

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Bevacizumab may prolong progression-free survival of gliomas: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-048975
Article Type:	Original research
Date Submitted by the Author:	13-Jan-2021
Complete List of Authors:	Wang, huan; Shaanxi University of Chinese Medicine Xiao-xuan, Fan; Shaanxi University of Chinese Medicine, Affiliated Hospital Xiao-ping , Zhao; Shaanxi University of Chinese Medicine, Affiliated Hospital Wang, kai; Shaanxi University of Chinese Medicine Si-tian, Ma; Shaanxi University of Chinese Medicine Yong-feng, Yang; Shaanxi University of Chinese Medicine
Keywords:	NEUROSURGERY, ONCOLOGY, Head & neck tumours < ONCOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Bevacizumab may prolong progression-free survival of gliomas: a systematic review and meta-analysis

Corresponding author:

Name: Wang HuanMailing Address: Affiliated Hospital of Shaanxi University ofTraditional Chinese Medicine, West Weiyang Road, Xianyang City, ShaanxiProvince ,ChinaE-mail :wh2896526547@163.comNo.15709280596

Other authors:

Fan Xiao-xuan Brain Surgery, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Shaanxi, China

Zhao Xiao-ping Brain Surgery, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Shaanxi, China

Wang Kai The first Clinical Medical College of Shaanxi University of Traditional Chinese Medicine ,Shaanxi, China

Ma Si-tian The first Clinical Medical College of Shaanxi University of Traditional Chinese Medicine ,Shaanxi, China

Yang Yong-feng The first Clinical Medical College of Shaanxi University of Traditional Chinese Medicine ,Shaanxi, China

Keywords: glioma, progression-free survival, Bevacizumab

Number of words:2699

ABSTRACT

Objective: This study evaluated the efficacy and safety of bevacizumab in patients with glioma.

Design: Systematic review and meta-analysis.

Data sources: The data were collected using online search criteria from the databases like PubMed, Embase, The Cochrane Library, OVID , CNKI, and CBM database rom inception up to April 2020.

Intervention: Bevacizumab (BEV) and other interventions.

Primary and secondary outcome measures: The main indicators included progression-free survival rate and overall survival rate, and the secondary indicators were adverse reactions.

Page 3 of 30

BMJ Open

Results: A total of 10 clinical center trials were included in this study for meta-analysis, including 2392 patients . The results of the meta-analysis showed that the median progression-free survival rate of the BEV group (PFS) was significantly higher than that of the Non-BEV group (P<0.00001). When compared with the PFS rate of each stage, the PFS rate of the BEV group was 6 months (3.31, 95%CI 2.74 to 4.00, p<0.00001), 12 months (2.05, 95%CI 1.70 to 2.49, p<0.00001) and 18 months (1.31,95%CI 1.02 to 1.69, p=0.03). The PFS of the BEV group was higher than that of Non-BEV group at 24 months (0.83, 95%CI 0.50 to 1.37, p=0.47). At 30 months (0.62, 95%CI 0.39 to 0.97, p=0.04), the PFS of the Non-BEV group was lower than that of the Non-BEV group.Moreover, we have compared overall survival rate and the five common adverse reactions, including hypertension ,hemorrhage , and cerebral hemorrhage , Proteinuria and thromboembolism .

Conclusion: BEV can significantly prolong the PFS of patients with glioma within 18 months and shorten the PFS of patients after 30 months. This limitation may be related to the high incidence of adverse events caused by long-term use of BEV. More prospective studies are needed to verify it in the future.

Strengths and Limitations of this study

1. We used the Cochrane criteria to assess the risk of bias.

- 2. The heterogeneity was explored by sensitivity, sub-group.
- 3. the quality of included studies was largely mod-erate to high.

4. The preoperative symptoms and the scope and degree of surgical resection are not taken into account.

INTRODUCTION

Brain glioma (High-Grade Glioma, HGG) is the most common primary intracranial tumor, accounting for about 27% of central nervous system tumors and 80% of intracranial malignant tumors¹. The median survival time reported with brain glioma is 14-16 months². The Surgical intervention combined with radiotherapy and chemotherapy are often followed for treatment of such cases, but because of its high invasive nature, it often relapses in a short time with poor prognosis. The emergence of temozolomide has considerably delayed the development of glioma to some extent, but the survival rate and quality of life of patients are still very low. Therefore, looking for better drugs to prevent and delay the postoperative recurrence of glioma has become the focus of current research. In recent years, more and more studies have shown that malignant glioma is the tumor with the highest degree of vascularization³. The nature of proliferation is characterized by obvious proliferative vascular lumen and with abnormal

proliferation of neovascularization which participates in the construction of tumor microenvironment⁴. It is closely related to the growth, invasion, and metastasis of the tumor, and positively correlated with the extent of malignancy and prognosis of the tumor. Recently, the unique biological characteristics of gliomas indicated that angiogenic factors may play an important role in its treatment and have become the focus of research.

Humanized anti-vascular endothelial growth factor monoclonal antibody-bevacizumab⁵, as a representative drug of anti-angiogenic therapy, was approved for recurrent glioblastoma by FDA in 2009⁶ and is listed in China in 2010 by CFDA. According to the radiological response rate, bevacizumab has been approved for recurrent glioblastoma in the United States and many other countries^{7,8}. Although bevacizumab (BEV) has become an important part of HGG therapy, the safety and long-term efficacy of BEV are not clear. Therefore, we conducted a clinical meta-analysis to evaluate the safety and adverse reactions of BEV in patients with HGG, in order to provide a reference for clinical application.

METHODS

This study was mainly based on the literature research, and hence there was a requirement for ethical identification.

Search strategy

We collected all the clinical experimental studies of anti-angiogenic therapy in the treatment of gliomas, retrieved through a database search including PubMed, Embase, The Cochrane Library, OVID, CNKI, and CBM, from the establishment of the database to April 2020. The search strategy followed included a combination of subject words and free words, and the retrieval strategy was determined after several pre-searches. The main search words included: "glioma", "angiogenesis inhibitors", "vascular endothelial growth factors", "VEGF", and "clinical study". Additionally, we also manually searched the reference list of all articles on this topic to check and enhance the retrieval of other related publications. All search results are evaluated according to the (PRISMA) statement of "preferred reporting items for systematic review and meta-analysis".

Selection criteria

Studies were included if they fulfilled the following criteria: (1) Study subjects: the participants were patients of any age, whose histology was confirmed to be HGG. They may have undergone any form of surgery to achieve histological diagnosis (biopsy or

resection); (2) Study type: The clinical control study; (3) Intervention: BEV in bevacizumab group must include bevacizumab, which can be used alone or in combination with multiple drugs. The control group (Non-BEV) refers to treatment that does not include anti-angiogenesis, which can be placebo or supportive therapy, or active intervention (such as chemotherapy). (4) Outcome indicators: included in accordance with the following arbitrary outcome indicators: ① main indicators:

progression-free survival (PFS)rate, defined as the time from randomization to death or disease progression of any cause, and overall survival(OS) rate, defined as the time from randomization to death. ② key indicators: adverse events classified according to

the World Health Organization (WHO) or the General terminology Standard of the National Cancer Institute (NCI-CTCAE (CTCAE2017)), including the percentage of treatment-related deaths.

Studies were excluded if they fulfilled the following conditions: Non-clinical control studies, incomplete abstract information, conference papers, reviews, and case reports. In addition, the literature of repeated publication and incomplete data that cannot extract valid data should also be excluded.

Data extraction

Literature screening, data extraction, and cross-checking were carried out by two independent researchers according to the initial inclusion and exclusion criteria, and if there were any differences, it was discussed or judged with the assistance of a third person, and contact and supplement the missing data with the author as far as possible. During the literature screening, the title and the abstract were read initially, and after excluding the obviously irrelevant literature, the full text was read to determine whether to include it or not. Upon matching the inclusion criteria of requirements, the following contents were extracted: (1) the basic information, including title, author, published country, publication date, research type; (2) study subjects, including the number of cases in each group, average age; (3) interventional factors, including the specific details of exposure factors, follow-up time, etc.; (4) the outcome indicators.

Quality assessment

Using the Cochrane collaboration tool, the risk of bias in individual studies was assessed from seven aspects (sequence generation, allocation hiding, uninformed participants and people, incomplete outcome data, selective reports, and other biases and risks) ⁹. Finally, each project was evaluated at three levels: low risk, unclear, and high risk. The two authors conducted independent quality assessments and any

differences among them were resolved through discussions with a third research expert.

Statistical analysis

Analysis of outcome index

PFS, OS, and adverse reactions were analyzed by Meta with RevMan5.1 software. The data were counted by risk ratio (hazard ratio; HR) and odds ratio (Odds ratio; OR). The interval estimation was expressed by 95%CI, and the test level of the effect quantity was α = 0.05.

Heterogeneity analysis

The heterogeneity among the included results was analyzed by using the "I²" (the level is $\alpha = 0.1a$). Simultaneously, combined with I² to quantitatively judge the size of heterogeneity, stata15.1 was used for sensitivity analysis, and the method of examining the influence of a single study was used to eliminate them one by one. The consistency of the results obtained after the above transformation shows that the results of Meta-analysis were stable, otherwise, they were regarded as unstable. Publication bias was detected by the funnel chart method.

RESULT

Literature screening

A total of 1108 related literature were obtained in the initial examination. After screening the literature one by one, a total of 1123 patients were included in 10 clinical studies¹⁰⁻¹⁹. The database and the number of documents retrieved are as follows: PubMed (nasty 259), The Cochrane Library (nasty 153), EMbase (nasty 155), CNKI (nasty 118), CBM (nasty 358), WangFang (nasty 65). The flow chart and the results of literature retrieval are shown in figure 1.

The basic characteristics of the inclusion study

For the inclusion study, the basic information for inclusion is completed using pre-developed forms (Tables 1, 2).

Table 1: basic information for inclusion in the study

Study	State	Res	Cases	Ages(exper	Follow-up	Outcom
		earc	(experime	imental /	time	
		h type	ntal/ control)	control)		

Page 7 of 30

BMJ Open

Olivier	France	RCT	458/463	20-84/18-7	The last	1and2year surviv
L.				9	patient	rates 🔪 safety a
Chinot,					was	quality of life、PF
M.D ^{2014[1}					hospitalize	、OS
0]					d for 17	
					months.	
					months.	
Qianru	China	RCT	25/24	24-71/27-	The	disease contr
Zhao ^{2016[}					median	rate 、 media
Znao					follow-up	survival time、OS
11]					-	
					time was	、PFS
					7.9 months	
Ulrich	Carrie	RCT	116/54	25-78/26-7	Long torm	PFS-6、PFS、0S
Union	German	KU I	110/34		Long-term	FI 3-01 FF31 03
Herrlinge	У			8	follow-up	
r ^{2016[12]}					until death	
	German	RCT	320/317	>18	6 cycles	OS、 PFS
Mark	у					
R.Gilbert						
2016[13]						
2010[15]					L	
Clara	Americ	Non-	57/79/23	30-77/24-82/19-78	>1year	OS、 PFS
Chen	a	RCT				
2014[14]						
	China	рст	21 /21	18-70/19-6	4	DESK DOD Advisor
Hualong	China	RCT	31/31	9	4 months	PFS6、DCR、Advers
				/		reaction
Li ^{2020[15]}						
Zhixian	China	RCT	20/20	24–74	5. 2–18mon	PFS6、0S12
Zhang			, _•			
2018[16					ths	
]						
1						

1 2 3	
4 5 6 7	
8 9 10 11	
12 13 14 15	
8 9 10 11 12 13 14 15 16 17 18 19	
19 20 21 22	
20 21 22 23 24 25 26 27 28 29	
20 27 28 29	
30 31 32 33	
34 35 36 37	
38 39 40	
41 42 43 44	
45 46 47	
48 49 50 51	
52 53 54 55	
56 57 58	
59 60	

Jiaqi	China R	RCT 27/27	53.6 ±9	.7 6months-	2y RR、DCR、	Adverse
Wang ²⁰¹³ [17]			∕54.7±8	.8 ears	reaction	
Albert Lai ^{2010[18]}		RCT 70/110	31. 3-75.	8/ >42month		Adverse
	a		20. 5–90		reaction	
B.Chauff ert ^{2014[19]}	Britain R	RCT 60/60	43-69/43	-7 6 months	OS、 PFS、 reaction	Adverse
	Tabl	e 2: basic char	1 acteristics o			
Study	Male	Female	Open	Partial resectio	Complete	experimental/
			biopsy		resection	control
Olivier	282 (61.6)	176 (38.4)	60 (13.1)	210 (45.9)	188 (41.0)	Bevacizumab+
L. Chinot,	/298(64.4) /165(35.6)	/44 (9.5)	/223 (48.2)	/196(42.3)	RT - TMZ/
M.D ²⁰¹⁴						Placebo+RT -
						TMZ
Qianru Zhao ²⁰¹⁶	14/12	11/12	/	15/16	10/8	BEV+TMZ/TMZ
Ulrich	80 (69. 0)	36 (31. 0)	0/2(3.7)	58 (50. 0) /2	58	BEV+IRI/TMZ
Herrlinge r ²⁰¹⁶	/34(63.0)	/20 (37. 0)		7 (50. 0)	(50.0)/25	
					(46. 3)	
Mark	/	/	/	/	/	Bevacizumab/
R.Gilbert 2016						Placebo

Page 9 of 30

Clara	30 (53) /45 (57/79/23	34 (60) /4	20 (35) / 33 (3 (5) /2 (2)) /	Bevacizum
2014 2014	57) /15 (65)	27 (47) /34 (43) /8 (35)	4 (56) /14 (61)	42) /9 (39)	0 (0)	monothera /Bevacizum
						combinatio
						/Nonbevaci mab
						lilab
Hualong Li ²⁰²⁰	19/18	12/13	/	/	/	TMZ+BEV/TM
Zhixian Zhang 2018	22	18	/	18	22	BEV+TMZ/ Gamma kn +TMZ/
Jiaqi Wang ²⁰¹³	16/14	11/13	1.2		/	TMZ+BEV/TM
Albert Lai ²⁰¹⁰	31/40	39/70	2/23	40/40	28/47	RT+TMZ+BV/ LA/KPLA Control RT/TMZ
B.Chauff ert ²⁰¹⁴	26/23	34/37	/	/	1	BEV+IRI/TI Z+RT

Offset risk included in the study

The results of the bias risk assessment included in the study are shown in figure 2.

Meta-analysis results

Progression-free survival

Six studies^{10,12-14,18-19} reported median progression-free survival (BEV group, n=1160) and Non-BEV group (n=1027). Results: HR=0.71, 95%CI, 0.65 to 0.79; suggested that the median progression-free survival of gliomas treated with BEV was significantly longer than that of malignant gliomas treated with Non-BEV (P<0.00001), as shown A in figure 3.

Ten studies¹⁰⁻¹⁹ compared PFS ratios at different follow-up between the Bev group and the Non-BEV group. There was a significant difference in the total heterogeneity test (I²=71%, P<0.00001), so the random effect model was used. The results showed that the combined OR values of 6 months, 12 months, 18 months, 24 months and 30 months are (3.31, 95%Cl 2.74 to 4.00, p<0.00001), (2.05, 95%Cl 1.70 to 2.49, p<0.00001), (1.31, 95%Cl 1.02 to 1.69, p=0.03), (0.83, 95%Cl 0.50 to 1.37, p=0.47), (0.62, 95%Cl 0.39 to 0.97, p=0.04).,as shown C in figure 3.

Overall survival time

Six studies^{10,12-14,18-19} reported the median overall survival time, and there was no significant difference in the heterogeneity test (I²=72%, p=0.54), so the random effect model was used for data analysis. Results: HR=0.93, 95%CI, 0.75 to 1.16, suggesting that there was no significant difference in median overall survival time between the BEV group and Non-BEV group (P=0.54), as shown B in figure 3.

Six studies^{10,12-14,18-19} compared OS ratios at different follow-up between the Bev group and the Non-BEV group. There was a significant difference in the total heterogeneity test (I²=38%, P<0.03). The Random effect model was used, and the results show that the combined OR values of 6 months,12 months,18 months, 24 months, and 36 months are (4.94, 95%CI 3.60-6.78, P<0.00001), (2.62, 95%CI 1.96-3.49, P<0.00001), (2.06, 95%CI 0.96-4.40, P=0.05), (4.02, 95%CI 2.19-7.36, P<0.00001), (1.73, 95%CI 0.93-3.23, P=0.09), as shown D in figure 3.

Adverse reaction

As shown in figure 4, there were six studies^{10-11,13-15} that compared adverse reactions between the BEV group and the Non-BEV group. There was a significant difference in the total heterogeneity test (I²=58%, P<0.00001), and the random effect model was used. The results showed the combined OR values of hypertension, hemorrhage, cerebral hemorrhage, albuminuria, and thromboembolism as follows: hypertension (4.94, 95%CI 3.60 to 6.78, P<0.00001), hemorrhage (2.62, 95%CI 1.96 to 3.49, P<0.00001), cerebral hemorrhage (2.06, 95%CI 0.96 to 4.40, P=0.05), proteinuria (4.02, 95%CI 2.19 to 7.36, P<0.00001) and thromboembolism (1.73, 95%CI 0.93 to 3.23, P=0.09).

Sensitivity analysis

BMJ Open

The sensitivity test was used to evaluate the stability of OS, PFS, and adverse reactions in the included literature, which showed that all values remained in the confidence interval on both sides after one by one elimination. Hence, it can be concluded that all the included literature is stable, as shown in figures 5.

Publication bias

As shown in figures 6, except for the adverse reactions and the funnel chart of the median OS with HR, the publication bias of the funnel chart was higher, while the rest of the funnel chart was mainly concentrated at the top. Moreover, the symmetry was also proper, so it was concluded that the possibility of publication bias was small.

DISCUSSION

According to the histopathological and clinical features, gliomas are divided into astrocytoma, oligodendroglioma, and ependymoma, which are the most common malignant tumors derived from neuroepithelium²⁰. Although the technical level of surgical intervention, radiotherapy, and chemotherapy²¹ in the treatment of glioma has been greatly improved, there is still a high recurrence rate with increased mortality, which necessitates a more effective therapy. Glioma affects the body through a variety of pathophysiological processes, in which angiogenesis plays an important role in the occurrence and development of glioma, hence blocking angiogenesis has become a new direction of treatment. Bevacizumab is an anti-VEGF antibody against vascular endothelial growth factor²², which acts mainly by competing against the binding of VEGF, to VEGFR on the membrane of target cells. Studies reported by Pope et al.²³ and others have shown that the high levels of VEGF affect blood vessel density and tumor grade. Some studies have shown that Ang2/Tie2^{24,25} and STAT3²⁶ are two important signal pathways in anti-angiogenic therapy, which play a vital role in inhibiting peritumoral edema and thus increase of neurological symptoms. In order to better understand the advantages and disadvantages of BEV on glioma, we performed this meta-analysis study which can enlighten and provide a better understanding of the efficacy and safety of BEV through a systematic review.

The results of our study showed that the PFS of the BEV group was higher than that of the Non-BEV group during the follow-up period of < 18 months, but the PFS of the BEV group was lower than that of the Non-BEV. Moreover, among the BEV group when the follow-up time was 30 months, the OS was higher at 6 months and 12 months, but there was no significant difference between the BEV group and Non-BEV group after 12 months. The study of Li YD²⁷ showed that the progression-free survival time at 24 months and 36 months in the bevacizumab group was lower than that in the the

60

1

non-bevacizumab group. However, the study result from Liao KL²⁸ showed that the incidence of PFS was higher in newly diagnosed HGG plus BEV, and the combination therapy involving BEV did not improve the OS. The AVAglio²⁹ trial showed that patients treated with bevacizumab had significant advantages in terms of PFS (6.2months vs 10.6 months) and quality of life maintenance, but did not show an advantage in terms of OS (16.8months vs 16.7 months). Compared with the patients without bevacizumab, 2.2% of patients treated with bevacizumab confirmed pseudo-progression. Meanwhile, 9.3% of patients treated with non-bevacizumab³⁰ reported that the median PFS of bevacizumab combined with temozolomide and radiotherapy was nearly twice as high as that of 3-14 months in a single phase 2 clinical trial, but there was no significant improvement in overall survival. Chinot et al.³¹ and Gilbert et al.³² conducted phase 3 clinical trials in the placebo control group, respectively. The results showed that the PFS of the experimental group increased by 40%, 71%, compared with the control group. Brandes³³ et al. and Wick³⁴ also concluded that BEV failed to improve the OS of glioma patients in a randomized study of bevacizumab. BEV can increase the progression-free survival time of patients but cannot significantly improve OS.

Studies have shown that long-term use of BEV does not increase patients' PFS, on the contrary, it may decrease PFS over time, due to the adverse reactions caused by BEV. This study showed five common adverse reactions including hypertension, hemorrhage, cerebral hemorrhage, albuminuria, and thromboembolism upon initiating BEV therapy, but the toxicity of antiangiogenic therapy was generally well tolerated. A phase II trial of Japanese study³⁵ showed that the most common side effects were albuminuria, hypertension, hemorrhage, fever, and epilepsy. Studies³⁶ showed that the incidence of adverse reactions above grade 3 was 27.1% to 46.4%. The most common events reported were thromboembolism, hypertension, epilepsy, fatigue, and intestinal perforation. Zhang Li³⁷ evaluated cases from 20 articles about adverse reactions caused by BEV in 357 patients and found that the main adverse reactions were associated with cardiovascular and hematological diseases. Norden³⁸ evaluated 64 glioma patients treated with anticoagulants with BEV and those without anticoagulants. The results showed that the rates of intracranial hemorrhage and other bleeding sites in patients treated with anticoagulants were significantly higher than those in patients treated with BEV alone. However, the rate of severe intracranial hemorrhage was within an acceptable range, hence the anticoagulants were recommended for patients with symptomatic venous thrombosis treated with BEV. Therefore, when bevacizumab was used in the clinic, it was necessary to closely observe for any adverse drug reactions, monitor blood pressure, blood coagulation function, and other indexes, and deal with the symptoms in time. We also need more large-scale phase III clinical

 studies to prove whether PFS can be improved by improving adverse reactions. Collectively, improving the PFS may enhance great economic and survival benefits to the patients and society, and may further reinforce the successful therapeutic applications of BEV in gliomas.

CONCLUSIONS

The evidence suggests that BEV can significantly prolong the PFS of patients with glioma within 18 months and shorten the PFS of patients after 30 months. This limitation may be related to the higher incidence of adverse events caused by the long-term use of BEV.

Limitations

In this study, the preoperative symptoms and the scope and degree of surgical resection are not taken into account. Hence, a large study in terms of more samples and higher quality clinical parameters may further validate the conclusive evidence.

Declaration:

Contributors WH、FXXandZXP contributed to conception and design. WK、MST and YYF contributed to data acquisition or analysis and interpretation of data. WH、FXX、ZXP、WK、MSTandYYFwere involved in drafting the manuscript or revising it critically for important intellectual content. All authors have given final approval of the version to be published.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed. Data sharing: No additional data are available.

Picture description

In this paper, the pictures are uploaded in a separate form, and the pictures are merged, leaving 6 important and indispensable pictures.

REFERENCES

[1] Brem S, Tsanaclis AM, Gately S, Gross JL, Herblin WF. Immunolocalization of basic fibroblast growth factor to the microvasculature of human brain tumors. Cancer 1992; 70: 2673-80.

[2] Xia S, Lal B, Tung B, et al. Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation. Neuro Oncol,2015,18 (94):507 -517.

[3] Stupp R, Pavlidis N, Jelic S. ESMO Minimum Clinical Recommendations for diagnosis, treatment and follow-up of malignant glioma. Ann Oncol. 2005; 16 Suppl 1:i64-5.

[4] Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 2011; 343:d5928.

[5] Sweet JA, Feinberg ML, Sherman JH. The role of avastin in the management of recurrent glioblastoma. Neurosurg Clin N Am, 2012;23(2):331-341.

[6] Cohen MH, Shen YL, Keegan P, et al. FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist, 2009;14(11):1131-1138.

[7] Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 2009; 27:740–5.

[8] Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in combination with irinotecan in recur-rent glioblastoma. J Clin Oncol 2009; 27:4733–40.

[9] Gs HJP. Cochrane handbook for systematic reviews of interventions version 5.1.0 (updated March 2011). Naunyn-Schmiedebergs Archiv für Experimentelle Pathologie und Pharmakologie 2014;5:S38.

[10] Olivier L. Chinot, M.D., Wolfgang Wick, M.D., Warren Mason, M.D., et al. Bevacizumab plus Radiotherapy-Temozolomide for Newly Diagnosed Glioblastoma. The New England Journal of Medicine, 2014; 370:709-722.

[11] Zhao Qianru. Efficacy and safety of bevacizumab combined with temozolomide in the treatment of recurrent malignant gliomas. Zhengzhou University, 2016.

[12] Ulrich Herrlinger, Niklas Schäfer, Joachim P, et al. Bevacizumab Plus Irinotecan Versus Temozolomide in Newly Diagnosed O6-Methylguanine-DNA Methyltransferase Nonmethylated Glioblastoma: The Randomized GLARIUS Trial. Journal of clinical oncology, 2015; 63:4691.

[13] Mark R. Gilbert, James J. Dignam, Terri S. Armstrong, A.N.P., Jeffrey S. Wefel. A Randomized Trial of Bevacizumab for Newly Diagnosed Glioblastoma. The New England Journal of Medicine, 2014;370:699-708.

[14] Clara Chen, Arliene Ravelo, Elaine Yu, et al. Clinical outcomes with bevacizumab-containing and non-bevacizumab-containing regimens in patients with recurrent glioblastoma from US community practices. CLINICAL STUDY, 2015;DOI 10.1007/s11060-015-1752-y.

[15] Li Hualong, Qiang Ming, Huang Xiaoqin, Cai Shuhua, Yang Qiwen. Efficacy of bevacizumab combined with

BMJ Open

temozolomide in the treatment of malignant recurrent gliomas. Anhui Medicine, 2020, 41 (01): 66-68.

[16] Zhang Zhixian, Gu Hou, Lin Jian, Cao Hongming, Lei Xuefen, Jiang Lifeng. Clinical efficacy of gamma knife combined with bevacizumab in the treatment of postoperative malignant gliomas. Journal of Kunming Medical University, 2018 Journal 39 (10): 33-century

[17] Wang Jiaqi, Liang Yong, Ouyang Zheng, Liu Chao, Ouyangsong, Tang Hongyu. Clinical analysis of bevacizumab combined with temozolomide in the treatment of glioblastoma. Oncology Pharmacy, 2013 pr. 3 (04): 274-277.

[18] Albert Lai, Anh Tran, Phioanh L, et al. Phase II Study of Bevacizumab Plus Temozolomide During and After Radiation Therapy for Patients With Newly Diagnosed Glioblastoma Multiforme. JOURNAL OF CLINICAL ONCOLOGY,2010;30:2709.

[19] Chauffert B, Feuvret L, Bonnetain F, et al. Randomized phase II trial of irinotecan and bevacizumab as neo-adjuvant and adjuvant to temozolomide-based chemoradiation compared with temozolomide-chemoradiation for unresectable glioblastoma: final results of the TEMAVIR study from ANOCEF. Annals of Oncology Official Journal of the European Society for Medical Oncology, 2014, 25(7):1442.

[20] Zhao Ping, Chen Wanqing. Incidence and death of Cancer in China 2003 May 2007. Beijing: military Medical Science Press, 2012.

[21] Lu Yuntao, Qi Songtao, Ouyanghui, et al. Surgical and therapeutic strategies for recurrent malignant gliomas in refractory sites. Chinese Journal of Modern Neurological Diseases.2012 ;12 (6): 682-690.

[22] Cheng Haixia, Wang Yin. Hair cell astrocytoma with vascular central arrangement: case report and literature review. Chinese Journal of Modern Neurology.2 013; 13(4):342-348.

[23] Pope WB, Xia Q, Paton VE, et al. Patterns of progression in patients with recurrent glioblastoma treated with bevacizumab.Neurology,2011;76(5): 432-437.

[24] Park JS, Kim IK, Han S, et al. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell, 2016; 30(6): 953–967.

[25] Labussiare M, Cheneau C, Prahst C, et 01. Angiopoietin-2 may be involved in the resistance to bevacizumab in recurrent glioblastoma. Cancer Invest, 2016; 34(1): 39–44.

[26] Groot J, Liang J, Kong LY, et al. Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma. Oncotarget, 2012; 3(9): 1036-1048.

[27] Li Y, Hou M, Lu G, et al. The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One, 2016, 11(12):e0168264. [28] Liao KL, Huang S, Wu YP. The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy. 2018; 11:3513-3520.

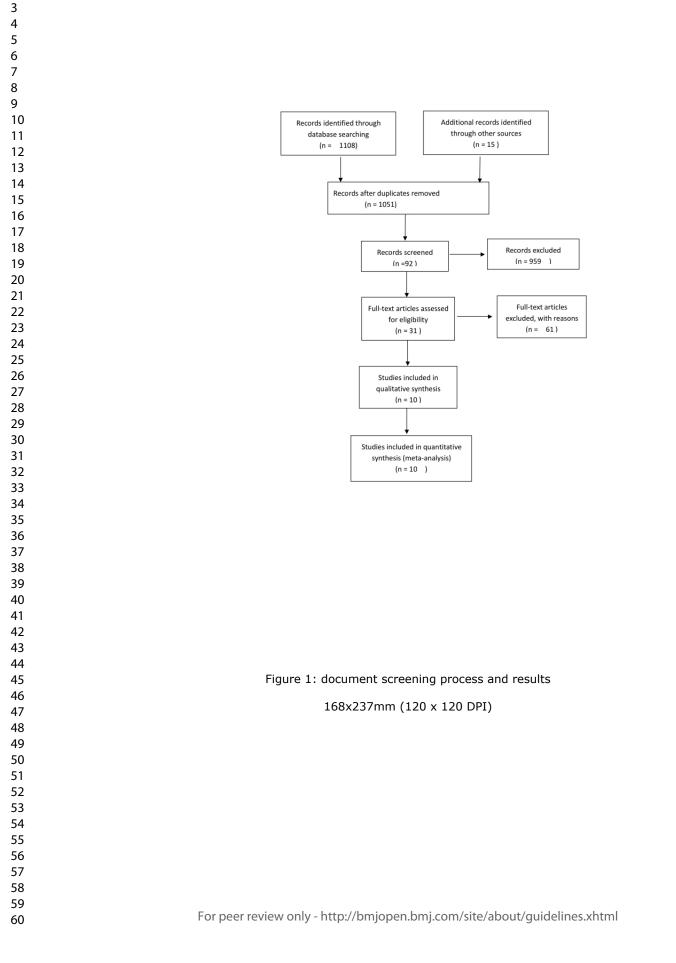
[29] Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5.

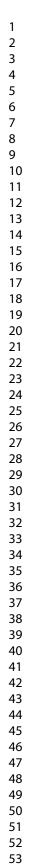
[30] Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys, 2012, 82(1):58-66.

[31] Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 – 22.

[32] Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708.

[33] Brandes, A.A., Finocchiaro, G., Zagonel, V., Reni, M., Fabi, A., Caserta, C., et al. Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol. 2014;16: v8 - v22.


[34] Wick, W., Brandes, A.A., Gorlia, T., Bendszus, M., Sahm, F., Taal, W., et al., 2015. Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial. Neuro-Oncol.2015;17:v1.


[35] Friedman HS, Prados MD, Wen PY, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol.2009;27:4733 – 40.

[36] Nagane M, Nishikawa R, Narita Y, et al. Phase II study of single-agent bevacizumab in Japanese patients with recurrent malignant glioma. Jpn J Clin Oncol.2012;42:887 - 95.

[37] Zhang Li. Statistical analysis of adverse reactions caused by bevacizumab. Clinical Medical Engineering. 2012; 19 (1): 129-130.

[38]Norden AD, Bartolomeo J, Tanaka S, et al. Safety of concurrent bevacizumab therapy and anticoagulation in glioma patients. J Neurooncol.2011,106(1):121-125.

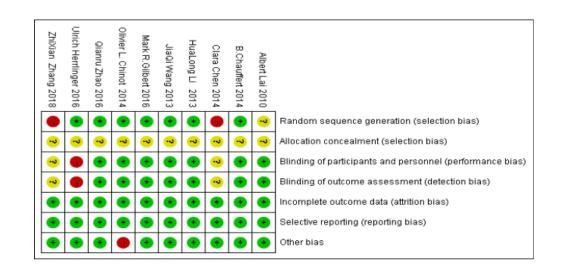
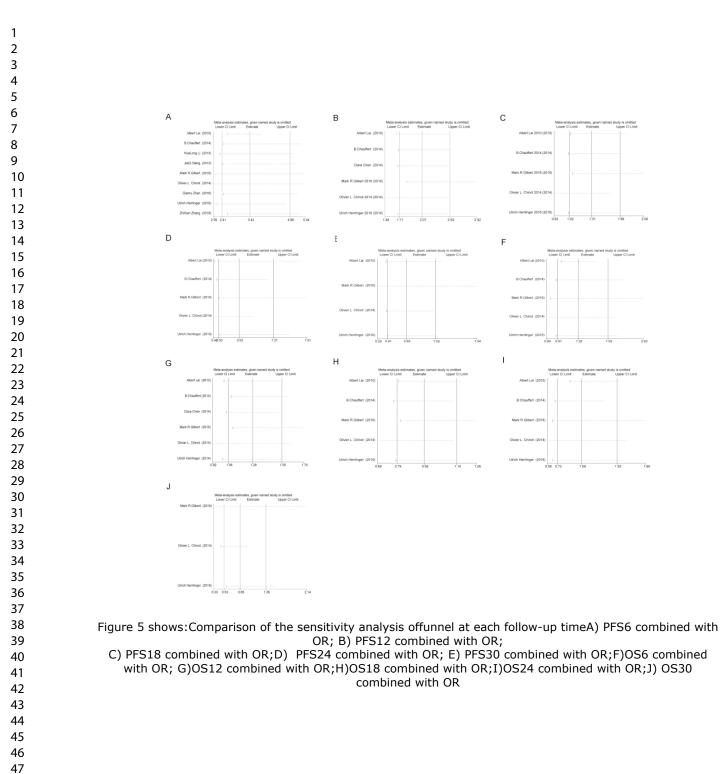
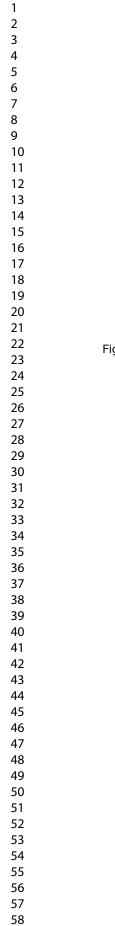


Figure 2: bias risk assessment form

	A B
	Hazard Ratio SE Weight N, Faved, 95% Cl N, Faved, 95% Cl Study or Subgroup log[Hazard Ratio] SE Weight N, Random, 95% Cl N, Random, 95% C
	Albert Lai 2010 -0.0513 0.1632 9.3% 0.95 [0.69, 1.31] + Albert Lai 2010 0.3507 0.1738 15.8% 1.42 (1.01, 2.00] +
)	B.Chauffert 2014 -0.1985 0.1855 7.2% 0.82 (0.57, 1.18) * B.Chauffert 2014 -0.3567 0.2032 13.9% 0.70 (0.47, 1.04) * Clara Chen 2014 -0.4463 0.266 3.5% 0.64 (0.38, 1.08) * Clara Chen 2014 -0.6733 0.254 11.0% 0.51 (0.31, 0.84) *
	Mark R.Gilbert 2016 -0.2357 0.0917 29.6% 0.79 [0.66, 0.95] 🧧 Mark R.Gilbert 2016 0.1222 0.0994 21.3% 1.13 [0.93, 1.37]
	Olinier L. Chinot 2014 -0.4463 0.0773 41.6% 0.64 (0.55, 0.74) Olinier L. Chinot 2014 -0.1278 0.0748 23.0% 0.88 (0.76, 1.02) Ulinich Herrlinger 2016 -0.5621 0.1681 8.8% 0.57 (0.41, 0.79) Ulinich Herrlinger 2016 0.0198 0.1848 15.0% 1.02 (0.71, 1.47)
	Total (95% CI) 100.0% 0.71 [0.65, 0.79] Total (95% CI) 100.0% 0.93 [0.75, 1.16] Heterogeneity: Chi ² = 8.80, df = 5 (P = 0.12); (P = 4.3% 0.1 0.1 1 10 100 Heterogeneity: Tau ² = 0.05; Chi ² = 17.83, df = 5 (P = 0.03); (P = 7.2% 0.01 0.1 1 10 100 Heterogeneity: Tau ² = 0.05; Chi ² = 17.83, df = 5 (P = 0.03); (P = 7.2% 0.01 0.1 1 10 100 Heterogeneity: Tau ² = 0.05; Chi ² = 17.83, df = 5 (P = 0.03); (P = 7.2% 0.01 0.1 1 10 100 Heterogeneity: Tau ² = 0.05; Chi ² = 17.83, df = 5 (P = 0.03); (P = 7.2% 0.01 0.1 1 10 100 Heterogeneity: Tau ² = 0.05; Chi ² = 17.83, df = 5 (P = 0.03); (P = 7.2% 0.01 0.1 1 10 100 Heterogeneity: Tau ² = 0.05; Chi ² = 17.83, df = 5 (P = 0.03); (P = 7.2% 0.01 0.1 1 10 100 Heterogeneity: Tau ² = 0.05; Chi ² = 17.83, df = 5 (P = 0.03); (P = 7.2% 0.01 0.1 1 10 100 Heterogeneity: Tau ² = 0.05; Chi ² = 17.83, df = 5 (P = 0.03); (P = 7.2% 0.01 0.1 1 10 100 Heterogeneity: Tau ² = 0.05; Chi ² = 17.83, df = 5 (P = 0.03); (P = 7.2% 0.01 0.1 1 10 100 Heterogeneity: Tau ² = 0.05; Chi ² = 17.83, df = 5 (P = 0.03); (P = 7.2\% 0.05; Chi ² = 17.83, df = 5 (P = 0.03); (P = 7.2\% 0.05); (P
	Testforoverall effect Z= 6.81 (P < 0.00001)
	C D
	BEV Non-BEV Odds Ratio Odds Ratio EEV Non-BEV Odds Ratio Odds Ratio
	Stock or Subtraction Control Lotter Notice (Notice Lotter Number (Notice Lotter Other (Notice
	Jacki Wang 2013 21 27 1 12 25 25% 260 [02,642] Other L Chend 2014 421 460 405 450 41% 163 [105] 155 Home L Chend 2014 421 460 405 450 41% 163 [105] 155 Home L Chend 2014 421 460 405 450 41% 163 [105] 155 Home L Chend 2014 421 450 455 450 455 425 Home L Chend 2014 421 450 455 450 455 425 Home L Chend 2014 421 450 455 450 455 425 Home L Chend 2014 421 450 455 450 455 425 Home L Chend 2014 421 450 455 450 455 425 Home L Chend 2014 421 450 455 450 455 425 Home L Chend 2014 425 455 455 Home L Chend 2014 425 455 Home L Chend 2014 425 Home L Chend 2014 425 455 Home L Chend 2014 425 Home L Chend 2014 455 455 Home L Chend 2014 455 Home L Chend 2014 Home L Chend 2014 455 Home
	Obsert _ Checks 2014 246 459 247 453 649 247 453 649 247 453 640 460 560 650
	Heleropenetry Tay** 0.00; Chrl = 6.1; df = 0.0° = 0.50; P = 0% Test for ownail effect Z = 12.43 (P < 0.00001) Aber(1.a) 2010 59 70 83 110 1.3% 1.74 (0.80, 3.79) B Churder 2014 20 60 20 60 20 0.07 0.03 (10.0000)
	L3.2 23pts Character 2014 26 60 50 60 60 60 60 60 60 60 60 60 60 60 60 60 60<
	Mark R-0ilee 2016 132 311 96 209 55% 166[19,230]
	Heterogenetic, Tux" = 0.00, Chir = 2.4, or = 5, or = 0.751, ir = 0.% L4.1 files Textif owned select 2 = 7.00 + 0.0001) L4.1 files
	1.3.3 Tiples Abert La 2010 38 70 07 10 3.0% 0.76 [0.42], 140 Abert La 2010 17 70 20 10.4 [0.51, 2.0] B Chaufed 2014 10 0.2% 1.36 [0.45, 2.0] B Chaufed 2014 9 60 7 60 2.4% 1.36 [0.45, 2.0] B B Chaufed 2014 9 60 7 60 2.4% 1.36 [0.45, 2.0] B Chaufed 2014 9 60 7 60 2.4% 1.36 [0.45, 2.0] B Chaufed 2014 9 60 7 60 2.4% 1.36 [0.45, 2.0] B Chaufed 2014 10 2.2 4.35 [0.2, 2.1] Unit hieringer 2016 10 1.2 2.3% 0.94 [0.3] B Chaufed 2014 10 2.2 1.00 [0.2, 6.0] 1.00 [0.2, 6.0]
	Main R Older 2016 69 311 64 599 52% 1.11[0.74,1.61]
	134 2405
	AlbertLu 2010 11 70 22 110 3.7% 0.75[0.34,1.65] BChauthert 2014 9 60 3 60 0.3% 3.35[0.66,1.507] BChauthert 2014 3 60 1 60 1 10% 3.11[0.31,30.73] Mode Delibert 2014 9 60 3 60 0.3% 0.35[0.66,1.67]
	Utich Herringer 2016 5 116 5 54 2.3% 0.44 [012,159] Oncon-Herringer 2010 2 0 110 11 54 1.4% 1.44 [0:3, 2.3] Statistical (95% C) 1015 996 14.6% 123 103,0,1.37] Statistical (95% C) 1015 996 20.7% 1.10 [0.89, 1.35] Total events 49 63 124 129 129 129 129 129 129 129 129 129 129
	Test for overall effect Z = 0.73 (P = 0.47) Test for overall effect Z = 0.85 (P = 0.30)
	Mark ROMer 2016 25 111 27 299 47% 0.64(35),110
	Total events 34 59 59 Heterogeneeb, Tux* = 0.00, Chr = 1.22, ctr = 3 (P = 0.75), P = 0.% Heterogeneeb, Tux* = 0.01, Chr = 1.22, ctr = 3 (P = 0.75), P = 0.% Test for overall effect Z = 0.90 (P = 0.04) Test for overall effect Z = 0.77 (P = 0.44)
	Total (d95): CD 5924 5945 100,000 1.73[1:35, 2:20] Total (d95): CD 5981 4823 100,005 1.11[1:31, 1:22] Total events 1.60 0.1 0.1 1.0
	Heterogenetic, Tut ² = 0.24, Cipt ⁴ = 102.12, utf = 28 th = 0.000010; P = 73%. Dot 1 1<
Figu	ire 3 shows:A)HR of median PFS in BEV group and Non-BEV group in the treatment of glioma;B)HI
media	an OS in BEV group and Non-BEV group in the treatment of glioma;C)OR of PFS at each follow-up
in	BEV group and Non-BEV group in the treatment of glioma; D)OR of OS at each follow-up time in the BEV group and Non BEV group.
	treatment of glioma in the BEV group and Non-BEV group


1	
2	
3	
4	
5	
6	
6	
7	
8	
9	
10	
11	
12	
13	
14	
17	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37 38	
57	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55	
54	
54	
54 55	
54 55 56	
54 55 56 57	
54 55 56	
54 55 56 57	


1

	BE\		Non-B			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.5.1 hypertension							
Clara Chen 2014	12	42	1	42	2.3%	16.40 [2.02, 133.08]	
HuaLong Li 2013	32	31	31	31		Not estimable	
Mark R.Gilbert 2016	15	311	3	309	5.0%	5.17 [1.48, 18.04]	
Olivier L. Chinot 2014	181	458	57	463	13.1%	4.65 [3.33, 6.50]	-
Qianru Zhao 2016	5	25	0	24	1.2%	13.15 [0.69, 252.16]	
ZhiXian Zhang 2018	5	20	0	20	1.2%	14.55 [0.75, 283.37]	
Subtotal (95% CI)		887		889	22.9%	4.94 [3.60, 6.78]	•
Total events	250		92				
Heterogeneity: Tau² = 0	.00; Chi ² =	: 2.35, 0	df = 4 (P =	= 0.67);	I ² = 0%		
Test for overall effect: Z	= 9.92 (P	< 0.000)01)				
1.5.2 hemorrhage							
Clara Chen 2014	2	42	0	42	1.2%	5.25 [0.24, 112.66]	
Mark R.Gilbert 2016	8	311	3	309	4.6%	2.69 [0.71, 10.25]	+
Olivier L. Chinot 2014	171	458	88	463	13.5%	2.54 [1.88, 3.43]	+
Qianru Zhao 2016	3	25	0	24	1.2%	7.62 [0.37, 155.87]	
ZhiXian Zhang 2018	3	20	Ő	20	1.2%	8.20 [0.40, 169.90]	
Subtotal (95% CI)		856	Ŭ	858	21.6%	2.62 [1.96, 3.49]	•
Fotal events	187		91				
Heterogeneity: Tau² = 0		1.27. (: 0.87):	$l^2 = 0.0\%$		
Fest for overall effect: Z				,1			
1.5.3 hematencephalor							
Albert Lai 2010	3	70	1	110	2.0%	4.88 [0.50, 47.88]	
Clara Chen 2014	2	42	, O	42	1.2%	5.25 [0.24, 112.66]	
Olivier L. Chinot 2014	15	458	9	463	7.9%	1.71 [0.74, 3.94]	
Subtotal (95% CI)	15	570	3	615	11.1%	2.06 [0.96, 4.40]	•
Fotal events	20	570	10	015	11.170	2.00 [0.00, 4.40]	÷
Heterogeneity: Tau ² = 0		1 1 0		0 601	IZ = 0.0%		
Test for overall effect: Z				- 0.30),	1 - 0 /0		
1.5.4 Albuminuria							
Clara Chen 2014	9	42	0	42	1.3%	24.10 [1.35, 429.25]	
HuaLong Li 2013	19	31	12	31	6.5%	24.10 [1.35, 429.25] 2.51 [0.90, 6.97]	
Olivier L. Chinot 2014	72	458	12	463	11.1%	4.36 [2.58, 7.36]	-
Subtotal (95% CI)	72	531	19	536	18.9%	4.02 [2.19, 7.36]	•
Fotal events	100	551	31	550	10.570	4.02 [2.13, 1.30]	•
Heterogeneity: Tau ² = 0		246 /		- 0 201-	12 - 100		
Fest for overall effect: Z				- 0.29),	1 - 1970		
1.5.5 Thromboembolisi	n						
Clara Chen 2014	n 11	42	1	42	2.3%	14.55 [1.78, 118.76]	
	0	42	0	42	2.370		
HuaLong Li 2013 Mark R.Gilbert 2016	33	311	22	309	10.7%	Not estimable 1.55 [0.88, 2.72]	 _
Olivier L. Chinot 2014	33 65	458	50	463	12.5%		L
Subtotal (95% CI)	05	458 842	50	403 845	12.5% 25.5%	1.37 [0.92, 2.03] 1.73 [0.93, 3.23]	▲
Fotal events	100	042	73	040	23.3%	1.15 [0.85, 5.25]	•
	109 16: Chiž -	102		. 0.005-	12 - 60%		
Heterogeneity: Tau² = 0 Fest for overall effect: Z				- 0.09);	1 = 36%		
Fotal (95% CI)		3686		3743	100.0%	3.18 [2.26, 4.49]	•
Fotal events	666	2000	297	5145	100.0%	5.10 [2.20, 4.49]	· · · · · · · · · · · · · · · · · · ·
Heterogeneity: Tau² = 0		42.63		P = 0 0	009) [,] I ž =	58%	
Fest for overall effect: Z				. 0.0			0.001 0.1 1 10
i sou or or or one of the Z	0.00 (1		.72. df = 4			2.2	Favours BEV Favours No

Figure 4: OR of adverse reactions in the treatment of glioma in the BEV group and Non-BEV group

150x196mm (120 x 120 DPI)

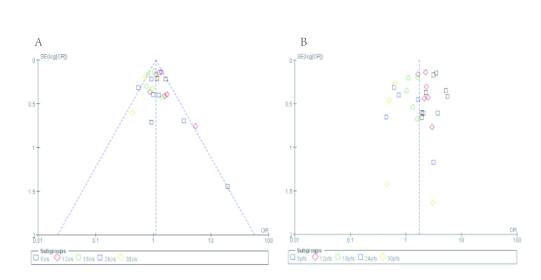
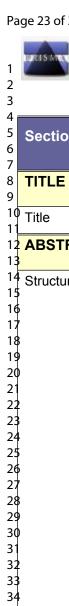



Figure 6 shows:A)The forest map shows:A)OS combined with OR funnel at each follow-up time;B) PFS and OR funnel diagram at each follow-up time

Page 23 of 30

BMJ Open

47

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Systematic review and meta-analysis.	
ABSTRACT			
Structured summary	2	Objective: This study evaluated the efficacy and safety of bevacizumab in patients with glioma.	
		Design: Systematic review and meta-analysis.	
1		Data sources: The data were collected using online search criteria from the databases like PubMed,	
		Embase, The Cochrane Library, OVID biomedical database, Chinese periodical full-text database (CNKI),	
		and Chinese biomedical literature service system (CBM) from inception up to April 2020.	
		Intervention: Bevacizumab (BEV) and other interventions.	
		Primary and secondary outcome measures: The main indicators included progression-free survival rate	
		and overall survival rate, and the secondary indicators were adverse reactions.	
		Results: A total of 10 clinical center trials were included in this study for meta-analysis, including 2392	
		patients . The results of the meta-analysis showed that the median progression-free survival rate of the BEV	
		group (PFS) was significantly higher than that of the Non-BEV group (P<0.00001). When compared with the	
		PFS rate of each stage, the PFS rate of the BEV group was 6 months (3.31, 95%CI 2.74 to 4.00, p<0.00001),	
		12 months (2.05, 95%Cl 1.70 to 2.49, p<0.00001) and 18 months (1.31,95%Cl 1.02 to 1.69, p=0.03). The	
		PFS of the BEV group was higher than that of Non-BEV group at 24 months (0.83, 95%CI 0.50 to 1.37,	
		p=0.47). At 30 months (0.62, 95%Cl 0.39 to 0.97, p=0.04), the PFS of the Non-BEV group was lower than	
		that of the Non-BEV group.Moreover, we have compared overall survival rate and the five common adverse	
		reactions, including hypertension ,hemorrhage , and cerebral hemorrhage , Proteinuria and	
		thromboembolism .	
		Conclusion: BEV can significantly prolong the PFS of patients with glioma within 18 months and shorten the	
		PFS of patients after 30 months. This limitation may be related to the high incidence of adverse events For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

INTRODUCTION Rationale 3 Brain glioma (High-Grade Glioma, HGG) is the most common primary intracranial tumor, accounting for a 27% of central nervous system tumors and 80% of intracranial malignant tumors ¹ . The median survival reported with brain glioma is 14-16 months ² . The Surgical intervention combined with radiotherapy chemotherapy are often followed for treatment of such cases, but because of its high invasive nature, it relapses in a short time with poor prognosis. The emergence of temozolomide has considerably delayed development of glioma to some extent, but the survival rate and quality of life of patients are still very. Therefore, looking for better drugs to prevent and delay the postoperative recurrence of glioma has been the focus of current research. In recent years, more and more studies have shown that malignant glion the tumor with the highest degree of vascularization ³ . The nature of proliferation is characterized by obperoliferative vascular lumen and with abnormal proliferation of neovascularization which participates is construction of tumor microenvironment ⁴ . It is closely related to the growth, invasion, and metastasis of tumor, and positively correlated with the extent of malignancy and prognosis of the tumor. Recently unique biological characteristics of gliomas indicated that angiogenic factors may play an important role treatment and have become the focus of research. Humanized anti-vascular endothelial growth factor monoclonal antibody-bevacizumab ⁵ , a representative drug of anti-angiogenic therapy, was approved for recurrent glioblastoma by FDA in 2009 is listed in China in 2010 by CFDA. According to the radiological response rate, bevacizumab has approved for recurrent glioblastoma in the United States and many other countries ^{7,8} . Although bevacize (BEV) has become an important part of HGG therapy, the safety and adverse reac		
Rationale 3 Brain glioma (High-Grade Glioma, HGG) is the most common primary intracranial tumor, accounting for a 27% of central nervous system tumors and 80% of intracranial malignant tumors ¹ . The median survival reported with brain glioma is 14-16 months ² . The Surgical intervention combined with radiotherapy chemotherapy are often followed for treatment of such cases, but because of its high invasive nature, it relapses in a short time with poor prognosis. The emergence of temozolomide has considerably delaye development of glioma to some extent, but the survival rate and quality of life of patients are still very Therefore, looking for better drugs to prevent and delay the postoperative recurrence of glioma has been the focus of current research. In recent years, more and more studies have shown that malignant glion the tumor with the highest degree of vascularization ³ . The nature of proliferation is characterized by ob proliferative vascular lumen and with abnormal proliferation of neovascularization which participates in construction of tumor microenvironment ⁴ . It is closely related to the growth, invasion, and metastasis or tumor, and positively correlated with the extent of malignancy and prognosis of the tumor. Recently unique biological characteristics of gliomas indicated that angiogenic factors may play an important role treatment and have become the focus of research.		caused by long-term use of BEV. More prospective studies are needed to verify it in the future.
27% of central nervous system tumors and 80% of intracranial malignant tumors ¹ . The median survival reported with brain glioma is 14-16 months ² . The Surgical intervention combined with radiotherapy chemotherapy are often followed for treatment of such cases, but because of its high invasive nature, it relapses in a short time with poor prognosis. The emergence of temozolomide has considerably delaye development of glioma to some extent, but the survival rate and quality of life of patients are still very Therefore, looking for better drugs to prevent and delay the postoperative recurrence of glioma has bee the focus of current research. In recent years, more and more studies have shown that malignant glior the tumor with the highest degree of vascularization ³ . The nature of proliferation is characterized by ob proliferative vascular lumen and with abnormal proliferation of neovascularization which participates in construction of tumor microenvironment ⁴ . It is closely related to the growth, invasion, and metastasis of tumor, and positively correlated with the extent of malignancy and prognosis of the tumor. Recently unique biological characteristics of gliomas indicated that angiogenic factors may play an important role treatment and have become the focus of research. Humanized anti-vascular endothelial growth factor monoclonal antibody-bevacizumab ⁵ , a representative drug of anti-angiogenic therapy, was approved for recurrent glioblastoma by FDA in 2009 is listed in China in 2010 by CFDA. According to the radiological response rate, bevacizumab has approved for recurrent glioblastoma in the United States and many other countries ^{7,a} . Although bevacizu (BEV) has become an important part of HGG therapy, the safety and long-term efficacy of BEV are not of Therefore, we conducted a clinical meta-analysis to evaluate the safety and adverse reactions of BE		
	Rationale 3	Humanized anti-vascular endothelial growth factor monoclonal antibody-bevacizumab ⁵ , as a representative drug of anti-angiogenic therapy, was approved for recurrent glioblastoma by FDA in 2009 ⁶ and is listed in China in 2010 by CFDA. According to the radiological response rate, bevacizumab has been approved for recurrent glioblastoma in the United States and many other countries ^{7,8} . Although bevacizumab (BEV) has become an important part of HGG therapy, the safety and long-term efficacy of BEV are not clear.
		patients with HGG, in order to provide a reference for clinical application.
4 This study evaluated the efficacy and safety of bevacizumab in patients with glioma.	Objectives 4	This study evaluated the efficacy and safety of bevacizumab in patients with glioma.

Page 25 of 30

METHODS	
Protocol and registration	5 Not Protocol and registration
Eligibility criteria	6 (1) Study subjects: the participants were patients of any age, whose histology was confirmed to be HGG. They may have undergone any form of surgery to achieve histological diagnosis (biopsy or resection); (2) Study type: The clinical control study; (3) Intervention: BEV in bevacizumab group must include bevacizumab, which can be used alone or in combination with multiple drugs. The control group (Non-BEV) refers to treatment that does not include anti-angiogenesis, which can be placebo or supportive therapy, or active intervention (such as chemotherapy). (4) Outcome indicators: included in accordance with the
	following arbitrary outcome indicators: 1 main indicators: progression-free survival (PFS)rate, defined as the time from randomization to death or disease progression of any cause, and overall survival(OS) rate, defined as the time from randomization to death. 2 key indicators: adverse events classified according to the World
	Health Organization (WHO) or the General terminology Standard of the National Cancer Institute (NCI-CTCAE (CTCAE2017)), including the percentage of treatment-related deaths.
Information sources	 We collected all the clinical experimental studies of anti-angiogenic therapy in the treatment of gliomas, retrieved through a database search including PubMed database, Embase database, The Cochrane Library, CBM, Biomedical database, China Journal full-text database (CNKI), Wanfang, from the establishment of the database to April 2020.
Search	⁸ The search strategy followed included a combination of subject words and free words, and the retrieval strategy was determined after several pre-searches. The main search words included: "glioma", "angiogenesis inhibitors", "vascular endothelial growth factors", "VEGF", and "clinical study". Additionally, we also manually searched the reference list of all articles on this topic to check and enhance the retrieval of other related publications. All search results are evaluated according to the (PRISMA) statement of "preferred reporting items for systematic review and meta-analysis".
Study selection	9 Studies were included if they fulfilled the following criteria: The above eligibility criteria. Studies were included if they fulfilled the following criteria: The above eligibility criteria.

		abstract information, conference papers, reviews, and case reports. In addition, the literature of repeated publication and incomplete data that cannot extract valid data should also be excluded.	
Data collection process	10	Literature screening, data extraction, and cross-checking were carried out by two independent researchers according to the initial inclusion and exclusion criteria, and if there were any differences, it was discussed or judged with the assistance of a third person, and contact and supplement the missing data with the author as far as possible. During the literature screening, the title and the abstract were read initially, and after excluding the obviously irrelevant literature, the full text was read to determine whether to include it or not. Upon matching the inclusion criteria of requirements	
Data items	11	the following contents were extracted: (1) the basic information, including title, author, published country, publication date, research type; (2) study subjects, including the number of cases in each group, average age; (3) interventional factors, including the specific details of exposure factors, follow-up time, etc.; (4) the outcome indicators.	
Risk of bias in individual studies	12	Using the Cochrane collaboration tool, the risk of bias in individual studies was assessed from seven aspects (sequence generation, allocation hiding, uninformed participants and people, incomplete outcome data, selective reports, and other biases and risks) ⁹ . Finally, each project was evaluated at three levels: low risk, unclear, and high risk. The two authors conducted independent quality assessments and any differences among them were resolved through discussions with a third research expert.	
Summary measures	13	PFS, OS, and adverse reactions were analyzed by Meta with RevMan5.1 software. The data were counted by risk ratio (hazard ratio; HR) and odds ratio (Odds ratio; OR). The interval estimation was expressed by 95%CI, and the test level of the effect quantity was α = 0.05.	
Synthesis of results	14	The heterogeneity among the included results was analyzed by using the "I ² " (the level is α = 0.1a).Simultaneously, combined with I ² to quantitatively judge the size of heterogeneity.	
		Page 1 of 2	
Section/topic	#	Checklist item	Reported on page #

Page 27 of 30

BMJ Open

Risk of bias across studies	15 Publication bias was detected by the funnel chart method.	
Additional analyses	Stata15.1 was used for sensitivity analysis, and the method of examining the influence of a single study was used to eliminate them one by one. The consistency of the results obtained after the above transformation shows that the results of Meta-analysis were stable, otherwise, they were regarded as unstable.	
RESULTS		
Study selection	A total of 1108 related literature were obtained in the initial examination. After screening the literature one by one, a total of 1123 patients were included in 10 clinical studies ¹⁰⁻¹⁹ . The database and the number of documents retrieved are as follows: PubMed (nasty 259), The Cochrane Library (nasty 153), EMbase (nasty 155), CNKI (nasty 118), CBM (nasty 358), WangFang (nasty 65). The flow chart and the results of literature retrieval are shown in figure 1.	
tudy characteristics	 ¹⁸ The basic characteristics of the inclusion study For the inclusion study, the basic information for inclusion is completed using pre-developed forms (Tables 1, 2). Offset risk included in the study The results of the bias risk assessment included in the study are shown in figure 2. 	
Risk of bias within studies	Publication bias As shown in figures 6 (see appendix), except for the adverse reactions and the funnel chart of the median OS with HR, the publication bias of the funnel chart was higher, while the rest of the funnel chart was mainly concentrated at the top. Moreover, the symmetry was also proper, so it was concluded that the possibility of publication bias was small. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Results of individual studies	20	Progression-free survival
		Six studies ^{10,12-14,18-19} reported median progression-free survival (BEV group, n=1160) and Non-BEV
		group (n=1027). Results: HR=0.71, 95%CI, 0.65 to 0.79; suggested that the median progression-free survival
		of gliomas treated with BEV was significantly longer than that of malignant gliomas treated with Non-BEV
		(P<0.00001), as shown A in figure 3 .
		Overall survival time
		Six studies ^{10,12-14,18-19} reported the median overall survival time, and there was no significant difference in
		the heterogeneity test (1 ² =72%, p=0.54), so the random effect model was used for data analysis. Results:
		HR=0.93, 95%CI, 0.75 to 1.16, suggesting that there was no significant difference in median overall survival
		time between the BEV group and Non-BEV group (P=0.54), as shown B in figure 3 .
		Adverse reaction
		The results showed the combined OR values of hypertension, hemorrhage, cerebral hemorrhage,
		albuminuria, and thromboembolism as follows: hypertension (4.94, 95%CI 3.60 to 6.78, P<0.00001),
		hemorrhage (2.62, 95%CI 1.96 to 3.49, P<0.00001), cerebral hemorrhage (2.06, 95%CI 0.96 to 4.40,
		P=0.05), proteinuria (4.02, 95%CI 2.19 to 7.36, P<0.00001) and thromboembolism (1.73, 95%CI 0.93 to 3.23,
		P=0.09).
Synthesis of results	21	
,		Progression-free survival
		Ten studies ¹⁰⁻¹⁹ compared PFS ratios at different follow-up between the Bev group and the Non-BEV
		group. There was a significant difference in the total heterogeneity test ($I^2=71\%$, P<0.00001), so the random
		effect model was used. The results showed that the combined OR values of 6 months, 12 months, 18 months,
		24 months and 30 months are (3.31, 95%CI 2.74 to 4.00, p<0.00001), (2.05, 95%CI 1.70 to 2.49, p<0.00001),
		(1.31, 95%Cl 1.02 to 1.69, p=0.03), (0.83, 95%Cl 0.50 to 1.37, p=0.47), (0.62, 95%Cl 0.39 to 0.97,
		p=0.04).,as shown C in figure 3.
		Overall survival time
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 29 of 30

1 2 3

PRISMA 2009 Checklist

Risk of bias across studies	Six studies ^{10,12-14,18-19} compared OS ratios at different follow-up between the Bev group and the Non-BEV group. There was a significant difference in the total heterogeneity test (l ² =38%, P<0.03). The Random effect model was used, and the results show that the combined OR values of 6 months, 12 months, 18 months, 24 months, and 36 months are (4.94, 95%CI 3.60-6.78, P<0.00001), (2.62, 95%CI 1.96-3.49, P<0.00001), (2.06, 95%CI 0.96-4.40, P=0.05), (4.02, 95%CI 2.19-7.36, P<0.00001), (1.73, 95%CI 0.93-3.23, P=0.09), as shown D in figure 3. Adverse reaction As shown in figure 4, there were six studies ^{10-11,13-15} that compared adverse reactions between the BEV group and the Non-BEV group. There was a significant difference in the total heterogeneity test (l ² =58%, P<0.00001), and the random effect model was used. 22 As shown in figures 6 (see appendix), except for the adverse reactions and the funnel chart of the median OS with HR, the publication bias of the funnel chart was higher, while the rest of the funnel chart was mainly concentrated at the top. Moreover, the symmetry was also proper, so it was concluded that the possibility of publication bias was small.
5 7 Additional analysis 9 9	23 The sensitivity test was used to evaluate the stability of OS, PFS, and adverse reactions in the included literature, which showed that all values remained in the confidence interval on both sides after one by one elimination. Hence, it can be concluded that all the included literature is stable, as shown in figures 5.
DISCUSSION	
Summary of evidence	Studies have shown that long-term use of BEV does not increase patients' PFS, on the contrary, it may decrease PFS over time, due to the adverse reactions caused by BEV. This study showed five common adverse reactions including hypertension, hemorrhage, cerebral hemorrhage, albuminuria, and thromboembolism upon initiating BEV therapy, but the toxicity of antiangiogenic therapy was generally well tolerated. A phase II trial of Japanese study ³⁵ showed that the most common side effects were albuminuria, hypertension, hemorrhage, fever, and epilepsy. Studies ³⁶ showed that the incidence of adverse reactions above grade per wasew270.1/% http://www.http://wwwww.http://wwww.http://www.http://www.http://www.http://wwwww.http://www.h

BMJ Open

PRISMA 2009 Checklist

hypertension, epilepsy, fatigue, and intestinal perforation. Zhang Li ³⁷ evaluated cases from 20 articles about adverse reactions caused by BEV in 357 patients and found that the main adverse reactions were associated with cardiovascular and hematological diseases. Norden ³⁸ evaluated 64 glioma patients treated with anticoagulants with BEV and those without anticoagulants. The results showed that the rates of intracranial hemorrhage and other bleeding sites in patients treated with anticoagulants were significantly higher than those in patients treated with BEV alone. However, the rate of severe intracranial hemorrhage was within an acceptable range, hence the anticoagulants were recommended for patients with symptomatic venous	adverse reactions caused by BEV in 357 patients and found that the main adverse reactions were associated with cardiovascular and hematological diseases. Norden ³⁸ evaluated 64 glioma patients treated with anticoagulants with BEV and those without anticoagulants. The results showed that the rates of intracranial hemorrhage and other bleeding sites in patients treated with anticoagulants were significantly higher than those in patients treated with BEV alone. However, the rate of severe intracranial hemorrhage was within an acceptable range, hence the anticoagulants were recommended for patients with symptomatic venous thrombosis treated with BEV. Therefore, when bevacizumab was used in the clinic, it was necessary to closely observe for any adverse drug reactions, monitor blood pressure, blood coagulation function, and other indexes, and deal with the symptoms in time. We also need more large-scale phase III clinical studies to prove whether PFS can be improved by improving adverse reactions. Collectively, improving the PFS may enhance great economic and survival benefits to the patients and society, and may further reinforce the successful therapeutic applications of BEV in gliomas.	adverse reactions caused by BEV in 357 patients and found that the main adverse reactions were associated with cardiovascular and hematological diseases. Norden ³⁸ evaluated 64 glioma patients treated with anticoagulants with BEV and those without anticoagulants. The results showed that the rates of intracranial hemorrhage and other bleeding sites in patients treated with anticoagulants were significantly higher than those in patients treated with BEV alone. However, the rate of severe intracranial hemorrhage was within an acceptable range, hence the anticoagulants were recommended for patients with symptomatic venous thrombosis treated with BEV. Therefore, when bevacizumab was used in the clinic, it was necessary to closely observe for any adverse drug reactions, monitor blood pressure, blood coagulation function, and other indexes, and deal with the symptoms in time. We also need more large-scale phase III clinical studies to prove whether PFS can be improved by improving adverse reactions. Collectively, improving the PFS may enhance great economic and survival benefits to the patients and society, and may further reinforce the successful therapeutic applications of BEV in gliomas.imitations25In this study, the preoperative symptoms and the scope and degree of surgical resection are not taken into account. Hence, a large study in terms of more samples and higher quality clinical parameters may further validate the conclusive evidence.		Τ
closely observe for any adverse drug reactions, monitor blood pressure, blood coagulation function, and other indexes, and deal with the symptoms in time. We also need more large-scale phase III clinical studies to prove whether PFS can be improved by improving adverse reactions. Collectively, improving the PFS may enhance great economic and survival benefits to the patients and society, and may further reinforce the		Conclusions26The evidence suggests that BEV can significantly prolong the PFS of patients with glioma within 18 months and shorten the PFS of patients after 30 months. This limitation may be related to the higher incidence of adverse events caused by the long-term use of BEV. In this study, the preoperative symptoms and the scope and degree of surgical resection are not taken into account. Hence, a large study in terms of		adverse reactions caused by BEV in 357 patients and found that the main adverse reactions were associated with cardiovascular and hematological diseases. Norden ³⁸ evaluated 64 glioma patients treated with anticoagulants with BEV and those without anticoagulants. The results showed that the rates of intracranial hemorrhage and other bleeding sites in patients treated with anticoagulants were significantly higher than those in patients treated with BEV alone. However, the rate of severe intracranial hemorrhage was within an acceptable range, hence the anticoagulants were recommended for patients with symptomatic venous thrombosis treated with BEV. Therefore, when bevacizumab was used in the clinic, it was necessary to closely observe for any adverse drug reactions, monitor blood pressure, blood coagulation function, and other indexes, and deal with the symptoms in time. We also need more large-scale phase III clinical studies to prove whether PFS can be improved by improving adverse reactions. Collectively, improving the PFS may enhance great economic and survival benefits to the patients and society, and may further reinforce the
into account. Hence, a large study in terms of more samples and higher quality clinical parameters may			Conclusions 26	months and shorten the PFS of patients after 30 months. This limitation may be related to the higher incidence of adverse events caused by the long-term use of BEV. In this study, the preoperative symptoms and the scope and degree of surgical resection are not taken into account. Hence, a large study in terms of
Conclusions 26 The evidence suggests that BEV can significantly prolong the PFS of patients with glioma within 18 months and shorten the PFS of patients after 30 months. This limitation may be related to the higher incidence of adverse events caused by the long-term use of BEV. In this study, the preoperative symptoms and the scope and degree of surgical resection are not taken into account. Hence, a large study in terms of more samples and higher quality clinical parameters. FUNDING 20	months and shorten the PFS of patients after 30 months. This limitation may be related to the higher incidence of adverse events caused by the long-term use of BEV. In this study, the preoperative symptoms and the scope and degree of surgical resection are not taken into account. Hence, a large study in terms of more samples and higher quality clinical parameters may further validate the conclusive evidence.		Funding 27	This research received no specific grant from any funding agency in the public, commercial or not-for-profit

Page 31 of 30

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

BMJ Open

BMJ Open

Efficacy and safety of bevacizumab in the treatment of adult gliomas:a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-048975.R1
Article Type:	Original research
Date Submitted by the Author:	26-May-2021
Complete List of Authors:	Wang, huan; Xi'an Jiaotong University Medical College First Affiliated Hospital, Fan, Xiaoxuan; Shaanxi University of Chinese Medicine, The First Affiliated Hospital Zhao, Xiaoping; Shaanxi University of Chinese Medicine, The First Affiliated Hospital wang, kai; Shaanxi University of Chinese Medicine Ma, Sitian; Shaanxi University of Chinese Medicine Yang, Yongfeng; Shaanxi University of Chinese Medicine
Primary Subject Heading :	Oncology
Secondary Subject Heading:	Patient-centred medicine
Keywords:	NEUROSURGERY, ONCOLOGY, Head & neck tumours < ONCOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Efficacy and safety of bevacizumab in the treatment of adult gliomas:a systematic review and meta-analysis

Wang Huan¹ Fan Xiaoxuan² Zhao Xiaoping² Wang Kai³ Ma Sitian³ Yang Yongfeng³

 The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China, 710000
 Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, China, 712000

3. Shaanxi University of Traditional Chinese Medicine, Xianyang , China, 712000

Correspondence to Fan Xiaoxuan; szfyfxx@163.com

Keywords : glioma,Bevacizumab,efficacy,safety,progression-free survival Number of words:3833

ABSTRACT

Objective To assess the efficacy and safety of bevacizumab in patients with glioma.

Design Systematic review and meta-analysis.

Participants Adults aged 18 years and above, whose histology was confirmed to be malignant glioma.

Intervention: Bevacizumab and other interventions.

Primary and secondary outcome measures: The main indicators included progression-free survival rate and overall survival rate, and the secondary indicators were adverse reactions.

Results: A total of 10 clinical center trials were included in this study for meta-analysis, including 2392 patients . The results of the meta-analysis showed that the median progression-free survival(PFS) rate of the BEV group was significantly higher than that of the Non-BEV group (P<0.00001). When compared with the PFS rate of each stage, it was found that the PFS in the BEV group was higher than that in the Non-BEV group at 6 months (3.31, 95%CI 2.74 to 4.00, p<0.00001), 12 months (2.05, 95%CI 1.70 to 2.49, p<0.00001) and 18 months (1.31,95%CI 1.02 to 1.69, p=0.03).But at 24 months (0.83, 95%CI 0.50 to 1.37, p=0.47), there was no significant difference between the two groups.At 30 months (0.62, 95%CI 0.39 to 0.97, p=0.04), the PFS of the BEV group was lower than that of the Non-BEV group.Moreover, The results showed that BEV had no significant effect on improving OS, but the adverse reaction in BEV group was significantly higher than that in non-BEV group.

Conclusion: The evidence suggests that BEV can significantly prolong the PFS of patients with glioma within 18 months and shorten the PFS of patients after 30 months. This limitation may be related to the subgroup of patients, the change of recurrence mode, the optimal dose of drug, the increase of hypoxia, the enhancement of invasiveness and so on. Therefore, it is necessary to carry out more samples and higher quality large-scale research in the future.

Strengths and Limitations of this study

1. We used the Cochrane criteria to assess the risk of bias.

2. The heterogeneity was explored by sensitivity, sub-group.

3. the quality of included studies was largely mod-erate to high.

4. The preoperative symptoms and the scope and degree of surgical resection are not taken into account.

INTRODUCTION

Brain glioma is the most common primary intracranial tumor, accounting for about 27% of central nervous system tumors and 80% of intracranial malignant tumors¹. The median survival time reported with brain glioma is 14-16 months². The Surgical intervention combined with radiotherapy and chemotherapy are often followed for treatment of such cases, but because of its high invasive nature, it often relapses in a short time with poor prognosis. The emergence of temozolomide has considerably delayed the development of glioma to some extent, but the survival rate and quality of life of patients are still very low. Therefore, looking for better drugs to prevent and delay the postoperative recurrence of glioma has become the focus of current research. In recent years, more and more studies have shown that malignant glioma is the tumor with the highest degree of vascularization³. The nature of proliferation is characterized by obvious proliferative vascular lumen and with abnormal proliferation of neovascularization which participates in the construction of tumor microenvironment⁴. It is closely related to the growth, invasion, and metastasis of the tumor, and positively correlated with the extent of malignancy and prognosis of the tumor. Recently, the unique biological characteristics of gliomas indicated that angiogenic factors may play an important role in its treatment and have become the focus of research.

Humanized anti-vascular endothelial growth factor monoclonal antibody-bevacizumab⁵, as a representative drug of anti-angiogenic therapy, was approved for recurrent glioblastoma by FDA in 2009⁶ and is listed in China in 2010 by CFDA. According to the radiological response rate, bevacizumab has been approved for recurrent glioblastoma in the United States and many other countries^{7,8}. Although bevacizumab (BEV) has become an important part of HGG therapy, the safety and long-term efficacy of BEV are not clear. Therefore, we conducted a clinical meta-analysis to evaluate the safety and adverse reactions of BEV in patients with HGG, in order to provide a reference for clinical application.

METHODS

This study was mainly based on the literature research, hence there is no need for ethical identification.

Search strategy

 We collected all the clinical experimental studies of anti-angiogenic therapy in the treatment of gliomas, retrieved through a database search includingPubMed, Embase, The Cochrane Library, WanFang, Chinese periodical full-text database (CNKI), and Chinese biomedical literature service system (CBM), from the establishment of the database to April 2020. The search strategy followed included a combination of subject words and free words, and the retrieval strategy was determined after several pre-searches. The main search words included: "glioma", "angiogenesis inhibitors", "vascular endothelial growth factors", "VEGF", and "clinical study". Additionally, we also manually searched the reference list of all articles on this topic to check and enhance the retrieval of other related publications. All search results are evaluated according to the (PRISMA) statement of "preferred reporting items for systematic review and meta-analysis".

Selection criteria

Studies were included if they fulfilled the following criteria: (1) Study subjects: the participants were adults aged 18 years and above, whose histology was confirmed to be malignant glioma. They may have undergone any form of surgery to achieve histological diagnosis (biopsy or resection); (2) Study type: The clinical control study; (3) Intervention: BEV in bevacizumab group must include bevacizumab, which can be used alone or in combination with multiple drugs. The control group (Non-BEV) refers to treatment that does not include anti-angiogenesis, which can be placebo or supportive therapy, or active intervention (such as chemotherapy). (4) Outcome indicators: included in accordance with the following arbitrary outcome indicators: 1) main indicators: progression-free survival rate, defined as the time from randomization to death or disease progression of any cause, and overall survival rate, defined as the time from randomization to death. (2) key indicators: adverse events classified according to the World Health Organization (WHO) or the General terminology Standard of the National Cancer Institute (NCI-CTCAE (CTCAE2017)), including the percentage of treatment-related deaths.

Studies were excluded if they fulfilled the following conditions: Non-clinical control studies, incomplete abstract information, conference papers, reviews, and case reports. In addition, the literature of repeated publication and incomplete data that cannot extract valid data should also be excluded.

Data extraction

Literature screening, data extraction, and cross-checking were carried out by two independent researchers according to the initial inclusion and exclusion criteria, and if there were any differences, it was discussed or judged with the assistance of a third person, and contact and supplement the missing data with the author as far as possible. During the literature screening, the title and the abstract were read initially, and after excluding the obviously irrelevant literature, the full text was read to determine whether to include it or not. Upon matching the inclusion criteria of requirements, the following contents were extracted: (1) the basic information, including title, author, published country, publication date, research type; (2) study subjects, including the number of cases in each group, average age; (3) interventional factors, including the specific details of exposure factors, follow-up time, etc.; and (4) the outcome indicators.

Quality assessment

Using the Cochrane collaboration tool, the risk of bias in individual studies was assessed from seven aspects (sequence generation, allocation hiding, uninformed participants and people, incomplete outcome data, selective reports, and other biases and risks) ⁹. Finally, each project was evaluated at three levels: low risk, unclear, and high risk. The two authors conducted independent quality assessments and any differences among them were resolved through discussions with a third research expert.

Statistical analysis

Analysis of outcome index

PFS, OS, and adverse reactions were analyzed by Meta with RevMan5.1 software. The dichotomy data is expressed as the combined risk ratio (RR) or risk ratio (hazard ratio; HR),The measurement data is expressed as the mean difference (WMD).The interval estimation was expressed by 95%Cl, and the test level of the effect quantity was $\alpha = 0.05$.The test for heterogeneity used I² statistics.If there is no significant heterogeneity among studies (I² \leq 50%), we used the fixed effects model for data consolidation.While there is significant heterogeneity(I²>50%) between the results of the study, the random effects model for data analysis would be used.

Sensitivity analysis

Simultaneously, stata15.1 was used for sensitivity analysis, adopt the method of examining the impact of individual studies and eliminate them one by one, if the

value obtained is within the confidence interval on both sides, the result is stable.otherwise, they were regarded as unstable. Studies included in literature > 10 were used to detect publication bias by funnel chart.

RESULT

Literature screening

A total of 1108 related literature were obtained in the initial examination. After screening the literature one by one, a total of 1123 patients were included in 10 clinical studies¹⁰⁻¹⁹. The flow chart and the results of literature retrieval are shown in figure 1.

The basic characteristics of the inclusion study

For the inclusion study, the basic information for inclusion is completed using pre-developed forms (Tables 1, 2).

Study	State	Res earc h type	Cases (experime ntal/ control)	Ages(exper imental / control)	Follow-up time	Outcom
Olivier L. Chinot, M.D ^{2014[1} 0]	France	RCT	458/463	20-84/18-7 9	The last patient was hospitalize d for 17 months.	1and2year survival rates 、 safety and quality of life、 PFS 、 OS
Qianru Zhao ^{2016[} 11]	China	RCT	25/24	24-71/27-	The median follow-up time was 7.9 months	disease control rate median survival time、OS 、PFS
Ulrich Herrlinge r ^{2016[12]}	German y	RCT	116/54	25-78/26-7 8	Long-term follow-up until death	PFS-6、PFS、OS

Table 1: basic information for inclusion in the study

Page 7 of 29

German	RCT	320/317	>18	6 cycles	OS、 PFS
у					
Americ	Non-	57/79/23	30-77/24-82/19-78	>1year	OS、 PFS
а	RCT				
China	RCT	31/31	18-70/19-6	4 months	PFS6、DCR、Adver
			9		reaction
China	RCT	20/20	24-74	5. 2–18mon	PFS6、0S12
				ths	
China	RCT	27/27	53.6±9.7	6months-2y	RR、DCR、Adver
			/54.7±8.8	ears	reaction
	рст	70 /110	21 2 75 9/	12montho	OS、PFS、Advei
	KC I	70/110	31. 3-75. 8/	742months	
a			20. 5–90		reaction
Britain	RCT	60/60	43-69/43-7	6	0S、PFS、Adver
			1	months	reaction
	Table		h .		la manaku alu i
	y Americ a China China China Americ a	y Americ Non- RCT China RCT China RCT Americ RCT a Britain RCT	y Americ Non- 57/79/23 a RCT 20/20 China RCT 20/20 China RCT 20/20 China RCT 27/27 Americ RCT 70/110 a RCT 60/60	y Americ Non- 57/79/23 ^{30-77/24-82/19-78} RCT 20/20 18-70/19-6 9 China RCT 20/20 24-74 China RCT 27/27 53.6 ± 9.7 /54.7 ± 8.8 Americ RCT 70/110 31.3-75.8/ a 20.5-90 Britain RCT 60/60 43-69/43-7 1	y Americ Non- 57/79/23 ^{30-77/24-82/19-78} >1year a RCT 31/31 18-70/19-6 4 months 9 China RCT 20/20 24-74 5.2-18mon ths China RCT 27/27 53.6 ± 9.7 6months-2y /54.7±8.8 ears Americ RCT 70/110 31.3-75.8/ >42months a China RCT 70/110 31.3-75.8/ >42months Americ RCT 70/110 31.3-75.8/ >42months

Study	Male	Female	Open	Partial resectio	Complete	experimental/
			biopsy		resection	control
Olivier	282 (61.6)	176 (38.4)	60 (13.1)	210 (45.9)	188 (41.0)	Bevacizumab+
L. Chinot,	/298 (64.4)	/165 (35.6)	/44 (9.5)	/223 (48.2)	/196(42.3)	RT - TMZ/
M.D ²⁰¹⁴						Placebo+RT -
						TMZ

Qianru Zhao ²⁰¹⁶	14/12	11/12	/	15/16	10/8	BEV+TMZ/TMZ
Ulrich	80 (69. 0)	36(31.0)	0/2(3.7)	58 (50. 0) /2	58	BEV+IRI/TM
Herrlinge r ²⁰¹⁶	/34(63.0)	/20 (37. 0)		7 (50. 0)	(50.0)/25	
					(46. 3)	
Mark R.Gilbert 2016	/	/	/	/	/	Bevacizumab Placebo
Clara	30 (53) /45 (57/79/23	34 (60) /4	20 (35) /33 (3(5)/2(2))/	Bevacizumal
2014 Chen	57) /15 (65)	27 (47) / 34 (4 (56) /14	42) /9 (39)	0(0)	monotherap
		43) /8 (35)	(61)			/Bevacizuma
						combinatio
						/Nonbevaciz
						mab
Hualong	19/18	12/13	1	/	/	TMZ+BEV/TMZ
Li ²⁰²⁰						
Zhixian	22	18		18	22	BEV+TMZ/
Zhang	22	18	,	18	22	
Zhixian Zhang	22	18	,	18	22	
Zhixian Zhang 2018	22 16/14	18 11/13	, , ,	18	22	Gamma kni +TMZ/
Zhixian Zhang 2018 Jiaqi			, , ,	120	22	Gamma kni +TMZ/
Zhixian Zhang ²⁰¹⁸ Jiaqi Wang ²⁰¹³			/ / 2/23	120	22	Gamma kni +TMZ/ TMZ+BEV/TMZ
Zhixian Zhang ²⁰¹⁸ Jiaqi Wang ²⁰¹³ Albert	16/14	11/13		, 0		Gamma kni +TMZ/ TMZ+BEV/TMZ
Zhixian	16/14	11/13		, 0		Gamma kni +TMZ/ TMZ+BEV/TMZ RT+TMZ+BV/L
Zhixian Zhang ²⁰¹⁸ Jiaqi Wang ²⁰¹³ Albert	16/14	11/13		, 0		Gamma kni +TMZ/ TMZ+BEV/TMZ RT+TMZ+BV/U LA/KPLA

Risk of bias assessment

The results of the bias risk assessment included in the study are shown in figure 2.

Meta-analysis results

Progression-free survival

Six studies^{10,12-14,18-19} reported median progression-free survival (BEV group, n=1160) and Non-BEV group (n=1027).There was no significant difference in the heterogeneity test (I²=43%<50%), so the fixed effect model was used for data analysis.Results suggested that the median progression-free survival of gliomas treated with BEV was significantly longer than that of malignant gliomas treated with Non-BEV (HR=0.71, 95%CI, 0.65 to 0.79,P<0.00001), As shown in figure 3.

Ten studies¹⁰⁻¹⁹ compared PFS ratios at different follow-up between the Bev group and the Non-BEV group. There was a significant difference in the total heterogeneity test (I²=71%>50%), so the random effect model was used. Through the results found it was found that the PFS in the BEV group was higher than that in the Non-BEV group at 6 months (3.31, 95%CI 2.74 to 4.00, p<0.00001), 12 months (2.05, 95%CI 1.70 to 2.49, p<0.00001) and 18 months (1.31,95%CI 1.02 to 1.69, p=0.03).But at 24 months (0.83, 95%CI 0.50 to 1.37, p=0.47), P > 0.05, so there was no significant statistical difference between the two groups.At 30 months (0.62, 95%CI 0.39 to 0.97, p=0.04), 0.61 < 1, the diamond pattern falls on the group that supports Non-BEV group, so the PFS of the BEV group was lower than that of the Non-BEV group.as shown in figure 4.

Overall survival time

Six studies^{10,12-14,18-19} reported the median overall survival time, and there was a significant difference in the total heterogeneity test ($I^2=72\%>50\%$), so the random effect model was used. Results suggesting that there was no significant difference in median overall survival time between the BEV group and Non-BEV group (HR=0.93, 95%CI, 0.75 to 1.16,P=0.54), as shown in figure 5.

Six studies^{10,12-14,18-19} compared OS ratios at different follow-up between the Bev group and the Non-BEV group. there was no significant difference in the heterogeneity test (I²=38%<50%), so the fixed effect model was used for data analysis. Through the results found it was found that the OS in the BEV group was higher than that in the Non-BEV group at 6 months(1.41; 95%CI, 1.07-1.84; P=0.01),12 months(1.31; 95%CI, 1.09-1.58; P=0.005).But at18 months (0.95; 95%CI, 0.79-1.14; P=0.58), 24 months (1.10; 95%CI, 0.89-1.35; P=0.39), and 30 months (0.90; 95%CI, 0.69-1.18; P=0.44), P > 0.05, so there was no significant statistical difference between the two groups, as shown in figure 6.

Adverse reaction

As shown in figure7, there were six studies^{10-11,13-15} that compared adverse reactions between the BEV group and the Non-BEV group. There was a significant difference in the total heterogeneity test ($I^2=58\%>50\%$), and the random effect model was used. The results showed the combined OR values of hypertension, hemorrhage, cerebral hemorrhage, albuminuria, and thromboembolism as follows: hypertension (4.94, 95%CI 3.60 to 6.78, P<0.00001), hemorrhage (2.62, 95%CI 1.96 to 3.49, P<0.00001), cerebral hemorrhage (2.06, 95%CI 0.96 to 4.40, P=0.05), proteinuria (4.02, 95%CI 2.19 to 7.36, P<0.00001) and thromboembolism (1.73, 95%CI 0.93 to 3.23, P=0.09).Through the results found it was found that the adverse reactions in the BEV group was higher than that in the Non-BEV group .

Sensitivity analysis

The sensitivity test was used to evaluate the stability of OS, PFS, and adverse reactions in the included literature, which showed that all values remained in the confidence interval on both sides after one by one elimination. Hence, it can be concluded that all the included literature is stable, as shown in figures 8,9.

Publication bias

As shown in figures 10, the funnel chart was mainly concentrated at the top. Moreover, the symmetry was also proper, so it was concluded that the possibility of publication bias was small.

DISCUSSION

According to histopathological and clinical features, gliomas are divided into astrocytoma, oligodendroglioma, oligodendroglioma and ependymoma, which are the most common malignant tumors derived from neuroepithelium. Although the technical level of surgery, radiotherapy and chemotherapy²⁰ in the treatment of glioma has been greatly improved, but the recurrence rate and mortality rate are still high, so there is an urgent need for a new treatment. Glioma affects the body through a variety of pathophysiological processes, in which angiogenesis plays an important role in the occurrence and development of glioma, so blocking angiogenesis has become a new direction of treatment. Bevacizumab is an anti-(VEGF) antibody against vascular endothelial growth factor²¹, which acts mainly by competing against VEGF, and binding to VEGFR on the target cell membrane. Pope²² and other studies have shown that the high surface of VEGF affects blood vessel density and tumor grade. Some studies have shown that Ang2/Tie2^{23,24} and STAT3²⁵ are two important signal pathways in anti-angiogenic therapy, which play a good role in inhibiting peritumoral edema and the increase of neurological symptoms. In order to better understand the advantages and

BMJ Open

disadvantages of BEV on glioma, this study has a better understanding of the efficacy and safety of BEV through systematic review.

The results of our study showed that the PFS of BEV group was higher than that of Non-BEV group during the follow-up period of < 18 months, but when the follow-up time was 30 months, the PFS of BEV group was lower than that of Non-BEV; meanwhile, It was found that the OS in the BEV group was higher than that in the Non-BEV group at 6 months, 12 months, but after 12 months, there was no statistically significant difference between the BEV group and the non-BEV group. The study of Li YD²⁶ showed that the progression-free survival time at 24 months and 36 months in the bevacizumab group was lower than that in the non-bevacizumab group; The results of LiaoKL²⁷ showed that a higher incidence of PFS could be obtained by adding BEV to newly diagnosed GB, and this combined treatment did not improve OS. The AVAglio²⁸ trial showed that patients treated with bevacizumab had significant advantages in PFS (6.2 months vs. 10.6 months) and maintenance of life quality, but showed no advantages in OS (16.8 months vs. 16.7 months).2.2% of patients treated with bevacizumab confirmed false progression, compared with 9.3% of patients treated with non-bevacizumab.Vredenburgh²⁹ found in a single-group clinical phase 2 experimental study that the median PFS of bevacizumab combined with temozolomide and radiotherapy reached nearly twice the standard of 3-14 months, however the overall survival was not significant Improvement.Chinot³⁰ and Gilbert³¹ conducted phase 3 clinical trials with a placebo control group, the results showed that PFS increased by 40%-71% compared with the control group. Special related research on OS, Brandes³² and Wick³³ also found that BEV failed to improve OS of patients with glioma in a randomized study analyzing bevacizumab.From the above research, BEV can improve the PFS of glioma patients within 18 months, but the PFS of patients may be reduced after 30 months.It has no obvious significance to improve OS.

This study showed that after the application of BEV, there were five common adverse reactions: hypertension, hemorrhage, cerebral hemorrhage, albuminuria and thromboembolism. A phase II trial of Japanese³⁴ showed that the most common side effects were albuminuria, hypertension, hemorrhage, fever and epilepsy. Studies³⁵ showed that the incidence of adverse reactions above grade 3 was 27.1% to 46.4%, the most common events were thromboembolism, hypertension, epilepsy, fatigue and intestinal perforation. Zhang Li³⁶ searched 20 articles about adverse reactions caused by BEV, and found that the main adverse reactions were cardiovascular and hematological diseases. Norden³⁷ evaluated 64 glioma patients who received BEV anticoagulant therapy and 64 glioma patients who did not

receive anticoagulant therapy, The results showed that the incidence of intracranial hemorrhage and other bleeding in patients treated with anticoagulants was significantly higher than that in patients with BEV alone, but the incidence of severe intracranial hemorrhage was within an acceptable range. Therefore, when using bevacizumab clinically, it is necessary to closely observe drug adverse reactions, monitor blood pressure, coagulation function and other indicators, and deal with symptoms in time.

From the above research results, it can be concluded that long-term use of BEV does not increase the patient's PFS, BEV can improve the PFS of glioma patients within 18 months,but the PFS of patients may be reduced after 30 months. Nagham Kaka found³⁸ that BEV could have a role in the treatment of particular subgroups of patients with newly diagnosed GBM.Several studies^{39,40} have found that the median PFS of patients with methylation is longer than that of MGMT unmethylated tumors treated with RT and TMZ combined with BEV.Sandmann and colleagues⁴¹ found that BEV combined with standard TMZ and RT can improve the survival rate of neurotumors, while poorly differentiated mesenchymal tumors may make tumors resistant to BEV over time. Adilijiang and Colleagues⁴² found that treatment with BEV and TMZ results in the upregulation of certain microenvironment related genes in IDH1 mutant tumors in vitro, specifically those involving immune response and extracellular matrix organization.Therefore, The question of whether the limitation of BEV in the treatment of gliomas is due to fixed subsets deserves constant attention.

Studies have shown^{43,44} that antiangiogenic therapy can lead to a transition of glioma to a more aggressive phenotype.In retrospective analysis^{45,46} a trend toward enhanced infiltra-tive disease was seen in bevacizumab-treated glioma patients suggesting that enhanced tumor inhibition may be a conse-quence of VEGF signaling blockade.Shiao-Pei Weathers⁴⁷ shows that determining the best biological dose and the subgroup of patients most likely to obtain long-lasting benefits can improve the durability of bevacizumab.Victor A Levin⁴⁸ found treatment for recurrent GBM with BEV appears to improve survival at a dose lower than that in the FDA drug insert. Study⁴⁹ suggest that the higher dosage of BEV utilized may have impacted survival benefits.Animal models⁵⁰ also suggest that higher dose of anti-VEGF treatment, resulting in more hypoxia, may increase tumor aggressiveness.Ryota Tamura⁵¹ found that high doses and long-term use of anti-VEGF/VEGFR may lead to hypoxia.Shiao-Pei Weathers⁴⁷ proposed in tumors where excessive vascular pruning takes place, hypoxia exacerbated by antiangiogenic therapy is likely responsible for initiating a cascade of events. As

BMJ Open

mentioned above, there are many possible reasons for the limited efficacy of antiangiogenic therapy.But The lack of a long-lasting response to current antiangiogenic treatment underscores the need for a better understanding of how to use antiangiogenic therapy to optimize radiation and chemotherapy treatments.

CONCLUSIONS

The evidence suggests that BEV can significantly prolong the PFS of patients with glioma within 18 months and shorten the PFS of patients after 30 months. This limitation may be related to the subgroup of patients, the change of recurrence mode, the optimal dose of drug, the increase of hypoxia, the enhancement of invasiveness and so on.BEV treatment has no obvious meaning in improving OS, and it has some side effects, which are acceptable, but we still need to pay close attention to it and take active measures to reduce the side effects.Therefore, it is necessary to carry out more samples and higher quality large-scale research in the future.

Declaration:

Contributors WH、FXXandZXP contributed to conception and design. WK、MST and YYF contributed to data acquisition or analysis and interpretation of data. WH、FXX、ZXP、WK、MSTandYYFwere involved in drafting the manuscript or revising it critically for important intellectual content. All authors have given final approval of the version to be published.

Funding This work was supported by Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, reward/grant number is 2020-ZXY-007.

Ethics Approval This study belongs to data research and is not applicable to ethical review.

Competing interests None declared.

Patient and PublicInvolvement No patient involved.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing All data relevant to the study are included in the article or uploaded as supplementary information.

All the illustrations are as follows:
Figure 1: document screening process and results
PubMed (n=259), The Cochrane Library (n=153), EMbase (n=155), CNKI (n=118),
CBM (n=358), WanFang (n=65).
Figure 2: bias risk assessment form
Figur 3:HR of median PFS in BEV group and Non-BEV group in the treatment of glioma

Figur 4:OR of PFS at each follow-up time in BEV group and Non-BEV group in the treatment of glioma

Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma

Figure 6: OR of OS at each follow-up time in the treatment of glioma in the BEV group and Non-BEV group

Figure 7: OR of adverse reactions in the treatment of glioma in the BEV group and Non-BEV group

Figure 8:A: the sensitivity analysis of PFS6 ;B: the sensitivity analysis of PFS12; C:the sensitivity analysis of PFS18;D:the sensitivity analysis of PFS24;E:the sensitivity analysis of PFS30

Figure 9:A: the sensitivity analysis of OS6 ;B: the sensitivity analysis of OS12; C:the sensitivity analysis of OS18;D:the sensitivity analysis of OS24;E:the sensitivity analysis of OS30

Figure 10:A: funnel chart of PFS at each follow-up time;B: funnel chart of OS at each follow-up time

REFERENCES

 1 Brem S,Tsanaclis AM,Gately S,et al.Immunolocalization of basic fibroblast growth factor to the microvasculature of human brain tumors. Cancer 1992; 70: 2673-80.

2 Xia S,Lal B,Tung B,et al.Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation.Neuro Oncol 2015;18:507 -517.

3 Stupp R,Pavlidis N,Jelic S,et al.ESMO Minimum Clinical Recommendations for diagnosis, treatment and follow-up of malignant glioma. Ann Oncol 2005; 16 Suppl 1:i64-5.

4 Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration' s tool for assessing risk of bias in randomised trials. BMJ 2011; 343:d5928.

5 Sweet JA, Feinberg ML, Sherman JH. The role of avastin in the management of recurrent glioblastoma. Neurosurg Clin N Am 2012;23:331-341.

6 Cohen MH, Shen YL, Keegan P, et al. FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme.Oncologist 2009;14:1131-1138.

7 Kreisl TN,Kim L,Moore K,et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 2009; 27:740 - 5.

8 Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in combination with irinotecan in recur-rent glioblastoma. J Clin Oncol 2009; 27:4733 - 40.

9 Gs HJP. Cochrane handbook for systematic reviews of interventions version 5.1.0 (updated March 2011).Naunyn-Schmiedebergs Archiv f ü r Experimentelle Pathologie und Pharmakologie 2014;5:S38.

10 Olivier L. Chinot, M.D., Wolfgang Wick, M.D., Warren Mason, et al.Bevacizumab plus Radiotherapy-Temozolomide for Newly Diagnosed Glioblastoma.The New England Journal of Medicine 2014; 370:709-722.

11 Zhao Qianru. Efficacy and safety of bevacizumab combined with temozolomide in the treatment of recurrent malignant gliomas. Zhengzhou University, 2016.

12 Ulrich Herrlinger, Niklas Schäfer, Joachim P, et al. Bevacizumab Plus Irinotecan Versus Temozolomide in Newly Diagnosed O6-Methylguanine-DNA Methyltransferase Nonmethylated Glioblastoma: The Randomized GLARIUS Trial. Journal of clinical oncology 2015; 63:4691.

13 Mark R. Gilbert, James J. Dignam, Terri S. Armstrong, et al. A Randomized Trial of Bevacizumab for Newly Diagnosed Glioblastoma. The New England Journal of Medicine 2014;370:699-708.

14 Clara Chen,rliene Ravelo,Elaine Yu,et al.Clinical outcomes with bevacizumab-containing and non-bevacizumab - containing regimens in patients with recurrent glioblastoma from US community practices.CLINICAL STUDY 2015;DOI 10.1007/s11060-015-1752-y.

15 Li Hualong, Qiang Ming, Huang Xiaoqin, et al. Efficacy of bevacizumab combined with temozolomide in the treatment of malignant recurrent gliomas. Anhui Medicine,2020;41:66-68.

16 Zhang Zhixian, Gu Hou, Lin Jian, et al.Clinical efficacy of gamma knife combined with bevacizumab in the treatment of postoperative malignant gliomas. Journal of Kunming Medical University 2018;39:33-37.

17 Wang Jiaqi, Liang Yong, Ouyang Zheng, et al. Clinical analysis of bevacizumab combined with temozolomide in the treatment of glioblastoma. Oncology Pharmacy 2013;3:274-277.

18 Albert Lai,Anh Tran,Phioanh L,et al.Phase II Study of Bevacizumab Plus Temozolomide During and After Radiation Therapy for Patients With Newly Diagnosed Glioblastoma Multiforme.JOURNAL OF CLINICAL ONCOLOGY 2010;30:2709.

19 Chauffert B, Feuvret L, Bonnetain F, et al. Randomized phase II trial of irinotecan and bevacizumab as neo-adjuvant and adjuvant to temozolomide-based

chemoradiation compared with temozolomide-chemoradiation for unresectable glioblastoma: final results of the TEMAVIR study from ANOCEF. Annals of Oncology Official Journal of the European Society for Medical Oncology 2014;25:1442.

20 Lu Yuntao, Qi Songtao, Ouyanghui, et al. Surgical and therapeutic strategies for recurrent malignant gliomas in refractory sites.Chinese Journal of Modern Neurological Diseases 2012;12 (6): 682-690.

21 Cheng Haixia, Wang Yin. Hair cell astrocytoma with vascular central arrangement: case report and literature review. Chinese Journal of Modern Neurology. 2013;13:342-348.

22 Pope WB,Xia Q,Paton VE,et al.Patterns of progression in patients with recurrent glioblastoma treated with bevacizumab.Neurology 2011;76:432-437.

23 Park JS,Kim IK,Han S,et al.Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 2016;30:953—967.

24 Labussiare M,Cheneau C,Prahst C,et al.Angiopoietin-2 may be involved in the resistance to bevacizumab in recurrent glioblastoma. Cancer Invest 2016; 34:39-44.

25 Groot J,Liang J,Kong LY,et al . Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma.Oncotarget 2012;3(9):1036-1048.

26 Li Y,Hou M,Lu G,et al.The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016,11:e0168264.

27 Liao KL,Huang S,Wu YP.The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520.

28 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5.

29 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2012;82:58-66.

30 Chinot OL,Wick W,Mason W,et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22.

31 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708.

32 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al. Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22.

33 Wick, W.,Brandes, A.A.,Gorlia, T.,et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1.

34 Friedman HS, Prados MD, Wen PY, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol.2009;27:4733 - 40.

35 Nagane M,Nishikawa R,Narita Y,et al.Phase II study of single-agent bevacizumab in Japanese patients with recurrent malignant glioma.Jpn J Clin Oncol 2012;42:887 - 95.

36 Zhang Li. Statistical analysis of adverse reactions caused by bevacizumab. Clinical Medical Engineering 2012;19:129-130.

37 Norden AD,Bartolomeo J,Tanaka S,et al.Safety of concurrent bevacizumab therapy and anticoagulation in glioma patients. J Neurooncol 2011;106:121-125.

38 Nagham Kaka,Karim Hafazalla,Haider Samawi,et al.Progression-Free but No Overall Survival Benefit for Adult Patients with Bevacizumab Therapy for the Treatment of Newly Diagnosed Glioblastoma:A Systematic Review and Meta-Analysis.Cancers 2019;11:1723.

39 Chinot, O.L.;Wick, W.;Mason, W.;et al.Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma.New Engl. J. Med 2014;370:709 - 722.

40 Gilbert, M.R.;Dignam, J.J.;Armstrong, T.S.;et al.A randomized trial of bevacizumab for newly diagnosed glioblastoma. New Engl.J.Med 2014;370:699 - 708.

41 Phillips, H.S.;Kharbanda, S.;Chen, R.;et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis.Cancer Cell 2006;9:157 – 173.

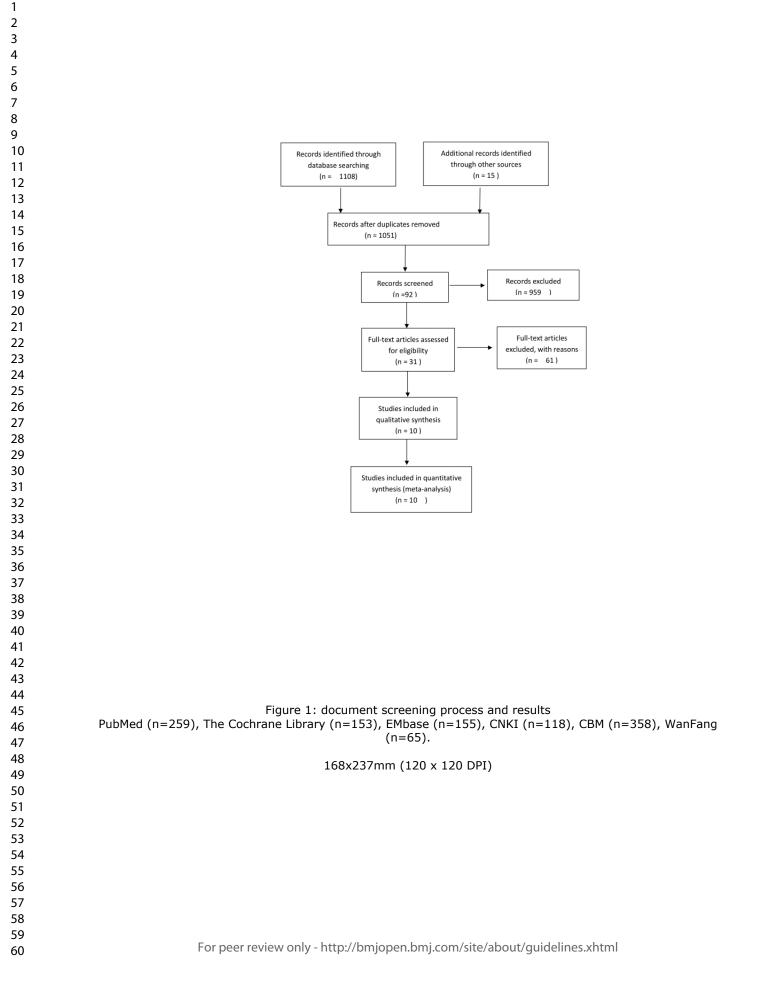
42 Adilijiang, A.;Hirano, M.;Okuno, Y.;et al.Next generation sequencing-based transcriptome predicts bevacizumab efficacy in combination with temozolomide in glioblastoma. Molecules 2019;24:3046.

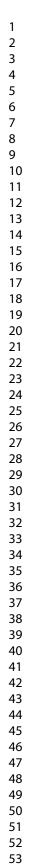
43 Piao Y , Liang J, Holmes L, et al. Acquired resistance to anti-VEGF therapy in glioblastoma is associated with a mesenchymal transi-tion.Clin Cancer Res 2013;19:4392 - 403.

44 Lu KV , Chang JP , Parachoniak CA, et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex.Cancer Cell 2012;22:21 - 35.

45 Norden A,Young G,Setayesh K,et al.Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence.Neurology 2008;70:779 - 87.

46 Soda Y,Myskiw C,Rommel A, V erma I. Mechanisms of neovas- cularization and resistance to anti-angiogenic therapies in glioblas-toma multiforme. J Mol Med (Berl) 2013;91:439 - 48.


47 Shiao-Pei Weathers, John de Groot.Resistance to Antiangiogenic Therapy.Curr Neurol Neurosci Rep 2014;14:443.


48 Victor A.Levin, Nancy D, et al. Mendelssohn, James Chan. Impact of bevacizumab administered dose on overall survival of patients with progressive glioblastoma. J Neurooncol 2015;122:145-50.

49 Lorgis V,Maura G,Coppa G,et al.Rela-tion between bevacizumab dose intensity and high-grade glioma survival: a retrospective study in two large cohorts.J NeuroOncol 2012,107:351–358.

50 Keunen O,Johansson M,Oudin A,et al.Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA Proc Natl Acad Sci U S A 2011;108:3749-54.

51 Ryota Tamura, Toshihide Tanaka, Yasuharu Akasaki, et al. The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications...Med Oncol 2019;37:2.

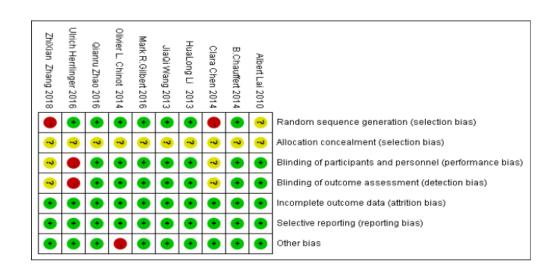


Figure 2: bias risk assessment form

21 of 29			B	SMJ Op	pen			
					Hazard Ratio		rd Ratio	
	Study or Subgroup Albert Lai 2010 B.Chauffert 2014 Clara Chen 2014 Mark R.Gilbert 2016 Olivier L. Chinot 2014 Ulrich Herrlinger 2016	log[Hazard Ratio] -0.0513 -0.1985 -0.4463 -0.2357 -0.4463 -0.5621	0.1632 0.1855 0.266 0.0917 0.0773	Weight 9.3% 7.2% 3.5% 29.6% 41.6% 8.8%	0.64 [0.38, 1.08] 0.79 [0.66, 0.95] 0.64 [0.55, 0.74]	N, Fix:	ed, 95% Cl	
	Total (95% CI) Heterogeneity: Chi ^a = 8. Test for overall effect: Z	80, df = 5 (P = 0.12); = 6.81 (P < 0.00001)	I² = 43%	100.0%	0.71 [0.65, 0.79]	L L 0.01 0.1 Favours BE	1 10 V Favours No	100 In-BEV
	Figur 3:HR of med					p in the treat	ment of g	lioma
		140)x44mr	n (120) x 120 DPI)			

1	
2 3	
4	
5	
6	
7	BEV Non-BEV Odds Ratio Odds Ratio Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl M-H, Random, 95% Cl
8	1.3.1 6pfs Albert Lai 2010 62 70 64 110 3.6% 5.57 [2.43, 12.75]
9	B.Chauffert 2014 37 60 25 60 3.9% 2.25 [1.08, 4.68]
10	JiaQi Wang 2013 21 27 17 27 2.5% 2.06 [0.62, 6.82] Mark R. Gilbert 2016 241 311 163 309 5.4% 3.08 [2.18, 4.36]
11	Olivier L. Chinot 2014 366 458 247 463 5.6% 3.48 [2.60, 4.66]
12	Ultrich Herrlinger 2016 89 116 21 54 4.1% 5.18 [258, 10.39] ZhiXian Zhang 2018 9 20 6 20 2.2% 1.91 [0.52, 7.01]
13	Subtotal (95% CI) 1118 1098 32.3% 3.31 [2.74, 4.00] ♦
14	Heterogeneity: Tau ² = 0.00; Chi ² = 6.61, df = 8 (P = 0.58); i ² = 0%
15	Test for overall effect: Z = 12.43 (P < 0.00001)
16	1.3.2 12pfs Albert Lai 2010 40 70 40 110 4.4% 2.33 [1.26, 4.30]
17 18	B.Chauffert 2014 18 60 10 60 3.4% 2.14 [0.89, 5.14]
19	Mark R. Gilbert 2016 133 311 96 309 5.5% 1.66 [1.19, 2.30] Olivier L. Chinot 2014 189 458 110 463 5.6% 2.25 [1.70, 2.99]
20	Ulrich Herrlinger 2016 35 116 8 54 3.5% 2.48 [1.06, 5.81] Subtotal (95% CI) 1151 1019 24.3% 2.05 [1.70, 2.49] ♦
21	Total events 445 266
22	Heterogeneity: Tau ² = 0.00; Chi ² = 2.64, df = 5 (P = 0.76); l ² = 0% Test for overall effect: Z = 7.39 (P < 0.00001)
23	1.3.3 18pfs
24	Albert Lai 2010 17 70 26 110 4.1% 1.04 [0.51, 2.09] B.Chauffert 2014 9 60 7 60 2.8% 1.34 [0.46, 3.86]
25	Mark R.Gilbert 2016 59 311 54 309 5.2% 1.11 [0.74, 1.66]
26	Ulrich Herrlinger 2016 10 116 3 54 2.2% 1.60 [0.42, 6.08] Subtotal (95% CI) 1015 996 19.5% 1.31 [1.02, 1.69]
27	Total events 166 137 Heterogeneity: Tau [#] = 0.00; Chi [#] = 2.33, df = 4 (P = 0.68); i [#] = 0%
28	Test for overall effect: $Z = 2.12$ (P = 0.03)
29	1.3.4 24pfs
30	Albert Lai 2010 11 70 22 110 3.7% 0.75 [0.34, 1.65] B.Chauffert 2014 3 60 1 60 1.0% 3.11 [0.31, 30.73]
31	Mark R.Gilbert 2016 17 311 27 309 4.3% 0.60 [0.32, 1.13] Olivier L. Chinot 2014 13 458 8 463 3.4% 1.66 [0.68, 4.05]
32	Ulrich Herrlinger 2016 5 116 5 54 2.3% 0.44 [0.12, 1.59] Subtotal (95% CI) 1015 996 14.6% 0.83 [0.50, 1.37]
33	Total events 49 63 Heterogeneity: Tau² = 0.09; Chi² = 5.56, df = 4 (P = 0.23); I² = 28%
34 35	Test for overall effect: Z = 0.73 (P = 0.47)
36	1.3.5 30pfs Albert Lai 2010 7 70 20 110 3.3% 0.50 [0.20, 1.25]
37	Mark R.Gilbert 2016 25 311 37 309 4.7% 0.64 [0.38, 1.10] Olivier L. Chinot 2014 1 458 0 463 0.5% 3.04 [0.12, 74.80]
38	Ulrich Herrlinger 2016 1 116 1 54 0.7% 0.46 (0.03, 7.51)
39	Total events 34 58
40	Heterogeneity: Tau ² = 0.00; Chi ² = 1.22, df = 3 (P = 0.75); l ² = 0% Test for overall effect: Z = 2.09 (P = 0.04)
41	Total (95% CI) 5254 5045 100.0% 1.73 [1.35, 2.20]
42	Total events 1543 1079 Heterogeneity: Tau" = 0.26; Chi" = 102.12, df = 28 (P < 0.00001); I" = 73% 0.01 0.1 1 10 100
43	Test for overall effect. Z = 4.38 (P < 0.0001) Test for subaroup differences: Chi ² = 75.92. df = 4 (P < 0.00001). I ² = 94.7%
44	
_	FS at each follow-up time in BEV group and Non-BEV group in the treatment of glioma
46	150x223mm (120 x 120 DPI)
47	
48 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60 F	or peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	
3 4 5	
4 5 6 7	
8 9 10	
11 12	
13 14 15	
16 17 18	
19	
20 21 22 23	
24 25	
26 27 28	
29 30 31	
32 33	
34 35 36	
36 37 38 39	
40 41	
42 43 44	
45 46	
47 48 49	
50 51 52	
53 54	
55 56	

60

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Random, 95% Cl	Hazard Ratio IV, Random, 95% Cl
Albert Lai 2010	0.3507	0.1738	15.8%	1.42 [1.01, 2.00]	-8-
B.Chauffert 2014	-0.3567	0.2032	13.9%	0.70 [0.47, 1.04]	
Clara Chen 2014	-0.6733	0.254	11.0%	0.51 [0.31, 0.84]	
Mark R.Gilbert 2016	0.1222	0.0994	21.3%	1.13 [0.93, 1.37]	+
Olivier L. Chinot 2014	-0.1278	0.0748	23.0%	0.88 [0.76, 1.02]	
Ulrich Herrlinger 2016	0.0198	0.1848	15.0%	1.02 [0.71, 1.47]	+
Total (95% CI)			100.0%	0.93 [0.75, 1.16]	•
Heterogeneity: Tau ² = 0.		5 (P = 0.	.003); I² =	72%	
Test for overall effect: Z =	= 0.61 (P = 0.54)				Favours BEV Favours Non-BEV

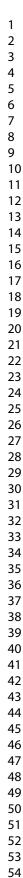
Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma

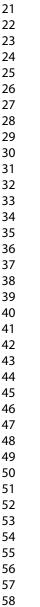
144x44mm (120 x 120 DPI)

1							
2							
3							
4							
5							
6		BEV	Non-BE	v		Odds Ratio	Odds Ratio
7	Study or Subgroup 1.4.1 6os	Events Tota	al Events 1	fotal	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
8	Albert Lai 2010	70 7	0 97	110	0.1%	19.52 [1.14, 333.90]	
9	B.Chauffert 2014 Mark R.Gilbert 2016	42 6 263 31		60 309	1.6% 5.0%	1.00 [0.46, 2.18] 1.16 [0.76, 1.78]	
10	Olivier L. Chinot 2014	421 45	8 405	463	4.1%	1.63 [1.06, 2.52]	
11	Ulrich Herrlinger 2016 Subtotal (95% Cl)	109 11 101		54 996	0.5% 11.2%	0.92 [0.23, 3.69] 1.41 [1.07, 1.84]	•
12	Total events	905	850				
13	Heterogeneity: Chi ² = 5. Test for overall effect: Z :			%			
14	1.4.2 12os						
15	Albert Lai 2010	59 7		110	1.3%	1.74 [0.80, 3.79]	+
16	B.Chauffert 2014 Clara Chen 2014	26 6 46 13		60 23	2.0% 0.3%	0.87 [0.43, 1.79] 5.37 [1.21, 23.89]	
17	Mark R.Gilbert 2016	200 31	1 192	309	8.6%	1.10 [0.79, 1.52]	+
18	Olivier L. Chinot 2014 Ulrich Herrlinger 2016	322 45 98 11		463 54	10.9% 1.1%	1.37 [1.04, 1.81] 1.56 [0.69, 3.51]	
19	Subtotal (95% CI) Total events	115 751	1 ⁴ 640	1019	24.2%	1.31 [1.09, 1.58]	•
20	Heterogeneity: Chi ² = 6.3	57, df = 5 (P = 0	0.25); l² = 249	%			
21	Test for overall effect: Z	= 2.82 (P = 0.00	35)				
22	1.4.3 18os		0 07	440	0.0%	0.70.10.40.4.40	
23	Albert Lai 2010 B.Chauffert 2014	38 7 17 6		110 60	3.0% 1.2%	0.76 [0.42, 1.40] 1.43 [0.62, 3.29]	
24	Mark R.Gilbert 2016 Olivier L. Chinot 2014	99 31 203 45		309 463	9.6% 14.0%	0.82 [0.59, 1.15] 1.04 [0.80, 1.35]	
25	Ulrich Herrlinger 2016	46 11	6 22	54	2.3%	0.96 [0.49, 1.85]	+
26	Subtotal (95% CI) Total events	101 403	5 415	996	30.0%	0.95 [0.79, 1.14]	•
27	Heterogeneity: Chi ^z = 2.	61, df = 4 (P = 0	0.63); I² = 0%				
28	Test for overall effect: Z :	= 0.55 (P = 0.58	3)				
29	1.4.4 24os		0 50	110	2.400	0.65 (0.20, 4.02)	
30	Albert Lai 2010 B.Chauffert 2014	22 7 9 6		110 60	3.4% 0.3%	0.55 [0.29, 1.03] 3.35 [0.86, 13.07]	
31	Mark R.Gilbert 2016 Olivier L. Chinot 2014	47 31 139 45		309 463	5.3% 10.3%	0.92 [0.60, 1.42] 1.27 [0.95, 1.70]	-+
32	Ulrich Herrlinger 2016	28 11	6 11	54	1.4%	1.24 [0.57, 2.73]	<u>+</u>
33	Subtotal (95% CI) Total events	101 245	5 232	996	20.7%	1.10 [0.89, 1.35]	Ť
34	Heterogeneity: Chi ² = 8.	97, df = 4 (P = 0	0.06); i² = 559	%			
35	Test for overall effect: Z :	= 0.85 (P = 0.3)	a)				
36	1.4.5 30os Mark R.Gilbert 2016	53 31	1 68	309	7.1%	0.73 [0.49, 1.09]	
37	Olivier L. Chinot 2014	61 45	8 53	463	5.7%	1.19 [0.80, 1.76]	+-
38	Ulrich Herrlinger 2016 Subtotal (95% Cl)	6 11 88		54 826	1.0% 13.8 %	0.44 [0.13, 1.42] 0.90 [0.69, 1.18]	•
39	Total events	120 15 - 16 - 2 (D - 6	127	v			
40	Heterogeneity: Chi ² = 4. Test for overall effect: Z			20			
40 41	Total (95% CI)	508	1 4	1833	100.0%	1.11 [1.01, 1.22]	
42	Total events	2424	2264				
42 43	Heterogeneity: Chi ² = 37 Test for overall effect: Z:			38%			0.01 0.1 1 10 100 Favours Non-BEV Favours BEV
43	Test for subaroup differe	ences: Chi ² = 1	1.10. df= 4 (P = 0.0	03). 2 = 6	i4.0%	
	OS at each foll	ow-up tir	no in th	no ti	roatm	ent of aliom	a in the BEV group and Non-BEV group
45 Higure 0. OK 01 46		ow-up in	ne in u		leath	lent of ghom	
40		1	L48x206	5mr	n (12	0 x 120 DPI)
48							
49							
50							
51							
52							
53							
55							
55							
55 56							
50							
58							
58 59							
59	For neer review	v only - h	ttn·//hn	nior	oen h	mi com/site/	about/quidelines.xhtml

Odds Ratio

M-H, Random, 95% Cl


+


•

1	
2	
3	
4	
5	
6	BEV Non-BEV Odds Ratio
7	BEV Non-BEV Odds Ratio _ Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl
8	1.5.1 hypertension
9	Clara Chen 2014 12 42 1 42 2.3% 16.40 [2.02, 133.08] HuaLong Li 2013 32 31 31 31 Not estimable
10	Mark R.Gilbert 2016 15 311 3 309 5.0% 5.17 [1.48, 18.04]
11	Olivier L. Chinot 2014 181 458 57 463 13.1% 4.65 [3.33, 6.50] Qianru Zhao 2016 5 25 0 24 1.2% 13.15 [0.69, 252.16]
12	ZhiXian Zhang 2018 5 20 0 20 1.2% 14.55 [0.75, 283.37]
13	Subtotal (95% Cl) 887 889 22.9% 4.94 [3.60, 6.78] Total events 250 92
14	Heterogeneity: Tau ² = 0.00; Chi ² = 2.35, df = 4 (P = 0.67); I ² = 0%
15	Test for overall effect: Z = 9.92 (P < 0.00001)
	1.5.2 hemorrhage
16	Clara Chen 2014 2 42 0 42 1.2% 5.25 [0.24, 112.66] Mark R.Gilbert 2016 8 311 3 309 4.6% 2.69 [0.71, 10.25]
17	Olivier L. Chinot 2014 171 458 88 463 13.5% 2.54 [1.88, 3.43]
18	Qianru Zhao 2016 3 25 0 24 1.2% 7.62 [0.37, 155.87] ZhiXian Zhang 2018 3 20 0 20 1.2% 8.20 [0.40, 169.90]
19	Subtotal (95% Cl) 856 858 21.6% 2.62 [1.96, 3.49]
20	Total events 187 91 Heterogeneity: Tau² = 0.00; Chi² = 1.27, df = 4 (P = 0.87); l² = 0%
21	Test for overall effect: $Z = 6.54$ (P < 0.00001)
22	1.5.2 hamatancanhalan
23	1.5.3 hematencephalon Albert Lai 2010 3 70 1 110 2.0% 4.88 [0.50, 47.88]
24	Clara Chen 2014 2 42 0 42 1.2% 5.25 [0.24, 112.66]
25	Olivier L. Chinot 2014 15 458 9 463 7.9% 1.71 [0.74, 3.94] Subtotal (95% Cl) 570 615 11.1% 2.06 [0.96, 4.40]
26	Total events 20 10
27	Heterogeneity: Tau² = 0.00; Chi² = 1.10, df = 2 (P = 0.58); l² = 0% Test for overall effect: Z = 1.86 (P = 0.06)
28	
29	1.5.4 Albuminuria Clara Chen 2014 9 42 0 42 1.3% 24.10 [1.35, 429.25]
30	HuaLong Li 2013 19 31 12 31 6.5% 2.51 [0.90, 6.97]
31	Olivier L. Chinot 2014 72 458 19 463 11.1% 4.36 [2.58, 7.36] Subtotal (95% Cl) 531 536 18.9% 4.02 [2.19, 7.36]
32	Total events 100 31
33	Heterogeneity: Tau² = 0.07; Chi² = 2.46, df = 2 (P = 0.29); l² = 19% Test for overall effect: Z = 4.50 (P < 0.00001)
	(r < 0.00001)
34	1.5.5 Thromboembolism Clara Chen 2014 11 42 1 42 2.3% 14.55 [1.78, 118,76]
35	Clara Chen 2014 11 42 1 42 2.3% 14.55 [1.78, 118.76] HuaLong Li 2013 0 31 0 31 Not estimable
36	Mark R.Gilbert 2016 33 311 22 309 10.7% 1.55 [0.88, 2.72]
37	Olivier L. Chinot 2014 65 458 50 463 12.5% 1.37 [0.92, 2.03] Subtotal (95% Cl) 842 845 25.5% 1.73 [0.93, 3.23]
38	Total events 109 73
39	Heterogeneity: Tau² = 0.16; Chi² = 4.82, df = 2 (P = 0.09); l² = 58% Test for overall effect: Z = 1.72 (P = 0.09)
40	
41	Total (95% Cl) 3686 3743 100.0% 3.18 [2.26, 4.49] Total events 666 297
42	Heterogeneity: Tau ² = 0.21; Chi ² = 42.63, df = 18 (P = 0.0009); l ² = 58%
43	Test for overall effect: Z = 6.60 (P < 0.00001) Test for subaroup differences: Chi² = 14.72. df = 4 (P = 0.005). I² = 72.8%
44	
45	Figure 7: OR of adverse reactions in the treatment of glioma in th
46	
47	150x196mm (120 x 120 DPI)
48	
49	
50	
51	
52	
53	
54	
55	
56 57	
57	
58	

	Clara Chen 2014 HuaLong Li 2013	11 0	42 31	1 0	42 31	2.3%	14.55 [1.78, 118.76] Not estimable	
	Mark R.Gilbert 2016	33	311	22	309	10.7%	1.55 [0.88, 2.72]	
	Olivier L. Chinot 2014		458	50	463	12.5%	1.37 [0.92, 2.03]	-
	Subtotal (95% CI)	05	842	50	845	25.5%	1.73 [0.93, 3.23]	•
	Total events	109	042	73	045	20.070	11 9 [0.00, 0.20]	·
	Heterogeneity: Tau ² = 0.1		4 82 df		n nav-	IZ- 58%		
	Test for overall effect: Z =			- 2 (i -	0.03/,	1 - 30 %		
		1.120 -	0.00)					
	Total (95% CI)		3686		3743	100.0%	3.18 [2.26, 4.49]	•
	Total events	666		297				
	Heterogeneity: Tau ² = 0.2	1; Chi = =	42.63, 0	df = 18 (F	P = 0.0	009); I ² = 5	58%	
	Test for overall effect: Z =							Favours BEV Favours Non-BEV
	Test for subaroup differer	nces: Chi	² = 14.7	2. df = 4	(P = 0.	.005). I² =	72.8%	
re 7:	OR of adverse re	eactio	ns in	the t	trea	tment	of glioma in tl	he BEV group and Non-BEV group
			1	50x1	96m	ım (12	0 x 120 DPI)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

59

60

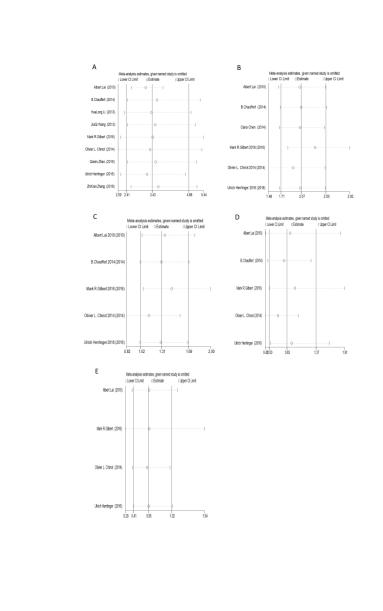
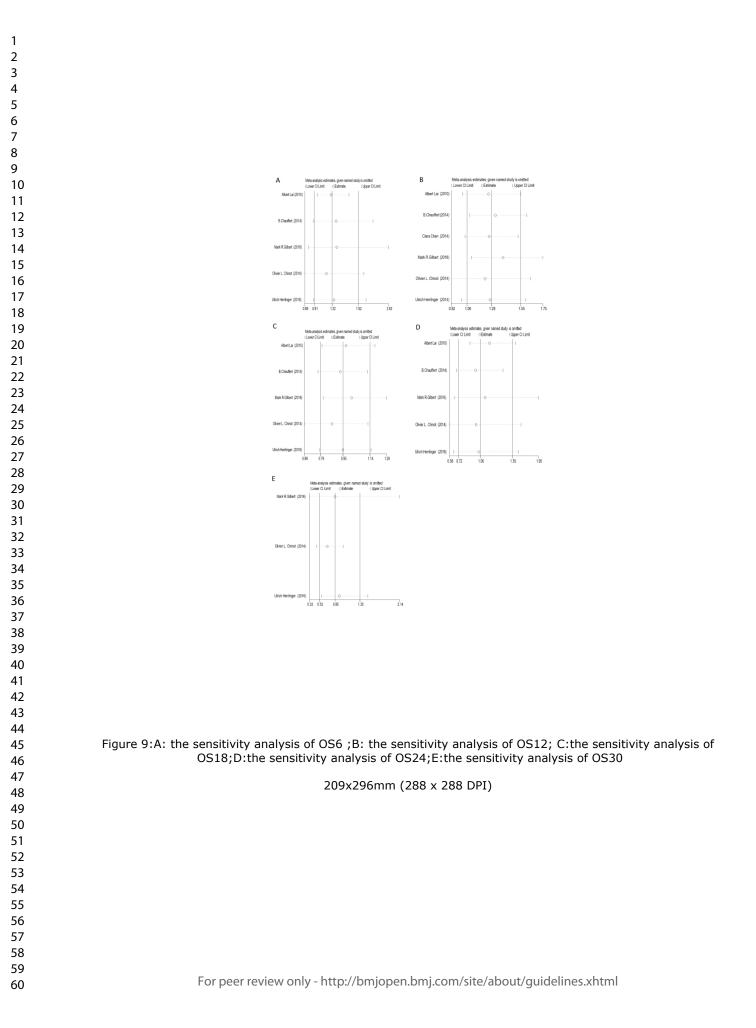
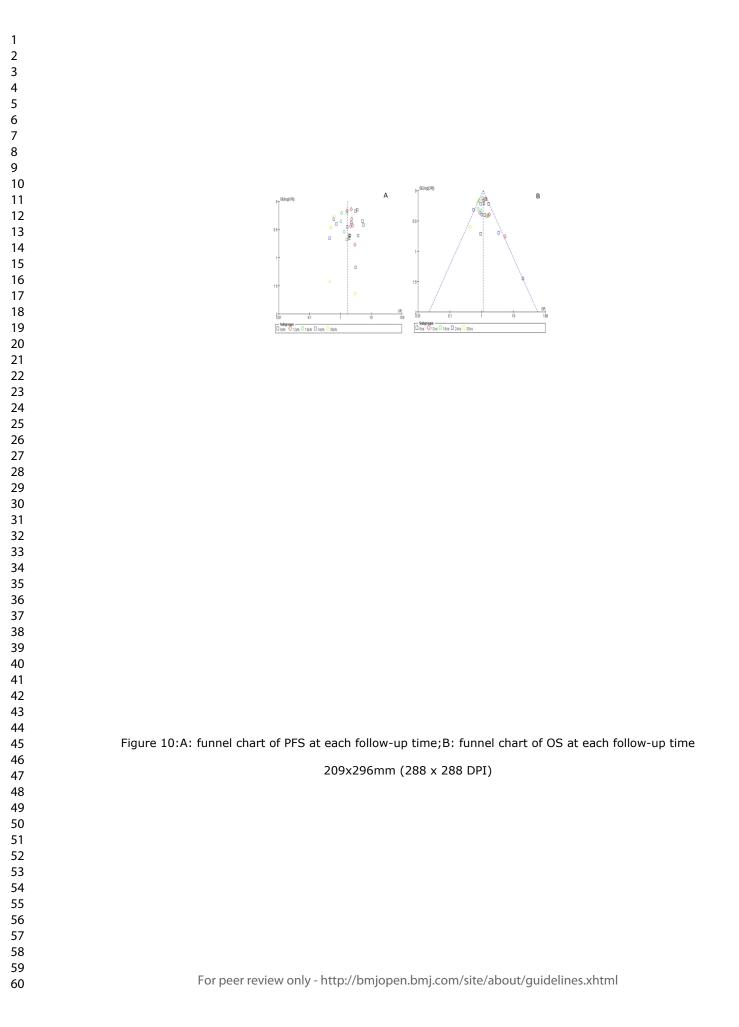




Figure 8:A: the sensitivity analysis of PFS6 ;B: the sensitivity analysis of PFS12; C:the sensitivity analysis of PFS18;D:the sensitivity analysis of PFS24;E:the sensitivity analysis of PFS30

209x296mm (288 x 288 DPI)

PRISMA 2020 Checklist

Section and Topic	ltem #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	1
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	1
INTRODUCTION			-
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	2
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	2
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	3
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	3
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	13-14
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	3
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	4
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	4
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	9
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	4
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	4
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	3
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	4
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	4
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	4
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	4-5
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	4-5
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	4
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	4-5

BMJ Open

PRISMA 2020 Checklist

Section and Topic	ltem #	Checklist item	Location where item is reported				
RESULTS			5				
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies inclute the review, ideally using a flow diagram.					
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	5				
Study characteristics	17	Cite each included study and present its characteristics.					
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	5				
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	5-6				
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	6				
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	6				
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	6				
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	6				
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	6				
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	6				
DISCUSSION							
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	7-8				
	23b	Discuss any limitations of the evidence included in the review.	7-8				
	23c	Discuss any limitations of the review processes used.	7-8				
	23d	Discuss implications of the results for practice, policy, and future research.	8				
OTHER INFORMA	TION						
Registration and	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	9				
protocol	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	9				
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	9				
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	9				
Competing interests	26 Declare any competing interests of review authors.						
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	9				

44 *From:* Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 45 10.1136/bmj.n71 For peer review only - http://bmjonen.bmj.com/site/about/guidelines.yhtml For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml For more information, visit: <u>http://www.prisma-statement.org/</u>

BMJ Open

Efficacy and safety of bevacizumab in the treatment of adult gliomas:a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-048975.R2
Article Type:	Original research
Date Submitted by the Author:	19-Aug-2021
Complete List of Authors:	Wang, huan; Xi'an Jiaotong University Medical College First Affiliated Hospital, Guo, Jianxin; Xi'an Jiaotong University Medical College First Affiliated Hospital Wang, Tianze; Xi'an Jiaotong University wang, kai; Shaanxi University of Chinese Medicine Wu, Zhuojun; Xi'an Jiaotong University Medical College First Affiliated Hospital Sun, Tianze; Xi'an Jiaotong University Medical College First Affiliated Hospital
Primary Subject Heading :	Oncology
Secondary Subject Heading:	Patient-centred medicine
Keywords:	NEUROSURGERY, ONCOLOGY, Head & neck tumours < ONCOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Efficacy and safety of bevacizumab in the treatment of adult gliomas:a systematic review and meta-analysis

Wang Huan¹ Guo Jianxin¹ Wang Tianze² Wang Kai³ Wu Zhuojun¹ Sun Tianze¹

1. The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China, 710000

2. Xi'an Jiaotong University, Xi'an , China, 710000

3. Shaanxi University of Chinese Medicine, Xianyang, China, 712000

Correspondence to Guo Jianxin: gjx1665@126.com Keywords : glioma, Bevacizumab, efficacy, safety, progression-free survival Number of words:3923

ABSTRACT

Objective To assess the efficacy and safety of bevacizumab in patients with glioma. **Design** Systematic review and meta-analysis.

Participants Adults aged 18 years and above, whose histology was confirmed to be malignant glioma.

Primary and secondary outcome measures: The main indicators included progression-free survival rate and overall survival rate, and the secondary indicators were adverse reactions.

Results: A total of 11 clinical center trials were included in this study for metaanalysis, including 2392 patients. The results of the meta-analysis showed that the median PFS rate of the BEV group was significantly higher than that of the Non-BEV group (P<0.00001). When comparing PFS between two groups, we found that the PFS in the BEV group was higher than that in the Non-BEV group at 6 months (OR 3.31, 95%CI 2.74 to 4.00, p<0.00001), 12 months (OR 2.05, 95%CI 1.70 to 2.49, p<0.00001) and 18 months (OR 1.31,95%CI 1.02 to 1.69, p=0.03). But at 24

months (OR 0.83, 95%CI 0.50 to 1.37, p=0.47), there was no significant difference

between the two groups. At 30 months (OR 0.62, 95%Cl 0.39 to 0.97, p=0.04), the PFS of the BEV group was lower than that of the Non-BEV group. Moreover, The results showed that BEV had no significant effect on improving OS, but the adverse reaction in BEV group was significantly higher than that in non-BEV group.

Conclusion: The evidence suggests that BEV can significantly prolong the PFS of patients with glioma within 18 months and shorten the PFS of patients after 30 months. This limitation may be related to the subgroup of patients, the change of recurrence mode, the optimal dose of drug, the increase of hypoxia, the enhancement of invasiveness and so on. Therefore, it is necessary to carry out more samples and higher quality large-scale research in the future.

Strengths and Limitations of this study

- 1. We used the Cochrane criteria to assess the risk of bias.
- 2. The heterogeneity was explored by sensitivity, sub-group.

 3. the quality of included studies was largely moderate to high.

4. The preoperative symptoms and the scope and degree of surgical resection are not taken into account.

INTRODUCTION

Brain glioma is the most common primary intracranial tumor, accounting for about 27% of central nervous system tumors and 80% of intracranial malignant tumors¹. The median survival time reported with brain glioma is 14-16 months². The Surgical intervention combined with radiotherapy and chemotherapy are often followed for treatment of such cases, but because of its high invasive nature, it often relapses in a short time with poor prognosis. The emergence of temozolomide has considerably delayed the development of glioma to some extent, but the survival rate and quality of life of patients are still very low. Therefore, looking for better drugs to prevent and delaying the postoperative recurrence of glioma have become the focus of current research. In recent years, more and more studies have shown that malignant glioma is the tumor with the highest degree of vascularization³. The nature of proliferation is characterized by obvious proliferative vascular lumen and with abnormal proliferation of neovascularization which participates in the construction of tumor microenvironment⁴. It is closely related to the growth, invasion, and metastasis of the tumor, and positively correlated with the extent of malignancy and prognosis of the tumor. Recently, the unique biological characteristics of gliomas indicated that angiogenic factors may play an important role in its treatment and have become the focus of research.

Humanized anti-vascular endothelial growth factor monoclonal antibodybevacizumab⁵, as a representative drug of anti-angiogenic therapy, was approved for recurrent glioblastoma by FDA in 2009⁶ and was listed in China in 2010 by CFDA. According to the radiological response rate, bevacizumab has been approved for recurrent glioblastoma in the United States and many other countries^{7,8}. Although bevacizumab (BEV) has become an important part of HGG therapy, the safety and long-term efficacy of BEV are not clear. Therefore, we conducted a clinical metaanalysis to evaluate the safety and adverse reactions of BEV in patients with HGG, in order to provide a reference for clinical application.

METHODS

This study was mainly based on the literature research, hence there is no need for ethical identification.

Patient and Public Involvement

No patients or members of the public were involved in the design or conduct of this study

Search strategy

We collected all the clinical experimental studies of anti-angiogenic therapy in the treatment of gliomas, retrieved through a database search including PubMed, Embase, The Cochrane Library, WanFang, Chinese periodical full-text database (CNKI), and Chinese biomedical literature service system (CBM), the time span is from the establishment of the database to April 2020. The search strategy followed included a combination of subject words and free words, and the retrieval strategy was determined after several pre-searches. The main search words included: "glioma", "angiogenesis inhibitors", "vascular endothelial growth factors", "VEGF", and "clinical study". Additionally, we also manually searched the reference list of all articles on this topic to check and enhance the retrieval of other related publications. All search results are evaluated according to the (PRISMA) statement of "preferred reporting items for systematic review and meta-analysis".

Selection criteria

Studies were included if they fulfilled the following criteria: (1) Study subjects: the participants were adults aged 18 years and above, whose histology was confirmed to be malignant glioma. They may have undergone some form of surgery to achieve histological diagnosis (biopsy or resection); (2) Study type: The clinical control study; (3) Intervention: bevacizumab group must include bevacizumab, which can be used alone or in combination with multiple drugs. The control group (Non-BEV) refers to treatment that did not include anti-angiogenesis agents, which can be placebo or supportive therapy, or active intervention (such as chemotherapy). (4) Outcome indicators: included in accordance with the following arbitrary outcome indicators: 0 main indicators: progression of any cause, and overall survival rate, defined as the time from randomization to death or disease progression of any cause, and overall survival rate, defined as the time from randomization to death or the World Health Organization (WHO) or the General terminology Standard of the National Cancer Institute (NCI-CTCAE (CTCAE2017)), including the percentage of treatment-related deaths.

Studies were excluded if they fulfilled the following conditions: Non-clinical control studies, incomplete abstract information, conference papers, reviews, and case reports. In addition, the literature of repeated publication and incomplete data that cannot extract valid data were excluded.

Data extraction

Literature screening, data extraction, and cross-checking were carried out by two independent researchers according to the initial inclusion and exclusion criteria, if there were any differences, they were discussed or judged with the assistance of a third person. For missing data, we contacted the author if possible. During the literature screening, the title and the abstract were read initially, after excluding obviously irrelevant literature, the full text was read to determine whether to include it or not. Upon matching the inclusion criteria of requirements, the following contents were extracted: (1) the basic information, including title, author, published country, publication date, research type; (2) study subjects, including the number of cases in each group, average age; (3) interventional factors, including the specific details of exposure factors, follow-up time, etc.; and (4) the outcome indicators.

Quality assessment

Using the Cochrane collaboration tool, the risk of bias in individual studies was assessed from seven aspects (sequence generation, allocation hiding, uninformed participants and people, incomplete outcome data, selective reports, and other biases and risks) ⁹. Finally, each project was evaluated at three levels: low risk, unclear, and high risk. The two authors conducted independent quality assessments and any differences among them were resolved through discussions with a third research expert.

Statistical analysis

Analysis of outcome index

PFS, OS, and adverse reactions were analyzed by Meta with RevMan5.1 software. The dichotomy data is expressed as the combined risk ratio (RR) or risk ratio (hazard ratio; HR),The measurement data is expressed as the mean difference (WMD).The interval estimation was expressed by 95%CI, and the test level of the effect quantity was $\alpha = 0.05$.The test for heterogeneity used I² statistics. If there is no significant heterogeneity among studies (I²≤50%), we used the fixed effects model for data consolidation. While there is significant heterogeneity (I²>50%) between the results of the study, the random effects model for data analysis would be used.

Sensitivity analysis

Simultaneously, stata15.1 was used for sensitivity analysis, adopt the method of examining the impact of individual studies and eliminate them one by one, if the

value obtained is within the confidence interval on both sides, the result is stable.otherwise, they were regarded as unstable. If the results are unstable, it is proved that the elimination research has a great impact on the overall research results. We will conduct a professional analysis of the elimination research to find out the reasons for its impact on the results and study it. Studies included in literature > 10 were used to detect publication bias by funnel chart.

RESULT

Literature screening

A total of 1108 related literature were obtained in the initial examination. After screening the literature one by one, a total of 1123 patients were included in 11 clinical studies¹⁰⁻²⁰. The flow chart and the results of literature retrieval are shown in figure 1.

The basic characteristics of the inclusion study

For the inclusion study, the basic information for inclusion is completed using pre-developed forms (Tables 1, 2).

Table 1: basic information for inclusion in the study

Study	State	Res earc h type	Cases (experime ntal/ control)	Ages(exper imental / control)	Follow-up time	Outcome
Olivier L. Chinot, M.D ^{2014[1} 0]	France	RCT	458/463	20-84/18- 79	The last patient was hospitalize d for 17 months.	1and2year survival rates 、safety and quality of life、PFS 、OS
Qianru Zhao ^{2016[} 11]	China	RCT	25/24	24-71/27-	The median follow-up time was 7.9 months	disease control rate , median survival time, OS , PFS

Ulrich Herrlinge	German y	RCT	116/54	25-78/26- 78	Long-term follow-up	PFS-6、PFS、OS
r ^{2016[12]}					until death	
	German	RCT	320/317	>18	6 cycles	OS、PFS
Mark R.Gilbert 2016[13]	у					
Clara Chen	Americ	Non-	57/79/23	30-77/24-82/19-78	>1year	0S、PFS、Adverse
2014[14]	a	RCT				reactione
Hualong Li ^{2020[15]}	China	RCT	31/31	18-70/19- 69	4 months	PFS6、DCR、Advers reaction
Zhixian Zhang 2018 ^{[16}]	China	RCT	20/20	24-74	5. 2- 18months	PFS6、0S12
Jiaqi Wang ²⁰¹³ ^[17]	China	RCT	27/27	53.6 ± 9.7 /54.7±8.8	6months- 2years	RR、DCR、Advers reaction
					0	
Albert Lai ^{2010[18]}	Americ a	RCT	70/110	31. 3- 75. 8/20. 5-	>42months	OS、 PFS、 Advers reaction
				90		
B.Chauff ert ^{2014[19]}	Britain	RCT	60/60	43-69/43- 71	6 months	OS、 PFS、 Advers reaction
Carmen Balana ²⁰¹	Spain	RCT	48/45	36-75/43-		OS、PFS、Advers
6[20]				75		reaction

Study	Male	Female	Open	Partial resectio	Complete	experimental/
			biopsy		resection	control
Olivier L.	282 (61.6)	176(38.4)	60	210 (45.9)	188 (41.0)	Bevacizumab+
Chinot,	/298 (64.4)		(13.1)	/223	/196 (42.3)	RT - TMZ/
M.D ²⁰¹⁴		/165(35.6)	/44	(48.2)		
			(9.5)			Placebo+RT - TMZ
Qianru Zhao ²⁰¹⁶	14/12	11/12	/	15/16	10/8	BEV+TMZ/TMZ
Ulrich	80 (69. 0)	36 (31. 0)	0/2(3.7)	58 (50. 0) /27	58	BEV+IRI/TMZ
Herrlinge r ²⁰¹⁶	/34(63.0)	/20 (37. 0)		(50.0)	(50.0)/25	
					(46. 3)	
Mark R.Gilbert	/	/	1	/	/	Bevacizumab/
2016						Placebo
Clara Chen	30 (53) /45 (5	57/79/23	34 (60) / 4	20 (35) /33 (4	3 (5) /2 (2)) /	Bevacizumab
2014	7) /15 (65)	27 (47) / 34 (4 (56) /14 (61)	2) /9 (39)	0 (0)	monotherapy
		43) /8 (35)				/Bevacizumab
						combination
						/Nonbevacizu
						mab
Hualong Li ²⁰²⁰	19/18	12/13	/	/	/	TMZ+BEV/TMZ

Page 9 of 30

22	18	/	18	22	BEV+TMZ/ Gamma knife +TMZ/
					· · · · · · · · · · · · · · · · · · ·
16/14	11/13	/	/	/	TMZ+BEV/TMZ
31/40	39/70	2/23	40/40	28/47	RT+TMZ+BV/UC
					LA/KPLA
					Control
					RT/TMZ
26/23	34/37	/	/	/	BEV+IRI/TM
					Z+RT
31/25	17/20	42/35	/	/	TMZ+BEV/T
					MZ
	16/14 31/40 26/23	16/14 11/13 31/40 39/70 26/23 34/37	16/14 11/13 / 31/40 39/70 2/23 26/23 34/37 /	16/14 11/13 / / 31/40 39/70 2/23 40/40 26/23 34/37 / /	16/14 11/13 / / / 31/40 39/70 2/23 40/40 28/47 26/23 34/37 / / /

Risk of bias assessment

The results of the bias risk assessment included in the study are shown in figure

2.

Meta-analysis results

Progression-free survival

Seven studies^{10,12-14,18-20} reported median progression-free survival (BEV group, n=1160) and Non-BEV group (n=1027).There was no significant difference in the heterogeneity test (I²=34%<50%), so the fixed effect model was used for data analysis.Results suggested that the median progression-free survival of gliomas treated with BEV was significantly longer than that of malignant gliomas treated with Non-BEV (HR0.71, 95%CI, 0.65 to 0.78,P<0.00001), As shown in figure 3.

Ten studies¹⁰⁻¹⁹ compared PFS ratios at different follow-up between the Bev group and the Non-BEV group. There was a significant difference in the total heterogeneity test (I²=71%>50%), so the random effect model was used. Through the results found it was found that the PFS in the BEV group was higher than that in the Non-BEV group at 6 months (OR 3.31, 95%CI 2.74 to 4.00, p<0.00001), 12

months (OR 2.05, 95%Cl 1.70 to 2.49, p<0.00001) and 18 months (OR 1.31,95%Cl 1.02 to 1.69, p=0.03).But at 24 months (OR 0.83, 95%Cl 0.50 to 1.37, p=0.47), P > 0.05, so there was no significant statistical difference between the two groups.At 30 months (OR 0.62, 95%Cl 0.39 to 0.97, p=0.04), 0.61 < 1, the diamond pattern falls on the group that supports Non-BEV group, so the PFS of the BEV group was lower than that of the Non-BEV group.as shown in figure 4.

Overall survival time

Seven studies^{10,12-14,18-20} reported the median overall survival time, and there was a significant difference in the total heterogeneity test ($I^2=71\%>50\%$), so the random effect model was used. Results suggesting that there was no significant difference in median overall survival time between the BEV group and Non-BEV group (HR0.90, 95%CI, 0.73 to 1.10,P=0.30), as shown in figure 5.

Six studies^{10,12-14,18-19} compared OS ratios at different follow-up between the Bev group and the Non-BEV group. there was no significant difference in the heterogeneity test (I²=38%<50%), so the fixed effect model was used for data analysis. Through the results found it was found that the OS in the BEV group was higher than that in the Non-BEV group at 6 months(OR 1.41; 95%CI, 1.07-1.84; P=0.01),12 months(OR 1.31; 95%CI, 1.09-1.58; P=0.005).But at18 months (OR 0.95; 95%CI, 0.79-1.14; P=0.58), 24 months (OR 1.10; 95%CI, 0.89-1.35; P=0.39), and 30 months (OR 0.90; 95%CI, 0.69-1.18; P=0.44), P > 0.05, so there was no significant statistical difference between the two groups, as shown in figure 6.

Adverse reaction

As shown in figure7, there were six studies^{10-11,13-15} that compared adverse reactions between the BEV group and the Non-BEV group. There was a significant difference in the total heterogeneity test ($I^2=54\%>50\%$), and the random effect model was used. The results showed the combined OR values of hypertension, hemorrhage, hematencephalon, albuminuria, and thromboembolism as follows: hypertension (OR 5.14, 95%CI 3.79 to 6.96, P<0.00001), hemorrhage (OR 2.62, 95%CI 1.96 to 3.49, P<0.00001), hematencephalon (OR 2.26, 95%CI 1.08 to 4.72, P=0.03), albuminuria (OR 4.04, 95%CI 2.56 to 6.37, P<0.00001) and thromboembolism (OR 1.57, 95%CI 0.88 to 2.77, P=0.13).Through the results found it was found that the adverse reactions in the BEV group was higher than that in the Non-BEV group .

Sensitivity analysis

The sensitivity test was used to evaluate the stability of OS, PFS, and adverse reactions in the included literature, which showed that all values remained in the

Page 11 of 30

BMJ Open

confidence interval on both sides after one by one elimination. Hence, it can be concluded that all the included literature is stable, as shown in figures 8,9.

Publication bias

As shown in figures 10, the funnel chart was mainly concentrated at the top. Moreover, the symmetry was also proper, so it was concluded that the possibility of publication bias was small.

DISCUSSION

According to histopathological and clinical features, gliomas are divided into astrocytoma, oligodendroglioma, oligodendroglioma and ependymoma, which are the most common malignant tumors derived from neuroepithelium. Although the technical level of surgery, radiotherapy and chemotherapy²¹ in the treatment of glioma has been greatly improved, but the recurrence rate and mortality rate are still high, so there is an urgent need for a new treatment. Glioma affects the body through a variety of pathophysiological processes, in which angiogenesis plays an important role in the occurrence and development of glioma, so blocking angiogenesis has become a new direction of treatment. Bevacizumab is an anti-(VEGF) antibody against vascular endothelial growth factor²², which acts mainly by competing against VEGF, and binding to VEGFR on the target cell membrane. Pope²³ and other studies have shown that the high surface of VEGF affects blood vessel density and tumor grade. Some studies have shown that Ang2/Tie2^{24,25} and STAT3²⁶ are two important signal pathways in anti-angiogenic therapy, which play a good role in inhibiting peritumoral edema and the increase of neurological symptoms. In order to better understand the advantages and disadvantages of BEV on glioma, this study has a better understanding of the efficacy and safety of BEV through systematic review.

The results of our study showed that the PFS of BEV group was higher than that of Non-BEV group during the follow-up period of < 18 months, but when the followup time was 30 months, the PFS of BEV group was lower than that of Non-BEV; meanwhile, It was found that the OS in the BEV group was higher than that in the Non-BEV group at 6 months,12 months, but after 12 months, there was no statistically significant difference between the BEV group and the non-BEV group. The study of Li YD²⁷ showed that the progression-free survival time at 24 months and 36 months in the bevacizumab group was lower than that in the nonbevacizumab group; The results of LiaoKL²⁸ showed that a higher incidence of PFS could be obtained by adding BEV to newly diagnosed GB, and this combined treatment did not improve OS. The AVAglio²⁹ trial showed that patients treated with bevacizumab had significant advantages in PFS (6.2 months vs. 10.6 months) and

maintenance of life quality, but showed no advantages in OS (16.8 months vs. 16.7 months).2.2% of patients treated with bevacizumab confirmed false progression, compared with 9.3% of patients treated with non-bevacizumab.Vredenburgh³⁰ found in a single-group clinical phase 2 experimental study that the median PFS of bevacizumab combined with temozolomide and radiotherapy reached nearly twice the standard of 3-14 months, however the overall survival was not significant Improvement.Chinot³¹ and Gilbert³² conducted phase 3 clinical trials with a placebo control group, the results showed that PFS increased by 40%-71% compared with the control group. Special related research on OS, Brandes³³ and Wick³⁴ also found that BEV failed to improve OS of patients with glioma in a randomized study analyzing bevacizumab. From the above research, BEV can improve the PFS of glioma patients within 18 months, but the PFS of patients may be reduced after 30 months. It has no obvious significance to improve OS.

This study showed that after the application of BEV, there were five common adverse reactions: hypertension, hemorrhage, hematencephalon, albuminuria and thromboembolism. A phase II trial of Japanese³⁵ showed that the most common side effects were albuminuria, hypertension, hemorrhage, fever and epilepsy. Studies³⁶ showed that the incidence of adverse reactions above grade 3 was 27.1% to 46.4%, the most common events were thromboembolism, hypertension, epilepsy, fatigue and intestinal perforation. Zhang Li³⁷ searched 20 articles about adverse reactions caused by BEV, and found that the main adverse reactions were cardiovascular and hematological diseases. Norden³⁸ evaluated 64 glioma patients who received BEV anticoagulant therapy and 64 glioma patients who did not receive anticoagulant therapy, The results showed that the incidence of intracranial hemorrhage and other bleeding in patients treated with anticoagulants was significantly higher than that in patients with BEV alone, but the incidence of severe intracranial hemorrhage was within an acceptable range. Therefore, when using bevacizumab clinically, it is necessary to closely observe drug adverse reactions, monitor blood pressure, coagulation function and other indicators, and deal with symptoms in time.

From the above research results, it can be concluded that long-term use of BEV does not increase the patient's PFS, BEV can improve the PFS of glioma patients within 18 months, but the PFS of patients may be reduced after 30 months. Nagham Kaka found³⁹ that BEV could have a role in the treatment of particular subgroups of patients with newly diagnosed GBM. Several studies^{40,41} have found that the median PFS of patients with methylation is longer than that of MGMT unmethylated tumors treated with RT and TMZ combined with BEV. Sandmann and colleagues⁴² found that BEV combined with standard TMZ and RT can improve the survival rate of

neurotumors, while poorly differentiated mesenchymal tumors may make tumors resistant to BEV over time. Adilijiang and Colleagues⁴³ found that treatment with BEV and TMZ results in the upregulation of certain microenvironment related genes in IDH1 mutant tumors in vitro, specifically those involving immune response and extracellular matrix organization. Therefore, The question of whether the limitation of BEV in the treatment of gliomas is due to fixed subsets deserves constant attention.

Studies have shown^{44,45} that antiangiogenic therapy can lead to a transition of glioma to a more aggressive phenotype. In retrospective analysis^{46,47} a trend toward enhanced infiltra-tive disease was seen in bevacizumab-treated glioma patients suggesting that enhanced tumor inhibition may be a conse-guence of VEGF signaling blockade. Shiao-Pei Weathers⁴⁸ shows that determining the best biological dose and the subgroup of patients most likely to obtain long-lasting benefits can improve the durability of bevacizumab. Victor A Levin⁴⁹ found treatment for recurrent GBM with BEV appears to improve survival at a dose lower than that in the FDA drug insert. Study⁵⁰ suggest that the higher dosage of BEV utilized may have impacted survival benefits. Animal models⁵¹ also suggest that higher dose of anti-VEGF treatment, resulting in more hypoxia, may increase tumor aggressiveness. Ryota Tamura⁵² found that high doses and long-term use of anti-VEGF/VEGFR may lead to hypoxia. Shiao-Pei Weathers⁴⁸ proposed in tumors where excessive vascular pruning takes place, hypoxia exacerbated by antiangiogenic therapy is likely responsible for initiating a cascade of events. As mentioned above, there are many possible reasons for the limited efficacy of antiangiogenic therapy. But The lack of a long-lasting response to current antiangiogenic treatment underscores the need for a better understanding of how to use antiangiogenic therapy to optimize radiation and chemotherapy treatments.

CONCLUSIONS

The evidence suggests that BEV can significantly prolong the PFS of patients with glioma within 18 months and shorten the PFS of patients after 30 months. This limitation may be related to the subgroup of patients, the change of recurrence mode, the optimal dose of drug, the increase of hypoxia, the enhancement of invasiveness and so on. BEV treatment has no obvious meaning in improving OS, and it has some side effects, which are acceptable, but we still need to pay close attention to it and take active measures to reduce the side effects. Therefore, it is necessary to carry out more samples and higher quality large-scale research in the future.

Contributors WH and GJX contributed to conception and design. WH 、WTZ and WK contributed to data acquisition or analysis and interpretation of data. WH 、GJX、WTZ、WZJ and STZ were involved in drafting the manuscript or revising it critically for important intellectual content. All authors have given final approval of the version to be published.

Funding This study was funded by The First Affiliated Hospital of Xi'an Jiaotong University. The funder had no role in the design of the study, the collection, analysis or interpretation of data, the writing of the report or the decision to submit the paper for publication. Award/Grant number is not applicable.

Ethics Approval This study belongs to data research and is not applicable to ethical review.

Competing interests None declared. Competing interests of Reviewer: None

 Provenance and peer review Not commissioned; externally peer reviewed. Data sharing All data relevant to the study are included in the article or uploaded as supplementary information.

All the illustrations are as follows:

Figure 1: document screening process and results

PubMed (n=259), The Cochrane Library (n=153), EMbase (n=155), CNKI (n=118),

CBM (n=358), WanFang (n=65).

Figure 2: bias risk assessment form

Figur 3:HR of median PFS in BEV group and Non-BEV group in the treatment of glioma

Figur 4:OR of PFS at each follow-up time in BEV group and Non-BEV group in the treatment of glioma

Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma

Figure 6: OR of OS at each follow-up time in the treatment of glioma in the BEV group and Non-BEV group

Figure 7: OR of adverse reactions in the treatment of glioma in the BEV group and Non-BEV group

Figure 8:A: the sensitivity analysis of PFS6 ;B: the sensitivity analysis of PFS12; C:the sensitivity analysis of PFS18;D:the sensitivity analysis of PFS24;E:the sensitivity analysis of PFS30

Figure 9:A: the sensitivity analysis of OS6 ;B: the sensitivity analysis of OS12; C:the sensitivity analysis of OS18;D:the sensitivity analysis of OS24;E:the sensitivity analysis of OS30

Figure 10:A: funnel chart of PFS at each follow-up time;B: funnel chart of OS at each follow-up time

REFERENCES

1 Brem S,Tsanaclis AM,Gately S,et al.Immunolocalization of basic fibroblast growth factor to the microvasculature of human brain tumors. Cancer 1992; 70: 2673-80.

2 Xia S,Lal B,Tung B,et al.Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation.Neuro Oncol 2015;18:507 -517.

3 Stupp R,Pavlidis N,Jelic S,et al.ESMO Minimum Clinical Recommendations for diagnosis, treatment and follow-up of malignant glioma. Ann Oncol 2005; 16 Suppl 1:i64-5.

4 Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration' s tool for assessing risk of bias in randomised trials. BMJ 2011; 343:d5928.

5 Sweet JA, Feinberg ML, Sherman JH. The role of avastin in the management of recurrent glioblastoma. Neurosurg Clin N Am 2012;23:331-341.

6 Cohen MH, Shen YL, Keegan P, et al. FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme.Oncologist 2009;14:1131-1138.

7 Kreisl TN,Kim L,Moore K,et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 2009; 27:740 - 5.

8 Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in combination with irinotecan in recur-rent glioblastoma. J Clin Oncol 2009; 27:4733 - 40.

9 Gs HJP. Cochrane handbook for systematic reviews of interventions version 5.1.0 (updated March 2011).Naunyn-Schmiedebergs Archiv für Experimentelle Pathologie und Pharmakologie 2014;5:S38.

10 Olivier L. Chinot, M.D., Wolfgang Wick, M.D., Warren Mason, et al. Bevacizumab plus Radiotherapy-Temozolomide for Newly Diagnosed Glioblastoma. The New England Journal of Medicine 2014; 370:709-722.

11 Zhao Qianru. Efficacy and safety of bevacizumab combined with temozolomide in the treatment of recurrent malignant gliomas. Zhengzhou University, 2016.

 12 Ulrich Herrlinger, Niklas Schäfer, Joachim P, et al. Bevacizumab Plus Irinotecan Versus Temozolomide in Newly Diagnosed O6-Methylguanine-DNA Methyltransferase Nonmethylated Glioblastoma: The Randomized GLARIUS Trial. Journal of clinical oncology 2015; 63:4691.

13 Mark R. Gilbert, James J. Dignam, Terri S. Armstrong, et al. A Randomized Trial of Bevacizumab for Newly Diagnosed Glioblastoma. The New England Journal of Medicine 2014;370:699-708.

14 Clara Chen,rliene Ravelo,Elaine Yu,et al.Clinical outcomes with bevacizumabcontaining and non-bevacizumab – containing regimens in patients with recurrent glioblastoma from US community practices.CLINICAL STUDY 2015;DOI 10.1007/s11060-015-1752-y.

15 Li Hualong, Qiang Ming, Huang Xiaoqin, et al. Efficacy of bevacizumab combined with temozolomide in the treatment of malignant recurrent gliomas. Anhui Medicine,2020;41:66-68.

16 Zhang Zhixian, Gu Hou, Lin Jian, et al.Clinical efficacy of gamma knife combined with bevacizumab in the treatment of postoperative malignant gliomas. Journal of Kunming Medical University 2018;39:33-37.

17 Wang Jiaqi, Liang Yong, Ouyang Zheng, et al. Clinical analysis of bevacizumab combined with temozolomide in the treatment of glioblastoma. Oncology Pharmacy 2013;3:274-277.

18 Albert Lai,Anh Tran,Phioanh L,et al.Phase II Study of Bevacizumab Plus Temozolomide During and After Radiation Therapy for Patients With Newly Diagnosed Glioblastoma Multiforme.JOURNAL OF CLINICAL ONCOLOGY 2010;30:2709.

19 Chauffert B,Feuvret L,Bonnetain F, et al. Randomized phase II trial of irinotecan and bevacizumab as neo-adjuvant and adjuvant to temozolomide-based chemoradiation compared with temozolomide-chemoradiation for unresectable glioblastoma: final results of the TEMAVIR study from ANOCEF. Annals of Oncology Official Journal of the European Society for Medical Oncology 2014;25:1442.

20 Carmen Balana,Ramon De Las Penas,Juan Manuel Sepu'lveda, et al.Bevacizumab and temozolomide versus temozolomide alone as neoadjuvant treatment in unresected glioblastoma:the GENOM 009 randomized phase II trial. J Neurooncol 2016;DOI 10.1007/s11060-016-2065-5

21 Lu Yuntao, Qi Songtao, Ouyanghui, et al. Surgical and therapeutic strategies for recurrent malignant gliomas in refractory sites. Chinese Journal of Modern Neurological Diseases 2012;12 (6): 682-690.

 22 Cheng Haixia, Wang Yin. Hair cell astrocytoma with vascular central arrangement: case report and literature review. Chinese Journal of Modern Neurology.2013;13:342-348. 23 Pope WB,Xia Q,Paton VE,et al.Patterns of progression in patients with recurrent glioblastoma treated with bevacizumab. Neurology.2011;76:432-437. 24 Park JS,Kim IK,Han S,et al.Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microrenvironment. Cancer Cell 2016;30:953-967. 25 Labussiare M,Cheneau C,Prahst C, et al.Angiopoietin-2 may be involved in the resistance to bevacizumab in recurrent glioblastoma. Cancer Invest 2016; 34:39-44. 26 Groot J,Liang JKong LY,et al . Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma. Oncotarget 2012;3(9):1036-1048. 27 Li Y,Hou M,Lu G, et al.The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016;11:e0168264. 28 Liao KL,Huang S,Wu YP. The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henrikson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Glibert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A., Finocchiaro, G.,Zagonet, V., et al.Final results from the randomized phase II trial average (ML		
 22 Cheng Haixia, Wang Yin. Hair cell astrocytoma with vascular central arrangement: case report and literature review. Chinese Journal of Modern Neurology. 2013;13:342-348. 23 Pope WB, Xia Q, Paton VE, et al. Patterns of progression in patients with recurrent glioblastoma treated with bevacizumab. Neurology 2011;76:432-437. 24 Park JS, Kim IK, Han S, et al. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 2016;30:953-967. 25 Labussiare M, Cheneau C, Prahst C, et al. Angiopoietin-2 may be involved in the resistance to bevacizumab in recurrent glioblastoma. Cancer Invest 2016; 34:39 - 44. 26 Groot J, Liang J, Kong LY, et al . Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma. Oncotarget 2012;3(9):1036-1048. 27 Li Y, Hou M, Lu G, et al. The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016;11:e0168264. 28 Liao KL, Huang S, Wu YP. The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Clougheey T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (ET) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):5774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed gliob		
 22 Cheng Haixia, Wang Yin, Hair cell astrocytoma with vascular central arrangement: case report and literature review.Chinese Journal of Modern Neurology.2013;13:342-348. 23 Pope WB, Xia Q, Paton VE, et al. Patterns of progression in patients with recurrent glioblastoma treated with bevacizumab.Neurology 2011;76:432-437. 24 Park JS, Kim IK, Han S, et al. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 2016;30:953—967. 25 Labussiare M, Cheneau C, Prahst C, et al. Angiopoletin-2 may be involved in the resistance to bevacizumab in recurrent glioblastoma. Cancer Invest 2016; 34:39— 44. 26 Grot J, Liang J, Kong LY, et al. Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma. Oncotarget 2012;3(9):1036-1048. 27 Li Y, Hou M, Lu G, et al. The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016;11:e0168264. 28 Liao KL, Huang S, Wu YP. The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2012;82:58-66. 31 Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 708. 33 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al. Final results from the<!--</th--><th></th><th></th>		
 case report and literature review.Chinese Journal of Modern Neurology.2013;13:342-348. 23 Pope WB, Xia Q, Paton VE, et al. Patterns of progression in patients with recurrent glioblastoma treated with bevacizumab.Neurology 2011;76:432-437. 24 Park JS, Kim IK, Han S, et al. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 2016;30:953—967. 25 Labussiare M, Cheneau C, Prahst C, et al Angiopoietin-2 may be involved in the resistance to bevacizumab in recurrent glioblastoma. Cancer Invest 2016; 34:39— 44. 26 Groot J, Liang J, Kong LY, et al . Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma. Oncotarget 2012;3(9):1036-1048. 27 Li Y, Hou M, Lu G, et al. The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016;11:e0168264. 28 Liao KL, Huang S, Wu YP. The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):8774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 28. 33 Brandes, A.A., Finocchiaro, G., Zagonel, V.,		22 Cheng Haixia, Wang Yin. Hair cell astrocytoma with vascular central arrangement:
 Neurology 2013;13:342-348. 23 Pope WB, Xia Q, Paton VE, et al. Patterns of progression in patients with recurrent glioblastoma treated with bevacizumab.Neurology 2011;76:432-437. 24 Park JS, Kim IK, Han S, et al. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancor Cell 2016;30:953—967. 25 Labussiare M, Cheneau C, Prahst C, et al. Angiopoletin-2 may be involved in the resistance to bevacizumab in recurrent glioblastoma. Cancer Invest 2016; 34:39—44. 26 Groot J, Liang J, Kong LY, et al. Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma Oncotarget 2012;3(9):1036-1048. 27 Li Y, Hou M, Lu G, et al. The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016;11:e0168264. 28 Liao KL, Huang S, Wu YP. The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A., Finocchiaro, G.,Zagonel, V., et al. Final results from the randomized tial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A., Finocchiaro, G.,Zagonel, V., et al. Final results from the randomized phase II trial average (ML25739) with		case report and literature review Chinese Journal of Modern
 23 Pope WB,Xia Q,Paton VE,et al.Patterns of progression in patients with recurrent glioblastoma treated with bevacizumab.Neurology 2011;76:432-437. 24 Park JS,Kim IK,Han S,et al.Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 2016;30:953-967. 25 Labussiare M,Cheneau C,Prahst C, et al.Angiopoletin-2 may be involved in the resistance to bevacizumab in recurrent glioblastoma. Cancer Invest 2016; 34:39-44. 26 Groot J,Liang J,Kong LY,et al . Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma.Oncotarget 2012;3(9):1036-1048. 27 Li Y,Hou M,Lu G, et al The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016;11:e0168264. 28 Liao KL,Huang S,Wu YP.The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3613-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al, Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 31 Chinot OL, Wick W,Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A.,Finocchiaro, G.,Zagonel, V., et al.Final results from the randomized phase II trial average (ML25739) with bevacizumab of otewacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:		
 25 Pope WB, Ald Q, Paton VP, et al. Patelins of progression in patients with recurrent glioblastoma treated with bevacizumab.Neurology 2011;76:432-437. 24 Park JS, Kim IK, Han S, et al. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 2016;30:953-967. 25 Labussiare M, Cheneau C, Prahst C, et al. Angiopoletin-2 may be involved in the resistance to bevacizumab in recurrent glioblastoma. Cancer Invest 2016; 34:39-44. 26 Groot J, Liang J, Kong LY, et al. Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma. Oncotarget 2012;3(9):1036-1048. 27 Li Y, Hou M, Lu G, et al The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016;11:e0168264. 28 Liao KL, Huang S, Wu YP. The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Glibert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 708. 33 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al. Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemus		Neurology.2013;13:342-348.
 glioblastoma treated with bevacizumab.Neurology 2011;76:432-437. 24 Park JS, Kim IK, Han S, et al. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 2016;30:953-967. 25 Labussiare M, Cheneau C, Prahst C, et al. Angiopoletin-2 may be involved in the resistance to bevacizumab in recurrent glioblastoma. Cancer Invest 2016; 34:39-44. 26 Groot J, Liang J, Kong LY, et al . Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma.Oncotarget 2012;3(9):1036-1048. 27 Li Y, Hou M, Lu G, et al. The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016;11:e0168264. 28 Liao KL, Huang S, Wu YP. The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl<2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al		23 Pope WB,Xia Q,Paton VE,et al.Patterns of progression in patients with recurrent
 24 Park JS, Kim IK, Han S, et al. Normalization of timor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 2016;30:953–967. 25 Labussiare M, Cheneau C, Prahst C, et al. Angiopoietin-2 may be involved in the resistance to bevacizumab in recurrent glioblastoma. Cancer Invest 2016; 34:39– 44. 26 Groot J, Liang J, Kong LY, et al. Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma. Oncotarget 2012;3(9):1036-1048. 27 Li Y, Hou M, Lu G, et al. The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016;11:e0168264. 28 Liao KL, Huang S, Wu YP. The prognosis for patients with newly diagnosed glioblastoma erceiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Glibert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al. Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v6 - v22. 34 Wick, W., Brandes, A.A., Gorlia, T., et al.Phase III trial exploring the combination of bevaci		glioblastoma treated with bevacizumab.Neurology 2011:76:432-437.
24 Park 35, Kim K, Hain S, et al. Normalization of fundor vessels by the activation and 13 Ang2 inhibition enhances drug delivery and produces a favorable tumor 14 microenvironment. Cancer Cell 2016;30:953—967. 15 25 Labussiare M, Cheneau C, Prahst C, et al. Angiopoietin-2 may be involved in the 16 26 Groot J, Liang J, Kong LY, et al. Modulating antiangiogenic resistance by 18 44. 20 26 Groot J, Liang J, Kong LY, et al. Modulating antiangiogenic resistance by 21 inhibiting the signal transducer and activator of transcription 3 pathway in 22 glioblastoma. Oncotarget 2012;3(9):1036-1048. 23 27 Li Y, Hou M, Lu G, et al. The Prognosis of Anti-Angiogenesis Treatments Combined 24 27 Li Y, Hou M, Lu G, et al. The Prognosis of anti-Angiogenesis Treatments Combined 25 with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of 26 Randomized Controlled Trials. Plos One 2016;11:e0168264. 27 Randomized Controlled Trials. Plos One 2016;11:e0168264. 28 Liao KL, Huang S, Wu YP. The prognosis for patients with newly diagnosed 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab		
 microenvironment. Cancer Cell 2016;30:953 – 967. 25 Labussiare M, Cheneau C, Prahst C, et al. Angiopoietin-2 may be involved in the resistance to bevacizumab in recurrent glioblastoma. Cancer Invest 2016; 34:39 – 44. 26 Groot J, Liang J, Kong LY, et al. Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma. Oncolarget 2012;3(9):1036-1048. 27 Li Y, Hou M, Lu G, et al. The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016;11:e0168264. 28 Liao KL, Huang S, Wu YP. The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al. Final results from the randomized phase II trial average (ML25739) with bevacizumab of otemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W., Brandes, A.A., Goria, T., et al. Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial. Neuro-Oncol 2014;17:v1. 	12	24 Park JS,Kim IK,Han S,et al.Normalization of tumor vessels by Tiez activation and
 Interdentiforment. Cancer Cell 2016;30:953–967. 25 Labussiare M, Cheneau C, Prahst C, et al. Angiopoietin-2 may be involved in the resistance to bevacizumab in recurrent glioblastoma. Cancer Invest 2016; 34:39–44. 26 Groot J, Liang J, Kong LY, et al. Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma. Oncotarget 2012;3(9):1036-1048. 27 Li Y, Hou M, Lu G, et al. The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016;11:e0168264. 28 Liao KL, Huang S, Wu YP. The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temczolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al. Final results from the randomized phase II trial average (ML25739) with bevacizumab or oftemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W., Brandes, A.A., Gorlia, T., et al. Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2014;17:v1. 		Ang2 inhibition enhances drug delivery and produces a favorable tumor
 25 Labussiare M, Cheneau C, Prahst C, et al. Angiopoietin-2 may be involved in the resistance to bevacizumab in recurrent glioblastoma. Cancer Invest 2016; 34:39–44. 26 Groot J, Liang J, Kong LY, et al. Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma. Oncotarget 2012;3(9):1036-1048. 27 Li Y, Hou M, Lu G, et al. The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016;11:e0168264. 28 Liao KL, Huang S, Wu YP. The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma. N Engl J Med 2014;370;709 - 22. 22 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370;699 - 708. 33 Brandes, A.A., Finocchiaro, G.,Zagonel, V., et al.Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W., Brandes, A.A., Gorlia, T., et al. Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial. Neuro-Oncol 2015;17:v1. 		microenvironment. Cancer Cell 2016;30:953—967.
 resistance to bevacizumab in recurrent glioblastoma. Cancer Invest 2016; 34:39–44. 26 Groot J,Liang J,Kong LY,et al . Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma. Oncotarget 2012;3(9):1036-1048. 27 Li Y,Hou M,Lu G, et al. The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016;11:e0168264. 28 Liao KL,Huang S,Wu YP.The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 31 Chinot OL,Wick W,Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 708. 33 Brandes, A.A.,Finocchiaro, G.,Zagonel, V., et al.Final results from the randomized glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A.,Finocchiaro, G.,Zagonel, V., et al.Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T., et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		25 Labussiare M, Cheneau C, Prahst C, et al. Angiopoietin-2 may be involved in the
 44. 26 Groot J,Liang J,Kong LY,et al. Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma.Oncotarget 2012;3(9):1036-1048. 27 Li Y,Hou M,Lu G, et al. The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016;11:e0168264. 28 Liao KL,Huang S,Wu YP.The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 22 Glibert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A.,Finocchiaro, G.,Zagonel, V., et al.Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T., et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		
 26 Groot J,Liang J,Kong LY,et al . Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma.Oncotarget 2012;3(9):1036-1048. 27 Li Y,Hou M,Lu G,et al. The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016,11:e0168264. 28 Liao KL,Huang S,Wu YP.The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2012;82:58-66. 31 Chinot OL,Wick W,Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A.,Finocchiaro, G.,Zagonel, V.,et al.Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T.,et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		_
 inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma.Oncotarget 2012;3(9):1036-1048. 27 Li Y,Hou M,Lu G,et al. The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016,11:e0168264. 28 Liao KL,Huang S,Wu YP.The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A.,Finocchiaro, G.,Zagonel, V.,et al.Final results from the randomized phase II trial average (ML25739) with bevacizumab for meter GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T.,et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: for a standard results in the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		
 glioblastoma. Oncotarget 2012;3(9):1036-1048. 27 Li Y,Hou M,Lu G, et al. The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016;11:e0168264. 28 Liao KL,Huang S,Wu YP.The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A.,Finocchiaro, G.,Zagonel, V., et al.Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T., et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: 		
 27 Li Y,Hou M,Lu G,et al. The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016,11:e0168264. 28 Liao KL,Huang S,Wu YP.The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A.,Finocchiaro, G.,Zagonel, V.,et al.Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T.,et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		
 27 Li Y,Hou M,Lu G,et al. The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. Plos One 2016,11:e0168264. 28 Liao KL,Huang S,Wu YP.The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A.,Finocchiaro, G.,Zagonel, V.,et al.Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T., et al.Phase III trial exploring the combination for hevacizumab and lomustine in patients with first recurrence of a glioblastoma: 		glioblastoma.Oncotarget 2012;3(9):1036-1048.
 with Standard Therapy for Newly Diaghosed Gilobastonia. A Meta-Analysis of Randomized Controlled Trials. Plos One 2016,11:e0168264. 28 Liao KL,Huang S,Wu YP.The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2012;82:58-66. 31 Chinot OL,Wick W,Mason W,et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A.,Finocchiaro, G.,Zagonel, V.,et al.Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T.,et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		27 Li Y,Hou M,Lu G,et al. The Prognosis of Anti-Angiogenesis Treatments Combined
 Randomized Controlled Trials. Plos One 2016,11:e0168264. 28 Liao KL,Huang S,Wu YP.The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 31 Chinot OL,Wick W,Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 33 Brandes, A.A.,Finocchiaro, G.,Zagonel, V.,et al.Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T.,et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of
 28 Liao KL,Huang S,Wu YP.The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2012;82:58-66. 31 Chinot OL,Wick W,Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A.,Finocchiaro, G.,Zagonel, V.,et al.Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T.,et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		
 28 Liao KL, Huang S, Wu YP. The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 31 Chinot OL, Wick W, Mason W, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al. Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W., Brandes, A.A., Gorlia, T., et al. Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		
 glioblastoma receiving bevacizumab combination therapy: a meta-analysis. OncoTargets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2012;82:58-66. 31 Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al. Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W., Brandes, A.A., Gorlia, T., et al. Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: 		28 Liao KL, Huang S, Wu YP. The prognosis for patients with newly diagnosed
 Oncol argets and therapy 2018;11:3513-3520. 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2012;82:58-66. 31 Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al. Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W., Brandes, A.A., Gorlia, T., et al. Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		glioblastoma receiving bevacizumab combination therapy: a meta-analysis.
 29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2012;82:58-66. 31 Chinot OL,Wick W,Mason W,et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A.,Finocchiaro, G.,Zagonel, V.,et al.Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T.,et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		OncoTargets and therapy 2018:11:3513-3520
 (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2012;82:58-66. 31 Chinot OL,Wick W,Mason W,et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A.,Finocchiaro, G.,Zagonel, V.,et al.Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T.,et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		
 (Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2012;82:58-66. 31 Chinot OL,Wick W,Mason W,et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A.,Finocchiaro, G.,Zagonel, V.,et al.Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T.,et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		29 Chinot O, Cloughesy T, Henriksson R, et al. Efficacy and safety of bevacizumab
 diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2012;82:58-66. 31 Chinot OL,Wick W,Mason W,et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A.,Finocchiaro, G.,Zagonel, V.,et al.Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T.,et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		(Bv) plus standard combination temozolomide (T) and radiotherapy (RT) in newly
 2):S774-5. 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2012;82:58-66. 31 Chinot OL,Wick W,Mason W,et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A.,Finocchiaro, G.,Zagonel, V.,et al.Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T.,et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		diagnosed glioblastoma: final results from a AVA glio. Eur J Cancer 2013; 49(suppl
 30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2012;82:58-66. 31 Chinot OL,Wick W,Mason W,et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A.,Finocchiaro, G.,Zagonel, V.,et al.Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T.,et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		
 standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2012;82:58-66. 31 Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al. Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W., Brandes, A.A., Gorlia, T., et al. Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: 		
 standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2012;82:58-66. 31 Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al. Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W., Brandes, A.A., Gorlia, T., et al. Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial. Neuro-Oncol 2015;17:v1. 		30 Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al. Addition of bevacizumab to
 toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2012;82:58-66. 31 Chinot OL,Wick W,Mason W,et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A.,Finocchiaro, G.,Zagonel, V.,et al.Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T.,et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		standard radiation therapy and daily temozolomide is associated with minimal
 2012;82:58-66. 31 Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al. Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W., Brandes, A.A., Gorlia, T., et al. Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial. Neuro-Oncol 2015;17:v1. 		toxicity in newly diagnosed glioblastoma multiforme. Int. I Radiat Oncol Biol Phys.
 31 Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al. Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W., Brandes, A.A., Gorlia, T., et al. Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial. Neuro-Oncol 2015;17:v1. 		
 for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al. Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W., Brandes, A.A., Gorlia, T., et al. Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		2012;82:58-66.
 for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22. 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al. Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W., Brandes, A.A., Gorlia, T., et al. Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial. Neuro-Oncol 2015;17:v1. 		31 Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide
 32 Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al. Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W., Brandes, A.A., Gorlia, T., et al. Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial. Neuro-Oncol 2015;17:v1. 		for newly diagnosed glioblastoma. N Engl J Med 2014;370:709 - 22.
 for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708. 33 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al. Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W., Brandes, A.A., Gorlia, T., et al. Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial. Neuro-Oncol 2015;17:v1. 		32 Cilbert MP Dignam LL Armstrong TS et al. A randomized trial of bevacizumab
 33 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al. Final results from the randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W., Brandes, A.A., Gorlia, T., et al. Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial. Neuro-Oncol 2015;17:v1. 		
 52 53 Brandes, A.A., Finocchiaro, G., Zagonei, V., et al. Final results from the 53 randomized phase II trial average (ML25739) with bevacizumab or fotemustine in 54 recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 55 34 Wick, W., Brandes, A.A., Gorlia, T., et al. Phase III trial exploring the combination 57 of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: 59 the EORTC 26101 trial. Neuro-Oncol 2015;17:v1. 		for newly diagnosed glioblastoma. N Engl J Med 2014;370:699 - 708.
 randomized phase II trial average (ML25739) with bevacizumab or fotemustine in recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T.,et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		33 Brandes, A.A., Finocchiaro, G., Zagonel, V., et al. Final results from the
 recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T.,et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		randomized phase II trial average (MI 25739) with bevacizumab or fotemustine in
 recurrent GBM. Neuro-Oncol 2014;16:v8 - v22. 34 Wick, W.,Brandes, A.A.,Gorlia, T.,et al.Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 		
 of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial.Neuro-Oncol 2015;17:v1. 	55	
58of bevacizumab and iomustine in patients with first recurrence of a glioblastoma:59the EORTC 26101 trial.Neuro-Oncol 2015;17:v1.		34 Wick, W., Brandes, A.A., Gorlia, T., et al. Phase III trial exploring the combination
the EORTC 26101 trial.Neuro-Oncol 2015;17:v1.		of bevacizumab and lomustine in patients with first recurrence of a glioblastoma:

35 Friedman HS, Prados MD, Wen PY, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol.2009;27:4733 - 40.

 36 Nagane M,Nishikawa R,Narita Y,et al.Phase II study of single-agent bevacizumab in Japanese patients with recurrent malignant glioma.Jpn J Clin Oncol 2012;42:887 - 95.

37 Zhang Li. Statistical analysis of adverse reactions caused by bevacizumab. Clinical Medical Engineering 2012;19:129-130.

38 Norden AD,Bartolomeo J,Tanaka S,et al.Safety of concurrent bevacizumab therapy and anticoagulation in glioma patients. J Neurooncol 2011;106:121-125.

39 Nagham Kaka,Karim Hafazalla,Haider Samawi,et al.Progression-Free but No Overall Survival Benefit for Adult Patients with Bevacizumab Therapy for the Treatment of Newly Diagnosed Glioblastoma:A Systematic Review and Meta-Analysis.Cancers 2019;11:1723.

40 Chinot, O.L.;Wick, W.;Mason, W.;et al.Bevacizumab plus radiotherapytemozolomide for newly diagnosed glioblastoma.New Engl. J. Med 2014;370:709 -722.

41 Gilbert, M.R.;Dignam, J.J.;Armstrong, T.S.;et al.A randomized trial of bevacizumab for newly diagnosed glioblastoma. New Engl.J.Med 2014;370:699 – 708.

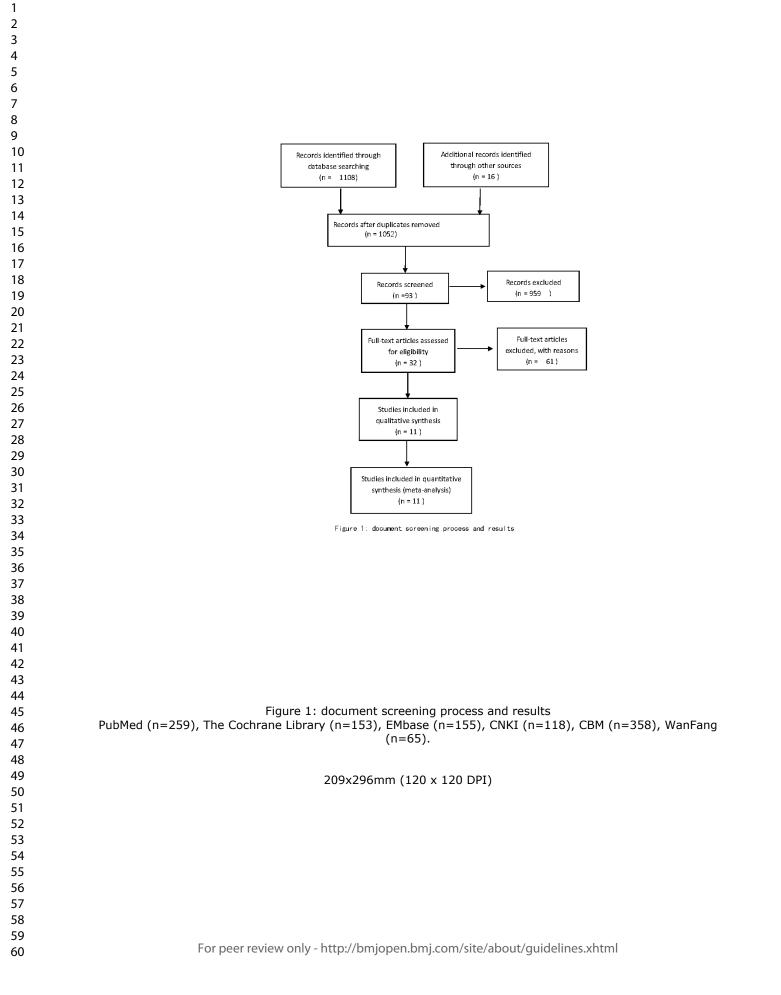
42 Phillips, H.S.;Kharbanda, S.;Chen, R.;et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis.Cancer Cell 2006;9:157 - 173.

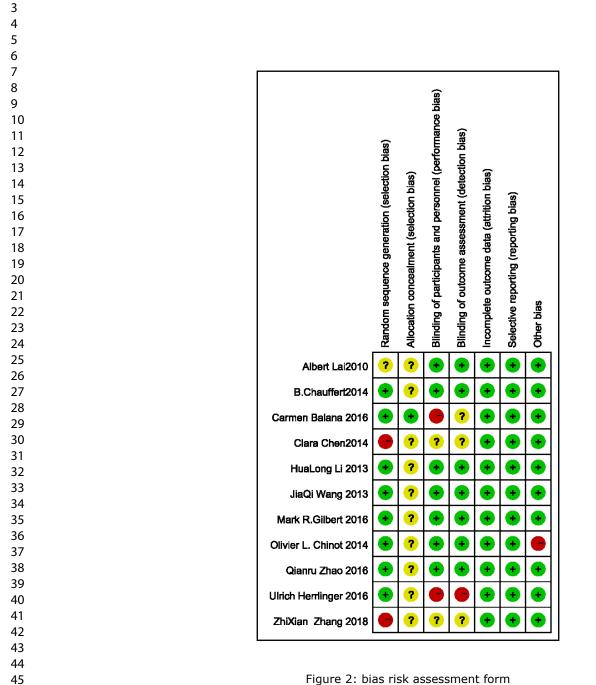
43 Adilijiang, A.;Hirano, M.;Okuno, Y.;et al.Next generation sequencing-based transcriptome predicts bevacizumab efficacy in combination with temozolomide in glioblastoma. Molecules 2019;24:3046.

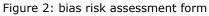
44 Piao Y , Liang J, Holmes L, et al. Acquired resistance to anti-VEGF therapy in glioblastoma is associated with a mesenchymal transi-tion.Clin Cancer Res 2013;19:4392 - 403.

45 Lu KV , Chang JP , Parachoniak CA, et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex.Cancer Cell 2012;22:21 - 35.

46 Norden A,Young G,Setayesh K,et al.Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence.Neurology 2008;70:779 – 87. 47 Soda Y,Myskiw C,Rommel A, V erma I. Mechanisms of neovas- cularization and resistance to anti-angiogenic therapies in glioblas-toma multiforme. J Mol Med (Berl) 2013;91:439 – 48.


48 Shiao-Pei Weathers, John de Groot. Resistance to Antiangiogenic Therapy. Curr Neurol Neurosci Rep 2014;14:443.


49 Victor A.Levin,Nancy D,et al.Mendelssohn,James Chan.Impact of bevacizumab administered dose on overall survival of patients with progressive glioblastoma.J Neurooncol 2015;122:145-50.


50 Lorgis V,Maura G,Coppa G,et al.Rela-tion between bevacizumab dose intensity and high-grade glioma survival: a retrospective study in two large cohorts.J NeuroOncol 2012,107:351–358.

51 Keunen O,Johansson M,Oudin A,et al.Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA Proc Natl Acad Sci U S A 2011;108:3749-54.

52 Ryota Tamura, Toshihide Tanaka, Yasuharu Akasaki, et al. The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications...Med Oncol 2019;37:2.

209x278mm (120 x 120 DPI)

				Lissand Datis		Linnard Datio	
Study or Subaroup	log Hazard Ratio	SE	Welaht			IV. Fixed. 95% C	1
Albert Lai2010		0.1635	8.7%	0.95 [0.69, 1.31]		· -	
Clara Chen2014	-0.4453	0.2665	3.3%	0.64 [0.38, 1.08]			
			27.0%	0.79 [0.66, 0.95]		1	
			8.3%				
T_4_1/0F0/ 0D			400.00			•	
	9.07. df = 6 (P = 0.17): I		100.0%	0.71 [0.65, 0.78]	<u> </u>	*	
							10 100 Non-BEV
	B.Chauffert2014 Carmen Balana 2016 Clara Chen2014 Mark R.Gilbert 2016 Olivier L. Chinot 2014 Ulrich Herringer 2016 Total (05% Ci) Heterogeneity: Chi ^e =	Albert Lai2010 -0.0505 B. Chauffert2014 -0.19505 B. Chauffert2014 -0.3437 Clara Chen2014 -0.4453 Mark R.Gilbert 2016 -0.23437 Olivier L. Chinot 2014 -0.4453 Ulrich Herringer 2016 -0.56357 Total (95% Cl) Heterogeneity: Chi ^P = 9.07, df = 6 (P = 0.17);	Albert Lal2010 -0.0505 0.1835 B. Chauffert2014 -0.1983 0.1865 Carmen Balana 2016 -0.3437 0.2099 Clara Chen2014 -0.4453 0.2865 Mark R.Gilbert 2016 -0.2334 0.0929 Olivier L. Chinot 2014 -0.4495 0.0757 Ulrich Herringer 2016 -0.5637 0.1673	Albert Lai2010 -0.0505 0.1635 8.7% B.Chauffert2014 -0.1983 0.1636 6.8% Carmen Balana 2016 -0.3437 0.2099 5.3% Clara Chen2014 -0.4453 0.2685 3.3% Mark R.Gilbert 2016 -0.2343 0.0209 2.7.0% Olivier L. Chinot 2014 -0.4455 0.0757 40.6% Ulrich Herringer 2016 -0.5637 0.1673 8.3% Total (95% Cl) 100.0% Haterogeneity: ChP = 9.07, df = 6 (P = 0.17); IP = 34% 100.0%	Albert Lai2010 -0.0505 0.1635 8.7% 0.95 [0.69, 1.31] B.Chauffert2014 -0.1995 0.1856 6.8% 0.82 [0.57, 1.16] Carmen Balana 2016 -0.3437 0.2095 5.3% 0.71 [0.47, 1.07] Ciara Chen2014 -0.4453 0.2665 3.3% 0.84 [0.38, 1.08] Mark R.Gilbert 2016 -0.2334 0.0929 27.0% 0.76 [0.66, 0.95] Olivier L. Chinot 2014 -0.4495 0.0757 40.6% 0.64 [0.55, 0.74] Urich Herringer 2016 -0.5637 0.1673 8.3% 0.57 [0.41, 0.79] Total (95% CI) 100.0% 0.71 [0.85, 0.78] Heterogeneity: ChP = 9.07, df = 6 (P = 0.17); P = 34% 0.74 [0.85, 0.78]	Study or Subgroup log[Hazard Ratio] SE Weight [V. Fixed. 95% Cl Albert Lai2010 -0.0505 0.1635 8.7% 0.59 [0.69, 1.31] B. Chauffert2014 -0.1963 0.1635 6.8% 0.52 [0.57, 1.18] Camme Balana 2016 -0.3437 0.2099 5.3% 0.71 [0.47, 1.07] Clara Chen2014 -0.4435 0.0829 27.0% 0.76 [0.68, 0.95] Ollvier L. Chindt 2014 -0.4445 0.077 40.6% 0.57 [0.41, 0.79] Ulrich Herrtinger 2016 -0.5637 0.1673 8.3% 0.57 [0.41, 0.79] Total (95% Cl) 100.0% 0.71 [0.85, 0.78] 0.01 Heterogenetity: Chir = 9.07, df = 6 (P = 0.17); I ^a = 34% 0.01 0.01	Study or Subgroup log[Hazard Ratio] SE Weight IV. Fixed. 95% CI IV. Fixed. 95% CI Albert Lal2010 -0.0505 0.1635 8.7% 0.95 [0.69, 1.31] - B. Chauffert2014 -0.1963 0.1856 6.8% 0.82 [0.57, 1.18] - Carmen Baiana 2016 -0.3437 0.2099 5.3% 0.71 [0.47, 1.07] - Clara Chen2014 -0.4453 0.2685 3.3% 0.64 [0.38, 1.08] - Mark R.Gilbert 2016 -0.2334 0.0929 27.0% 0.79 [0.86, 0.95] - Ollvier L. Chinot 2014 -0.4455 0.0737 0.64 [0.55, 0.74] = Ulrich Herringer 2016 -0.5637 0.1673 8.3% 0.57 [0.41, 0.79] - Total (95% Cl) 100.0% 0.71 [0.85, 0.78] - - - Heterogeneity: Ch ^P = 9.07, df = 6 (P = 0.17); P = 34% - 0.01 - 1

Figur 3:HR of median PFS in BEV group and Non-BEV group in the treatment of glioma

209x278mm (120 x 120 DPI)

1						
1						
2						
3						
4						
5						
6		BEV	Non-BEV		Odds Ratio	Odds Ratio
7				l Weight	M-H, Random, 95% Cl	
8	1.3.1 6pfs Albert Lai 2010	62 70			5.57 [2.43, 12.75]	_
9	B.Chauffert 2014 HuaLong Li 2013	37 60 13 31			2.25 [1.08, 4.68] 3.76 [1.14, 12.39]	
10	JiaQi Wang 2013	21 27	17 23	7 2.5%	2.06 [0.62, 6.82]	
11	Mark R.Gilbert 2016 Olivier L. Chinot 2014	241 311 366 458	247 463		3.08 [2.18, 4.36] 3.48 [2.60, 4.66]	+
12	Qianru Zhao 2016 Ulrich Herrlinger 2016	11 25 89 116			1.91 [0.58, 6.23] 5.18 [2.58, 10.39]	
13	ZhiXian Zhang 2018	9 20	6 20	2.2%	1.91 [0.52, 7.01]	
14	Subtotal (95% CI) Total events	1118 849	1098 555	3 32.3%	3.31 [2.74, 4.00]	•
15	Heterogeneity: Tau² = 0.00 Test for overall effect: Z = 1); I ² = 0%		
		2.45 (1 - 0.0)				
16	1.3.2 12pfs Albert Lai 2010	40 70	40 110) 4.4%	2.33 [1.26, 4.30]	
17	B.Chauffert 2014 Clara Chen 2014	18 60 30 136			2.14 [0.89, 5.14] 2.97 [0.66, 13.40]	
18	Mark R.Gilbert 2016	133 311	96 309	3 5.5%	1.66 [1.19, 2.30]	+
19	Olivier L. Chinot 2014 Ulrich Herrlinger 2016	189 458 35 116			2.25 [1.70, 2.99] 2.48 [1.06, 5.81]	
20	Subtotal (95% CI) Total events	1151 445	1019 266	9 24.3%	2.05 [1.70, 2.49]	•
21	Heterogeneity: Tau ² = 0.00	; Chi² = 2.64,	df = 5 (P = 0.76)); I ^z = 0%		
22	Test for overall effect: Z = 7	'.39 (P < 0.00)	001)			
23	1.3.3 18pfs	17 70	26 110	2 4 4 04	1 04 [0 64 0 00]	
24	Albert Lai 2010 B.Chauffert 2014	9 60	7 60		1.04 [0.51, 2.09] 1.34 [0.46, 3.86]	
25	Mark R.Gilbert 2016 Olivier L. Chinot 2014	59 311 71 458			1.11 [0.74, 1.66] 1.62 [1.10, 2.41]	
26	Ulrich Herrlinger 2016	10 116 1015	3 54	4 2.2%	1.60 [0.42, 6.08]	
27	Subtotal (95% CI) Total events	166	137		1.31 [1.02, 1.69]	Ů. I I I I I I I I I I I I I I I I I I I
28	Heterogeneity: Tau¤ = 0.00 Test for overall effect: Z = 2); I² = 0%		
29	1.3.4 24pfs					
30	Albert Lai 2010	11 70			0.75 [0.34, 1.65]	
31	B.Chauffert 2014 Mark R.Gilbert 2016	3 60 17 311			3.11 [0.31, 30.73] 0.60 [0.32, 1.13]	
32	Olivier L. Chinot 2014	13 458	8 463	3 3.4%	1.66 [0.68, 4.05]	
	Ulrich Herrlinger 2016 Subtotal (95% CI)	5 116 1015	996		0.44 [0.12, 1.59] 0.83 [0.50, 1.37]	•
33	Total events Heterogeneity: Tau² = 0.09	49 : Chi ² = 5.56.	63 df = 4 (P = 0.23): I ² = 28%		
34	Test for overall effect: Z = 0					
35	1.3.5 30pfs					
36	Albert Lai 2010 Mark R.Gilbert 2016	7 70 25 311			0.50 [0.20, 1.25] 0.64 [0.38, 1.10]	
37	Olivier L. Chinot 2014	1 458	0 463	3 0.5%	3.04 [0.12, 74.80]	
38	Ulrich Herrlinger 2016 Subtotal (95% CI)	1 116 955	936		0.46 [0.03, 7.51] 0.62 [0.39, 0.97]	•
39	Total events Heterogeneity: Tau² = 0.00	34 ; Chi² = 1.22.	58 df = 3 (P = 0.75); ² = 0%		
40	Test for overall effect: Z = 2					
41	Total (95% CI)	5254		5 100.0%	1.73 [1.35, 2.20]	•
42	Total events Heterogeneity: Tau² = 0.26	1543 : Chi≊ = 102.1	1079 2. df = 28 (P ≺ 0).00001\ [.] P:	= 73%	
43	Test for overall effect: Z = 4	.38 (P < 0.000	01)			0.01 0.1 1 10 100 Favours Non-BEV Favours BEV
44	Test for subaroup difference	ces: Unit= 75	.92. ui = 4 (P <	0.00001). I*	= 34.1%	
45	Figur 4:OR of PFS at each follo	w-up tii	me in BE	V arou	up and Non-	BEV group in the treatment of glioma
46			26			
47		15	50x223m	nm (12	20 x 120 DPI	I)
48				-		
49						
50						
51						
52						
F 2						

The set of th	3	
1 1	4	
Place # log/see fighters field Ward Rate Ward Rate Ward Rate Place # log/see fighters field 0.000 00 01 11 1100 Ward Rate Ward Rate Place # log/see fighters field 0.000 00 01 11 1100 Ward Rate Ward Rate Place # log/see fighters field 0.000 01 11 1100 Ward Rate Ward Rate Place # Rate 0.000 01 11 1100 Ward Rate Ward Rate Place # Rate 0.000 01 1100 Ward Rate Ward Rate Place # Rate 0.000 01 1100 Ward Rate Ward Rate Place # Rate 0.000 01 1100 Ward Rate Ward Rate Place # Rate 0.000 01 1100 Ward Rate Ward Rate Place # Rate 0.000 01 1100 Ward Rate Ward Rate Place # Rate 0.000 01 100 Ward Rate Ward Rate Place # Rate 0.0000 01 100 Ward Rate Ward Rate Place # Rate 0.0000 01 100 Ward Rate Ward Rate Place # Rate 0.0000 01 100 Ward Rate Ward Rate Place # Rate 0.0000 01 100 Ward Rate Ward Rate Place # Rate 0.0000000001	5	
Image: Additional Median of Section 1 (Section	6	
Figure 5: HR of median OS in BEV group and Non-BEV group in the treatment of gliomatic 20% 278mm (120 x 120 DPI)	7	
Figure 5: HR of median OS in BEV group and Non-BEV group in the treatment of gliomatic 20% 278mm (120 x 120 DPI)	8	
11 12 13 14 15 15 16 16 17 18 18 19 19 19 11 11 11 11 11 12 12 13 14 15 15 16 17 18 18 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 <td></td> <td></td>		
Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 209×278mm (120 × 120 DP1)		
11 12 13 14 15 16 17 18 18 19 19 19 11 11 11 11 11 11 12 12 13 14 15 15 16 17 18 18 19 11 11 11 12 12 13 14 15 15 16 16 17 18 18 19 11 11 11 12 12 12 14 15 16 16 17 <td></td> <td></td>		
13 14 15 16 17 18 18 19 19 19 10 11 12 12 18 19 19 19 10 11 11 12 12 12 12 12 12 12 12 12 12 12 13 14 14 15 15 16 17 18 18 19 19 10 11 12 12 12 12 12 12 12 12 12 12 <td></td> <td></td>		
Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma Register 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 209x278mm (120 x 120 DP1)		
Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 209×278mm (120 × 120 DPI)		
Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of gliomat Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of gliomat $209 \times 278 mm (120 \times 120 DPI)$		
Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 209x278mm (120 x 120 DPI)		
Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of gliomat 2009x278mm (120 x 120 DP1)		
Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of gliomat 1000 + 1000		
Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 209x278mm (120 x 120 DP1)		
Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of gliomation of the set		
22		
23 Abertation 0.335 0.174 0.134 0.134 1.144 1.142 0.120 0.144 1.06 1.06 24 B. Bandlardovi 0.437 0.203 0.124 0.004 0.144 1.06 25 Mark 1.142 0.001 0.004 0.004 0.004 0.004 0.004 0.004 0.000 0.004		
24 Charmed Sectors, not 0 0.4488		Albert Lal2010 0.3515 0.1743 13.9% 1.42 [1.01, 2.00]
25 Over R 2016 2016 0.1211 0.0886 183% 13 [0.8, 137] 26 Over L. Ching 2016 0.0251 0.217 12.2% 0.0261 0.217 12.2% 27 Trad 10% Cit 0.0251 0.218 0.206 [DT 1.2.2% 0.0261 0.206 [DT 1.2.7% 28 Heterogenetic: Tat = 0.05; Cit = 20.00; P = 71% 0.01 0.1		Carmen Balana 2016 -0.4055 0.212 11.8% 0.67 [0.44, 1.01]
26 Utdit Heringer 2016 0.0214 0.187 1.338 1.0210 1.11 27 Trade (09% c1) Heringer 2016 1.00.0% 0.0000 0.01 1 1 1 10 10 28 Test for orwall effect 2 = 1.03 (P = 0.000) 1.01 0.01 1 1 1 10 10 29 Test for orwall effect 2 = 1.03 (P = 0.000) 1 1 1 1 1 1 30 Test for orwall effect 2 = 1.03 (P = 0.000) 1 1 1 1 1 1 31 Test for orwall effect 2 = 1.03 (P = 0.000) 1 1 1 1 1 1 32 Test for orwall effect 2 = 1.03 (P = 0.000) 1 1 1 1 1 1 33 Test for orwall effect 2 = 1.03 (P = 0.000) 1 1 1 1 1 34 Test for orwall effect 2 = 1.03 (P = 0.000) 1 1 1 1 1 35 Test for orwall effect 2 = 1.03 (P = 0.000) 1 1 1 1 1 36 Test for orwall effect 2 = 1.03 (P = 0.000) 1 1 1 1 1 36 Test for orwall effect 2 = 0.0000 Test for orwall effect 2 = 0.000		Mark R.Gilbert 2016 0.1211 0.0968 18.8% 1.13 [0.93, 1.37]
27 Total (8% C) 100.3% DAR (0.3% C) DAR (0.3% C) 28 Hetrogenetic, twi= 20.5%, df = 0 (P = 0.002); I= 71% 0 0 0 29 Test Brownal effect 2 = 1.03 (P = 0.002); I= 71% 0 0 0 30 Test Brownal effect 2 = 1.03 (P = 0.002); I= 71% 0 0 0 0 30 Test Brownal effect 2 = 1.03 (P = 0.002); I= 71% Feacure BEV Feacure BEV Feacure BEV 30 Test Brownal effect 2 = 1.03 (P = 0.002); I= 71% Feacure BEV Feacure BEV Feacure BEV 30 Test Brownal effect 2 = 1.03 (P = 0.002); I= 71% Feacure BEV Feacure BEV Feacure BEV 30 Test Brownal effect 2 = 1.03 (P = 0.002); I= 71% Feacure BEV Feacure BEV Feacure BEV 31 Test Berownal effect 2 = 1.03 (P = 0.002); I= 71% Feacure BEV Feacure BEV Feacure BEV 32 Test Berownal effect 2 = 1.03 (P = 0.002); I= 71% Test Berownal effect 2 = 1.03 (P = 0.002); I= 100000; I= 100000; I= 100000; I= 100000; I= 10000; I= 1000; I= 1000; I= 10000; I= 10000; I= 1000; I= 10000; I= 1000; I= 1000;		
Heargement; Tar" = 0.05; Chi" = 20.60; if = 71% 101 0.1 1 0 100 100 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 100 <td< th=""><td></td><td>Total (95% Cl) 100.0% 0.90 [0.73, 1.10]</td></td<>		Total (95% Cl) 100.0% 0.90 [0.73, 1.10]
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 46 209x278mm (120 x 120 DPI) 48 49 50 51 52 53 54 55 56 57		Test for superly - Fest 7 = 1.09 (0 = 0.90)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 46 209x278mm (120 x 120 DPI) 48 49 50 51 52 53 54 55 56 57		Favours BEV Favours Non-BEV
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 46 209x278mm (120 x 120 DPI) 48 49 50 51 52 53 54 55 56 57		
32 33 34 35 36 37 38 39 40 41 42 43 44 45 Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 46 47 209x278mm (120 x 120 DPI) 48 49 50 51 52 53 54 55 56 57		
33 34 35 36 37 38 39 40 41 42 43 44 45 Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 46 47 209x278mm (120 x 120 DPI) 48 49 50 51 52 53 54 55 56 57		
34 35 36 37 38 39 40 41 42 43 44 45 Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 46 209x278mm (120 x 120 DPI) 48 49 50 51 52 53 54 55 56 57		
35 36 37 38 39 40 41 42 43 44 45 Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 46 209x278mm (120 x 120 DPI) 48 49 50 51 52 53 54 55 56 57		
36 37 38 39 40 41 42 43 44 45 Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 46 209x278mm (120 x 120 DPI) 48 49 50 51 52 53 54 55 56 57		
37 38 39 40 41 42 43 44 45 Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 46 47 209x278mm (120 x 120 DPI) 48 49 50 51 52 53 54 55 56 57		
38 39 40 41 42 43 44 45 Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 46 209x278mm (120 x 120 DPI) 48 49 50 51 52 53 54 55 56 57		
39 40 41 42 43 44 45 Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 46 47 209x278mm (120 x 120 DPI) 48 49 50 51 52 53 54 55 56 57		
40 41 42 43 44 45 Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 46 47 209x278mm (120 x 120 DPI) 48 49 50 51 52 53 54 55 56 57		
41 42 43 44 45 Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 46 47 209x278mm (120 x 120 DPI) 48 49 50 51 52 53 54 55 56 57		
42 43 44 45 Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 46 209x278mm (120 x 120 DPI) 48 49 50 51 51 52 53 54 54 55 56 57		
43 44 45 Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 46 209x278mm (120 x 120 DPI) 48 49 50 51 51 52 53 54 54 55 56 57		
44 Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 46 209x278mm (120 x 120 DPI) 48 49 50 51 51 52 53 54 54 55 56 57		
45 Figure 5:HR of median OS in BEV group and Non-BEV group in the treatment of glioma 46 209x278mm (120 x 120 DPI) 48 49 50 51 51 52 53 54 55 56 56 57		
46 209x278mm (120 x 120 DPI) 48 49 50 51 52 53 54 55 56 57		Figure 5: HR of median OS in BEV group and Non-BEV group in the treatment of glioma
47 209x278mm (120 x 120 DPI) 48 49 50 51 52 53 54 55 56 57		
 48 49 50 51 52 53 54 55 56 57 		209x278mm (120 x 120 DPI)
49 50 51 52 53 54 55 56 57		
50 51 52 53 54 55 56 57		
51 52 53 54 55 56 57		
52 53 54 55 56 57		
53 54 55 56 57		
54 55 56 57		
55 56 57		
56 57		
57		
58	58	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	
5 6	
7 8 9	
10 11 12	
13 14 15	
16 17 18	
19 20 21	
22 23	
24 25 26	
27 28 29	
30 31 32	
33 34 35	
36 37 38	
39 40 41	
42 43 44	
45 46	
47 48 49	
50 51 52	
53 54 55	
56 57 58	
59 60	

Study or Subgroup	BEV		Non-B Events		Woight	Odds Ratio M-H, Fixed, 95% Cl	Odds Rat M-H, Fixed, 9
1.4.1 60s	Lvents	rutdi	LVCIUS	rotal	**eignt	m-ri, rikeu, 33% Cl	m-n, rixeu, 9
Albert Lai 2010	70	70	97	110	በ1%	19.52 [1.14, 333.90]	
B.Chauffert 2014	42	60	42	60	1.6%	1.00 [0.46, 2.18]	
Mark R.Gilbert 2016	263	311	255	309	5.0%	1.16 [0.76, 1.78]	-
							_
Olivier L. Chinot 2014	421	458	405	463	4.1%	1.63 [1.06, 2.52]	
Ulrich Herrlinger 2016	109	116	51	54	0.5%	0.92 [0.23, 3.69]	
Subtotal (95% CI)		1015		996	11.2%	1.41 [1.07, 1.84]	•
Total events	905		850				
Heterogeneity: Chi ² = 5.6 Test for overall effect: Z =			23); I² = 2	9%			
1.4.2 12os							
Albert Lai 2010	59	70	83	110	1.3%	1.74 [0.80, 3.79]	+-
B.Chauffert 2014	26	60	28	60	2.0%	0.87 [0.43, 1.79]	
Clara Chen 2014	46	136	20	23	0.3%	5.37 [1.21, 23.89]	
	200						L
Mark R.Gilbert 2016		311	192	309	8.6%	1.10 [0.79, 1.52]	
Olivier L. Chinot 2014	322	458	293	463	10.9%	1.37 [1.04, 1.81]	
Ulrich Herrlinger 2016	98	116	42	54	1.1%	1.56 [0.69, 3.51]	
Subtotal (95% CI)		1151		1019	24.2%	1.31 [1.09, 1.58]	•
Total events	751		640				
Heterogeneity: Chi ² = 6.5 Test for overall effect: Z =				4%			
	- 2.02 (P =	- 0.005	,				
1.4.3 18os							
Albert Lai 2010	38	70	67	110	3.0%	0.76 [0.42, 1.40]	-+
B.Chauffert 2014	17	60	13	60	1.2%	1.43 [0.62, 3.29]	+-
Mark R.Gilbert 2016	99	311	112	309	9.6%	0.82 [0.59, 1.15]	-
Olivier L. Chinot 2014	203	458	201	463	14.0%	1.04 [0.80, 1.35]	+
Ulrich Herrlinger 2016	46	116	22	54	2.3%	0.96 [0.49, 1.85]	
Subtotal (95% CI)		1015		996	30.0%	0.95 [0.79, 1.14]	•
Total events	403		415				
Heterogeneity: Chi ² = 2.6	61, df = 4 ((P = 0.8	i3); I² = 0'	%			
Test for overall effect: Z =							
1.4.4 24os	2						
Albert Lai 2010	22	70	50	110	3.4%	0.55 [0.29, 1.03]	
B.Chauffert 2014	9	60	3	60	0.3%	3.35 [0.86, 13.07]	
Mark R.Gilbert 2016	47	311	50	309	5.3%	0.92 [0.60, 1.42]	+
Olivier L. Chinot 2014	139	458	118	463	10.3%	1.27 [0.95, 1.70]	-
Ulrich Herrlinger 2016	28	116	11	54	1.4%	1.24 [0.57, 2.73]	+
Subtotal (95% CI)		1015		996	20.7%	1.10 [0.89, 1.35]	♦
Total events	245		232				
Heterogeneity: Chi ² = 8.9		(P = 0.0		5%			
Test for overall effect: Z =							
1.4.5 30os							
Mark R.Gilbert 2016	53	311	68	309	7.1%	0.73 [0.49, 1.09]	
Olivier L. Chinot 2014	61	458	53	463	5.7%	1.19 [0.80, 1.76]	+
Ulrich Herrlinger 2016	6	116	6	54	1.0%	0.44 [0.13, 1.42]	+
Subtotal (95% CI)	-	885	-	826	13.8%	0.90 [0.69, 1.18]	٠
Total events	120		127	_,			1
Heterogeneity: Chi ² = 4.4		(P = 0.1		5%			
Test for overall effect: Z =	= 0.77 (P =	= 0.44)					
Total (95% CI)		5081		4833	100.0 %	1.11 [1.01, 1.22]	•
Total events	2424		2264				
	20 df = 2	3 (P = 1)	0 03\· P =	28%			
Heterogeneity: Chi ² = 37 Test for overall effect: Z =			0.000,1 -	. 20.10			0.01 0.1 1

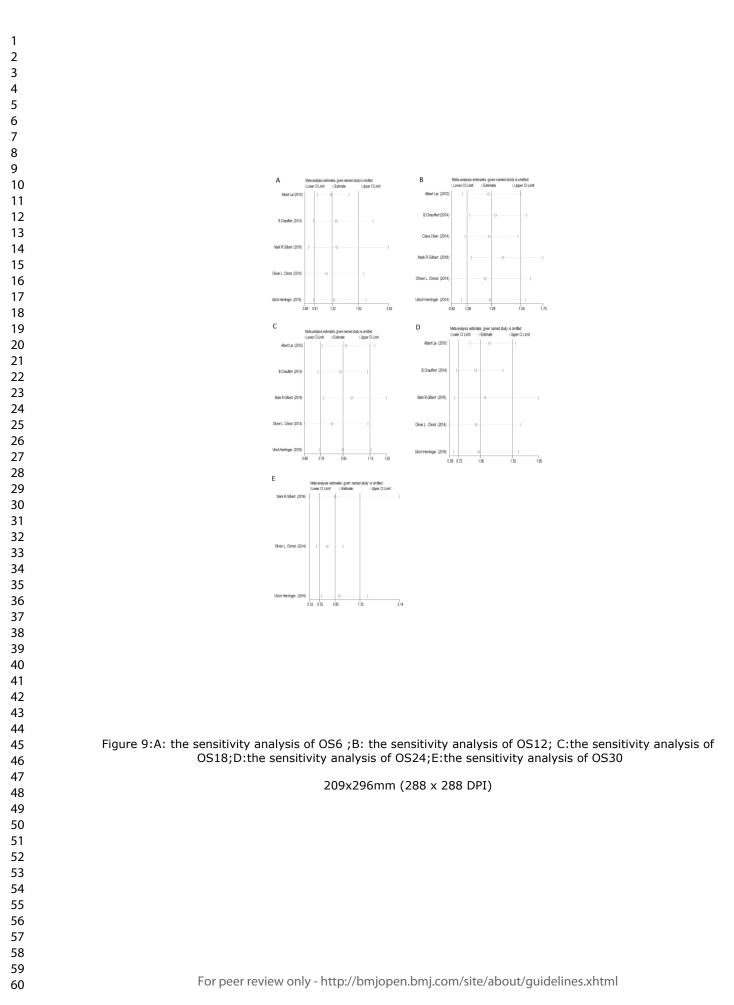
Figure 6: OR of OS at each follow-up time in the treatment of glioma in the BEV group and Non-BEV group

148x206mm (120 x 120 DPI)

1					
2					
3					
4					
5					
6					
7					
8					
9		BEV	Non-BEV	Odds Ratio	Odds Ratio
10	Study or Subgroup 1.3.1 hypertension	Events Total	Events Total Weight	MH. Random. 95% Cl	M-H. Random. 95% Cl
11	Cermen Belana 2016 Clara Chen2014	2 48 12 42	0 45 1.1% 1 42 2.1%	4.89 [0.23, 104.74] 16.40 [2.02, 133.08]	
12	HuaLong LI 2013	21 31	6 31 5.0%	8.75 [2.72, 28.10]	
13	Mark R.Gilbert 2016 Olivier L. Chinot 2014	15 311 181 458	3 309 4.5% 57 463 11.6%	5.17 [1.48, 18.04] 4.65 [3.33, 6.50]	—
14	Qlanru Zhao 2016 ZhiXian Zhang 2018	5 25 5 20	0 24 1.1% 0 20 1.1%	14.55 [0.75, 283.37]	
15	Subtotal (95% CI) Total events	935 241	934 28.5% 67	5.14 [3.79, 6.96]	•
16	Heterogeneity: Tau ^a = 0.00 Test for overall effect: Z =				
	1.3.2 hemorrhage				
17	Clara Chen2014 Mark R.Gilbert 2016	2 42 8 311	0 42 1.1% 3 309 4.1%		
18	Olivier L. Chinot 2014	171 458	88 463 11.9%	2.54 [1.8B, 3.43]	<u> </u>
19	Qlanru Zhao 2016 ZhiXian Zhang 2018	3 25 3 20	0 24 1.1% 0 20 1.1%		
20	Subtotal (95% CI) Total events	856 187	858 19.3% 91	2.62 [1.96, 3.49]	•
21	Heterogeneity: Tau ² = 0.00 Test for overall effect: Z =	0; Chi* = 1.27, d 6.54 (P < 0.000	f = 4 (P = 0.87); P = 0% 01)		
22	1.3.3 hematencephalon	-	-		
23	Albert Lai2010 Cermen Baiana 2016	370 448	1 110 1.8% 0 45 1.1%	4.88 [0.50, 47.88] 9.20 [0.48, 175.96]	,
24	Clara Chen2014	2 42	0 42 1.1%	5.25 [0.24, 112.66]	
25	Uirich Hemlinger 2016 Subtotal (95% Cl)	15 458 618	9 463 7.1% 660 11.1%		◆
26	Total events Heterogeneity: Tau ² = 0.04	24 0; Chi² = 2.07, đ	10 f = 3 (P = 0.56); P = 0%		
27	Test for overall effect: Z =	2.17 (P = 0.03)			
28	1.3.4 Albuminuria Carmen Balana 2016	1 48	0 45 1.0%	2.87 [0.11, 72.38]	
29	Clara Chen2014	9 42	0 42 1.2%	24.10 [1.35, 429.25]	→
30	HuaLong LI 2013 Olivier L. Chinot 2014	19 31 72 458	12 31 5.8% 19 463 9.9%	2.51 [0.90, 6.97] 4.36 [2.58, 7.36]	
31	Subtotal (95% CI) Total events	579 101	581 17.8% 31	4.04 [2.56, 6.37]	-
32	Heterogeneity: Teu ² = 0.00 Test for overall effect: Z =				
33	1.3.5 Thromboembolism				
34	Carmen Balana 2016 Clara Chen2014	2 48 11 42	3 45 2.6% 1 42 2.1%		_
35	HuaLong LI 2013 Mark R.Gilbert 2018	0 31 33 311	0 31 22 309 9.5%	Not estimable 1.55 [0.88, 2.72]	<u> </u>
	Olivier L. Chinot 2014	65 458	50 463 11.1%	1.37 [0.92, 2.03]	
36	Subtotal (85% CI) Total events	890 111	890 25.3% 76		
37	Heterogeneity: Tau ² = 0.14 Test for overall effect: Z =		f = 3 (P = 0.13); P = 48%	•	
38	Total (85% CI)	3878	3923 100.0%	3.27 [2.35, 4.54]	•
39	Total events Heterogeneity: Tau ² = 0.2 [•]	664 1: Chi ² = 49.67.	275 df = 23 (P = 0.001); P = 1	54% H	
40	Test for overall effect: Z = Test for subgroup differen	7.07 (P < 0.000	01)	υ.	01 0.1 1 10 100 Favours [experimental] Favours [control]
41		usa. tan - 10.a		- 10.0 %	
42					
43					
44					
45 Figure 7: OR	R of adverse re	eactions	in the treat	ment of gliom	a in the BEV group and Non-BEV group
46					
47			200		
48			209x278m	m (120 x 120	DPI)
49					
50					
51					
52					
53					
54					
55					
56					
57					
58					
59 60	For peer revie	w only -	http://hmio	pen.bmi.com/	site/about/quidelines.xhtml

- 1 2
- 3
- 4
- 5
- 6
- 7
- 7 8
- 9
- ء 10
- 11
- 12
- 13
- 14
- 15 16
- 17
- 18
- 19 20
- 21
- 22 23
- 24 25 26
- 27 28 29
- 30 31
- 32 33
- 34 35 36 37
- 38 39 40 41 42

- 44 45 46
- 47 48 49
- 50 51
- 52 53
- 54 55
- 55
- 57 58
- 59 60


A В Abert Lai (201 Abert Lai (20 B.Chauffert (2014) B.Chauffert (2014 HuaLong Li (2013) JiaQi Wang (2013) Clara Chen (201 Mark R Gibert (2016 Mark R. Gibert 2016 (2016 Olivier L. Chinot (2014) Qiamu Zhao (2016 Olivier L. Chinot 2014 (2014 minger (2016) ZhiXian Zhang (201 nger 2016 (2016 С D CILimi Abert Lai (2010 Albert Lai 2010 (201 B.Chauffert (201 B.Chauffert 2014 (201 Mark R. Gilbert (2016 Mark D Gilbert 2016 Olivier L. Chinot 2014 (2014 Olivier L. Chinot (2014) Ulrich H Ulrich Hertinger (2016 0.82 1.02 2.00 Ε udy is amitted | Upper C1 Limit Abert Lai (200 Nark R Gibert (201) Olivier L. Chinot (201

Ulich Herlinger (2015) 0.29 0.41 0.65 1.02

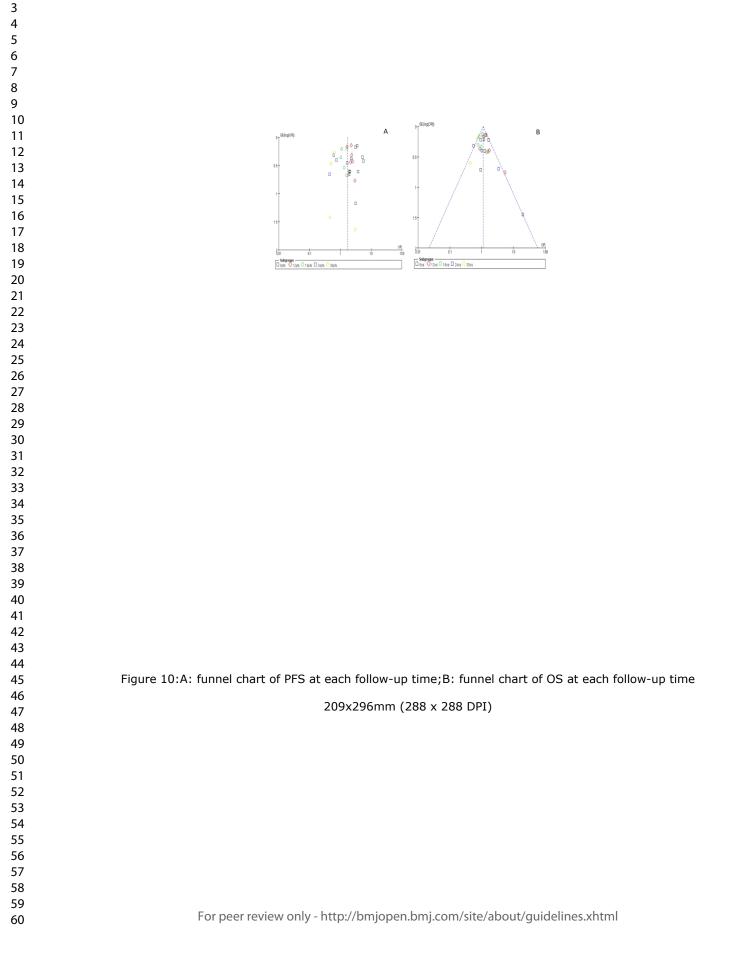

2.92

Figure 8:A: the sensitivity analysis of PFS6 ;B: the sensitivity analysis of PFS12; C:the sensitivity analysis of PFS18;D:the sensitivity analysis of PFS24;E:the sensitivity analysis of PFS30

209x296mm (288 x 288 DPI)

BMJ Open

PRISMA 2020 Checklist

Section and Topic	ltem #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	1
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	1
INTRODUCTION			
2 Rationale	3	Describe the rationale for the review in the context of existing knowledge.	2
3 Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	2
4 METHODS			
5 Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	3
⁶ Information 7 sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	3
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	13-14
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	3
2 Data collection 3 process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	4
5 Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	4
7	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	9
9 Study risk of bias 0 assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	4
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	4
2 Synthesis 3 methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	3
4 5	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	4
5	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	4
7 8 9	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	4
0	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	4-5
1	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	4-5
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	4
4 Certainty 5 assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	4-5

Page 30 of 30

Page 31 of 30

PRISMA 2020 Checklist

Section and Topic	ltem #	Checklist item	Location where item is reported
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	5
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	5
Study characteristics	17	Cite each included study and present its characteristics.	5
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	5
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	5-6
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	6
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	6
φ	20c	Present results of all investigations of possible causes of heterogeneity among study results.	6
1	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	6
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	6
4 Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	6
7 Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	7-8
8	23b	Discuss any limitations of the evidence included in the review.	7-8
9	23c	Discuss any limitations of the review processes used.	7-8
1	23d	Discuss implications of the results for practice, policy, and future research.	8
OTHER INFORMA	TION		
Registration and	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	9
4 protocol	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	9
5	24c	Describe and explain any amendments to information provided at registration or in the protocol.	9
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	9
8 Competing 9 interests	26	Declare any competing interests of review authors.	9
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	9

BMJ Open

44 *From:* Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 45 10.1136/bmj.n71 For peer review only - http://bmjonen.bmj.com/site/about/guidelines.yhtml For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml For more information, visit: <u>http://www.prisma-statement.org/</u>

- 46
- 47