K., et al. (2007). Comparative analysis of twelve 

genomes of three novel group 2c and group 2d coronaviruses reveals unique 

group and subgroup features. J Virol 81, 1574-1585. 

32. Zhang, Z., Shen, L., and Gu, X. (2016). Evolutionary dynamics of MERS-

CoV: potential recombination, positive selection and transmission. Sci Rep 6, 

25049. 

33. Hu, B., Guo, H., Zhou, P., and Shi, Z.L. (2021). Characteristics of SARS-CoV-

2 and COVID-19. Nat Rev Microbiol 19, 141-154. 

34. Hu, B., Ge, X., Wang, L.F., and Shi, Z. (2015). Bat origin of human 



coronaviruses. Virol J 12, 221. 

35. Hu, B., Zeng, L.P., Yang, X.L., et al. (2017). Discovery of a rich gene pool of 

bat SARS-related coronaviruses provides new insights into the origin of SARS 

coronavirus. PLoS Pathog 13, e1006698. 

36. Cui, J., Li, F., and Shi, Z.L. (2019). Origin and evolution of pathogenic 

coronaviruses. Nat Rev Microbiol 17, 181-192. 

37. Gout, J.F., Thomas, W.K., Smith, Z., et al. (2013). Large-scale detection of in 

vivo transcription errors. Proc Natl Acad Sci U S A 110, 18584-18589. 

38. Korboukh, V.K., Lee, C.A., Acevedo, A., et al. (2014). RNA virus population 

diversity, an optimum for maximal fitness and virulence. J Biol Chem 289, 

29531-29544. 

39. Sanjuan, R., Nebot, M.R., Chirico, N., et al. (2010). Viral mutation rates. J 

Virol 84, 9733-9748. 

40. GTEx Consortium, Laboratory, D.A., Coordinating Center -Analysis Working, 

G., et al. (2017). Genetic effects on gene expression across human tissues. 

Nature 550, 204-213. 

41. Di Giorgio, S., Martignano, F., Torcia, M.G., et al. (2020). Evidence for host-

dependent RNA editing in the transcriptome of SARS-CoV-2. Sci Adv 6, 

eabb5813. 

42. Chen, L., Liu, W., Zhang, Q., et al. (2020). RNA based mNGS approach 

identifies a novel human coronavirus from two individual pneumonia cases in 

2019 Wuhan outbreak. Emerg Microbes Infect 9, 313-319. 

43. Shen, Z., Xiao, Y., Kang, L., et al. (2020). Genomic diversity of severe acute 

respiratory syndrome-coronavirus 2 in patients with coronavirus disease 2019. 

Clin Infect Dis 71, 713-720. 

 

 

  



SUPPLEMENTAL FIGURES 

 

Figure S1. The life cycle of SARS-CoV-2 and its discontinuous transcription. 

(A) The life cycle of SARS-CoV-2. 

(B) Schematic of junctions generated during discontinuous transcription in SARS-

CoV-2. Green curves denote the canonical junctions generated from the leader-to-

body fusion, while the blue curve denotes a sporadic junction generated randomly 

from discontinuous transcription. The color in the heat map shows the number of 

reads sharing the same pair of upstream and downstream junction sites.   



Figure S2. The workflow for the identification of de novo RNA mutations in 

SARS-CoV-2.  

Some intermediate molecular spectra of mismatches are shown in insets (A–C). Inset 

(D) shows a mixture of two normal distributions that fit the distribution of mismatch 

frequency, which was estimated from all uniquely mapped reads that covered a site. 

The red and blue lines indicate two normal distributions, and the black dash line 

indicates the cut-off frequency (0.2%) used to remove polymorphisms in the viral 

population in this study.   



 

Figure S3. Additional results about de novo RNA mutations in SARS-CoV-2. 

(A) Histogram shows the distribution of the number of non-duplicated reads that 

supports each of the 197 de novo RNA mutations detected from the transcriptome 

data in Vero cells. 

(B–C) Histograms show the length and position (relative to the junction site) 

distributions for indels detected in Vero cells.  

(D) Histogram shows the mismatch frequency of 12 base-substitution types among 

209,875,606 read pairs uniquely mapped to the SARS-CoV-2 genome. 

(E) A scatter plot shows the molecular spectrum of de novo mutations vs. within-cell-

line polymorphisms identified in the SARS-CoV-2 genome. Note that the C>G base 

substitution was excluded (thereby N = 11) because of its higher sequencing error rate 

as shown in (D).   



Figure S4. An example RNA mutation in SARS-CoV-2 identified by our 

junction-barcoding approach from the transcriptome data published in Kim et 

al. (2020). 

(A) All four sequences in a read family that bore junction barcode 

(upstream:3108^downstream:28158). Two out of 50,511 other sequencing reads that 

covered position 3091 are also shown; among them, 12 reads showed “A” at position 

3091, likely caused by errors generated from reverse transcription, PCR, and 

sequencing. 

(B) A 2 × 2 table summarizes the sequencing information shown in (A). The table 

shows the enrichment of G>A mismatch in the read family barcoded by junction 

3108^28158, at position 3091.  



 

Figure S5. The molecular spectra of mRNA mutations in the budding yeast. 

(A) The molecular spectrum of mRNA mutations that we estimated from the CirSeq 

data for yeast cells. Two-tailed P-values were calculated from Fisher’s exact tests.  

(B) A scatter plot shows the molecular spectra of yeast mRNA mutations estimated 

from CirSeq vs. ARC-seq. Pearson’s correlation coefficient (r) and the corresponding 

P-value are shown. Each dot represents a base-substitution type, colored according to 

Figure S2C. Since C>G mutations were not identified in the CirSeq data, we drew it 

on the y-axis. 

  



Figure S6. The molecular spectra of somatic mutations in 36 human tissues, 

polarized according to the coding strand. The number of total somatic mutations 

detected in a tissue (N) is shown in each panel. 

  



 

Figure S7. The molecular spectra of mutations accumulated in the branches B0 

and B1 and among human patients, for five individual SARS-CoV-2 ORFs. The 

total number of base substitutions detected in a gene (N) is shown in each panel. The 

molecular spectra of the other four ORFs (E, ORF6, ORF7, and ORF8) were not 

shown because in these ORFs, less than 10 mutations were accumulated in either 

branch B0 or B1. 
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