

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Rabies mortality and morbidity associated with animal bites in Africa: A case for Integrated Rabies Diseases Surveillance, Prevention, and Control - A Scoping review

Journal:	BMJ Open
Journal.	השקט מיום
Manuscript ID	bmjopen-2020-048551
Article Type:	Original research
Date Submitted by the Author:	31-Dec-2020
Complete List of Authors:	Nyasulu, P; Stellenbosch University, Global Health Weyer, Jacqueline ; NICD, Centre for Emerging Zoonosis and Parasitic Diseases Tschopp, Rea; Swiss Tropical and Public Health Institute; University of Basel Mihret, Adane; Armauer Hansen Research Institute Aseffa, Abraham; Armauer Hansen Research Institute, Nuvor, Samuel; University of Cape Coast, Department of Microbiology and Immunology Tamuzi, Jacques ; Stellenbosch University Faculty of Medicine and Health Sciences, Epidemiology Nyakarahuka, Like; Makerere University College of Health Sciences Helegbe , Gideon; University for Development Studies School of Medicine and Health Sciences Ntinginya, Nyanda; 6. National Institute of Medical Research-Mbeya Medical Research Centre Gebreyesus, Melaku ; Lilongwe University of Agriculture and Natural Resources Doumbia, Seydou; Université des Sciences, Techniques et Technologiques de Bamako, Faculté de Medecine et d'OdontoStomatologie Busse, Reinhard; Technische Universität Berlin, Health Care Management Drosten, Christian ; Charité Universitätsmedizin Berlin,
Keywords:	EPIDEMIOLOGY, INFECTIOUS DISEASES, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Rabies mortality and morbidity associated with animal bites in Africa: A case for Integrated Rabies Diseases Surveillance, Prevention and Control - A Scoping review Authors: Peter Suwirakwenda Nyasulu^{1*}, Jacqueline Weyer², Rea Tschopp^{3,4}, Adane Mihret⁴, Abraham Aseffa⁴, Samuel Victor Nuvor⁵, Jacques Lukenze Tamuzi¹, Luke Nyakarahuka⁶, Gideon Kofi Helegbe⁷, Nyanda Elias Ntinginya⁸, Melaku Tefera Gebreyesus⁹, Seydou Doumbia¹⁰,

- Reinhard Busse¹¹, Christian Drosten¹¹.
- Affiliation

- ¹Division of Epidemiology & Biostatistics, Department of Global Health, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
- ²Centre for Emerging Zoonosis and Parasitic Diseases, NICD, NHLS, Johannesburg, South Africa
- and Department for Medical Virology, University of Pretoria, Pretoria, South Africa
- ³Department of Epidemiology and Public Health, Swiss TPH, University of Basel, Switzerland
- ⁴The Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia.
- ⁵Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
- ⁶Department of Biosecurity, Ecosystems and Veterinary Public Health, Makerere University, Kampala, Uganda
 - ⁷Department Biochemistry and Molecular Medicine, School of Medicine and Health Sciences,
 - University for Development Studies, Tamale, Ghana

latural Resources,
Berlin, Campus
of Medicine and
asulu@sun.ac.za
ml

Abstract

Objective

The objective of this scoping review was to map the current situation and available evidence and gaps on rabies morbidity, mortality, integrated rabies surveillance programs, and existing prevention and control strategies in Africa.

37 Methods

We conducted a systematic scoping review following the Joanna Briggs methodology and PRISMA-ScR checklist. Medline, EMBASE, Cinahl (EBSCOHost), Scopus, Web of Science and rabies web conferences were used to search for pee-reviewed publications between January 1946-May 2020. Two researchers reviewed the studies and extracted data based on author (year) and region, study design and data collection duration, Participants / Comparators, Interventions and Control Conditions / Exposures, outcomes (rabies mortality and morbidity) and Key Findings / Gaps / Challenges. The results were reported narratively using Arksey methodological framework.

Results

Electronic search yielded 2775 records, of which 43 studies were included. A total of 543,714 bite victims were censored through the included studies. Most of the victims were less than 15 years of age. The studies included, rabies morbidity (21) and mortality (15) fluctuating in space and time across Africa depending on countries rabies prevention and control practices (16). Others were surveillance (nine studies), surveillance and prevention (five studies), management and control (seven studies) and surveillance, prevention and control (six studies). We found challenges in

1		4
2 3 4	52	rabies reporting, existing dog vaccination programs and post-exposure prophylaxis availability or
5 6	53	compliance.
7 8 9 10 11	54	Conclusion
12 13	55	This study found challenges for dog rabies control and elimination in Africa and the need for a
14 15 16	56	policy to drive the goal of zero dog-transmitted human rabies by 2030.
17		
18 10	57	This is an open access article distributed in accordance with the Creative Commons Attribution
19 20	58	Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build
21	59	upon this work non-commercially, and license their derivative works on different terms, provided
22 23	60	the original work is properly cited, appropriate credit is given, any changes made indicated, and
24 25	61	the use is non-commercial. See <u>http://creativecommons.org/licenses/by-nc/4.0/</u>
26 27	62	Key words: One-Health; rabies; mortality; morbidity; surveillance; zoonosis; neglected tropical
28 29	63	disease; Africa
30 31 32	64	disease; Africa
33 34		
35 36		
37		
38 39		
40 41		
41 42		
43 44		
44 45		
46 47		
47		
49 50		
50		
52 53		
55 54		
55 56		
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

65	Stren	gths and limitations of this study
66	•	We conducted an extensive search of published and grey literature to identify studies to
67		include in the scoping review
68	•	Pulling together data from both published and grey literature gave us an opportunity to
69		understand the breadth of rabies epidemiology and how surveillance would be a critical
70		tool in implementing effective control of rabies across Africa
71	•	We conducted screening of identified articles and extraction of data in duplicate
72	•	We reported the results narratively as it was not possible to combine data from different
73		studies conducted using different study designs, and different population groups.
74		
		C. C. O.

1. Background

The natural history of rabies disease in Africa is not well known, but it is well accepted that the disease must have been present in northern Africa for hundreds of years, particularly as an urban dog disease and also associated with cycles in the Middle East [1]. European colonization influenced the spread of dog rabies in Western and Central Africa [2]. In many sub-Saharan African countries, rabies has become epizootic only in the nineteenth and twentieth centuries involved domestic dogs and free-ranging wildlife species [1-3]. Historically, isolation and epidemiological analysis of these viruses has primarily been associated with research studies and was strongly dependent on available laboratory diagnostic capacity and research group interest [3-4]. A thorough study of the phylogeographic structure of the African lineage-2 revealed strong population subdivisions at country level, with minimal transmission of virus between localities [5]. The molecular epidemiology of rabies virus (RABV) in Africa identified three phylogenetic RABV lines: Africa 1, 2 and 3 [6]. RABV strains from Central and North Africa clustered into Africa 1a and 4 lineages, while those from Southern African countries clustered in Africa 1b and 3 clades [5]. However, all RABV variants were homogeneous and closely related (99 per cent sequence homology), indicating a shared common origin distinct from the out-of-group group [5-7]. The divergence was assumed to represent different progenitor viruses. Africa 1 and 2 lineages were isolated from dogs or humans bitten by feral dogs, while Africa 3 lineages were found to be associated with mongoose species, primarily yellow mongoose (Cynictis penicillata) from the Republic of South Africa [6]. The Africa 1 lineage was subdivided into two subgroups: 1a, limited to North and West Africa; and 1b, limited to South East Africa. In general, the Africa 1 lineage was the most similar to the current Eurasian RABV lineage, indicating its recent introduction to Africa [6-8]. The Africa 2 lineage contains wild-type strains originating from many Central and

Bastern African countries and is phylogenetically ancestral to the Eurasian and African 1 RABV
clusters [6]. The ancestry of Africa 3, of mongoose origin, is distant from all variants of the dog
RABV [6].

Dog rabies predominates throughout most of Africa; the domestic dog is the principal reservoir host as well as the most important source of infection for people [9]. In addition, there are many other lyssaviruses (also referred to as rabies-related viruses) reported from African countries. Most of these rabies-related viruses have been associated with obscure hosts including specific bat species and shrews, partly attribute to the difficulty in bio-surveillance of these viruses. RABV however, spreads in terrestrial mammalian hosts in Africa and has not been associated with bat infections as it is the case in the Americas. While all mammals (domestic and wild) are susceptible to RABV infection, some are able to retain those virus variants adapted to their species whilst others are only reported as dead-end hosts [10]. Rabies has been reported in both domesticated species and wildlife. These are sometimes diagnosed with rabies virus infection in Zambia, South Africa, Ethiopia, Kenya, Tanzania, Zimbabwe and Egypt [10-16].

Most reported cases of rabies in wild carnivorous species included yellow mongoose (*Cynictis penicillata*) and bat-eared fox (*Otocyon megalotis*) [17] as well as critically endangered wild dogs (Lycaon pictus) [18-21]. In Ethiopia, rabies outbreaks were described in the endangered Ethiopian wolf (Canis Simensis) population [22-23]. In 2014 and 2015, RABV infection was also observed in two wild dogs and a spotted hyaena (Crocuta crocuta) in the Madikwe Game Reserve, North West Province of South Africa, in Ethiopia and in Nigeria [16,21,24], monkeys and jackals (*Canis* adustus and Canis mesomelas) [11,12, 15-16]. The review of twenty studies across Africa has revealed that bite victims account for 91.9% (48092 dog bites), cat bite for 2.9%, jackal bite for

0.8% and 4.41% others (monkey, donkey, horse, rat, pig, rabbit, Honey badger, kudu, goat, cattle,
eland and hyena) [25-44].

More than 59 000 people die of rabies worldwide every year [45-46], 99% of them in African and Asian countries where dog rabies is endemic [45, 47-51]. Due to the lack of laboratory confirmation, sporadic epidemiologic surveillance, and unreported clinical cases in developing countries, current mortality estimates almost certainly under-represent the true incidence of human rabies deaths [45, 49-51]. Rabies is responsible for an estimated 21,000-25,000 death annually in Africa [45, 52-53]. Figure 1 shows a map illustrating rabies distribution in thirty-two African countries considering rabies outbreaks in animals, cases and deaths in humans [54]. In 2011, a total of 33 African countries reported 1,607 outbreaks of rabies, 2,779 cases and 1,524 deaths [54]. Data shows that rabies accounts for 7.2% of all animal disease outbreaks reported making it the disease with the highest number of outbreak reports in Africa in 2011 [54]. Algeria, Namibia, Eswatini (former Swaziland), Tunisia, Uganda, Zambia and Zimbabwe reported high morbidity and mortality with 563 cases (33.9% deaths), 269 (94% deaths), 62 cases (88.7% deaths), 91 cases (90% deaths), 466 cases (40.9%), 207 cases (32.8% deaths) and 114 cases (80.7% deaths) respectively [54].

Mass vaccination of dogs as a key component of national rabies elimination programs has been
successful in eliminating dog-transmitted rabies in Europe, North and Latin America, and Japan
[55-57]. By far, the most significant public health threat comes from RABV, and over 99% of all
globally reported human cases are caused by exposure to unvaccinated dogs infected with canine
RABV variant, mostly in Asia and Africa [58].

> In most of Africa, and specifically western and central African countries, notification of rabies disease is not mandatory, so epidemiological data are scarce [60]. Human rabies could be prevented by the immediate administration of post-exposure prophylaxis (PEP) following exposure to rabid animals [46, 60]. However, people in low-income countries often do not receive these life-saving treatments because either PEP treatment is costly and not readily available, or because of lack of rabies awareness, people might not go to hospital for treatment [46, 50, 61]. The lack of effective educational outreach at community level had led to gaps in knowledge as to the best way to avoid animal bites and administer first aid following bites or other potential rabies exposures [62]. A recent study has shown considerable in-country variability in the availability of rabies vaccines and immunoglobulins vaccine supply system, administration route (IM versus SC), cost of vaccine and rabies immunoglobulin (RIG). In a global survey conducted in rabies endemic countries, 49 of the 54 African countries were rated as moderate to high risk for human rabies, whilst 16 of the 23 countries that responded to the survey had inadequate surveillance systems [53, 63].

One major barrier is the difficulty of consistently achieving the required coverage of 70% of the dog population across the hard-to-reach landscapes that characterize much of sub-Saharan Africa [64-66]. Reviewing dog vaccination coverage in African countries, only South Africa, Tanzania, Algeria, Morocco and Egypt had the dog vaccination coverage of 63%, 37.24%, 23.7%, 25% and 23.7% respectively [67,68]. In all other African countries dog vaccination coverage was below 18% with further below 5% in some cases [67]. The analysis of the above data and the consideration of the framework for the elimination of dog rabies suggested by Wallace 2017 and others stipulated the existing coverage of dog rabies vaccination, was directly associated with the number of years it would take to achieve rabies elimination [69]. Theoretically, Global Dog Rabies

Page 11 of 84

BMJ Open

Elimination Route (GDREP) consisting of a 13-year timeframe would be ample time for even the least developed rabies prevention systems to achieve elimination by 2030 if completely committed to this achievement [69]. This system divided countries into three categories: (1) Phase I: preparation (dog vaccination > 18%), (2) Phase II: vaccination of dogs (dog vaccination: < 18%and > 70%) and (3) Phase III: 70% continued vaccination of dogs. African countries have been categorized into phase I, II, III but with no data on dog vaccination [70]. The available data indicate that most African countries were still at the preparation phase since "zero rabies by 2020" was initiated five years ago. Although the feasibility of reaching 70% dog vaccination coverage has been shown through pilot projects in a wide range of settings. African countries still struggle to achieve a 70% yearly dog vaccination rate [9, 51]. In Africa, dog mass vaccination systems have demonstrated some effectiveness as proof of principle, as in KwaZulu-Natal, South Africa [55-71], Serengeti, Tanzania [55,72-73], Malawi [55,75] and Chad [61, 76-78].

Inadequate education for veterinarians and physicians, insufficient resources for proper confirmatory diagnosis and risk assessment, and the lack of effective communication channels between ministries of health and agriculture frequently have led to failures of prophylactic intervention, even in regions where vaccines and immunoglobulins were available [62]. A recent study conducted in Africa and Asia revealed that rabies immunoglobulins were found to be less available than the vaccine, with access restricted in almost two-thirds of the countries surveyed [79]. Eleven (11) African countries had comprehensive access to RIG. Of the seven countries with broad access to vaccines, 6 of them had a national rabies prevention program or policy. Two of the countries had only a monitoring program / strategy in place [79]. This is worrisome as it exposes a huge absence of surveillance and prevention policies in most African countries. The absence of a robust monitoring process is mostly attributed to the lack of rabies in national

communicable disease plans and reporting systems at national level in Africa [80]. Therefore, widespread underreporting is likely to occur in many affected countries due to lack of health information, civil registration and vital statistical systems, and inaccessibility of clinical care and diagnostic confirmation [80] as symptoms of the disease may be non-specific and similar to other encephalitic infections. Even where data exist in Africa, the lack of communication and exchange of data between the animal and human health sectors also hinders the collection, storage and reporting of coherent data to international data bases [80]. The World Health Organization (WHO) meeting in Geneva in 2018 on "Moving Progress towards Rabies Elimination" pointed out that political engagement is a key factor with governments providing leadership role in the coordination of elimination strategies [53]. The global collection of data on deaths from any neglected disease is a huge challenge, and early attempts to collate data for human deaths from canine rabies were no exception [81]. Due to the lack of regular reporting of rabies cases to the WHO from many member states, the RabNet database was closed down in 2011[82]. Therefore, rabies is not reportable in many African countries, which restricts data collection by structured surveillance systems [80]. One Health evolved from the recognition that an interdisciplinary approach is required to understand complex health problems, and that the health of humans and animals is inextricably linked [83]. Rabies requires a comprehensive, strategic, and targeted control and prevention approach with collaboration from human, animal, and environmental health disciplines at local, national, and global levels to achieve more effective control [84]. The review of literature reveals that most of African countries lack a One Health approach to prevent human rabies deaths.

The WHO, the World Organization for Animal Health (OIE), the Food and Agriculture Organization (FAO) and the Global Alliance for Rabies Control (GARC) have developed a strategic global plan to end human canine-mediated rabies by 2030 [48, 53, 85]. This initiative Page 13 of 84

BMJ Open

provides a concerted approach to the prevention of rabies, combined with the strengthening of human and veterinary health systems. These would enable reaching out to the most underserved communities in the world by engaging, encouraging and supporting all countries to lead and improve elimination efforts [80]. This scoping review was therefore designed to map the evidence on rabies morbidity, mortality, integrated rabies surveillance, prevention and control in African countries. Its objectives were: (1) to assess the extent of available research on the morbidity and mortality of rabies due to animal bites conducted in Africa, (2) to identify research gaps in the literature on the impact of rabies in Africa so as to effectively plan public health intervention, (3) to ascertain the current level of rabies disease surveillance, prevention and control that exists in African countries, (4) to assess the published adverse events and complications associated with rabies vaccination in African countries, (5) to assess the different types of vaccines used and the effectiveness of locally produced and imported vaccines in treating rabies in different parts of Africa, (6) to assess rabies morbidity and mortality associated with dog and livestock bites in humans and animals' population.

2. Methodology

225 2.1. Study design

This paper used the PRISMA-ScR checklist [86] and The Joanna Briggs Institute guidelines [87] as a norm for reporting scoping review. The analysis was conducted in accordance with the structure suggested by [88], further developed by [89].

229 2.2. Eligibility criteria

The search was conducted from 1 January 1946 until 30 May 2020. A PICO (Population-Interventions-Comparisons-Outcomes) search framework was set, where P (Humans infected with rabies in African countries), I (Integrated rabies disease surveillance, prevention and control), C (little or no integrated rabies disease surveillance, prevention and control) and O (reduced human morbidity and mortality of rabies associated with animal bites) were chosen. The included studies are described in Table 1.

2.3. Electronic search

We conducted a systematic search of the electronic databases Medline (OVID), EMBASE (OVID), Cinahl (EBSCOHost), Scopus (Elsevier), Web of Science and Conference (rabiesalliance.org, www.who-rabies-bulletin.org and www.oie.org). The search techniques were limited to English. The main search strategy was listed in supplementary material 1. EndNote X9 reference manager was used to remove duplicates. JLT reviewed all the papers identified by title in order to pick those that were potentially appropriate, with a clear bias towards retention. The abstracts of all the studies chosen on the basis of their titles were independently reviewed by two reviewers (PSN and JTL) and any variations were preserved in the study.

245 2.4. Data charting process

For all studies selected at the abstract level, data were extracted and plotted in the table, covering
author (year) and region, study design and data collection duration, Participants / Comparators,
Interventions and Control Conditions / Exposures, outcomes (rabies mortality and morbidity) and
Key Findings / Gaps / Challenges. The final decision to include studies was taken on the basis of
this data extraction and whether it met the inclusion / exclusion requirements, based on an

Page 15 of 84

BMJ Open

independent review by two authors (PSN and JLT) and a discussion of any differences; the third
author (RT) was available for consultation if consensus could not be reached. Our inclusion criteria
were: rabies occurrence or mortality rates, all ages included, only studies performed in Africa,
studies in which at least one intervention included monitoring, prevention and control of rabies,
and then only quantitative studies were included in this study.

A data extraction sheet has been developed and used to extract data from included papers. The data collection sheet included: author, region, year, study design, level of evidence, sample size description, interventions or exposures, results and key findings / Gaps / Challenges. Two reviewers (PSN & JLT) worked separately at all levels of the study. The results were then compared and any variations were addressed and resolved by PSN and JLT. The third author (RT), who also summarized the findings, was consulted when a discrepancy could not be resolved. The evaluation of the probability of bias, the methodological standard of the included studies was not assessed due to the scoping review of the study [88].

2.5. Data items

Seven items were listed in the data collection chart table. We included the first author, the year of publication of the study and the country (item 1). Study design and period of data collection (item 2). The sample size, mean or median age and gender (item 3). The intervention and control conditions / exposures included surveillance, prevention and control of rabies and any other form of intervention used in human rabies (item 4). The number or rate of human rabies morbidity included annually or during the study period (item 5). Human rabies mortality recorded the death or mortality rate annually or during the study period (item 6). Main findings / gaps / challenges

included other outcomes such as data gaps found, available research evidence as well as PEP orvaccine adverse events (item 7).

2.6. Critical appraisal of individual sources of evidence

275 Methodological quality of included studies was not evaluated due to the scoping nature of the276 review [84].

277 2.7. Synthesis of results

Studies were summarized based on author (year) and country, study designs, participants and comparator, interventions and control conditions/exposures, key outcomes, gaps, findings and challenges. Interventions were subdivided into rabies prevention, surveillance, control and management. Table, computed morbidity and mortality rates in case there were not clearly provided and then we reported the results narratively, as recommended in scoping review were methodological framework [88].

3. Results

3.1. Study selection

The searches from the five electronic databases hit a total of 2775 records (Medline: 696, Embase: 952, CINAHL: 289, Scopus: 431 and Web of science: 407) that led to a total of 1127 titles and abstracts that were screened after the removal of duplicates. We retained 111 of these based on their title and abstract screening. The full-text screening's stage led to 43 potential articles relevant to our scoping review. The scoping review flow chart was described in Figure 2.

BMJ Open

	292	3.2. Study characteristics
1	293	The review reported only quantitative studies on rabies surveillance, prevention and control.
	294	Thirty-two quantitative studies were retrospective cohort with 8 month to 14 years of study
-	295	duration [16, 25-27, 29, 30, 32, 34-42, 44, 90-104], three studies were mixed designs (retrospective
•	296	and cross-sectional study) [43,105,106], three prospective cohort studies [28,31, 107], two Cross-
;	297	sectional studies [108,109], one case control [33], one clinical trial [110] and a randomized control
)	298	trial [111].
-		
-	299	We grouped the included studies into five categories based on rabies interventions, namely 1)
,	300	prevention and control, 2) surveillance, 3) surveillance and prevention, 4) treatment and control,
)	301	and 5) surveillance, prevention and control. Figure 3 showed the distribution of studies according
)	302	to the intervention in nineteen African countries. We also summarized all studies included in the
	303	final analyses in Table 1 which included seven parts in line with the specified frameworks for data
	304	synthesis: (1) rabies morbidity, (2) rabies mortality, (3) interventions for rabies control, (4) rabies
	305	disease surveillance, prevention and control, (5) available research evidence, (6) research gaps
)	306	identified and (7) adverse events and complications associated with rabies vaccination.

307 3.3. Patient characteristics

A total of 543,714 bite victims were recorded in included studies. Age and sex-specific distribution revealed that the most fatal cases belonged to age groups 0-14 year [25, 29, 31, 34, 39, 41, 42, 44, 90, 97, 98, 100,102, 106, 108]. Other studies identified rabies victims of 15 and above [26, 34, 35, 38, 42, 90, 101, 102, 106, 109]. The median age was 18 years in most of the studies and ranged

from one to 95 years. Most of the children were males [41, 42, 100, 102]. However, other study has indicated that females have more animal-related bites than males [25]. Young children are at higher risk of contracting rabies in the absence of treatment due to the location of the bites they receive [108]. Based on the extent and depth of injury, 1, 567 victims were recorded. Extent and depth of injury was classified as skin broken (11.1 %), scratch (9.25 %), superficial (loss of epidermis only) (36.38 %), deep (27.31 %) and simple (affect only one tissue) (12.38 %) [25,27,107,109]. Further 10, 006 bites were described in regard of the site of exposure among which the head/neck/face (5.08%), leg/feet (61.06%), arm/hand (23.23%), buttocks/trunk (10.32 %) or multiple (0.31%) [25-29, 38, 43, 99, 101, 105, 108].

Individuals suspected to have rabies were clinically managed by the chief doctor pediatricians and nurses [28, 32, 33, 36, 90, 100, 105, 109]. The main treatments were wound management, antibiotics, prophylaxis against tetanus and rabies. Reports were collected in hospitals, treatment and health centres, health clinics, pharmacies and veterinary clinics [109].

325 3.4. Study outcomes

3.4.1. Rabies morbidity

Twenty-one studies reported rabies human morbidity in Africa (Table 2) [26, 30-35, 37, 39, 42, 44, 90, 92, 94-98, 103, 105-107, 109]. Among them, five studies were undertaken in Tanzania, the first study estimated an average annual incidence per 100,000 bites of 37.1, 11.3 and 33.5 in human population district of Ulanga (193280 inhabitants), Kilombero (321611 inhabitants) and Serengeti (176057 inhabitants) respectively [95]. The second study found that the incidence of bite patients seeking PEP declined substantially (>50%) from 2011 to 2015 [96]. The third study Page 19 of 84

1

BMJ Open

2	
3 4	
5	
6 7 8	
8	
9 10	
11	
13	
14 15	
12 13 14 15 16 17 18	
17 18	
19	
20 21	
21 22	
23 24	
25	
26 27	
28 29	
30	
 31 32 33 34 35 36 37 	
33	
34 35	
36	
37 38	
39	
40 41	
42	
43 44	
45	
46 47	
48	
49 50	
51 52	
53	
54 55	
56	
57 58	
59	
60	

333	estimated an annual incidence of ~58 cases per 100,000 [37], the fourth study reported a mean
334	incidence of 74 bites considered at risk of rabies transmission per 100,000 persons per year [103]
335	and the last study conducted in Tanzania revealed an average of 75.6 and 19.3 probable rabies
336	exposures per 100,000 persons per year [105]. Three studies conducted in Ghana reported 54 dog-
337	bite victims bitten by rabies-positive dogs within three years [90], 13 cases of human rabies in a
338	6-year retrospective records review [34] and an annual incidence of rabies cases of 172 per 100,000
339	population [44]. Four studies reported rabies morbidity in Ethiopia. Yizengaw et al. 2018 reported
340	a high incidence rate of rabies exposure during spring (360, 39%) and summer (244, 26.4%)
341	seasons and a total of 924 human rabies exposure cases received the anti-rabies post-exposure
342	prophylaxis from September 2015 to August 2017 [106]. The incidence of human rabies exposure
343	was reported to be 40 per 100,000 population in Ethiopia [29], annual estimated rabies incidence
344	of 2.33 cases per 100,000 in humans [107] and the incidence of human rabies exposure cases
345	calculated per 100,000 populations was 35.8, 63.0, 89.8 and 73.1 in 2012, 2013, 2014 and 2015,
346	respectively [99]. A study conducted in Zimbabwe found among rabies-suspect, 42 (73.7%) were
347	positive [35]. In Madagascar, nine of the 11 suspected human cases tested from 2005 to 2010 with
348	a laboratory confirmed for rabies [92]. In Uganda, a total of 208,720 patients with animal bite
349	injuries were treated at health facilities across the country [94]. Ivory Coast reported 50 cases of
350	human rabies with annual incidence of 0.06-0.08 per 100,000 [31]. Human animal-bite injuries
351	incidence was 289 per 100,000 persons with the highest incidence reported at 302 per 100,000 and
352	lowest at 121 per 100,000 persons in Kenya [29]. Another undertaken in Malawi reported 14
353	paediatric rabies cases during the study period [98]. A six-year retrospective study revealed 31
354	positive cases of human rabies in Madagascar [42]. In Democratic Republic of Congo, a five year
355	retrospective study found 29 positive to rabies in a total of 5,053 dog bites recorded in the

veterinary clinics [30] and Frey 2013 estimated an annual incidence of bites from suspected rabid
animals of 12.9/100 000 and an incidence of 0.7 human rabies deaths/ 100,000 in Chad [109].
Namibia reported above 16 cases per year from 2011 until 2015 with a maximum of 23 cases
observed in 2015 with an incidence of 1.0 and 2.4 per 100,000 inhabitants and per year on average
[39].

361	Table 2: Mapping hur	man rabies morbidity rate
-----	----------------------	---------------------------

Country (region, district and town)	Human rabies morbidity rate	Study duration
Chad (N'Djamena)	An annual incidence of bites	Seven months [109]
enad (r (Djuniena)	from suspected rabid animals of 12.9/100 000 [109]	
Democratic Republic of	29 positive to rabies in 5,053	Five years [30]
Congo (Kinshasa)	dog bites recorded in the	
	veterinary clinics [30].	
Ethiopia (National level;	A total of 924 human rabies	One year [29]; Two years
Ababa and outside of Addis	reported [107]	[106]; three years [97];
Ababa; North Gondar	The incidence of human	Eleven months [107]
administrative zone)	rabies exposure was reported	
	to be 40 per 100,000	
	population in Ethiopia [29]	
	4	
	Annual estimated rabies	
	incidence of 2.33 cases per	
	100,000 in humans [107]	
	The incidence of human	
	rabies exposure cases	
	calculated per 100,000 populations was 35.8, 63.0,	
Ghana (Techiman	89.8 and 73.1 every year [97] 54 dog-bite victims bitten by	Three years [90]; Six years
Municipality; Eastern Region	rabies-positive dogs [90]	[34]; Two years [44]
of Ghana)		
or Ghana)	13 cases of human [34]	
	An annual incidence of rabies	
	cases of 172 per a population	
	of 100,000 [44]	

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\2\\13\\14\\15\\16\\17\\18\\9\\20\\21\\22\\34\\25\\26\\27\\28\\9\\30\\1\\32\\33\\4\\35\\37\\38\\38\\38\\38\\38\\38\\38\\38\\38\\38\\38\\38\\38\\$	
36	
40 41 42 43 44	
45 46 47 48 49	
50 51 52 53 54	
55 56 57 58 59	
60	

20	

Ivory Coast (National level)	Annual incidence of 0.06–0.08 per 100,000 [31]	Two years [31]
Kenya (Machakos and Kitui counties in lower eastern region; Kisumu County in Lake Victoria basin; Nandi County in Central rift valley and Kilifi coastal region).	Human animal-bite injuries incidence of 289 per 100,000 persons [26]	Five years [26]
Madagascar (National level)	Nine of the 11 suspected human cases tested with a laboratory confirmed for rabies [92]. 31 positive cases of human rabies reported [42].	Five years [92]; Six years [42]
Malawi (Blantyre)	14 paediatric rabies cases reported [98].	Six years [98]
Namibia (Kavango)	An incidence of 1.0 and 2.4 per 100,000 inhabitants and per year on average [39]	Six years [39]
Tanzania (Mwanza region; Tabora; Shinyanga; Mara; Ulanga; Kilombero; Serengeti; Dodoma Region; Ngorongoro districts in northern Tanzania and in the 11 districts in southern)	Average annual incidence per 100,000 bites of 37.1, 11.3 and 33.5 in Human population [95] An incidence of bite patients seeking PEP declined substantially (>50%) [96].	Five years [37]; Four years [95-96]; Seven years [103]; Five years [105]
	An annual incidence of 58 C cases per 100,000 [37]	5
	Mean incidence of 74 bites considered at risk of rabies transmission per 100,000 persons per year [103].	1
	An average of 75.6 and 19.3 probable rabies exposures per 100,000 persons per year [105]	
Uganda (National level)	208,720 patients with animal bite injuries treated at across the country [94].	Fourteen years[94]

2	1
2	т

Zimbabwe (National level)	Among rabies-suspect, 42	Eleven years [35]
	(73.7%) were positive [35].	

363	3.4.2. Rabies mortality
364	Sixteen studies reported rabies related mortality in Africa (Table 3) [16, 27, 33, 36, 38, 40, 41, 91,
365	93-95, 104, 105,107-109]. Ethiopia reported three studies among which 320 people, diagnosed
366	clinically, died of rabies in a 5-year retrospective study conducted in the national level [16], 386
367	human rabies fatality were reported in a 8-year retrospective study with annual range of 35 to 58

ducted in the national level [16], 386 human rabies fatality were reported in a 8-year retrospective study with annual range of 35 to 58 deaths in Addis Ababa and outside of Addis Ababa [41]. There were also 32 cases in human rabies recorded from which three humans ended with fatality in North Gondar administrative zone [107]. Four studies assessed rabies mortality in Tanzania from which Ulanga, Kilombero and Serengeti districts reported human rabies mortality rates of 2.4; 0.8 and 1.4/100,000 per year respectively [95]. Sixteen human deaths (1,291 victims bite) due to rabies were reported within the Integrated Bite Case Management (IBCM) study across 20 districts in 4 regions in Southern, Central, and Northern Tanzania [104]. Other studies reported twenty-eight deaths from suspected rabies cases during the five-year period in the two districts, an average of 1.5/100,000 per year in Serengeti and 2.3/100,000 in Ngorongoro [40]. Fourteen (14) among 1005 victim bites died showing clinical signs of rabies within 5 years [105]. Three (3) studies identified rabies mortality in Uganda. Among them, were 592 (95% CI 345–920) deaths [108], 1 dose of PET was sufficient for protection following a rabid animal bite. Another research estimated a total of 371 deaths of rabies with a cumulative total of 117,085 rabies cases in nine years [93] and a 14-year retrospective study revealed a total of 486 suspected human rabies deaths among 208,720 patients with animal bite injuries treated at health facilities across the country [94]. A study undertaken in Moramanga

BMJ Open

3	
4	
5 6 7	
7	
8	
9 10	
11	
12	
13 14	
15	
11 12 13 14 15 16 17	
17 18	
19	
20	
21	
22	
24	
25	
20 21 22 23 24 25 26 27	
28	
29	
30 31 22	
32 33	
33	
34 35	
35 36 37	
37 38	
38 39	
40	
41	
42 43	
44	
45	
46 47	
48	
49	
50 51	
52	
53	
54 55	
55 56	
57	
58	
59 60	
00	

district (Madagascar) recorded an annual incidence of 42–110 rabies exposures and 1–3 deaths per 383 100,000 persons [27]. An estimated 7 rabies deaths (95% confidence interval 4–10 deaths) per 384 year was recorded in N'Djamena (Chad) [107]. A study conducted in Algeria excluding Sahara 385 region found an annual average of 20.6 human rabies deaths [91]. A total of 14 cases of fatal rabies 386 with 12 death reported in Maputo City is the capital of Mozambique [33]. An average annualized 387 rabies attack rate of 136 rabies cases per 100 000 dog-bite injuries (7/5 139) with 6/7 deaths were 388 reported in South Africa [38]. There were patients with furious rabies manifestations and the case-389 fatality rate of 100% in a study conducted in Kinshasa (DRC) [36]. 390

391 Table 3: Mapping human rabies mortality rate

Country (region, district and town)	Morbidity rate	Study duration
Algeria (National level excluding Sahara region)	An annual average of 20.6 human rabies deaths [91]	Thirteen years [91]
Chad (N'Djamena)	An estimated 7 rabies deaths (95% confidence interval 4– 10 deaths) per year [109]	Seven months [109]
Democratic Republic of Congo (Kinshasa)	Case-fatality rate of 100% [36]	Eight months [36]
Ethiopia (National level, Ababa and outside of Addis Ababa, North Gondar administrative zone)	 320 people died of rabies in a 5-year [16]. 386 humans rabies fatality were reported with annual range of 35 to 58 deaths [41] 32 cases in human rabies recorded [107]. An annual incidence of 42– 	Five years [16]; Eight years [41]; Eleven months [107]
Madagascar (Moramanga district)	An annual incidence of 42– 110 rabies exposures and 1–3 deaths per 100,000 persons [27]	One year [27]
Mozambique (Maputo city)	A total of 14 cases of fatal rabies with 12 deaths [33]	Three months [33]
South Africa (Uthungulu District of Kwazulu-Natal province)	An average annualized rabies attack rate of 136 rabies cases	Three years [38]

2	2
/	≺
~	-

	per 100 000 dog-bite injuries (7/5 139) with 6/7 [38]	
Tanzania (Ulanga, Kilombero and Serengeti districts; 20 districts in 4 regions in Southern, Central, and Northern Tanzania; Serengeti	Human rabies mortality rates of 2.4; 0.8 and 1.4/100,000 per year respectively [95]. Sixteen human deaths (1,291	Five years [40]; Four years [95]; Five years [105]
and Ngorongoro)	victims bite) due to rabies were reported [105].	
	Twenty-eight deaths from suspected rabies cases during the five-year period in the two districts, an average of 1.5/100,000 per year and 2.3/100,000 [40]	
	Fourteen (14) among 1005 victim bites died showing clinical signs of rabies within 5 years [105].	
Uganda (National level; ten district)	592 (95% CI 345–920) deaths [108] An estimated a total of 371 deaths of rabies with a cumulative total of 117,085 rabies cases in nine years [93]	Eight years [93]; Fourteen years[94]; Three months [108]
	A total of 486 suspected human rabies deaths among 208,720 patients in fourteen years[94]	2/

3.4.3. Rabies disease surveillance, prevention and control

3.4.3.1. Rabies prevention and control

395 The review summarized rabies prevention and control in point of view rabies exposure status, PEP,

dog vaccination and seasonality. Among 36,741 bite victims recorded in studies reporting PEP

BMJ Open

1 2		
3 4	397	[25, 37, 41, 90, 97, 98, 103], the PEP was initiated based on WHO grade of exposure [112]. We
5 6	398	found 505 bites in grade 1 (8.78%), 2050 in grade 2 (35.63%) and 3199 in grade 3 (55.59%) [28,
7 8 9	399	29, 38, 101, 102]. The overall PEP course among bite victims varied between 24% to 99% [25,
9 10 11	400	90]. We reported 2,652 bites victims in studies reporting PEP and mass dog vaccination [29, 34,
12 13	401	35, 91, 106]. Dog vaccination coverage varied from 14.1% to 68.78% [29,91]. Other study found
14 15	402	that the dog vaccination decreased significantly across the study and also the health status of most
16 17 18	403	dogs involved in biting was unknown [35,106]. Rabies prevention and control also depended on
19 20	404	the seasonality. In Ethiopia, two studies reported season wise rabies exposure. The first study
21 22	405	reported rabies exposure during spring (360/924, 39%) and summer (244/924, 26.4%) seasons
23 24 25	406	[106]. The second study that found the highest human rabies exposures were reported in spring
26 27	407	(April to June) followed by winter (January to March) while the lowest distribution of human
28 29	408	rabies exposure was recorded in autumn (October to December) [29]. In Nigeria, Osaghae et al.
30 31 32	409	reported the prevalence of dog bite was highest, 41/81 (50.6%), during the hot season (April–June)
33 34	410	and low, 14/81 (17.3%), during the wet season (July–October) [99]. Another study conducted in
35 36	411	Nigeria recorded the highest number of dog bites with two peaks in April and October 2008 [43].
37 38	412	However, the number of dog bite cases was lowest. For all years the numbers of dog bite cases
39 40 41	413	recorded were lowest at the beginning of the year and dog bites increased during the last 3 months
42 43	414	(October-December) of the year 2006 [43]. Animal-to-human rabies transmission was highest
44 45	415	during the dry months of July to November in Zimbabwe [35]. In DRC, a study found there was
46 47 48	416	no seasonal difference observed for rabies occurrence either for clinical cases or confirmed cases
49 50	417	throughout the study period [30]. In Tanzania, each year, the majority of rabies cases were recorded
51 52	418	during the period June to October [37]. In the dry season, significantly fewer rabies positive cases
53 54 55 56	419	were reported than in the rainy season in Namibia [39]. In Chad, more rabies records per month

were collected during the hot, dry season months (March and April), than during the dry season
months (September–February) [109]. In Senegal, dig bite victims were higher in dry season (NovMay) than rainy season (June-Oct) [28]. Besides, bite victims in rural areas took longer, on
average, to receive PEP than those in urban areas [95,103,106]. Probable human rabies cases were
higher in rural than urban areas [29,31]

425 3.4.3.2. Rabies surveillance, prevention and control

The findings revealed that 39,802 bites victims were recorded in rabies surveillance and prevention interventions. The studies included laboratory, database and network surveillances [30, 32, 38, 42, 96]. The rabies prevention included PEP and dog vaccination. Laboratory surveillance has improved rabies diagnostic [30, 32, 38, 42, 96] and database and network surveillances improved mortality and morbidity records [32,38,96] and allowed better estimates of the true rabies burden [32] Further, Compliance with PEP regimens was significantly higher, rating from 83.7% to 93% in two studies [38,96]. In contrast, dog vaccination remained low (10%-12.6%) [32, 42].

We found five studies including rabies diseases surveillance, prevention and control [27, 28, 33,
40,104, 105]. Among them, three studies [28, 33, 40] have reported significantly improved rabies
morbidity and mortality and also PEP uptake. The PEP uptake was 71% and it dramatically
reduced the risk of developing rabies [40]. Another study did not report any death with high
number of patients receiving PEP [28].

A combined strategy of mass dog vaccination, enhanced surveillance, and expanded access to PEP
reduced the annual incidence of rabies exposures and deaths annually in Madagascar [27]. Strict
measures such as vaccination of dogs in the neighborhoods where human rabies cases had

Page 27 of 84

BMJ Open

occurred, mass vaccination campaign of dogs, participation of private veterinary clinics in animal
vaccination, collection of stray dogs in selected neighborhoods and community education
regarding prevention and control measures had drastically reduced rabies cases in human to 14
during the study period in Mozambique [33].

3.4.3.3. Post exposure management

We found seven studies on rabies management and control. Among them, six studies addressed wound management and PEP [36, 43, 99, 100, 101, 109]. Wound severity was graded as follows, 0 = no apparent injury seen, 1 = skin scratch with no bleeding, 2 = minor wound with some bleeding, 3 = deep or multiple injury [101]. The reported severity of the wound was classified as deep wound, lacerated wound, superficial wound or scratch [109]. The severity of the injury was determined using the WHO dog bite injury grading system [112]. Soap, water, wound dressing, tetanus prophylaxis, anti-rabies vaccination, intravenous fluids, diazepam and antibiotics were also part of the management. The overall review reported 5754 bites managed according to the WHO dog bite injury grading system, 3199 (55.59%) were grade 3; 2050 (35.63%) were grade 2; and 505 (8.78%) were grade 1. In 52 cases (7%), grade of bite was not recorded [26, 27, 36, 99, 102].

3.4.4. Available research evidence on human rabies

Rabies cases in various committees emphasize the need for active surveillance by following up of people bitten by animals and mass dog vaccinations to alleviate the zoonotic threat of the virus [93]. Strengthening rabies surveillance, controlling rabies in dogs, proper post exposure management, increasing the awareness of the community and ensuring availability of post exposure prophylaxis at lower health facilities are the best approach of eliminating rabies [94, 98,

107]. Other studies have demonstrated that reinforcements of rabies surveillance system can improve rabies reporting, which ultimately allows for better estimates of the true rabies burden in the countries [31, 32, 38, 96]. Compliance with PEP regimens was significantly higher for patients following the implementation of automated reminders in comparison to patients attending normal clinics [38, 96]. Other studies concluded that preventing dog bites would most effectively reduce bite injuries by improving public health education among children below 15 years [38]. Public health education is also enhanced by encouraging early PEP initiation and completion, development and implementation of responsible dog ownership, animal behaviour educational programmes as well as improving human and veterinary health linkages [26, 38]. Evidence also showed that no rabies victim in Mozambique received full post-exposure vaccination and the factors significantly associated with human rabies were: age <15 years (p = 0.05), bite by stray dog (p = 0.002), deep wound (p = 0.02), bite in the head (p = 0.001), bite by unimmunized dog (p = 0.01), no use of soap and water (p = 0.001), and no PEP (p = 0.01) [35]. Studies have shown that all the rabies vaccines including suckling mouse brain virus (SMBV), fetal bovine kidney virus (FBKV), purified chicken embryo cell rabies vaccine, purified vero cell rabies vaccine, sheep brain anti- rabies vaccine, human diploid-cell vaccine and Purified equine rabies immunoglobulin) and RIG were efficacious. However, the WHO contraindicated SMBV and FBKV [25, 27, 28, 32, 41, 42, 108,110, 111]. Furthermore, a clinical trial with a purified chicken embryo cell rabies vaccine dose used intramuscularly every two years generated ineffective immune response to rabies virus [110] as the Zagreb protocol (2 intradermal injections of 0.1 mL at two sites, deltoids and/or thighs, on days 0, 3, 7 and 28) was not applied. Even though a randomized control trial showed antibody response 26.7% of SMBV recipients and 28.6% of FBKV recipients within a week, both SMBV and FBKV were equally efficacious and well

tolerated [111], however those vaccines are contraindicated by WHO because of its association
with neurological adverse reactions (severe allergic encephalomyelitis), further these vaccines are
inferior to modern vaccine in terms of potency and immunogenicity [113]. The table 4 described
available research evidence on human rabies in Africa.

489 Table 4: Mapping human rabies evidence identified in Africa

Evidence map	Studies	Impacts/Outcomes
Strengthening rabies surveillance	[31,32,38,93,94,96,98,107]	Reinforcements of rabies surveillance system can improve rabies reporting and increasing the awareness of the community and ensuring availability of post exposure prophylaxis at lower health facilities are the best approach of eliminating rabies.
Automated SMS reminders and telephone contacts	[38,40, 96,104,105]	Compliance with PEP regimens was significantly higher for patients following the implementation of automated SMS reminders and telephone contacts.
Public health education (PEP initiation and completion, responsible dog ownership, behaviour educational programmes and veterinary health linkages)	[26,38,43,94,98,107]	Lack of enforcement of regulations for licensing of dogs and rabies vaccination increased human rabies morbidity and mortality.
Accurate rabies diagnostic	[27,31,32,34,35,42,92,105]	The diagnosis of dog bite and rabies was clinical and laboratory-based. This improved accurate rabies cases reporting.
Mass dog vaccination	[35,91,98]	Even though the 70% coverage was not achieved, there was an inverse relationship between dog vaccination coverage and dog

29

		rabies cases during the study period.
SMBV, FBKV, purified chicken embryo cell rabies vaccine, purified vero cell rabies vaccine, sheep brain anti- rabies vaccine, human diploid-cell vaccine and Purified equine rabies immunoglobulin (Zagreb protocol)	[25,27,28,32,42,108,110,111]	Studies have shown that all the rabies vaccines and RIG were efficacious and well tolerated. However, the WHO contraindicated SMBV and FBKV.
Effective rabies control and management	[32, 38, 91, 98]	PEP, mass dog vaccination, and WHO dog bite injury- grading system
Integrated bites case management/ Rabies Diseases Surveillance, Prevention and Control	[27,28, 33,40,104,105]	Studies have shown the importance of coordinated surveillance, prevention and control in the eradication of rabies.

3.4.5. Adverse events and complications associated with rabies vaccination

Adverse events and complications associated with rabies vaccination were reported based on SMBV, FBKV, purified chicken embryo cell rabies vaccine, purified vero cell rabies vaccine, sheep brain anti- rabies vaccine, human diploid-cell vaccine and purified equine rabies immunoglobulin. All the 4-dose or Zagreb regimen was reported in all the RIG [114]. Among the studies reporting rabies vaccination, only one study using a purified vero cell rabies vaccine at D0 (2 doses), D7 (one dose) and D21 (one dose) study found that adverse events occurred in 6% of the patients with two doses and after the third dose 3% developed adverse event However, most of the adverse events were minor and associated with headache fever and pain at the injection site that occurred simultaneously on the same day of the vaccine injection [28]. Other studies did not

report any adverse events and complications associated with rabies vaccination [25, 27, 32, 41,
42,108, 110, 111].

503 3.4.6. Research gaps identified

In this review, we identified 66.67% African countries reporting poor rabies diagnostic capacity,
50 % reported the lack of coordinated surveillance, 50% showed the lack of PEP course
completion, 22.22% had insufficient rabies control, and 77.78% had low dog vaccination coverage.
Insufficient knowledge and practice on rabies prevention was also identified as a gap. However,
we did not find enough studies to evaluate this gap in Africa (Table 5).

The recorded data available so far has showed the underestimation of rabies diagnosis, post exposure prophylaxis and fatal human cases and could be attributed to poor diagnostic capacity and the absence of national rabies surveillance system. In African countries, rabies diagnostic is mostly clinical [16, 26, 28-30, 33, 36, 38, 39, 41, 44, 93-95, 98-100, 103, 108, 109] Among eleven studies including human rabies surveillance, only four reported adequate and successful surveillances [31,32,38,96], twelve studies reported lack of accurate data or non-existing surveillance data [26,30,33,38,39,42,44,92-94,108,109] (Table 5). Other studies reported that dog-bite victims did not complete the post exposure anti human rabies vaccine course and were not likely to be postexposure prophylaxis [27, 28, 31, 37, 38, 40, 90, 95, 100, 103, 105] (Table 5). The exposure victims considered to be at risk of rabies either did not receive any PEP or did not receive all PEP vaccinations due to unavailability, shortage, cost barriers, insufficient knowledge about prompt PEP, category 1 exposure injury or misadvise [32, 36, 38, 40, 43, 44, 101, 104, 105]. A study has reported that the lack of PEP was the cause of 100% fatality rate in Democratic Republic of Congo [36]. There was significant difference between rural and urban exposure cases in respect to the time of arrival to the hospital and living in rural area was statistically associated with loss to

> follow up after the first dose [30, 43, 103, 106]. There was also high human rabies exposure rate in children and in the rural community [27, 30,103,106]. Insufficient knowledge about rabies dangers and prevention, particularly prompt PEP, but also wound management, was the main cause of rabies deaths [40]. A higher proportion of human rabies exposures was caused by unprovoked dogs and of these, the majority were unvaccinated [29, 43]. Dog vaccination remains an urgent intervention gap. Among eighteen studies conducted in nine countries, none of them reported the target of 70% of dog vaccination (Table 5). The highest dog vaccination rate was reported in Algeria (67.3%) [91] and the lowest in Madagascar (10%) [42].

532 Table 5: Mapping research gaps in Africa

	1					
African	Research gaps identified					1
countries	Diagnosti	Coordin	Lack of	Inefficient	Insufficient	Low dog
	c capacity	ated	PEP course	control	knowledge	vaccination
		surveilla	completion		and practice	coverage(<70
		nce	/PEP		on rabies	%
			unavailable		prevention	
Algeria	N/A	N/A	N/A	\checkmark	N/A	X
_				[91]		[91]
Cameroon			X	\checkmark	N/A	X
		[32]	[32]	[32]		[32]
	[32]					
Chad	X	Х	X	X	N/A	X
			[109]	[109]		[109]
	[109]	[109]				
Democratic	X	X	X	Х	N/A	X
Republic of		[30]	[30,36]	[30,38]		[38]
Congo	[30,36]					
Ethiopia	X	N/A	X	Х	X	X
-			[97]	[29,97,107]	[107]	[29,97,107]
	[16,29,41					
	1					
Ghana	X	Х	Х	Х	N/A	X
		[44]	[44,90]	[34,44,90]		[34,90]
	[44]					
Ivory Coast	$\overline{\mathbf{v}}$		Х	Х	N/A	X
-		[31]	[31]	[31]		[31]

Page 33 of 84

BMJ Open

Kenya	X	X [26]	X [26]	X [26]	N/A	N/A
	[26]					
Madagascar		X	X	X	N/A	X
	[27,42,92	[42,92]	[27,42]	[27,42,92]		[27,42]
Malawi	X	\checkmark			N/A	N/A
	[98]	[98]	[98]	[98]		
Mozambiqu e	X	Х	Х	Х	N/A	X
	[33]	[33]	[33]	[33]		[33]
Namibia	X	X	N/A	X	N/A	N/A
	[39]	[39]		[39]		
Nigeria	X	N/A	Х	X	N/A	X
	[99,100]		[43,99- 101]	[43,99- 101]		[43]
Senegal	X	\checkmark	X	X		X
	[28]	[28]	[28]	[28]	[28]	[28]
Tanzania	X	\checkmark	X	Х	Х	N/A
	[95,103]	[95,103]	[37,40,95,1 03,105]	[37,40,95,1 03,105]	[40]	
Uganda	X	X	X	X	N/A	X
	[93,94,10 8]	[93,94,1 08]	[108]	[93,94,108]		[93,108]
South			Х		N/A	N/A
Africa	[38]	[38]	[38,102]	[38]		
Zimbabwe		√ [35]	N/A	X [35]	N/A	X [35]
	[35]					

Footnote: "X: research gaps identified in different included studies; √: research strengths identified
in different studies; N/A: Not applicable"

4. Discussion

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

This is to our knowledge, the first scoping review synthesizing publically available data on rabies in Africa and to weigh such data in support of the global goal of 'zero human rabies deaths by 2030'. The purpose of this scoping analysis was to provide a summary of evidence on rabies morbidity, mortality, integrated rabies surveillance, prevention and control in Africa. Overall, studies have shown that African countries face a range of problems from the point of view of rabies surveillance, prevention and control that have a negative effect on rabies mortality and morbidity. Reviewing rabies morbidity and mortality rates across Africa, data obtained fluctuated largely over time and space in various countries, as well as in different regions or districts across the same area. While some countries may have shown significant improvement in rabies morbidity and mortality data, the morbidity and mortality rates in Africa generally remain high. Included studies showed no standardization in reporting human rabies outcomes, human rabies morbidity and mortality rates were reported in term of annual incidence and number of infected human rabies and deaths related to rabies. Moreover, small-scale studies may not reflect the national or regional human rabies morbidity and mortality rates. Then this was difficult to have an accurate picture per country and assess human rabies situation between African countries.

These are the consequences of lack of laboratory rabies confirmation, epidemiological surveillance, inadequate mass dog vaccination and PEP policy, and unreported clinical cases in African countries. Lack of monitoring data on rabies or low data quality is problematic, resulting in rabies being poorly addressed in most African countries. Results have also shown that, of the eleven countries in which rabies surveillance has been applied, only four studies reported that surveillance decreased rabies morbidity and mortality [31, 32, 38, 96]. Comparing old and new data (before and after the "zero rabies by 2030" target), rabies diagnostic and surveillance has not improved in most of the African countries. As a result, well-structured rabies surveillance

Page 35 of 84

BMJ Open

enhanced the reporting of morbidity and mortality and also has a visible impact on rabies elimination strategy in Africa. While strategies have been subdivided into surveillance, prevention, control and management of rabies (see table of included studies), only three studies have shown the efficacy of the combination of surveillance, prevention and control of rabies [28, 33, 40]. However, passive surveillance has shown its limitations in rabies elimination because cases are reported clinically with or without laboratory-based strategies, inducing inaccurate diagnostic, scarcity of laboratory confirmation and poor reporting system [26, 39, 42, 93, 94, 108]. This is why both passive and active surveillance are preferable to strengthen rabies monitoring and reporting in African countries [115]. Strengthening rabies surveillance also is the foundation of the provision of actionable data for efficient management of wildlife diseases [116]. Besides, the review has shown that strengthening surveillance, prevention and management of rabies has shown good evidence in three separate studies [28, 33, 40]. Coordination of surveillance, prevention and control of rabies can play an important role in the eradication of rabies in Africa. It is worth noting that specific awareness of when and where disease occurs is essential to the formulation of prevention, control and elimination strategies [116].

As seen above, the implementation of different rabies interventions at national level has never been reached in African countries. It is vital that African countries achieve the 2030 target of eliminating human rabies by providing readily accessible and affordable PEP in all countries in the continent where rabies infection is endemic. The exposure victims considered to be at risk of rabies either did not receive any PEP or did not receive complete PEP vaccinations due to unavailability, shortage. cost barriers, insufficient knowledge about prompt PEP or misadvise [32,36,40,44,101,104,105]. This could be emulated from Thailand, which has significantly reduced human deaths from rabies to fewer than 10 cases per year by educating the public and

> health workers and delivering PEP free of charge across the country before mass dog vaccination achieved the minimum 70 per cent coverage [117,118]. When provided correctly and in a timely manner, rabies PEP is almost 100% effective in the prevention of disease [79,119]. The findings of the review revealed that the dog victims found to be at risk of rabies either did not receive PEP or did not receive all the PEP vaccines due to unavailability, shortages, cost barriers, long distance travel to the hospital or misadvise [27,28,31,32,36,37,40,44,90,95,100,101,103-105]. It is important to remember that PEP combined with other treatments such as soap, water, wound dressing, antibiotics, tetanus prophylaxis and anti-rabies vaccination has been shown to be beneficial for dog bite victims. Two studies have shown that compliance with PEP regimens was substantially higher for patients who did not receive PEP after automated reminders [38, 96]. Taken together, our results point to a sub-optimal system requiring specific improvements to achieve prompt provision of rabies PEP for persons exposed to rabies [118].

> Statistical modeling studies show that the annual vaccination of 70% of the canine population would induce adequate herd immunity to effectively eradicate canine rabies and subsequent human exposure [40, 51]. The lowest and highest reviewed dog vaccination rate was 10% and 67.3% respectively [42, 51] and no reliable data on dog vaccination were reported in most of the studies. This is because many campaigns, if conducted, struggle to achieve a 70% vaccination rate [9, 51]. This is due to husbandry practices, rabies knowledge, geographical area/location, and the ages of dogs [120]. Evidence has shown the dog mass vaccination systems have demonstrated some effectiveness in reducing human rabies morbidity and mortality in countries such as KwaZulu-Natal, South Africa [55, 71], Serengeti, Tanzania [55, 72, 74], Malawi [55, 75] and Chad [76, 77]. However, the Tanzanian study has shown that, if vaccine coverage was not sustained, rabies infection would resurface extremely quickly [40]. Despite effective monitoring of rabies at the

Page 37 of 84

BMJ Open

Tanzania study site from 1998 to 2001, vaccine coverage decreased from 2001 to 2003 resulting in a new rabies outbreak, with human exposures increasing by six times in 2003 relative to previous years [40]. Further, free mass dog vaccination intervention has proven to increase dog vaccination coverage. Government and stakeholders work actively to provide a free sustainable dog vaccination.

Besides, the evidence has also illustrated the effectiveness of other strategies, such as mobile phone touch tracing strategies, new rabies vaccines, integrated bite case management, wound management were correlated with PEP and/or mass dog vaccination. Africa is yet to recognize rabies as an immediate public health problem; this may be due to a lack of awareness of the burden of disease and inadequate surveillance. Policies should be put in place to raise awareness of rabies at grassroots level and coordination between the appropriate agencies for improvements of the policies [53, 60].

The World Animal Health Information System (WAHIS) is a well-established global animal disease reporting system that reproduces the data submitted by countries to the OIE, but is also constrained by the under-reporting problems inherent in national reporting systems [121,122]. The need for regional, One Health-oriented reporting network has therefore become apparent [123,124]. The development of rabies-specific regional bulletins has been extremely effective in the Pan-American Health Organization field [122]. The Database such as Advanced Epidemiological Surveillance System (SIEPI) should be applicable in Africa.

Indeed, the elimination of rabies is not feasible without African cooperation. No single country
will retain rabies-free status unless it is brought under control in neighboring countries [124].
Regionally organized efforts are required to eradicate human rabies, taking into account country-

specific needs and socio-cultural acceptability [124]. This study has highlighted evidence required for rabies surveillance, prevention and control in Africa. The literature has shown that such evidence has eliminated dog-mediated rabies in countries such as Singapore and Malaysia [124]. The probability of meeting the 2030 goal without African and international solidarity is low, as more than two-thirds of countries are in the low-level human development community [125]. Leading countries should serve as role models, sharing their knowledge and skills so that no nation is left behind. African unification with international support will enable, the common goal of zero human rabies deaths to be achieved by 2030 [125]. Therefore, regional networks support, channel and pool efforts, support monitoring platforms will help make much progress [126]. Partnerships are important to the achievement of an objective and the last mile is going to be the most demanding [126]. In addition, contact and collaboration between human health and veterinary systems is also critical for the follow-up of both human and animal cases [127]. Data collected on alleged cases of human rabies, human exposures and rabid animals must be constantly reviewed and effectively disseminated [127]. Communication between the various national levels of healthcare administration is a crucial means of disseminating outcomes [127]. Finally, stakeholders need to be engaged in the long term to ensure that surveillance is effective [127]. Knowing that the Global Strategic Plan is catalytic and not intended to replace the strategies and commitments of individual countries [126], African countries should emphasize gaps, challenges, barriers and evidence applicable in the various districts, countries and regions as indicated in this present study. One Health interventions is provided by approaches to the prevention of human rabies deaths [128]. Human rabies is 100% preventable through two complementary measures: first, PEP, which involves administration of rabies immunoglobulin and a multi-dose course of rabies vaccination to people bitten by suspected rabid animals; second, mass vaccination of animal

Page 39 of 84

BMJ Open

reservoirs (primarily domestic dogs, the reservoir in the vast majority of human cases), which
reduces the risk of human exposure and can ultimately result in rabies virus elimination [128].

New rabies control tests and technologies have been developed, such as oral rabies vaccine (ORV), which is effective for instance in skunks, red foxes and raccoons, and lessons have been learned from recent outbreaks [129]. Oral recombinant vaccinia virus expressing the immunizing rabies glycoprotein has been used in in Switzerland years ago [130]. It has been demonstrated to be effective for the oral immunization of foxes, some of them being competitors for long baits year consumption. Switzerland eradicated wild rabies since 1985 [127] V-RG is effective at inducing immunity in red foxes through intradermal, subcutaneous and oral routes [131,132]. Adult foxes were completely covered against rabies virus challenge 12 and 18 months after oral administration of Glycoprotein Recombinant Virus (V-RG) [133]. Seroconversion was also observed in 44.4% of vaccinated jackals on day 150 post-vaccination and 77.7% vaccinated jackals survived the rabies challenge that killed all 10 controls [132,133]. A single oral dose of V-RG administered in an experimental sponge bait shape protected raccoons from rabies virus challenge, with 100% survival at 28 days post-vaccination and 80% survival at 205 days [132,134]. Since 2004, ORV campaigns have been conducted annually around Israel. After several years of ORV, the vast majority of Israel (90%) is actually free of carnivorous rabies virus variants. Wildlife rabies is managed in Canada in the same way as in the USA by reservoir population management and ORV distribution [132,135].

These were associated with a less robust and inadequate supply system for rabies biologicals operated separately to that used by routine vaccines and the use of the intramuscular route for PEP

administration as opposed to the dose-saving intradermal route with high cost of rabies PEP andrabies immunoglobulin (RIG) to bite patients [118].

673 5. Conclusion

This comprehensive scoping review is of crucial importance in assessing various evidence of human rabies morbidity, mortality, monitoring, prevention and management. Rabies control strategies and case effects, available studies establishment to address various gaps are also important in the management of rabies in Africa. The analysis included past, existing and future viewpoints that are important for African countries to achieve zero dog-transmitted human rabies by 2030. The findings of forty-three studies included thirty-two quantitative retrospective studies, three mixed designs (retrospective and cross-sectional studies), three prospective cohort studies, two cross-sectional studies, one case control, one clinical trial and one randomized control study. Mapping the outcomes, the review included rabies morbidity (21 studies), mortality (15 studies), rabies prevention and control (16 studies), surveillance (9 studies), surveillance and prevention (5 studies), management and control (7 studies), surveillance, prevention and control (6 studies), strong research evidence (14 studies), rabies vaccination or PEP adverse events (4 studies) and research gaps were identified (41 studies).

Evidence has shown that human rabies morbidity and mortality remain high compared to rabies globally, and human rabies morbidity and mortality fluctuate in time and space across different African countries. In order to better understand this, the review has shown that monitoring, prevention and control of rabies diseases is inadequate and insufficient in most African countries. This is attributable to a variety of gaps and challenges across African countries. In addition, this study found insufficient and ineffective surveillance of rabies, unavailability of PEP, high cost, Page 41 of 84

BMJ Open

lack of information on prevention of rabies, and poor or non-existent data on dog vaccination. However, few studies have shown a thorough design of rabies measures such as enhanced surveillance of rabies, regulation of rabies in dogs, proper post-exposure treatment, improved community awareness and availability of PEP in all rural areas, use of cell phone intervention to enhance surveillance of rabies, prevention and control of enhanced rabies morbidity, and more. In addition, African countries can learn about different community-based obstacles that can interfere with surveillance, prevention and control of rabies diseases. This is important to point out that no single country will preserve rabies-free status unless it is brought under control in neighboring countries [120]. That is why African countries should build a forum for rabies that may be significant to exchange data and experience on rabies. Finally, African countries can also look at futuristic rabies innovations such as ORV.

704 6. Patients and public involvement

Patients and public involvement

No patients or the public were involved in this scoping review.

706 7. List of abbreviations

FBKV: Fetal Bovine Kidney Virus; FAO: Food and Agriculture Organization of the United Nations; GARC: Global Alliance for Rabies Control; JBI: Joanna Briggs Institute; OIE: World Organization for Animal Health; ORV: Oral Rabies Vaccine; PEP: Post-Exposure Prophylaxis; PICO: Population-Interventions-Comparisons-Outcomes; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analysis; RABV: Rabies virus; RIG: Rabies Immunoglobulin; SMBV: Suckling Mouse Brain Virus; SIEPI: Specialized Epidemiological Surveillance System; WAHIS: World Animal Health Information System; V-RG: Vaccinia-rabies Glycoprotein Recombinant Virus; WHO: World Health Organization;

715 8. Footnotes

 Author Contributions: PSN initiated the study project. PSN and JLT conducted the data
extraction. Both authors wrote the review in consultation with JW, RT, AM, SVN, TB, JLT, LN,
NEN, GKH, MTG, AA, SD, LB, RB and CD. All the authors reviewed and approved the final
version of the manuscript.

Funding: None

721 Competing interests: None declared

Ethics Approval: Since this is a scoping review, there is no institutional requirement to obtain
ethical clearance from the Health Research Ethics Committee of the Faculty of Medicine and
Health Sciences, Stellenbosch University. We used data from open source and publicly available
accessed on different databases as described in the methods.

Data sharing: Not applicable

Consent for publication: All authors review the manuscript and approved for the submission.

728 Acknowledgments: Not applicable

729 9. References

Nel LH. Discrepancies in data reporting for rabies, Africa. Emerging infectious diseases
 2013;19(4):529.

Page 43 of 84

1

2			
3 4	732	2.	albi C, Holmes EC, De Benedictis P, Faye O, Nakoune E, Gamatie D, Diarra A, Elmamy
5 6	733	BO, So	ow A, Adjogoua EV and Sangare O. Evolutionary history and dynamics of dog rabies virus
7 8 9	734	in west	tern and central Africa. Journal of general virology 2009; 90(4):783-791.
10 11 12	735	3.	Nel LH, Rupprecht CE. Emergence of lyssaviruses in the Old World: the case of Africa.
13 14 15	736	In: Wil	dlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of
15 16 17 18	737	Cross-S	Species Transmission. Springer 2007; 315:161-93.
19 20	738	4.	Nel LH. Factors impacting the control of rabies. one Health: people, Animals, and the
21 22 23 24	739	Enviro	nment 2014. https://doi.org/10.1128/9781555818432.ch7
25 26	740	5.	Eze UU, Ngoepe EC, Anene BM, Ezeokonkwo RC, Nwosuh CI, Sabeta CT. Molecular
27 28	741	Detecti	ion of Rabies Lyssaviruses from Dogs in Southeastern Nigeria: Evidence of Trans boundary
29 30 31 32	742	Transn	nission of Rabies in West Africa. Viruses 2020; 12(2):134.
33 34	743	6.	David D, Hughes GJ, Yakobson BA, Davidson I, Un H, Aylan O, et al. Identification of
35 36	744	novel c	canine rabies virus clades in the Middle East and North Africa. Journal of General Virology
37 38 39 40	745	2007; 8	88(3):967-80.
41 42	746	7.	Kissi B, Tordo N and Bourhy H. Genetic polymorphism in the rabies virus nucleoprotein
43 44 45	747	gene. V	Virology 1995; 209(2): 526-537.
46 47 48	748	8.	Swanepoel R, Barnard BJH, Meredith CD, Bishop G, Bruckner GK, Foggin CM, et al.
49 50 51	749	Rabies	in southern Africa. Onderstepoort Journal of Veterinary Research 1993; 60:325.
52 53 54	750	9.	Cleaveland S. Epidemiology and control of rabies: The growing problem of rabies in
55 56 57 58	751	Africa.	Transactions of the Royal Society of Tropical Medicine and Hygiene 1998; 92(2):131-4.
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

10. Knobel D and Conan A. Dog Ecology and Rabies Control in Africa World Small Animal Veterinary Association World Congress Proceedings. Age 2014; 4(9): 23. Röttcher D and Sawchuk AM. Wildlife rabies in Zambia. Journal of wildlife diseases 1978; 11. 14(4): 513-517. 12. Botros BAM, Salib AW, Mellick PW, Linn JM, Soliman AK, Scott RM. Antigenic variation of wild and vaccine rabies strains of Egypt. Journal of medical virology 1988; 24(2):153-9. 13. Burrows R. Rabies in African wild dogs of Tanzania. Journal of wildlife diseases 1994; 30(2):297-9. 14. Kat PW, Alexander KA, Smith JS, Munson L. Rabies and African wild dogs in Kenya.

762 Series B: Biological Sciences 1995; 262(1364):229-33.

Foggin CM. The epidemiological significance of jackal rabies in Zimbabwe. In: Rabies inthe Tropics. Springer, 1985:399-405.

765 16. Tefera G, Yimer E and Geyid A. Endemic existence of rabies in Ethiopia. Ethiopian
766 Medical Journal 2002; 40(2): 163-10.

767 17. Nel LH, Sabeta CT, Von Teichman B, Jaftha JB, Rupprecht CE and Bingham J. Mongoose
768 rabies in southern Africa: a re-evaluation based on molecular epidemiology. Virus research 2005,
769 109(2):165-173.

18. Woodroffe R, Prager KC, Munson L, Conrad PA, Dubovi EJ, Mazet JAK. Contact with domestic dogs increases pathogen exposure in endangered African wild dogs (Lycaon pictus). PloS one 2012; 7(1): e30099. 19. Scheepers JL, Venzke KAE. Attempts to reintroduce African wild dogs Lycaon pictus into Etosha National Park, Namibia. South African Journal of Wildlife Research-24-month delayed open access 1995; 25(4):138-40. 20. Kat PW, Alexander KA, Smith JS, Munson L. Rabies and African wild dogs in Kenya. Proceedings of the Royal Society of London. Series B: Biological Sciences 1995; 262(1364):229-33. Sabeta C. Ngoepe EC. Controlling dog rabies in Africa: successes, failures and prospects 21. for the future. Revue scientifique et technique (International Office of Epizootics) 2018; 37(2):439-49. Johnson N, Mansfield KL, Marston DA, Wilson C. et al. A new outbreak of rabies in rare 22. Ethiopian wolves (Canis simensis). Archives of virology 2010, 155(7): 1175-1177. 23. Marino J, Sillero-Zubiri C, Deressa A Et al. Rabies and distemper outbreaks in smallest Ethiopian wolf population. Emerging infectious diseases 2017, 23(12): 2102. 24. Tomori Oyewale. Wild life rabies in Nigeria: experimental infection and transmission studies with the shrew (Crocidura sp.). Annals of Tropical Medicine & Parasitology 1980; 74(2):151-6.

Ramos J, Melendez N, Reyes F, Gudiso G, Biru D, Fano G, et al. Epidemiology of animal
bites and other potential rabies exposures and anti-rabies vaccine utilization in a rural area in
Southern Ethiopia. Annals of agricultural and environmental medicine 2015; 22(1):76-79.

Ngugi JN, Maza AK, Omolo OJ, Obonyo M. Epidemiology and surveillance of human
animal-bite injuries and rabies post-exposure prophylaxis, in selected counties in Kenya, 20112016. BMC public health 2018; 18(1):996.

Rajeev M, Edosoa G, Hanitriniaina C, Andriamandimby SF, Guis H, Ramiandrasoa R, et
al. Healthcare utilization, provisioning of post-exposure prophylaxis, and estimation of human
rabies burden in Madagascar. Vaccines 2019; 37:A35-44.

Diallo MK, Dicko A, Richard V, Espie E. Human rabies post exposure prophylaxis at the
Pasteur Institute of Dakar, Senegal: trends and risk factors. BMC Infectious Diseases 2019;
19(1):321.

801 29. Gebru G, Romha G, Asefa A, Hadush H, Biedemariam M. Risk Factors and Spatio802 Temporal Patterns of Human Rabies Exposure in Northwestern Tigray, Ethiopia. Annals of global
803 health 2019; 85(1):119.

30. Twabela AT, Mweene AS, Masumu JM, Muma JB, Lombe BP, Hankanga C. Overview of
animal rabies in Kinshasa Province in the Democratic Republic of Congo. Plos one 2016;
11(4):e0150403.

Page 47 of 84

BMJ Open

1 2	
3 4	80
5 6	80
7 8 9	80
10	
11 12	81
13 14 15	81
15 16 17	81
18	
19 20	81
21 22	81
23 24 25	81
26 27	81
28	
29	81
30 31	01
32	81
33 34	
35	81
36	
37 38	82
39	_
40 41	82
42 43	82
44	
45	
46 47	82
48	82
49 50	
51	82
52	
53	
54 55	
56	
57	
58	
59 60	
00	

807	31.	Tiembre I, Broban A, Benie J, Tetchi M, Druelles S, L'Azou M. Human rabies in Cote
808	d'Ivoi	re 2014-2016: Results following reinforcements to rabies surveillance. PLoS neglected
809	tropic	cal diseases 2018; 12(9): e0006649.
810	32.	Sofeu CL, Broban A, Njifou NA, Blaise MJ, Sadeuh-Mba S A, Druelles S, et al. Improving
810		
811	systei	matic rabies surveillance in Cameroon: A pilot initiative and results for 2014-2016. Plos
812	negle	cted tropical diseases 2018; 12(9):e0006597.
813	33.	Salomão C, Nacima A, Cuamba L, Gujral L, Amiel O, Baltazar C, et al. Epidemiology,
814	clinic	al features and risk factors for human rabies and animal bites during an outbreak of rabies in
815	Mapu	to and Matola cities, Mozambique, 2014: Implications for public health interventions for
816	rabies	s control. Plos neglected tropical diseases 2017; 11(7):e0005787.
817	34.	Punguyire DT, Osei-Tutu A, Aleser EV, Letsa T. Level and pattern of human rabies and
818	dog b	ites in Techiman Municipality in the Middle Belt of Ghana: a six year retrospective records
819	review	w. Pan African Medical Journal 2017. Doi: 10.11604/pamj.2017.28.281.14218
820	35.	Pfukenyi DM, Pawandiwa D, Makaya PV, Ushewokunze-Obatolu U. A retrospective study
821	of wi	Idlife rabies in Zimbabwe, between 1992 and 2003. Tropical Animal Health and Production
822	2009;	41(4):565-72.
823	36.	Muyila DI, Aloni MN, Lose-Ekanga MJ, Nzita JM, Kalala-Mbikay A, Bongo HL, et al.
824	Huma	an rabies: a descriptive observation of 21 children in Kinshasa, the Democratic Republic of
825	Cong	o. Pathogens and global health 2014; 108(7):317-22.

37. Mazigo HD, Okumu FO, Kweka EJ, Mnyone LL. Retrospective analysis of suspected rabies cases reported at Bugando Referral Hospital, Mwanza, Tanzania. Journal of global infectious diseases 2010; 2(3):216. 38. Kubheka V, Govender P, Margot B, Kuonza LR. Dog bites and human rabies in the Uthungulu District of Kwazulu-Natal province, 2008-2010: a review of surveillance data. Southern African Journal of Epidemiology and Infection 2013; 28(1):33-40. 39. Hikufe EH, Freuling CM, Athingo R, Shilongo A, Ndevaetela EE, Helao M, et al. Ecology and epidemiology of rabies in humans, domestic animals and wildlife in Namibia, 2011-2017. Plos neglected tropical diseases 2019; 13(4):e0007355. Hampson K, Dobson A, Kaare M, Dushoff J, Magoto M, Sindoya E, et al. Rabies 40. exposures, post-exposure prophylaxis and deaths in a region of endemic canine rabies. PloS Negl Trop Dis 2008; 2(11):e339. Deressa A, Ali A, Bayene M, Selassie BN, Yimer E, Hussen K. The status of rabies in 41. Ethiopia: A retrospective record review. Ethiopian Journal of Health Development 2010; 24(2):127-132. 42. Andriamandimby SF, Heraud Jean-Michel, Ramiandrasoa R, Ratsitorahina M, Rasambainarivo JH, Dacheux L, et al. Surveillance and control of rabies in La Reunion, Mayotte, and Madagascar. Veterinary Research 2013; 44(1):1-9.

Page 49 of 84

1

2 3 4	844	43.	Alabi O, Nguku P, Chukwukere S, Gaddo A, Nsubuga P, Umoh J. Profile of dog bite
5 6	845	victim	s in Jos Plateau State, Nigeria: a review of dog bite records (2006-2008). The Pan African
7 8 9	846	medic	al journal 2014; 18(Suppl 1):12.
10 11 12	847	44.	Adomako BY, Baiden F, Sackey S, Ameme DK, Wurapa F, Nyarko KM, et al. Dog bites
13 14	848	and ra	bies in the eastern region of Ghana in 2013-2015: a call for a one-health approach. Journal
15 16 17	849	of trop	pical medicine 2018; 2018:5 pages
18 19 20	850	45.	Hampson K, Coudeville L, Lembo T, Sambo M, Kieffer A, Attlan M, et al. Estimating the
21 22 23	851	global	burden of endemic canine rabies. PloS Negl Trop Dis 2015; 9(4):e0003709.
24 25 26	852	46.	Desa G, Birasa D, Deneke Y, Oljira D. Assessment of knowledge, attitude and practice
27 28	853	(kap)	of community toward rabies in Medawelabu district, bale zone, Ethiopia. International
29 30 31	854	Journa	al of Research-Granthaalayah 2020; 8(3):29-42.
32 33 34	855	47.	Cleaveland S, Lankester F, Townsend S, Lembo T, Hampson K. Rabies control and
35 36 37	856	elimin	ation: a test case for One Health. Veterinary Record 2014; 175(8):188-93.
38 39	857	48.	World Health Organization. Rabies: rationale for investing in the global elimination of
40 41 42	858	dog-m	rediated human rabies. World Health Organization, 2015.
43 44 45	859	https:/	/apps.who.int/iris/handle/10665/185195
46 47 48	860	49.	Fooks AR, Banyard AC, Horton DL, Johnson N, McElhinney LM, Jackson AC. Current
49 50 51 52 53	861	status	of rabies and prospects for elimination. The lancet 2014; 384(9951):1389-99.
54 55 56 57 58			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

evaluating the burden of rabies in Africa and Asia. Bulletin of the World Health Organization

Knobel DL, Cleaveland S, Coleman PG, Fevre EM, Meltzer MI, Miranda MEG, et al. Re-

2011. 2012:31-44.

50.

2005; 83:360-8. Lavan RP, King AIM, Sutton DJ, Tunceli K. Rationale and support for a One Health 51. program for canine vaccination as the most cost-effective means of controlling zoonotic rabies in endemic settings. Vaccine 2017; 35(13):1668-74. 52. Dodet B, Tejiokem MC, Aguemon AR, Bourhy H. Human rabies deaths in Africa: breaking the cycle of indifference. International health 2015; 7(1):4-6. 53. Adesina MA, Olufadewa II, OgaH YI, Nwachukwu N. Incidence and Mortality from a Neglected Tropical Disease (Rabies) in 28 African Countries. Acta Neuropathologica Communications 2020; 64(2):46-51. 54. Interafrican Bureau for Animal Resources. Rabies distribution, 2013. https://www.auibar.org/rabies#Distribution Map for Africa Athingo R, Tenzin T, Shilongo A, Hikufe E, Shoombe KK, Khaiseb S, et al. Fighting Dog-55. Mediated Rabies in Namibia-Implementation of a Rabies Elimination Program in the Northern Communal Areas. Tropical Medicine and Infectious Diseases 2020; 5(1):12. Muller T, Demetriou P, Moynagh J, Cliquet F, Fooks AR, Conraths FJ, et al. Rabies 56. elimination in Europe: a success story. In: In Rabies control: towards sustainable prevention at the source, compendium of the OIE, Global conf. on Rabies Control, Incheon-Seoul, 7-9 September

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 51 of 84

BMJ Open

882	57.	Velasco-Villa A, Escobar LE, Sanchez A, Shi M, Streicker DG, Gallardo-Romero NF, et				
883	al. Suc	uccessful strategies implemented towards the elimination of canine rabies in the Western				
884	4 Hemisphere. Antiviral research 2017; 143:1-12.					
885	58.	World Health Organization. WHO Expert Consultation on Rabies: second report. World				
886	Health	Organization, 2013. https://apps.who.int/iris/handle/10665/85346				
887	59.	Hemachudha T, Laothamatas J and Rupprecht CE. Human rabies: a disease of complex				
888	neurop	athogenetic mechanisms and diagnostic challenges. The Lancet Neurology 2002; 1(2):101-				
889	109.					
890	60.	Dodet B. The fight against rabies in Africa: From recognition to action. Vaccine 2009;				
891	27(37)	:5027-32.				
892	61.	Kayali U, Mindekem R, Yemadji N, Vounatsou P, Kaninga Y, Ndoutamia AG, et al.				
893	Covera	age of pilot parenteral vaccination campaign against canine rabies in N'Djamena, Chad.				
894	Bulleti	n of the World Health Organization 2003; 81:739-44.				
895	62.	Franka R, Smith TG, Dyer JL, Wu X, Niezgoda M, Rupprecht CE. Current and future tools				
896	for glo	bal canine rabies elimination. Antiviral research 2013; 100(1):220-5.				
897	63.	Zemanova S, Korytar L, Benko Z, Prokes M, Ondrejkova A. Ecological Factors of				
898	Transn	nission, Persistence and Circulation of Pathogens In Bat Populations. Folia Veterinaria				
899	2019; (53(1):32-40.				
	 883 884 885 886 887 887 888 890 891 892 893 894 895 896 897 898 	883 al. Succession 884 Hemisy 885 58. 886 Health 887 59. 888 neurop 889 109. 890 60. 891 27(37) 892 61. 893 Covera 894 Bulleti 895 62. 896 for glo 897 63. 898 Transm				

64. Hampson K, Dushoff J, Cleaveland S, Haydon DT, Kaare M, Packer C and Dobson A.
Transmission dynamics and prospects for the elimination of canine rabies. PLoS boil 2009; 7(3):
e1000053.

903 65. Minyoo AB, Steinmetz M, Czupryna A, Bigambo M, Mzimbiri I, Powell G, Gwakisa P
904 and Lankester F. Incentives increase participation in mass dog rabies vaccination clinics and
905 methods of coverage estimation are assessed to be accurate. PLoS neglected tropical diseases
906 2015; 9(12): e0004221.

66. Lankester F, Davis A, Kinung'hi S, Yoder J, Bunga C, Alkara S, Mzimbiri I, Cleaveland
S and Palmer GH. An integrated health delivery platform, targeting soil-transmitted helminths
(STH) and canine mediated human rabies, results in cost savings and increased breadth of
treatment for STH in remote communities in Tanzania. BMC public health 2019; 19(1): 1398.

911 67. Global Alliance for Rabies Control. Recent Research November 2017, 2017.
912 https://rabiesalliance.org/resource/recent-research-november-2017

913 68. MEEREB. Rabies diagnostic and epidemiological data, 2018. https://www.fondation914 merieux.org/wp-content/uploads/2017/11/4th-meereb-2018-florence-cliquet.pdf

915 69. Wallace RM, Mehal J, Nakazawa Y, Recuenco S, Bakamutumaho B, Osinubi M, et al. The
916 impact of poverty on dog ownership and access to canine rabies vaccination: results from a
917 knowledge, attitudes and practices survey, Uganda 2013. Infectious diseases of poverty 2017;
918 6(1):97.

919 70. Jibat T, Hogeveen H and Mourits MC. Review on dog rabies vaccination coverage in
920 Africa: a question of dog accessibility or cost recovery? PLoS Negl Trop Dis 2015, 9(2):
921 e0003447.

922 71. Shwiff SA, Hatch B, Anderson A, Nel LH, Leroux K, Stewart D, et al. Towards Canine
923 Rabies Elimination in KwaZulu-Natal, South Africa: Assessment of Health Economic Data.
924 Transboundary and emerging diseases 2016; 63(4):408-15.

925 72. Cleaveland S, Kaare M, Tiringa P, Mlengeya T, Barrat J. A dog rabies vaccination
926 campaign in rural Africa: impact on the incidence of dog rabies and human dog-bite injuries.
927 Vaccine 2003; 21(17-18):1965-73.

73. Kaare M, Lembo T, Hampson K, Ernest E, Estes A, Mentzel C, et al. Rabies control in
rural Africa: evaluating strategies for effective domestic dog vaccination. 2009; 27(1):152-60.

930 74. Hatch B, Anderson A, Sambo M, Maziku M, Mchau G, Mbunda E, et al. Towards Canine
931 Rabies Elimination in Southern Eastern Tanzania: Assessment of Health Economic Data.
932 Transboundary and emerging diseases 2017; 64(3):951-8.

933 75. Gibson AD, Handel IG, Shervell K, Roux T, Mayer D, Muyila S et al. The Vaccination of
934 35,000 Dogs in 20 Working Days Using Combined Static Point and Door-to-Door Methods in
935 Blantyre, Malawi. PLoS neglected tropical diseases 2016; 10(7):e0004824.

936 76. Léchenne M, Oussiguere, A Naissengar K, Mindekem, R, Mosimann L, Rives, G,
937 Hattendorf, Moto DD, Alfaroukh IO and Zinsstag J. Operational performance and analysis of two
938 rabies vaccination campaigns in N'Djamena, Chad. Vaccine 2016; 34(4): 571-577.

53

2	
3	
4	
5	
6	
-	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
50 51	
52	
53	
54	
55	
56	
50 57	
58	
59	
60	

939	77. Anyiam F, Léchenne M, Mindekem R et al. Cost estimate of canine rabies elimination b
940	parenteral mass vaccination in Chad, 2017
941	https://edoc.unibas.ch/57353/1/Lechenne_thesis_edoc%20version.pdf
942	78. Zinsstag J, Lechenne M, Laager M, Mindekem R, Oussiguere A, Bidjeh K, et a
943	Vaccination of dogs in an African city interrupts rabies transmission and reduces human exposure
944	Science translational medicine 2017; 9(421):eaaf6984.
945	79. Sreenivasan N, Li A, Shiferaw M, Tran CH, Wallace R, Blanton J, et al. Overview of rabie
946	post-exposure prophylaxis access, procurement and distribution in selected countries in Asia an
947	Africa, 2017-2018. Vaccine 2019; 37: A6-A13.
948	80. World Health Organization. 2016: the beginning of the end of rabies? 2016
949	https://www.who.int/rabies/resources/tlgh_rabies_oct_2016/en/
950	81. Bogel K, Motschwiller E. Incidence of rabies and post-exposure treatment in developin
951	countries. Bulletin of the World Health Organization 1986; 64(6):883.
952	82. Taylor LH, Knopf L, Partners for Rabies Prevention. Surveillance of human rabies b
953	national authorities-a global survey. Zoonoses and public health 2015; 62(7):543-52.
954	83. Kamani TM., Kazwala R, Mfinanga, S., Haydon, D, Keyyu, J., Lankester, F. and Buza, J.
955	One Health: a concept led by Africa, with global benefits. The Veterinary Record 2015; 176(19)
956	496.
957	84. Acharya KP, Acharya N, Phuyal S, Upadhyaya M and Steven L. One-health approach: A
958	best possible way to control rabies. One Health 2020; 10: 100161.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
59 60	
ΟU	

85. Jarvis S. Aiming for elimination of dog-mediated human rabies cases by 2030. Veterinary 959 Record 2016; 178:86-7. 960 Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA 961 86. extension for scoping reviews (PRISMA-ScR): checklist and explanation. Annals of internal 962 medicine 2018; 169(7):467-73. 963 87. Peters MDJ, Godfrey CM, Khalil H, McInerney P, Parker D, Soares CB. Guidance for 964 conducting systematic scoping reviews. International journal of evidence-based healthcare 965 2015;13(3):141-6. 966 88. Arksey H, O'Malley L. Scoping studies: towards a methodological framework. 967 International journal of social research methodology 2005;8(1):19-32. 968 Tricco AC, Lillie E, Zarin W, O' Brien K, Colquhoun H, Kastner M, et al. A scoping review 89. 969 970 on the conduct and reporting of scoping reviews. BMC medical research methodology 2016; 16(1):15. 971 Edward FD, Osei-Tutu A, Gbeddy K, Quist C. A retrospective study of rabies cases at 90. 972 Techiman Municipal, Ghana, 2009-2012. International Journal of Infectious Diseases 2014; 973 974 21:179. 91. Kardjadj M, Yahiaoui F, Ben-Mahdi MH. Incidence of human dog-mediated zoonoses and 975 demographic characteristics/vaccination coverage of the domestic dog population in Algeria. Rev. 976 977 Sci,. Tech. Off. Int. Epiz 2019;38(3):000-000.

> 92. Reynes JM, Andriamandimby SF, Razafitrimo GM, Razainirina J, Jeanmaire EM, Bourhy H, et al. Laboratory surveillance of rabies in humans, domestic animals, and bats in madagascar 2010. medicine 2011; from to Advances in preventive 2011:6. https://doi.org/10.4061/2011/727821 Nyakarahuka L, Tweheyo R. Occurrence and mortality rates from rabies in Uganda, 2001-93. 2009. International journal of infectious Diseases 2012; 16:e458. 94. Masiira B, Makumbi I, Matovu JKB, Ario AR, Nabukenya I, Kihembo C, et al. Long term trends and spatial distribution of animal bite injuries and deaths due to human rabies infection in Uganda, 2001-2015. PloS one 2018;13(8):e0198568. 95. Sambo M, Cleaveland S, Ferguson H, Lembo T, Simon C, Urassa H, et al. The burden of rabies in Tanzania and its impact on local communities. Plos Negl Trop Dis 2013;7(11): e2510. 96. Mtema Z, Changalucha J, Cleaveland S, Elias M, Ferguson HM, Halliday JE, et al. Mobile phones as surveillance tools: implementing and evaluating a large-scale intersectoral surveillance system for rabies in Tanzania. Plos medicine 2016;13(4): e1002002. Teklu GG, Hailu TG, Eshetu GR. High incidence of human rabies exposure in 97. northwestern tigray, Ethiopia: A four-year retrospective study. Plos neglected tropical diseases 2017; 11(1):e0005271. 98. Zimmer BL, Gamble L, Foster R, Kennedy N, Mayer D, Bailey J Burdon, et al. Assessment of the impact on paediatric rabies at Queen Elizabeth Central Hospital, Blantyre, Malawi,

1		50
2 3 4	997	following a mass canine rabies vaccination programme. International Journal of Infectious
5 6 7	998	Diesases 2019; 79:64.
8 9 10	999	99. Osaghae DO. Animal and human bites in children. West African journal of medicine 2011;
11 12 13	1000	30(6):421-424.
14 15 16	1001	100. Ogundare EO, Olatunya OS, Oluwayemi IO, Inubile AJ, Taiwo AB, Agaja OT, et al.
17 18	1002	Pattern and outcome of dog bite injuries among children in Ado-Ekiti, Southwest Nigeria. Pan
19 20 21	1003	African Medical Journal 2017; 27:81.
22 23 24	1004	101. Abubakar SA, Bakari AG. Incidence of dog bite injuries and clinical rabies in a tertiary
25 26	1005	health care institution: a 10-year retrospective study. Annals of African medicine 2012; 11(2):108-
27 28 29	1006	11
30 31 32	1007	102. Kent SJW, Naicker B, Wood DR. Demographics and management of dog-bite victims at a
33 34 35	1008	level two hospital in KwaZulu-Natal. South African Medical Journal 2012; 102(11):845-7.
36 37	1009	103. De Nardo P, Gentilotti E, Vairo F, Nguhuni B, Chaula Z, Nicastri E, et al. A retrospective
38 39 40	1010	evaluation of bites at risk of rabies transmission across 7 years: The need to improve surveillance
41 42 43	1011	and reporting systems for rabies elimination. PloS one 2018;13(7): e0197996.
44 45 46	1012	104. Lushasi K, Steenson R, Bernard J, Changalucha JJ, Govella NJ, Haydon DT, et al. One
40 47 48	1013	Health in practice: using Integrated Bite Case Management to increase detection of rabid animals
49 50 51 52 53 54 55 56 57 58 59	1014	in Tanzania. Frontiers in Public health 2020; 8:13.
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1015 105. Changalucha J, Steenson R, Grieve E, Cleaveland S, Lembo T, Lushasi K, et al. The need
1016 to improve access to rabies post-exposure vaccines: Lessons from Tanzania. Vaccine 2019;37:
1017 A45-53.

1018 106. Yizengaw E, Getahun T, Mulu W, Ashagrie M, Abdela I, Geta M. Incidence of human
1019 rabies virus exposure in northwestern Amhara, Ethiopia. BMC infectious diseases 2018; 18(1):11020 7.

1021 107. Jemberu WT, Molla W, Almaw G, Alemu S. Incidence of rabies in humans and domestic
1022 animals and people's awareness in North Gondar Zone, Ethiopia. Plos Negl Trop Dis 2013;7(5):
1023 e2216.

1024 108. Fevre EM, Kaboyo RW, Persson V, Edelsten M, Coleman PG, Cleaveland S. The
epidemiology of animal bite injuries in Uganda and projections of the burden of rabies. Tropical
medicine & international health 2005; 10(8):790-8.

1027 109. Frey J, Mindekem R, Kessely H, Doumagoum MD, Naissengar S, Zinsstag J, et al. Survey
 1028 of animal bite injuries and their management for an estimate of human rabies deaths in N'Djamena,
 1029 Chad. Tropical Medicine & International Health 2013; 18(12):1555-62.

1030 110. Olugasa BO, Odeniyi AO, Adeogun AO, Adeola OA. Antibody levels against rabies
1031 among occupationally exposed individuals in a Nigerian University. Vet Ital 2010; 46(1):21-8.

1032 111. Harry TO, Adeiga A, Anyiwo CE and Nasidi A. Anti-rabies treatment of dog-bite victims
 in Lagos, Nigeria: trial of suckling mouse brain and fetal bovine kidney cell vaccines. vaccine
 1034 1984; 4: 257-260.

Page 59 of 84

BMJ Open

1		56
2 3 4	1035	112. World Health Organization Technical Report Series. WHO expert consultation on rabies,
5 6	1036	2005.
7 8 9	1037	https://apps.who.int/iris/bitstream/handle/10665/85346/9789240690943_eng.pdf?sequence=1
10 11 12	1038	113. World Health Organization. WHO Expert Consultation on Rabies-World Health
13 14 15	1039	.https://apps.who.int/iris/bitstream/handle/10665/85346/9789241209823_eng.pdf?sequence=1
16 17 18	1040	114. Ren J, Yao L, Sun J and Gong Z. Zagreb regimen, an abbreviated intramuscular schedule
19 20 21	1041	for rabies vaccination. Clinical and Vaccine Immunology 2015; 22(1):1-5
22 23 24	1042	115. Banyard AC, Horton DL, Freuling C, Müller T. and Fooks AR. Control and prevention of
25 26	1043	canine rabies: the need for building laboratory-based surveillance capacity. Antiviral Research
27 28 29	1044	2013; 98(3): 357-364.
30 31	1045	116. Kirby JD, Chipman RB, Nelson KM, Rupprecht CE, Blanton JD, Algeo TP, et al. Enhanced
32 33 34	1046	Rabies Surveillance to Support Effective Oral Rabies Vaccination of Raccoons in the Eastern
35 36	1047	United States. Tropical medicine and infectious disease 2017; 2(3):34.
37 38 39	1048	117. Wilde H, Ghai S, Hemachudha T. Rabies: Still a silent killer targeting the poor. Vaccine
40 41 42	1049	2017; 35(18):2293.
43 44 45	1050	118. Wambura G, Mwatondo A, Muturi M, Nasimiyu C, Wentworth D, Hampson K, et al.
46 47 48	1051	Rabies vaccine and immunoglobulin supply and logistics: challenges and opportunities for rabies
49 50 51	1052	elimination in Kenya. Vaccine 2019; 37: A28-34.
52 53	1053	119. World Health Organization. WHO expert consultation on rabies: third report. 1012 edition.
54 55 56 57	1054	World Health Organization, 2018.
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Hergert M, Le Roux K and Nel LH. Risk factors associated with nonvaccination rabies

120.

status of dogs in KwaZulu-Natal, South Africa. Veterinary Medicine: Research and Reports 2016, 7:75. Taylor LH, Hampson K, Fahrion A, Abela-Ridder B, Nel LH. Difficulties in estimating the 121. human burden of canine rabies. Acta Tropica 2017; 165:133-40. Scott Terence P, Coetzer Andre, Fahrion Anna S, Nel Louis H. Addressing the Disconnect 122. between the Estimated, Reported, and True Rabies Data: The Development of a Regional African Rabies Bulletin. Frontiers in veterinary science 2017; 4:18. 123. Scott TP, Coetzer A, De Balogh K, Wright N and Nel LH. The Pan-African Rabies Control Network (PARACON): A unified approach to eliminating canine rabies in Africa. Antiviral research 2015; 124: 93-100. 124. Gongal G, Wright AE. Human rabies in the WHO Southeast Asia Region: forward steps for elimination. Advances in Preventive Medicine 2011. https://doi.org/10.4061/2011/383870 Mbilo C, Coetzer A, Bonfoh B, Angot A, Bebay C, Cassama B, et al. Dog rabies control 125. in West and Central Africa: A review. Acta Tropica 2020; 105459. World Health Organization. Driving progress towards rabies elimination. In: 126. file:///C:/Users/Staff/Downloads/WHO-CDS-NTD-NZD-2019.04-eng.pdf. 2019. 127. Broban A, Tejiokem MC, Tiembre I, Druelles S, L'Azou M. Bolstering human rabies surveillance in Africa is crucial to eliminating canine-mediated rabies. PloS neglected tropical diseases 2018; 12(9):e0006367.

Page 61 of 84

BMJ Open

1		00				
2 3 4	1075	128. Cleaveland S, Sharp J, Abela-Ridder B, Allan KJ, Buza J, Crump JA, Davis A, Del Rio				
5 6	1076	Vilas, VJ, De Glanville WA, Kazwala RR and Kibona T. One Health contributions towards more				
7 8 9	1077	effective and equitable approaches to health in low-and middle-income countries. Philosophical				
10 11 12	1078	Transactions of the Royal Society B: Biological Sciences 2017; 372(1725): 20160168.				
13 14	1079	129. Tataryn J, Buck P A. The Canadian Rabies Management Plan: An integrated approach to				
15 16 17	1080	the coordination of rabies activities in Canada. Canada communicable disease report 2016; 42				
18 19 20	1081	(6):135-6.				
21 22 23	1082	130. Kappler A, Wandeler AI and Capt S. Ten years of rabies control by oral vaccination of				
23 24 25	1083	foxes in Switzerland. EUR 1988.				
26 27 28	1084	https://orbi.uliege.be/bitstream/2268/211695/1/CDNA114392AC_001.pdf#page=63				
29 30 31	1085	131. Tolson ND, Charlton KM, Casey GA, Knowles MK, Rupprecht CE, Lawson KF, et al.				
32 33	1086	Immunization of foxes against rabies with a vaccinia recombinant virus expressing the rabies				
34 35 36	1087	glycoprotein. Archives of virology 1988; 102(3-4):297-301.				
37 38 39	1088	132. Maki J, Guiot AL, Aubert M, Brochier B, Cliquet F, Hanlon CA, et al. Oral vaccination of				
40 41	1089	wildlife using a vaccinia-rabies-glycoprotein recombinant virus vaccine (RABORAL V-RG®): a				
42 43 44	1090	global review. Veterinary research 2017; 48(1):57.				
45 46 47	1091	133. Yakobson BA, King RJ, David D, Sheichat N, Rotenderg D, Dveres N, Samina I, Zaharin				
48 49	1092	Y, Perl S, Orgad U (1999) Comparative efficacy of two oral vaccines in captive jackals (Canis				
50 51	1093	aureus). 10th Annual Rabies in the Americas meeting: November 14-19, San Diego, California,				
52 53 54 55 56 57 58 59	1094	USA				
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

134. Rupprecht CE, Wiktor TJ, Johnston D H, Hamir AN, Dietzschold B, Wunner W H, et al. Oral immunization and protection of raccoons (Procyon lotor) with a vaccinia-rabies glycoprotein recombinant virus vaccine. Proceedings of the National Academy of Sciences of the United States of America 1986; 83(20):7947-50. 135. Rosatte RC. Rabies in Canada-history, epidemiology and control. The Canadian veterinary 52-5. journal 1988; 29(4):362-5. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Table 1: Extracting and charting data table

Rabies mortality and morbidity associated with animal bites in Africa: A case for Integrated Rabies Diseases Surveillance,

Prevention and Control - A Scoping review

Author(year) and country	Study designs	Participants/Comparators	Interventions and Control conditions/Exposures	Outcomes	Key findings/Gaps/Challenges
Rabies prevention and control		Do			
Harry 1984 Nigeria	Randomized control trial	136 patients aged three to 74 years.	Controlled treatment of dog- bite victims with suckling mouse brain (SMBV) versus	By day 7, 26.7% of SMBV recipients and 28.6% of FBKV	We have concluded that both vaccines are equally efficacious and well tolerated.
C			fetal bovine kidney (FBKV) rabies vaccines.	recipients showed antibody response	
			6	These percentages increased to 95.1 and	
				81.1, respectively, by day 14, and by day 20 (for SMBV recipients) or day	
				30 (FBKV recipients) the response was 100%.	
				Titres dropped by day 90, but in no case to below 1	
				EU ml^{-1} .	
Tefera 2002 Ethiopia	5-year retrospective study	15,940 people dog bite victims	post exposure anti-rabies prophylaxis treatment	320 people were reported to have died of rabies.	The result supports the hypothesis that there is a lack of appropriate reporting system on prevalence of rabies and its impact on humans.

1 2	
3 4	
5 6	
7 8	
9	
10 11	
12 13	
14	
15 16	
17 18	
19	
20 21	
22 23	
24 25	
26	
27 28	
29 30	
31	
32 33	
34 35	
36 37	
38	
39 40	
41 42	
43	
44 45	
46 47	

Deressa 2010	8-year	17,204 people received post	Post Exposure Prophylaxis	The fatal human cases	PEP against rabies varies from
Ethiopia	retrospective study	exposure treatment	5% suspension of phenolized sheep brain tissue.	were 386 humans with annual range of 35 to 58. The age and sex specific distribution showed that the most fatal cases were 42% from the age group	35.96% to 64.4% across the study.
		For		0-14 category. According to this record 66.66% of deaths were males and 33.33% were females.	The recorded data showed the underestimate of rabies diagnosis, post exposure prophylaxis and fatal human cases, which could be attributed due to the absence of national rabies surveillance system.
Olugasa 2010	Clinical trial	Of these 70 healthy individuals,	A purified chicken-embryo	Overall, antibody levels	Almost all those who had spent at
Nigeria Mazigo 2010 Tanzania	A 5-year retrospective study	 29 (41.4%) consisting of 15 zoological garden workers (75.0%), 13 veterinarians (65.0%) and 1 veterinary student (3.3%) A total of 767 bite injuries inflicted by rabies-suspected animals were reported. 	cell rabies vaccine One dose (1 ml of ≥ 2.5 IU/ml vaccine potency) was administered intramuscularly every two years immune to rabies virus (antibody titre >0.5 equivalent units per ml), while 41 (58.6%) were not immune. Adherence to post-exposure prophylaxis (PEP) regimen	mean annual incidence of ~58 cases per 100,000 (52.5% males, 47.5%	Only 28% of the victims completed the vaccination regime.
				females)	
Jemberu 2013 Ethiopia	Cross- sectional and year prospective cohort study	120 selected dog owners 5 traditional healers in North Gondar zone, Ethiopia.	clinical observation A questionnaire on rabies people's knowledge and practices	Annual estimated rabies incidence of 2.33 cases per 100,000 in humans. During the follow up period, a total of 32 in humans were recorded	Vaccination of dogs, proper post exposure management, and increasing the awareness of the community are suggested to reduce the disease burden.

				from which 3 humans ended with fatality.	
Edward 2014 Ghana	3-year retrospective study	546 dog-bite victims were reported; 295 (54%) were children < 15 years, 169 (31%) were between 15-59 years and 82 (13%) were above 60 years.	Post-exposure prophylaxis	54 dog-bite victims bitten by rabies-positive dogs were reported.	24% of dog-bite victims did no complete the post exposure and human rabies vaccine course an were not likely to be postexposur prophylaxis.
Ramos 2015 Ethiopia	A retrospective, registry-based study	A total of 683 persons (51.1% females, 73% children) with animal- related bites.	All the patients received an anti-rabies nervous-tissue vaccine.	No important complications were reported.	99% of whom completed th vaccination course.
Kardjadj 2019 Algeria	A 13- year retrospective study	Annual average of PEP cases: 96,203 people	post-exposure prophylaxis and dog vaccination	Annual average of 20.6 human rabies deaths	Overall dog rabies vaccination coverage rate of 68.78%.
Pfukenyi 2009 Zimbabwe	A retrospective study	A total of 57 rabies-suspect human samples were examined and The 15–19 year age group had the highest number of cases.	Dog vaccination coverage	Among rabies-suspect, 42 (73.7%) were positive.	During the study period, there was a inverse relationship between do vaccination coverage and dog rabi cases. Dog vaccination coverag decreased across the study fro 100% to 50%.
Punguyire 2017 Ghana	6-year retrospective records review	680 dog victims, the median age of rabies victims was 30 (range 3- 80 years).	Post-exposure prophylaxis of rabies Dog rabies vaccination	13 cases of human rabies were recorded.	Less than 35% of the suspected rabid dogs that bit people over the period were vaccinated. About 20% of the offending dogs had unknown vaccination status.
Teklu 2017 Ethiopia	A Four-Year Retrospective Study	In total, 2180 human rabies exposure cases were registered and followed for their PEP. the greatest exposed age group was >=15 years in all the study years	Prior to PEP administration for humans. Dog vaccination	The incidence of human rabies exposure cases calculated per 100,000 populations was 35.8, 63.0, 89.8 and 73.1 in 2012, 2013, 2014 and 2015, respectively.	The total annually allocated PEP the region, nearly 60% was utilized

_	_
6	
U	

					Data on the coverage of preventive dog vaccination and demography were not evident in the study area.
De Nardo 2018 Tanzania	6-year retrospective study	14,624 patients attended the clinics because of animal's bites. Eighty-three per cent (12,098) individuals came from Dodoma Region.	The adherence to post- exposure prophylaxis (PEP)	Mean incidence of 74 bites considered at risk of rabies transmission per 100,000 persons per year.	Overall, 46.0% of the total number of individuals exposed to potentially rabid animals completed the PEP course, while 6.5% (698) did not receive any dose. Living in rural area was statistically associated with loss to follow up after the first dose
		200	r ro		(p<0.001) or after the second dose (p<0.001) Females were more likely to be lost after the first dose $(p = 0.006)$.
Yizengaw 2018 Ethiopia	2-year retrospective cross-sectional study	A total of 924 human rabies exposure cases received the anti- rabies post-exposure prophylaxis. Of these, males accounted 55.2% and the median age was 18 year (ranges: 1–80 years).	anti-rabies post exposure prophylaxis A structured data collection questionnaire	High incidence rate of rabies exposure was reported during spring (339%) and summer (26.4%) seasons.	There was significant difference between rural and urban exposure cases ($p = 0.001$) in respect to the time of arrival to the hospital. There was high human rabies exposure rate in children and in the rural community. The health status of most dogs (67.3%) involved in biting was unknown (they were stray dogs) and 28.8% were sick: develop the signs of rabid animal within ten days follow up.
Gebru 2019 Ethiopia	One year retrospective study	368 human rabies exposure cases. Age group of 5 to 14 years old.	Recommendation to start PEP immediately after exposure, depending on the type of exposure.	Incidence of human rabies exposure was 40 per 100,000 populations.	A higher proportion of human rabies exposures was caused by unprovoked dogs (96.5%; 95% CI, 94.0–98.0), and of these, the majority were

			Dog vaccination 14.1%		unvaccinated (85.9%; 95% CI, 81.9– 89.1).
Zimmer 2019 Malawi	6-year Retrospective study	Children victims of dog bite. The average age was seven years (range 3–11).	Pre and post a comprehensive canine vaccine campaign	14 paediatric rabies cases were found during the study period. More males than females were affected (males: 10 (71%); females: 4 (29%)).	The study shows the importance of eliminating human rabies through canine rabies vaccination.
Rabies surveillance		0			
Fevre 2005	Cross- sectional study	A total of 517 patients were interviewed in 10 randomly calculated districts in Usanda in the	Passive surveillance	Death in absence of post- exposure prophylaxis (PET), 592 (95% CI 345–	Most patients are bitten by dogs, and that a considerable proportion of these are young children, who are at
Uganda		selected districts in Uganda in the 3 months of the study.	Survey of dog bite injuries and rabies post-exposure treatment activities in treatment centres supplied with rabies vaccine.	920) deaths One dose of PET is sufficient for protection following a rabid animal bite, 20 (95% CI 5–50) deaths annually. Complete course of PET is required for protection following a rabid animal bite, up to 210 (95% CI 115–359) deaths would occur, as 41% of patients did not complete their course of PET.	greater risk of developing rabies in the absence of treatment due to the location of the bites they receive. Active animal bite surveillance studies are required to improve our mortality estimates and determine the true burden of rabies in the Ugandan population
Reynes 2011	6-year retrospective study	11 human samples were tested for rabies.	Laboratory Surveillance of domestic or tame wild terrestrial mammal and dog	Nine of the 11 suspected human cases tested were laboratory confirmed for	Rabies remains endemic in Madagascar. this study has found the lack of epidemiological data in
Madagascar	Study		brains tested.	rabies.	Madagascar

67

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
12 13 14 15 16 17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
31	
32	
33	
34	
35	
36 37	
37	
38	
39	
40	
40 41	
41 42	
43	
44	
45	
46	
47	

Nyakarahuka 2012 Uganda	9-year retrospective study	Cumulative total of 117,085 rabies cases were reported in 9 years.	Surveillance reports from all the districts.	A total of 371 deaths of rabies were recorded.	Findings emphasize the need for active surveillance; follow up of people bitten by animals and mass dog vaccinations to alleviate this zoonotic threat.
Sambo 2013 Tanzania	Cross- sectional study	Human population (district) Ulanga: 193280	Extensive investigative interviews were used to estimate the incidence of	Average annual incidence/	Ninety-four percent (391/415) of these suspects bite victims reported to health facilities for PEP.
		Kilombero: 321611	human deaths and bite exposures.	100,000	
		Serengeti: 176057		Bites: 37.1;11.3 and 33.5 respectively	
		The ages of suspect bite victims ranged from 1 to 90 years. The majority of suspect bite victims (51%) were children less than 15 years of age.	r rei.	Death: 2.4; 0.8 and 1.4 respectively	
Adomako 2018 Ghana	3-year retrospective study	Overall, 4821 dog victims' bites. Most of the cases were in children aged below 10 years.	The health and veterinary services on issues related to surveillance and data quality.	Annual incidence of rabies cases of 172 per a population of 100,000.	In the 82% of cases where data was available, no postexposure prophylaxis (PEP) was administered. The fatality rate was 100%.
				only	The study found gross disparities in the number of reported events and overall impression of underreporting.
Masiira 2018	A 14-year retrospective	A total of 208,720 patients with animal bite injuries were treated at	Epidemiological surveillance data	A total of 486 suspected human rabies deaths were	Strengthening rabies surveillance, controlling rabies in dogs and
Uganda	review	health facilities across the country. Up to 81% were patients >=5 years of age and 19% (n = 9,102)		reported.	ensuring availability of post exposure prophylaxis at lower health facilities are the best approach of eliminating rabies.
		were below 5 years of age.			

Page	69	of	84
------	----	----	----

Tiembre 2018	A 2-year descriptive	2968 weekly reports, all were received by the NIPH Anti-rabies	Human rabies surveillance system in those 28 NIPH local	50 cases of human rabies (15±18 cases/year; annual	The study is the result of enhancin human rabies surveillance in Ivor
Ivory Coast	prospective observational	Center. Almost one-half of the human rabies cases were in	units, with specific goals of improving the infrastructure,	incidence = $0.06-0.08$ per 100,000) and more than	Coast
	study	children <=15 years old.	training, communication, and government involvement.	30,000 animal exposures (annual incidence = 41.8-48.0 per 100,000).	None of cases had received PEP Post-exposure prophylaxis with rabies vaccine was administered to al animal exposure victims presenting a the NIPH local units; only about 57% completed the full immunization schedule.
Ngugi 2018	5-year retrospective	Among 7307 records analyzed, 7201 (98.6%) had age recorded.	Surveillance of PEP was given and number of PEP doses	Human animal-bite injuries incidence was 289	The study concluded preventing dog bites would most effectively reduced
Kenya	study		administered.	per 100,000 persons with the highest incidence reported at 302 per 100,000 and lowest at 121 per 100,000 persons.	bite injuries by improving public health education among childrer below 15 years, encouraging early PEP initiation and completion development and implementation or responsible dog ownership and animal behaviour educationa programmes as well as improving human and veterinary health linkages
Hikufe 2019	6-year retrospective	Of the total number of 113 cases, the majority (67%) were children	Human rabies surveillance data were retrieved from the	Rabies cases have been above 16 cases per year	Kavango, the region with the highes human rabies incidence was also the
Namibia	study	and teenagers below 16 years of age, peaking at 5–9 years.	epidemiological database of the Ministry of Health. Surveillance in animals is based on the reporting of all suspected cases.	from 2011 until 2015 with a maximum of 23 cases observed in 2015. Incidence: 1.0 and 2.4 per 100,000 inhabitants and per year on average.	region with the lowest animal rabies surveillance intensity.
Rabies surveillance and prevention					

1 2 3 4 5 6 7	
8 9 10 11 12 13 14	
15 16 17 18 19 20 21	
22 23 24 25 26 27 28 29	
29 30 31 32 33 34 35 36 37	
38 39 40 41 42	
43 44 45 46 47	

Andriamandimby	6-year	24 946 patients visited the ARMC	Laboratory surveillance of	31 positive cases of	None of these patients received PEP
2013	Retrospective study	at the IPM, of which 97.2% (n = 24 299) received PEP. Males	rabies	human rabies	with the exception of one who started PEP late, 10 days after the suspected
La Reunion,	- stady	represented 54.3% (n = 13 556) of the cases and ranged in age from	Post-exposure prophylaxis of rabies		bite.
Mayotte, and Madagascar		one to 97 years (median = 18 years). Children under 15 years old represented 40.5% (n = 10 107) of the consultants.			Dog vaccination coverage in Madagascar was 10%
Kubheka 2013 South Africa	3-year retrospective study	2 601 patients who were offered rabies PEP. The median age of the people bitten by dogs during the	human rabies surveillance database the uptake of the rabies PEP and patients	An average annualized rabies attack rate of 136 rabies cases per 100 000	83.7% [95% confidence interval (CI): 82.4-85.2] completed the PEP treatment.
Soun Anica		two years was 20 years (with a range from 1- 92 years). The majority (61.3%) were aged 5-29 years old.	telephone contact.	dog-bite injuries (7/5 139). 6/7 died	
Sofeu 2018	A one year	A total of 1,402 animal exposures	The surveillance network	Overall incidence rate of	Overall, at least 421 (60%) of the
Cameroon	retrospective study	were reported in the West region of Cameroon.	consisted of local, regional, and national health and veterinary authorities. PEP and immunizations	6.1 exposures per 100,000 people. One was confirmed positive for rabies	exposure victims considered to be at risk of rabies either did not receive any PEP or did not receive all PEP vaccinations.
			received prior to the current exposure; and the wound treatment were recorded.		Only 12.6% (117/925) of dogs were reported to have been vaccinated and only 14.4% of the animal exposure cases were followed-up with a visit by a veterinarian
					No adverse events to PEP were reported.
Mtema 2016	A 5-year retrospective	Reports recorded bite patients seeking PEP (14,565 records,	Automated SMS (short message service, commonly	Human rabies cases (42 reported) reflected issues	Compliance with PEP regimens was significantly higher for patients
Tanzania	study	49%), detailing visits of approximately 5,800 patients.	known as a "text" message)	with PEP supply.	following the implementation of automated reminders in comparison

			reminders to patients due for further PEP doses.	Incidence of bite patients seeking PEP declined substantially (>50%)	to patients attending clinics prior 7% of patients failed to obtain PEP.
			Mass dog vaccinations		
			Mobile Phones As Surveillance Tools		
Twabela 2016	A 5-year	A total of 5,053 attacks were	Laboratory surveillance	29 were found positive to	Rabies cases were three times higher
DDC	retrospective study	recorded in the veterinary clinics.		rabies.	in peri-urban zone than in urban zone
DRC	study	Or Dee	PEP and immunizations		It was observed that among the 5,053 attacks registered, 83 (1.6%) animals were killed and 15 (0.3%) disappeared just after attack without a follow-up or a veterinary observation
Post exposure management			revie.		
Osaghae 2011	A twelve-year retrospective	105 episodes of human and animal bites Recorded.	Wound Management	A 10-year-old girl had rabies and died on the	The anti-rabies vaccine was no administered to the children bitten by
Nigeria	study	Comparators: N/A	Twenty (%) domestic dogs were vaccinated while 11(%) and six (%) were not vaccinated and without known vaccination status respectively.	second day of admission.	the vaccinated animals.
Alabi 2014	3-year retrospective	Only 195 (50.9%) of the 383 bite victims linked to a positive dog	A review of detailed profiles of dog bite victims managed in	54% of the victims took complete PEP. For those	It has shown lack of enforcement o regulations for licensing of dogs and
Nigeria	study and cross-sectional study	specimen could be traced.	the clinics.	who did not complete PEP, 93% of the biting dogs were not vaccinated.	rabies vaccination.

7	1
	Т

		About three quarters (141 (73%)) of the victims were aged <16 years.			
Muyila 2014 DRC	A 8-month retrospective study	21 cases were observed, rather three cases per month. There were 12 boys (57.1%) and 9 girls (42.9%). Biting animal was found to be dog in all cases (100%).	(9.5%) had their wounds treated and received an anti- rabies vaccine (ARV) after the bite incident. Two (9.5%) patients received rabies immunoglobulin (RIG).	100% of patients showedfuriousrabiesmanifestationsThe case-fatality rate was100%.	The study revealed the dogs were no immunized for rabies.
Frey 2013 Chad	Cross- sectional study	Of 86 people exposed to a suspected rabid animal. The median age was 18 years, with a range between. 2 months and 79 years.	Post-exposure vaccination and wound cleaned.	Estimated annual incidence of bites from suspected rabid animals of 12.9/100 000 and an incidence of 0.7 human rabies deaths/ 100 000, resulting in 7 estimated deaths (95% confidence interval 4–10 deaths) per year.	50% received post-exposure vaccination and a further 8% had thei wound cleaned.
Ogundare 2017 Nigeria	A retrospective study	In all, 84 cases of dog bite injuries were managed constituting 0.89% of the total consultations. Most of the victims were aged 6-12 years (60.7%) and majority (71.4%) was boys.	Treatments received in the hospital ranged from washing the bite site with soap and water, to suturing of lacerations and wound dressing, analgesics, tetanus prophylaxis, anti-rabies vaccination (ARV), intravenous fluids and diazepam administration as well as antibiotics administration.	Six (7.1%) of cases had rabies and died.	Although seventy-eight (92.9%) of the victims had post-exposur prophylaxis (PEP) with anti-rabie vaccine, only 45 (53.6%) of ther were managed successfully an subsequently discharged afte ensuring adequate wound healing an completion of the vaccinatio regimen. Thirty-three (39.3%) wer lost to follow up.
Abubakar 2012 Nigeria	A 10-year	81 victims of dog bite injuries. The majority, 45 (55.6%), were	Wound care	Two cases of clinical rabies were seen during the study period.	Prevalence of dog bite was highes 41 (50.6%), during the hot seaso (April– June) and low, 14 (17.3% during the wet season (July–October

BMJ Open

7	2
•	_

	retrospective study	children less than 18 years while 36 (44.4%) were adults.	PEP and the Immunization schedule		None of the victims was previously immunized against rabies.
Kent 2012	A 4-year	A total of 821 patients	Advice only	Of the 821 bites, 642	Males present more frequently that
South Africa	retrospective study	complaining of dog bite. Male children aged 6 - 10 years are most likely to present with dog	Wound management	(78%) were grade 3; 84 (10%) were grade 2; and 43 (5%) were grade 1. In	females, and young males (ages
		bites.	Give vaccine	52 cases (7%), grade of bite was not recorded.	6 - 10) are most likely to present. The trend reverses after the age of 4
		FOr Dec	Give anti-rabies immunoglobulin	Treatment with rabies vaccine was started in 90% of cases of grade 1 bites, 97% of grade 2 bites and 99% of grade 3 bites.	years, when females are more likel to present than males. We als showed that 99% of grade 3 bit patients are treated with rabie vaccine, but the rate of treatment wit immunoglobulin is lower (82%).
		66	r .	Immunoglobulin was administered for 53% of grade 1 bites, 84% of	
			er.	grade 2 bites and 82% of grade 3 bites.	
RabiesDiseasesSurveillance,PreventionandControl			Ch		
Lushasi 2020	Multi-center	1,291 victims bite. The study was	Integrated Bite Case	Only 63 of these bite	Throughout the study regions, PE
	retrospective	undertaken across 20 districts in 4	Management (IBCM). We	patients were referred to	was unavailable for 74 bite patient
Tanzania	study	regions in Southern, Central, and Northern Tanzania.	trained government staff to implement	other facilities for PEP with 43 assessed as being suspect rabies exposures.	(5.7%) upon presentation to a healt facility, during the period of IBCN implementation.
			IBCM, comprising risk	Sixteen human deaths due	
			assessments of bite patients by	to rabies were reported	
			health workers, investigations	within the IBCM study	
			by livestock field officers to	districts.	
			diagnose rabid animals, and		
			use of a mobile phone	Overall bite patient	
				presentations	
				corresponded to an	

7	3
'	9

			application to support integration.	incidence of 17.4 bites per 100,000 persons per annum.	
Changalucha 2019 Tanzania	5-year retrospective and cross- sectional study	About 36% of patient presentations at health facilities were due to bites from probable rabid dogs (1,878/5,162 patients that sought care) as assessed through contact tracing, with the remainder from healthy animals or animals with unknown status.	Mobile phone-based surveillance records PEP was supplied free-of- charge to hospitals and selected outlying facilities in each district and training was provided to over 300 health workers in use of the updated Thai Red Cross ID regimen (5-dose Essen IM regimen). Qualitative interviews with stakeholders at different levels within the health system to characterize the logistics associated with PEP provision.	We detected an average of 75.6 and 19.3 probable rabies exposures per 100,000 persons per year. Of 1005 individuals identified during contact tracing who received late and/or incomplete postexposure vaccination, 14 died showing clinical signs of rabies.	Upon seeking care a further 15% o probable rabies exposed persons did not obtain PEP due to shortages, cos barriers or misadvice. Of those that initiated PEP, 46% did not complete the course Decentralized and free PEP increased the probability that patients received PEP and reduced delays in initiating PEP.
Rajeev 2019 Madagascar	One year retrospective study	1019 patients reported to the anti- rabies medical centers (ARMC).	A combined strategy of mass dog vaccination, enhanced surveillance, and expanded access to PEP.	Annual incidence of 42– 110 rabies exposures and 1–3 deaths per 100,000 persons annually. Extrapolating an annual burden of 282–745 human rabies deaths with current PEP provisioning averting 1499–3958 deaths each year.	A high proportion of rabies-exposed persons from Moramanga sough (84%) and completed PEP (90% of those that initiated PEP).

Page 75 of 84

Diallo 2019	A prospective	1036 patients sought a	Post-exposure prophylaxis	No death was reported	Out of the patients receiving PEP, 16
	cohort study	consultation at the Pasteur	implementation (consists of	during the study period.	(18%) patients received two dos
Senegal	was carried out	Institute of Dakar for suspicion of	injection of four intramuscular		only at D0, 185 (20.5%) three dose
	from April	rabies exposure.	doses of a purified vero cell	Adverse events were	at D0 and D7 and 493 (54.5%
	1,2013 to		rabies vaccine).	reported after the first two	completed the full 4-dose schedule.
	March 31,			doses by 6% of the	
	2014,		Dog rabies vaccination	patients (42/678)	
			treatment (local treatment of	(including 5 patients who	
			injuries, antibiotics	also received equine RIG	
			administration, and previous	at D0), and after the third	
			rabies vaccination),	dose, by 3% (16/493).	
			knowledge of rabies and	Most of them were minor:	
			attitudes in respect to animal bite.	headache	
		ror Do	bite.		
				(46.5%), fever (31%) and	
			6	pain at the injection site	
			5	(22%), and mostly (74%)	
				occurred on the same day	
				of the vaccine injection	
				(up to 7 days).	
Hampson 2008	5-year	1080 people were traced and	Contact tracing was used to	Twenty-eight deaths from	Insufficient knowledge about rabie
	retrospective	interviewed who had been bitten	gather data on rabies	suspected rabies were	dangers and prevention, particular
Tanzania	study	by animals.	exposures, post-exposure	recorded during the five-	prompt PEP, but also woun
			prophylaxis (PEP) delivered	year period in the two	management, was the main cause of
			and deaths case reports from	districts, an average of	rabies deaths.
			livestock offices and	1.5/100,000 per year in	
			community based surveillance activities.	Serengeti and 2.3 in Ngorongoro	Received PEP: 685 (71%)
					Attended hospital: 971 (85%)
					PEP dramatically reduced the risk of
					developing rabies (OR 17.33, 95% C
					6.39–60.83).

-	F
1	Э

2	
3	
4	
5	
6	
6 7	
8	
9	
10	
11	
12	
13 14	
14	
15	
16	
16 17	
17	
18	
19	
20	
21	
22	
23	
22 23 24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
.,	

Salomão 2017	A case control	819 cases of animal bites were	Affixing posters in health	A total of 14 cases of fatal	No rabies victim received full post-
	study	registered, of which 64.6%	units regarding treatment of	rabies, Among them 12	exposure vaccination
Mozambique		(529/819) were from Maputo	animal bites and post-	died.	
_		City.	exposure prophylaxis.		Factors significantly associated with
					human rabies were: age <15 years (p
		Same neighborhood close to the	Delivery of additional		= 0.05), bite by stray dog (p = 0.002),
		human rabies victim's house were	quantities of anti-rabies		deep wound ($p = 0.02$), bite in the
		used as controls (case: control	vaccine to the Prophylaxis.		head $(p = 0.001)$, bite by
		ratio of 1:4).	The second se		unimmunized dog ($p = 0.01$), no use
			Decentralization of post-		of soap and water ($p = 0.001$), and no
			exposure prophylaxis.		post-exposure prophylaxis ($p = 0.01$).
			exposure propriyraxis.		pose emposare proprijumio (p. 0.01).
		Do			
			Vaccination of dogs in the		
			neighborhoods where human		
			rabies cases had occurred.		
			Mass vaccination campaign of		
			dogs.		
			Participation of private		
			veterinary clinics in animal		
			vaccination.		
			Collection of stray dogs in		
			selected neighborhoods.		
			Community education	07/2	
			regarding prevention and		
			control measures.		
			control measures.		
		1			

s torpeerterier only

For beer terien only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

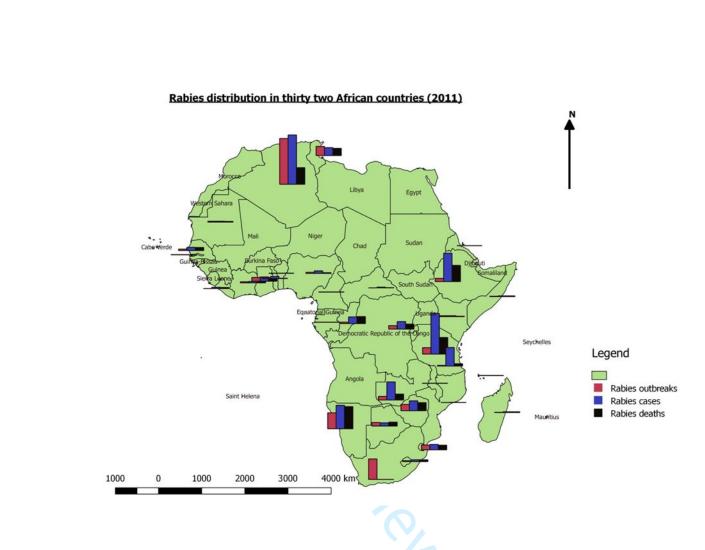


Figure 1: Human rabies distribution in thirty-two African countries (2011)

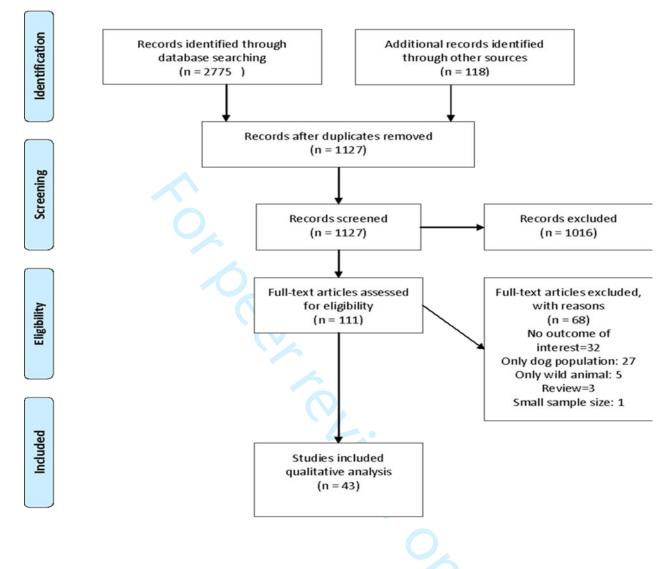
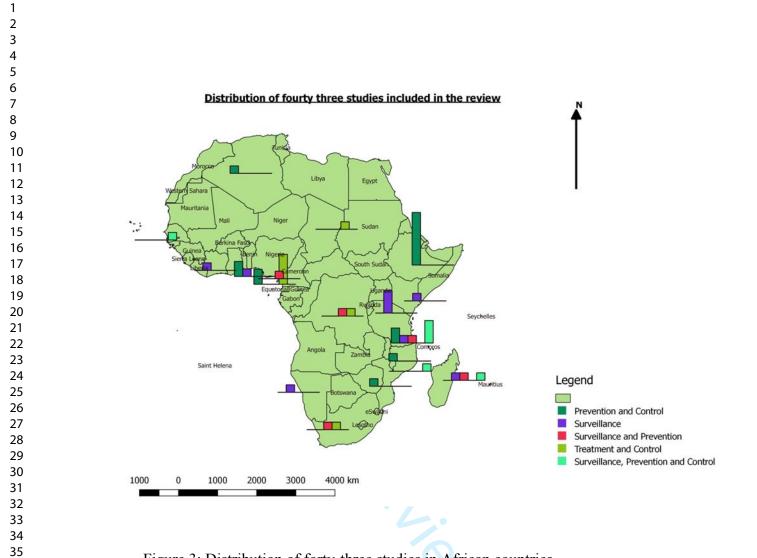
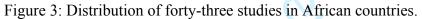




Figure 2: Flow diagram of human rabies mortality and morbidity associated with animal bites

in Africa. Note From PRISMA: <u>www.prisma-statement.org [86]</u>

Supplementary material 1

Search Strategy:

Database: Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Daily and Versions(R) <1946 to May 25, 2020>

1 exp rabies/ or exp Rabies virus/ or rabies.mp.

2 africa*.mp. or exp Africa/

3 (Algeria or Angola or Benin or Botswana or Burkina Faso or Burundi or Cameroon or Cape Verde or "Central African republic" or Chad or Comoros or Congo or "Democratic Republic of Congo" or DRC or Djibouti or Equatorial guinea or Egypt or Eritrea or Ethiopia or Gabon or Gambia or Ghana or Guinea or Bissau or Ivory coast or ""Cote d ivoire" or Jamahiriya or Kenya or Lesotho or Liberia or Libya or Madagascar or Malawi or Mali or Mauritania or Mauritius or Mayotte or Morocco or Mozambique or Namibia or Niger or Nigeria or Principe or Reunion or Rhodesia or Rwanda or "Sao Tome" or Senegal or Seychelles or "Sierra Leone" or Somalia or "South Africa" or "St Helena" or Sudan or Swaziland or Tanzania or Togo or Tunisia or Uganda or Zaire or Zambia or Zimbabwe or "Central Africa" or "West Africa" or "East Africa" or "Southern Africa" or South Africa).mp.

- 4 2 or 3
- 5 1 and 4
- 6 mortality/ or mortality.mp.
- 7 fatality.mp.
- 8 morbidity.mp. or Morbidity/
- 9 surveillance.mp. or Population Surveillance/
- 10 (vaccine or vaccines).mp. or Vaccination/
- 11 6 or 7 or 8 or 9 or 10
- 12 Rabies Vaccines/
- 13 5 and 11
- 14 4 and 12

15 13 or 14

16 limit 15 to english language

tor peet terien ont

Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
TITLE			
Title	1	Identify the report as a scoping review.	Page 1; Lines 1-2
ABSTRACT			
Structured summary	2	Provide a structured summary that includes (as applicable): background, objectives, eligibility criteria, sources of evidence, charting methods, results, and conclusions that relate to the review questions and objectives.	Page 3-4; Lines 32-54
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known. Explain why the review questions/objectives lend themselves to a scoping review approach.	Page 6-12; Lines 76-226
Objectives	4	Provide an explicit statement of the questions and objectives being addressed with reference to their key elements (e.g., population or participants, concepts, and context) or other relevant key elements used to conceptualize the review questions and/or objectives.	Page 12; Lines 218-226
METHODS			
Protocol and registration	5	Indicate whether a review protocol exists; state if and where it can be accessed (e.g., a Web address); and if available, provide registration information, including the registration number.	Not applicable
Eligibility criteria	6	Specify characteristics of the sources of evidence used as eligibility criteria (e.g., years considered, language, and publication status), and provide a rationale.	Page 13; Lines 232-238
Information sources*	7	Describe all information sources in the search (e.g., databases with dates of coverage and contact with authors to identify additional sources), as well as the date the most recent search was executed.	Page 13; Lines 239-242
Search	8	Present the full electronic search strategy for at least 1 database, including any limits used, such that it could be repeated.	Page 13; Line 243
Selection of sources of evidence†	9	State the process for selecting sources of evidence (i.e., screening and eligibility) included in the scoping review.	Page 13; Lines 244-247
Data charting process‡	10	Describe the methods of charting data from the included sources of evidence (e.g., calibrated forms or forms that have been tested by the team before their use, and whether data charting was done independently or in duplicate) and any processes for obtaining and confirming data from investigators.	Page 13-14; Lines 248-266
Data items	11	List and define all variables for which data were sought and any assumptions and simplifications made.	Page 14; Lines 267-276
Critical appraisal of individual sources of evidence§	12	If done, provide a rationale for conducting a critical appraisal of included sources of evidence; describe	Page 15; Lines 277-279

St. Michael's

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
		the methods used and how this information was used in any data synthesis (if appropriate).	
Synthesis of results	13	Describe the methods of handling and summarizing the data that were charted.	Page 15; Line 280-286
RESULTS			
Selection of sources of evidence	14	Give numbers of sources of evidence screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally using a flow diagram.	Page 15; Line 293
Characteristics of sources of evidence	15	For each source of evidence, present characteristics for which data were charted and provide the citations.	Page 16; Line 295-309
Critical appraisal within sources of evidence	16	If done, present data on critical appraisal of included sources of evidence (see item 12).	Not applicable
Results of individual sources of evidence	17	For each included source of evidence, present the relevant data that were charted that relate to the review questions and objectives.	page 62-75
Synthesis of results	18	Summarize and/or present the charting results as they relate to the review questions and objectives.	Page 17-32; Lines 328-542
DISCUSSION			
Summary of evidence	19	Summarize the main results (including an overview of concepts, themes, and types of evidence available), link to the review questions and objectives, and consider the relevance to key groups.	Page 33-37; Lines 546-603
Limitations	20	Discuss the limitations of the scoping review process.	Page 5; 33; Lines 66-74; 554-559
Conclusions	21	Provide a general interpretation of the results with respect to the review questions and objectives, as well as potential implications and/or next steps.	Page 39-40; Lines 684-714
FUNDING			
Funding	22	Describe sources of funding for the included sources of evidence, as well as sources of funding for the scoping review. Describe the role of the funders of the scoping review. MA-ScR = Preferred Reporting Items for Systematic reviews at	Page 41; Line 731

JBI = Joanna Briggs Institute; PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews.

* Where *sources of evidence* (see second footnote) are compiled from, such as bibliographic databases, social media platforms, and Web sites.

† A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g., quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping review as opposed to only studies. This is not to be confused with *information sources* (see first footnote).
‡ The frameworks by Arksey and O'Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the process of data extraction in a scoping review as data charting.

§ The process of systematically examining research evidence to assess its validity, results, and relevance before using it to inform a decision. This term is used for items 12 and 19 instead of "risk of bias" (which is more applicable to systematic reviews of interventions) to include and acknowledge the various sources of evidence that may be used in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy document).

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann Intern Med. 2018;169:467–473. doi: 10.7326/M18-0850.

St. Michael's

Inspired Care. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Rabies mortality and morbidity associated with animal bites in Africa: A case for Integrated Rabies Diseases Surveillance, Prevention, and Control - A Scoping review

	· · · · · · · · · · · · · · · · · · ·
Journal:	BMJ Open
Manuscript ID	bmjopen-2020-048551.R1
Article Type:	Original research
Date Submitted by the Author:	18-Jun-2021
Complete List of Authors:	Nyasulu, P; Stellenbosch University, Global Health Weyer, Jacqueline ; NICD, Centre for Emerging Zoonosis and Parasitic Diseases Tschopp, Rea; Swiss Tropical and Public Health Institute; University of Basel Mihret, Adane; Armauer Hansen Research Institute Aseffa, Abraham; Armauer Hansen Research Institute, Nuvor, Samuel; University of Cape Coast, Department of Microbiology and Immunology Tamuzi, Jacques ; Stellenbosch University Faculty of Medicine and Health Sciences, Epidemiology Nyakarahuka, Like; Makerere University College of Health Sciences Helegbe , Gideon; University for Development Studies School of Medicine and Health Sciences Ntinginya, Nyanda; 6. National Institute of Medical Research-Mbeya Medical Research Centre Gebreyesus, Melaku ; Lilongwe University of Agriculture and Natural Resources Doumbia, Seydou; Université des Sciences, Techniques et Technologiques de Bamako, Faculté de Medecine et d'OdontoStomatologie Busse, Reinhard; Technische Universität Berlin, Health Care Management Drosten, Christian ; Charité Universitätsmedizin Berlin,
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Epidemiology, Public health, Global health, Evidence based practice
Keywords:	EPIDEMIOLOGY, INFECTIOUS DISEASES, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Rabies mortality and morbidity associated with animal bites in Africa: A case for

Integrated Rabies Diseases Surveillance, Prevention and Control - A Scoping review

Authors: Peter Suwirakwenda Nyasulu^{1*}, Jacqueline Weyer², Rea Tschopp^{3,4}, Adane Mihret⁴, Abraham Aseffa⁴, Samuel Victor Nuvor⁵, Jacques Lukenze Tamuzi¹, Like Nyakarahuka⁶, Gideon Khofi Helegbe⁷, Nyanda Elias Ntinginya⁸, Melaku Tefera Gebreyesus⁹, Seydou Doumbia¹⁰, Reinhard Busse¹¹, Christian Drosten¹¹.

Affiliation

¹Division of Epidemiology & Biostatistics, Department of Global Health, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa

²Centre for Emerging Zoonosis and Parasitic Diseases, NICD, NHLS, Johannesburg, South Africa and Department for Medical Virology, University of Pretoria, Pretoria, South Africa

³Department of Epidemiology and Public Health, Swiss TPH, University of Basel, Switzerland

⁴The Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia.

⁵Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana

⁶Department of Biosecurity, Ecosystems and Veterinary Public Health, Makerere University, Kampala, Uganda

⁷Department Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, University for Development Studies, Tamale, Ghana

⁸Mbeya Medical Research Centre, National Institute of Medical Research, Tanzania

⁹Department of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi

¹⁰Department of Public Health, Faculty of Medicine, University of Bamako, Mali

¹¹Institute of Virology, Charité Global Health, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Germany

***Corresponding Author**: Peter S Nyasulu, Division of Epidemiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa. Email: <u>pnyasulu@sun.ac.za</u>

Abstract

Objective

The objective of this scoping review was to map the current situation and available evidence and gaps on rabies morbidity, mortality, integrated rabies surveillance programs, and existing prevention and control strategies in Africa.

Methods

We conducted a systematic scoping review following the Joanna Briggs methodology and PRISMA-ScR checklist. Medline, EMBASE, Cinahl (EBSCOHost), Scopus, Web of Science and rabies web conferences were used to search for peer-reviewed publications between January 1946-May 2020. Two researchers reviewed the studies and extracted data based on author (year) and region, study design and data collection duration, Participants / Comparators, Interventions and Control Conditions / Exposures, outcomes (rabies mortality and morbidity) and Key Findings / Gaps / Challenges. The results were reported narratively using Arksey methodological framework.

Results

Electronic search yielded 2775 records, of which 43 studies were included. A total of 543,714 bite victims were censored through the included studies. Most of the victims were less than 15 years of age. The studies included, rabies morbidity (21) and mortality (15) fluctuating in space and time across Africa depending on countries rabies prevention and control practices (16). Others were surveillance (nine studies), surveillance and prevention (five studies), management and control (seven studies) and surveillance, prevention and control (six studies). We found challenges in

BMJ Open

rabies reporting, existing dog vaccination programs and post-exposure prophylaxis availability or compliance.

Conclusion

This study found challenges for dog rabies control and elimination in Africa and the need for a policy to drive the goal of zero dog-transmitted human rabies by 2030.

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See <u>http://creativecommons.org/licenses/by-nc/4.0/</u>

Key words: One-Health; rabies; mortality; morbidity; surveillance; zoonosis; neglected tropical disease; Africa

Strengths and limitations of this study

- We conducted an extensive search of published and grey literature to identify studies to include in the scoping review
- Pulling together data from both published and grey literature from the Ministries of Health gave us an opportunity to understand the breadth of rabies epidemiology and how surveillance, prevention and control would be a critical tool in implementing effective control of rabies across Africa
- We conducted screening of identified articles and extraction of data in duplicate
- We reported the results narratively as it was not possible to combine data from different studies conducted using different study designs, and different population groups.

Tez oni

BMJ Open

1. Background

The natural history of rabies disease in Africa is not well known, but it is well accepted that the disease must have been present in northern Africa for hundreds of years, particularly as an urban dog disease and also associated with cycles in the Middle East [1]. European colonization influenced the spread of dog rabies in Western and Central Africa [2]. In many sub-Saharan African countries, rabies has become epizootic only in the nineteenth and twentieth centuries involved domestic dogs and free-ranging wildlife species [1-3].

More than 59 000 people die of rabies worldwide every year [4-5], 99% of them in African and Asian countries where dog rabies is endemic [4, 6-10]. Due to the lack of laboratory confirmation, sporadic epidemiologic surveillance, and unreported clinical cases in developing countries, current mortality estimates almost certainly under-represent the true incidence of human rabies deaths [4, 8-10]. Rabies is responsible for an estimated 21,000-25,000 death annually in Africa [4, 11-12]. Figure 1 shows a map illustrating rabies distribution in thirty-two African countries considering rabies outbreaks in animals, cases and deaths in humans [13]. In 2011, a total of 33 African countries reported 1,607 outbreaks of rabies, 2,779 cases and 1,524 deaths [13]. Data shows that rabies accounts for 7.2% of all animal disease outbreaks reported making it the disease with the highest number of outbreak reports in Africa in 2011 [13]. Algeria, Namibia, Eswatini (former Swaziland), Tunisia, Uganda, Zambia and Zimbabwe reported high morbidity and mortality with 563 cases (33.9% deaths), 269 (94% deaths), 62 cases (88.7% deaths), 91 cases (90% deaths), 466 cases (40.9%), 207 cases (32.8% deaths) and 114 cases (80.7% deaths) respectively [13].

Dog rabies predominates throughout most of Africa; the domestic dog is the principal reservoir host as well as the most important source of infection for people [14]. In addition, there are many

other lyssaviruses (also referred to as rabies-related viruses) reported from African countries. Most of these rabies-related viruses have been associated with obscure hosts including specific bat species and shrews, partly attribute to the difficulty in bio-surveillance of these viruses. RABV however, spreads in terrestrial mammalian hosts in Africa and has not been associated with bat infections as it is the case in the Americas. While all mammals (domestic and wild) are susceptible to RABV infection, some are able to retain those virus variants adapted to their species whilst others are only reported as dead-end hosts [15]. Rabies has been reported in both domesticated species and wildlife. These are sometimes diagnosed with rabies virus infection in Zambia, South Africa, Ethiopia, Kenya, Tanzania, Zimbabwe and Egypt [15-21].

Most reported cases of rabies in wild carnivorous species included yellow mongoose (*Cynictis penicillata*) and bat-eared fox (*Otocyon megalotis*) [22] as well as critically endangered wild dogs (*Lycaon pictus*) [23-26]. In Ethiopia, rabies outbreaks were described in the endangered Ethiopian wolf (*Canis Simensis*) population [27-28]. In 2014 and 2015, RABV infection was also observed in two wild dogs and a spotted hyaena (*Crocuta crocuta*) in the Madikwe Game Reserve, North West Province of South Africa, in Ethiopia and in Nigeria [21,26,29], monkeys and jackals (*Canis adustus* and *Canis mesomelas*) [16,17, 20-21]. The review of twenty studies across Africa has revealed that bite victims account for 91.9% (48092 dog bites), cat bite for 2.9%, jackal bite for 0.8% and 4.41% others (monkey, donkey, horse, rat, pig, rabbit, Honey badger, kudu, goat, cattle, eland and hyena) [30-49].

Mass vaccination of dogs as a key component of national rabies elimination programs has been successful in eliminating dog-transmitted rabies in Europe, North and Latin America, and Japan [50-52]. By far, the most significant public health threat comes from RABV, and over 99% of all

globally reported human cases are caused by exposure to unvaccinated dogs infected with canine RABV variant, mostly in Asia and Africa [53].

In most of Africa, and specifically western and central African countries, notification of rabies disease is not mandatory, so epidemiological data are scarce [54]. Human rabies could be prevented by the immediate administration of post-exposure prophylaxis (PEP) following exposure to rabid animals [5, 46]. However, people in low-income countries often do not receive these life-saving treatments because either PEP treatment is costly and not readily available, or because of lack of rabies awareness, people might not go to hospital for treatment [5, 9, 55]. The lack of effective educational outreach at community level had led to gaps in knowledge as to the best way to avoid animal bites and administer first aid following bites or other potential rabies exposures [56]. A recent study has shown considerable in-country variability in the availability of rabies vaccines and immunoglobulins vaccine supply system, administration route (IM versus SC), cost of vaccine and rabies immunoglobulin (RIG). In a global survey conducted in rabies endemic countries, 49 of the 54 African countries were rated as moderate to high risk for human rabies, whilst 16 of the 23 countries that responded to the survey had inadequate surveillance systems [12, 57].

One major barrier is the difficulty of consistently achieving the required coverage of 70% of the dog population across the hard-to-reach landscapes that characterize much of sub-Saharan Africa [58-60]. Reviewing dog vaccination coverage in African countries, only South Africa, Tanzania, Algeria, Morocco and Egypt had the dog vaccination coverage of 63%, 37.24%, 23.7%, 25% and 23.7% respectively [61,62]. In all other African countries dog vaccination coverage was below 18% with further below 5% in some cases [61]. The analysis of the above data and the

consideration of the framework for the elimination of dog rabies suggested by Wallace 2017 and others stipulated the existing coverage of dog rabies vaccination, was directly associated with the number of years it would take to achieve rabies elimination [63]. Theoretically, Global Dog Rabies Elimination Route (GDREP) consisting of a 13-year timeframe would be ample time for even the least developed rabies prevention systems to achieve elimination by 2030 if completely committed to this achievement [63]. This system divided countries into three categories: (1) Phase I: preparation (dog vaccination > 18%), (2) Phase II: vaccination of dogs (dog vaccination: < 18%and > 70%) and (3) Phase III: 70% continued vaccination of dogs. African countries have been categorized into phase I, II, III but with no data on dog vaccination [64]. The available data indicate that most African countries were still at the preparation phase since "zero rabies by 2020" was initiated five years ago. Although the feasibility of reaching 70% dog vaccination coverage has been shown through pilot projects in a wide range of settings. African countries still struggle to achieve a 70% yearly dog vaccination rate [10, 14]. In Africa, dog mass vaccination systems have demonstrated some effectiveness as proof of principle in countries such as South Africa [50-65], Tanzania [50, 66-68], Malawi [50,69] and Chad [55, 70-72].

Inadequate education for veterinarians and physicians, insufficient resources for proper confirmatory diagnosis and risk assessment, and the lack of effective communication channels between ministries of health and agriculture frequently have led to failures of prophylactic intervention, even in regions where vaccines and immunoglobulins were available [56]. A recent study conducted in Africa and Asia revealed that rabies immunoglobulins were found to be less available than the vaccine, with access restricted in almost two-thirds of the countries surveyed [73]. Eleven (11) African countries had comprehensive access to RIG. Of the seven countries with broad access to vaccines, 6 of them had a national rabies prevention program or policy. Two of

Page 11 of 89

BMJ Open

the countries had only a monitoring program / strategy in place [73]. This is worrisome as it exposes a huge absence of surveillance and prevention policies in most African countries. The absence of a robust monitoring process is mostly attributed to the lack of rabies in national communicable disease plans and reporting systems at national level in Africa [74]. Therefore, widespread underreporting is likely to occur in many affected countries due to lack of health information, civil registration and vital statistical systems, and inaccessibility of clinical care and diagnostic confirmation [74] as symptoms of the disease may be non-specific and similar to other encephalitic infections. Even where data exist in Africa, the lack of communication and exchange of data between the animal and human health sectors also hinders the collection, storage and reporting of coherent data to international data bases [74]. The World Health Organization (WHO) meeting in Geneva in 2018 on "Moving Progress towards Rabies Elimination" pointed out that political engagement is a key factor with governments providing leadership role in the coordination of elimination strategies [12]. The global collection of data on deaths from any neglected disease is a huge challenge, and early attempts to collate data for human deaths from canine rabies were no exception [75]. Due to the lack of regular reporting of rabies cases to the WHO from many member states, the RabNet database was closed down in 2011[76]. Therefore, rabies is not reportable in many African countries, which restricts data collection by structured surveillance systems [74]. One Health evolved from the recognition that an interdisciplinary approach is required to understand complex health problems, and that the health of humans and animals is inextricably linked [77]. Rabies requires a comprehensive, strategic, and targeted control and prevention approach with collaboration from human, animal, and environmental health disciplines at local, national, and global levels to achieve more effective control [78]. In fact, most of African countries lack a One Health approach to prevent human rabies deaths [79].

The WHO, the World Organization for Animal Health (OIE), the Food and Agriculture Organization (FAO) and the Global Alliance for Rabies Control (GARC) have developed a strategic global plan to end human canine-mediated rabies by 2030 [7, 12, 80]. This initiative provides a concerted approach to the prevention of rabies, combined with the strengthening of human and veterinary health systems. These would enable reaching out to the most underserved communities in the world by engaging, encouraging and supporting all countries to lead and improve elimination efforts [74]. This scoping review was therefore designed to map the evidence on rabies morbidity, mortality, integrated rabies surveillance, prevention and control in African countries. Its objectives were: (1) to assess the extent of available research on the morbidity and mortality of rabies due to animal bites conducted in Africa, (2) to identify research gaps in the literature on the impact of rabies in Africa so as to effectively plan public health intervention, (3) to ascertain the current level of rabies disease surveillance, prevention and control that exists in African countries, (4) to assess the published adverse events and complications associated with human rabies vaccination in African countries, (5) to assess the different types of vaccines used and the effectiveness of locally produced and imported vaccines in treating rabies in different parts of Africa, (6) to assess rabies morbidity and mortality associated with dog and contact with an suspect animal in humans.

2. Methodology

2.1. Study design

BMJ Open

This paper works' used the PRISMA-ScR checklist [81] and The Joanna Briggs Institute guidelines [82] as a norm for reporting scoping review. The analysis was conducted in accordance with the structure suggested by [83], further developed by [84].

2.2. Eligibility criteria

The search was conducted from 1 January 1946 until 30 May 2020. A PICO (Population-Interventions-Comparisons-Outcomes) search framework was set, where P (Humans infected with rabies in African countries), I (Integrated rabies disease surveillance, prevention and control), C (little or no integrated rabies disease surveillance, prevention and control) and O (reduced human morbidity and mortality of rabies associated with animal bites) were chosen. The included studies are described in Supplementary Table 1.

2.3. Electronic search

We conducted a systematic search of the electronic databases Medline (OVID), EMBASE (OVID), Cinahl (EBSCOHost), Scopus (Elsevier), Web of Science and Conference (*rabiesalliance.org, www.who-rabies-bulletin.org and https://www.oie.int/*). The search techniques were limited to English. The main search strategy was listed in supplementary material 1. EndNote X9 reference manager was used to remove duplicates. JLT reviewed all the papers identified by title in order to pick those that were potentially appropriate, with a clear bias towards retention. The abstracts of all the studies chosen on the basis of their titles were independently reviewed by two reviewers (PSN and JTL) and any variations were preserved in the study.

2.4. Data charting process

For all studies selected at the abstract level, data were extracted and plotted in the table, covering author (year) and region, study design and data collection duration, Participants / Comparators, Interventions and Control Conditions / Exposures, outcomes (rabies mortality and morbidity) and Key Findings / Gaps / Challenges. The final decision to include studies was taken on the basis of this data extraction and whether it met the inclusion / exclusion requirements, based on an independent review by two authors (PSN and JLT) and a discussion of any differences; the third author (RT) was available for consultation if consensus could not be reached. Our inclusion criteria were: rabies occurrence or mortality rates, all ages included, only studies performed in Africa, and then only quantitative studies were included in this study.

A data extraction sheet has been developed and used to extract data from included papers. The data collection sheet included: author, region, year, study design, level of evidence, sample size description, interventions or exposures, results and key findings / Gaps / Challenges. Two reviewers (PSN & JLT) worked separately at all levels of the study. The results were then compared and any variations were addressed and resolved by PSN and JLT. The third author (RT), who also summarized the findings, was consulted when a discrepancy could not be resolved. The evaluation of the probability of bias, the methodological standard of the included studies was not assessed due to the scoping review of the study [83].

2.5. Data items

Seven items were listed in the data collection chart table. We included the first author, the year of publication of the study and the country (item 1). Study design and period of data collection (item 2). The sample size, mean or median age and gender (item 3). The intervention and control

BMJ Open

conditions / exposures included surveillance, prevention and control of rabies and any other form of intervention used in human rabies (item 4). The number or rate of human rabies morbidity included annually or during the study period (item 5). Human rabies mortality recorded the death or mortality rate annually or during the study period (item 6). Main findings / gaps / challenges included other outcomes such as data gaps found, available research evidence as well as PEP or vaccine adverse events (item 7).

2.6. Critical appraisal of individual sources of evidence

Methodological quality of included studies was not evaluated due to the scoping nature of the review [84].

2.7. Synthesis of results

Studies were summarized based on author (year) and country, study designs, participants and comparator, interventions and control conditions/exposures, key outcomes, gaps, findings and challenges. Interventions were subdivided into rabies prevention, surveillance, control and management. Table, computed morbidity and mortality rates in case there were not clearly provided and then we reported the results narratively, as recommended in scoping review were methodological framework [83].

3. Results

3.1. Study selection

The searches from the five electronic databases hit a total of 2775 records (Medline: 696, Embase: 952, CINAHL: 289, Scopus: 431 and Web of science: 407) that led to a total of 1127 titles and abstracts that were screened after the removal of duplicates. We retained 111 of these based on their title and abstract screening. The full-text screening's stage led to 43 potential articles relevant to our scoping review. The scoping review flow chart was described in Figure 2.

3.2. Study characteristics

The review reported only quantitative studies on rabies surveillance, prevention and control. Thirty-two quantitative studies were retrospective cohort with 8 months to 14 years of study duration [21, 30-32, 34, 35, 37, 39-47, 49, 85-99], three studies were mixed designs (retrospective and cross-sectional study) [48, 100, 101], three prospective cohort studies [33, 36, 102], two Cross-sectional studies [103,104], one case control [38], one clinical trial [105] and a randomized control trial [106].

We grouped the included studies into five categories based on rabies interventions, namely 1) prevention and control, 2) surveillance, 3) surveillance and prevention, 4) treatment and control, and 5) surveillance, prevention and control. Figure 3 showed the distribution of studies according to the intervention in nineteen African countries. We also summarized all studies included in the final analyses in Supplementary Table 1 which included seven parts in line with the specified frameworks for data synthesis: (1) rabies morbidity, (2) rabies mortality, (3) interventions for rabies control, (4) rabies disease surveillance, prevention and control, (5) available research evidence, (6) research gaps identified and (7) adverse events and complications associated with rabies vaccination.

3.3. Patient characteristics

A total of 543,714 bite victims were recorded in included studies. Age and sex-specific distribution revealed that the most fatal cases belonged to age groups 0-14 year [30, 34, 36, 39, 44, 46, 47, 49, 85, 92, 93, 95,97, 101, 103]. Other studies identified rabies victims of 15 and above [31, 39, 40, 43, 47, 85, 96, 97, 101, 104]. The median age was 18 years in most of the studies and ranged from one to 95 years. Most of the children were males [46, 47, 95, 97]. However, other study has indicated that females have more animal-related bites than males [30]. Young children are at higher risk of contracting rabies in the absence of PEP and wound care due to the location of the bites they incur [103]. Based on the extent and depth of injury, 1, 567 victims were recorded. Extent and depth of injury was classified as skin broken (11.1 %), scratch (9.25 %), superficial (loss of epidermis only) (36.38 %), deep (27.31 %) and simple (affect only one tissue) (12.38 %) [30, 32, 102, 104]. Further 10, 006 bites were described in regard of the site of exposure among which the head/neck/face (5.08%), leg/feet (61.06%), arm/hand (23.23 %), buttocks/trunk (10.32 %) or multiple (0.31%) [30-34, 43, 48, 94, 96, 100, 103].

Individuals suspected to have rabies were clinically managed by the chief doctor pediatricians and nurses [33, 37, 38, 41, 85, 95, 100, 104]. The main treatments were wound management, antibiotics, prophylaxis against tetanus and rabies. Nine studies reported wound management as part of PEP [33, 38, 41, 48, 94-97]. Reports were collected in hospitals, treatment and health centres, health clinics and pharmacies [104].

3.4. Study outcomes

3.4.1. Rabies morbidity

Twenty-one studies reported rabies human morbidity in Africa (Table 1) [31, 35-40, 42, 44, 47, 49, 85, 87, 89-93, 98, 100-102, 104]. Among them, five studies were undertaken in Tanzania, the first study estimated an average annual incidence per 100,000 bites of 37.1, 11.3 and 33.5 in human population district of Ulanga (193280 inhabitants), Kilombero (321611 inhabitants) and Serengeti (176057 inhabitants) respectively [90]. The second study found that the incidence of bite patients seeking PEP declined substantially (>50%) from 2011 to 2015 [91]. The third study estimated an annual incidence of ~58 cases per 100,000 [42], the fourth study reported a mean incidence of 74 bites considered at risk of rabies transmission per 100,000 persons per year [98] and the last study conducted in Tanzania revealed an average of 75.6 and 19.3 probable rabies exposures per 100,000 persons per year [100]. Three studies conducted in Ghana reported 54 dog-bite victims bitten by rabies-positive dogs within three years [85], 13 cases of human rabies in a 6-year retrospective records review [39] and an annual incidence of rabies cases of 172 per 100,000 population [49]. Four studies reported rabies morbidity in Ethiopia. Yizengaw et al. 2018 reported a high incidence rate of rabies exposure during spring (360, 39%) and summer (244, 26.4%) seasons and a total of 924 human rabies exposure cases received the anti-rabies post-exposure prophylaxis from September 2015 to August 2017 [101]. The incidence of human rabies exposure was reported to be 40 per 100,000 population in Ethiopia [34], annual estimated rabies incidence of 2.33 cases per 100,000 in humans [102] and the incidence of human rabies exposure cases calculated per 100,000 populations was 35.8, 63.0, 89.8 and 73.1 in 2012, 2013, 2014 and 2015, respectively [94]. A study conducted in Zimbabwe found among rabies-suspect, 42 (73.7%) were positive [40]. In Madagascar, nine of the 11 suspected human cases tested from 2005 to 2010 with a laboratory confirmed for rabies [87]. In Uganda, a total of 208,720 patients with animal bite injuries were

BMJ Open

treated at health facilities across the country [89]. Ivory Coast reported 50 cases of human rabies with annual incidence of 0.06–0.08 per 100,000 [36]. Human animal-bite injuries incidence was 289 per 100,000 persons with the highest incidence reported at 302 per 100,000 and lowest at 121 per 100,000 persons in Kenya [39]. Another undertaken in Malawi reported 14 paediatric rabies cases during the study period [93]. A six-year retrospective study revealed 31 positive cases of human rabies in Madagascar [47]. In Democratic Republic of Congo, a five year retrospective study found 29 positive to rabies in a total of 5,053 dog bites recorded in the veterinary clinics [35] and Frey 2013 estimated an annual incidence of bites from suspected rabid animals of 12.9/100 000 and an incidence of 0.7 human rabies deaths/ 100,000 in Chad [104]. Namibia reported above 16 cases per year from 2011 until 2015 with a maximum of 23 cases observed in 2015 with an incidence of 1.0 and 2.4 per 100,000 inhabitants and per year on average [44].

Table 1 : Mapping human rabies morbidity	rate
Table 1 - Mapping numan rables not blandy	late

Country (region, district and	Human rabies morbidity rate	Study duration
town)		
Chad (N'Djamena)	An annual incidence of bites	Seven months, September
	from suspected rabid animals of	2008 - April 2009 [104]
	12.9/100 000 [104]	
Democratic Republic of Congo	29 positives to rabies in 5,053	Five years, 2009-2011 [35]
(Kinshasa)	dog bites recorded in the	
	veterinary clinics [35]	
Ethiopia (National level; Ababa	A total of 924 human rabies	One year, January 2016-31
and outside of Addis Ababa;	reported [102]. The incidence of	December 2016 [34]; Two
North Gondar administrative	human rabies exposure was	years, 2015-2017 [101];
zone)	reported to be 40 per 100,000	three years, 2012-2015
	population in Ethiopia [34];	[92]; Eleven months, April
	Annual estimated rabies	2009 - March 2010 [102].
	incidence of 2.33 cases per	
	100,000 in humans [102]; The	
	incidence of human rabies	
	exposure cases calculated per	
	100,000 populations was 35.8,	

	63.0, 89.8 and 73.1 every year [92]	
Ghana (Techiman Municipality; Eastern Region of Ghana)	54 dog-bite victims bitten by rabies-positive dogs [85]; 13 cases of human [39]; An annual incidence of rabies cases of 172 per a population of 100,000 [49]	Four years, 2009-2012 [85]; Six years, 2011-2010 [39]; Two years, 2013– 2015 [49]
Ivory Coast (National level)	Annual incidence of 0.06–0.08 per 100,000 [36]	Three years, 2014-2016 [36]
Kenya (Machakos and Kitui counties in lower eastern region; Kisumu County in Lake Victoria basin; Nandi County in Central rift valley and Kilifi coastal region).	Human animal-bite injuries incidence of 289 per 100,000 persons [31]	Six years, 2011- 2016 [31
Madagascar (National level)	Nine of the 11 suspected human cases tested with a laboratory confirmed for rabies [87]. 31 positive cases of human rabies reported [47].	Six years, 2006-2011 [87] Six years, 2005-2010 [47]
Malawi (Blantyre)	14 paediatric rabies cases reported [93].	Six years, 2012-2017 [93]
Namibia (Kavango)	An incidence of 1.0 and 2.4 per 100,000 inhabitants and per year on average [44]	Seven years, 2011-2017 [44]
Tanzania (Mwanza region; Tabora; Shinyanga; Mara; Ulanga; Kilombero; Serengeti; Dodoma Region; Ngorongoro districts in northern Tanzania and in the 11 districts in southern)	Average annual incidence per 100,000 bites of 37.1, 11.3 and 33.5 in Human population [90] An incidence of bite patients seeking PEP declined substantially (>50%) [96]. An annual incidence of 58 cases per 100,000 [42] Mean incidence of 74 bites considered at risk of rabies transmission per 100,000 persons per year [98]. An average of 75.6 and 19.3 probable rabies exposures per 100,000 persons per year [100]	Five years, 2002-2006 [42]; Four years, 2002- 2006; [90]; January 2011 to January 2013 [91]; Seven years, 2008-2014 [98]; 2002–2017; 2011– 2017; 2011–2016 [100]
Uganda (National level)	208,720 patients with animal bite injuries treated at across the country [89].	Fourteen years, 2001-201 [89]
Zimbabwe (National level)	Among rabies-suspect, 42 (73.7%) were positive [40].	Eleven years, 1992-2003 [40]

BMJ Open

3.4.2. Rabies mortality

Sixteen studies reported rabies related mortality in Africa (Table 2) [21, 32, 38, 41, 43, 45, 46, 86, 88-90, 99, 100,102-104]. Ethiopia reported three studies among which 320 people, diagnosed clinically, died of rabies in a 5-year retrospective study conducted in the national level [21], 386 human rabies fatality were reported in a 8-year retrospective study with annual range of 35 to 58 deaths in Addis Ababa and outside of Addis Ababa [46]. There were also 32 cases in human rabies recorded from which three humans ended with fatality in North Gondar administrative zone [102]. Four studies assessed rabies mortality in Tanzania from which Ulanga, Kilombero and Serengeti districts reported human rabies mortality rates of 2.4; 0.8 and 1.4/100,000 per year respectively [90]. Sixteen human deaths (1,291 victims bite) due to rabies were reported within the Integrated Bite Case Management (IBCM) study across 20 districts in 4 regions in Southern, Central, and Northern Tanzania [99]. Other studies reported twenty-eight deaths from suspected rabies cases during the five-year period in the two districts, an average of 1.5/100,000 per year in Serengeti and 2.3/100,000 in Ngorongoro [45]. Fourteen (14) among 1005 victim bites died showing clinical signs of rabies within 5 years [100]. Three (3) studies identified rabies mortality in Uganda. Among them, were 592 (95% CI 345–920) deaths [103], 1 dose of PET was sufficient for protection following a rabid animal bite. Another research estimated a total of 371 deaths of rabies with a cumulative total of 117,085 rabies cases in nine years [88] and a 14-year retrospective study revealed a total of 486 suspected human rabies deaths among 208,720 patients with animal bite injuries treated at health facilities across the country [89]. A study undertaken in Moramanga district (Madagascar) recorded an annual incidence of 42–110 rabies exposures and 1–3 deaths per 100.000 persons [32]. An estimated 7 rabies deaths (95% confidence interval 4–10 deaths) per year was recorded in N'Djamena (Chad) [102]. A study conducted in Algeria excluding Sahara region found an annual average of 20.6 human rabies deaths [91]. A total of 14 cases of fatal rabies with 12 death reported in Maputo City is the capital of Mozambique [38]. An average annualized rabies attack rate of 136 rabies cases per 100 000 dog-bite injuries (7/5 139) with 6/7 deaths were reported in South Africa [43]. There were patients with furious rabies manifestations and the case-fatality rate of 100% in a study conducted in Kinshasa (DRC) [41].

Country (region, district and town)	Morbidity rate	Study duration
Algeria (National level excluding Sahara region)	An annual average of 20.6 human rabies deaths [86]	Thirteen years, 2006-2018 [86]
Chad (N'Djamena)	An estimated 7 rabies deaths (95% confidence interval 4– 10 deaths) per year [104]	Eight months, September 2008 to April 2009 [104]
Democratic Republic of Congo (Kinshasa)	Case-fatality rate of 100% [41]	Eight months, December 2008 and July 2009 [41]
Ethiopia (National level, Ababa and outside of Addis Ababa, North Gondar administrative zone)	320 people died of rabies in a5-year [21].386 humans rabies fatalitywere reported with annual	Five years, 1997-2001, [21]; Eight years, 2001-2009 [46]; Eleven months, April 2009 - March 2010 [102]
	range of 35 to 58 deaths [46] 32 cases in human rabies recorded [102].	One year, January 2016 - 31 December 2016 [34]; Two years, 2015-2017 [101]; three years, 2012-2015 [92]; Eleven months, April 2009 - March 2010 [102]
Madagascar (Moramanga district)	An annual incidence of 42– 110 rabies exposures and 1–3 deaths per 100,000 persons [32]	One year, 2016-2017 [32]
Mozambique (Maputo city)	A total of 14 cases of fatal rabies with 12 deaths [35]	Three months, April - July 2014 [35]
South Africa (Uthungulu District of Kwazulu-Natal province)	An average annualized rabies attack rate of 136 rabies cases per 100 000 dog-bite injuries (7/5 139) with 6/7 [43]	Three years, 2008-2009 [43]
Tanzania (Ulanga, Kilombero and Serengeti districts; 20 districts in 4 regions in	Human rabies mortality rates of 2.4; 0.8 and 1.4/100,000 per year respectively [90].	Five years, 2002 - 2006 [45]; Three years, 2006-2008 [90];

Table 2: Mapping human rabies mortality rate

Southern, Central, and Northern Tanzania; Serengeti	Sixteen human deaths (1,291	2002–2017; 2011–2017; 2011–2016 [100]
and Ngorongoro)	victims bite) due to rabies were reported [100].	
	Twenty-eight deaths from suspected rabies cases during the five-year period in the two districts, an average of 1.5/100,000 per year and 2.3/100,000 [45]	
Ĩ,	Fourteen (14) among 1005 victim bites died showing	
	clinical signs of rabies within 5 years [100].	
Uganda (National level; ten district)	592 (95% CI 345–920) deaths [103]	Eight years, 2001 – 2009 [88]; Fourteen years, 200 2015 [89]; Three months
	An estimated a total of 371 deaths of rabies with a cumulative total of 117,085	[103]
	rabies cases in nine years [88]	
	A total of 486 suspected human rabies deaths among	
	208,720 patients in fourteen years[89]	

3.4.3.1. Rabies prevention and control

The review summarized rabies prevention and control in point of view rabies exposure status, PEP, dog vaccination and seasonality. Among 36,741 bite victims recorded in studies reporting PEP [30, 42, 46, 85, 92, 93, 98], the PEP was initiated based on WHO grade of exposure [107]. We found 505 bites in grade 1 (8.78%), 2050 in grade 2 (35.63%) and 3199 in grade 3 (55.59%) [33,

34, 43, 96, 97]. The overall PEP course among bite victims varied between 24% to 99% [30, 85]. We reported 2,652 bites victims in studies reporting PEP and mass dog vaccination [34, 39, 40, 86, 101]. Dog vaccination coverage varied from 14.1% to 68.78% [34,86]. In Ethiopia and Zimbabwe, the dog vaccination decreased significantly across the study and also the health status of most dogs involved in biting was unknown [40,101]. Rabies prevention and control also depended on the seasonality. In Ethiopia, two studies reported season wise rabies exposure. The first study reported rabies exposure during spring (360/924, 39%) and summer (244/924, 26.4%) seasons [101]. The second study that found the highest human rabies exposures were reported in spring (April to June) followed by winter (January to March) while the lowest distribution of human rabies exposure was recorded in autumn (October to December) [34]. In Nigeria, Osaghae et al. reported the prevalence of dog bite was highest, 41/81 (50.6%), during the hot season (April-June) and low, 14/81 (17.3%), during the wet season (July–October) [94]. Another study conducted in Nigeria recorded the highest number of dog bites with two peaks in April and October 2008 [48]. However, the number of dog bite cases was lowest. For all years the numbers of dog bite cases recorded were lowest at the beginning of the year and dog bites increased during the last 3 months (October-December) of the year 2006 [48]. Animal-to-human rabies transmission was highest during the dry months of July to November in Zimbabwe [40]. In DRC, a study found there was no seasonal difference observed for rabies occurrence either for clinical cases or confirmed cases throughout the study period [35]. In Tanzania, each year, the majority of rabies cases were recorded during the period June to October [42]. In the dry season, significantly fewer rabies positive cases were reported than in the rainy season in Namibia [44]. In Chad, more rabies records per month were collected during the hot, dry season months (March and April), than during the dry season months (September–February) [104]. In Senegal, dig bite victims were higher in

Page 25 of 89

BMJ Open

dry season (Nov-May) than rainy season (June-Oct) [33]. Besides, bite victims in rural areas took longer, on average, to receive PEP than those in urban areas [90, 98, 101]. Probable human rabies cases were higher in rural than urban areas [34,36].

3.4.3.2. Rabies surveillance, prevention and control

The findings revealed that 39,802 bites victims were recorded in rabies surveillance and prevention interventions. The studies included laboratory, database and network surveillances [35, 37, 43, 47, 91]. The rabies prevention included PEP and dog vaccination. Laboratory surveillance has improved rabies diagnostic [35, 37, 43, 47, 91] and database and network surveillances improved mortality and morbidity records [36, 43, 91] and allowed better estimates of the true rabies burden [37] Further, Compliance with PEP regimens was significantly higher, rating from 83.7% to 93% in two studies [43, 91]. In contrast, dog vaccination remained low (10%-12.6%) [37, 47].

We found five studies including rabies diseases surveillance, prevention and control [32, 33, 38, 45, 99, 100]. Among them, three studies [33, 38, 45] have reported significantly improved rabies morbidity and mortality and also PEP uptake. The PEP uptake was 71% and it dramatically reduced the risk of developing rabies [40]. Another study did not report any death with high number of patients receiving PEP [33].

A combined strategy of mass dog vaccination, enhanced surveillance, and expanded access to PEP reduced the annual incidence of rabies exposures and deaths annually in Madagascar [32]. Strict measures such as vaccination of dogs in the neighborhoods where human rabies cases had occurred, mass vaccination campaign of dogs, participation of private veterinary clinics in animal vaccination, collection of stray dogs in selected neighborhoods and community education

regarding prevention and control measures had drastically reduced rabies cases in human to 14 during the study period in Mozambique [38].

3.4.3.3. Post exposure management

We found seven studies on rabies management and control. Among them, six studies addressed wound management and PEP [41, 48, 94, 95, 96, 104]. Wound severity was graded as follows, 0 = no apparent injury seen, 1 = skin scratch with no bleeding, 2 = minor wound with some bleeding, 3 = deep or multiple injury [96]. The reported severity of the wound was classified as deep wound, lacerated wound, superficial wound or scratch [104]. The severity of the injury was determined using the WHO dog bite injury grading system [107]. Soap, water, wound dressing, tetanus prophylaxis, anti-rabies vaccination, intravenous fluids, diazepam and antibiotics were also part of the management. The overall review reported 5754 bites managed according to the WHO dog bite injury grading system, 3199 (55.59%) were grade 3; 2050 (35.63%) were grade 2; and 505 (8.78%) were grade 1. In 52 cases (7%), grade of bite was not recorded [31, 32, 41, 94, 98].

3.4.4. Available research evidence on human rabies

Rabies cases in various committees emphasize the need for active surveillance by following up of people bitten by animals and mass dog vaccinations to alleviate the zoonotic threat of the virus [88]. Strengthening rabies surveillance, controlling rabies in dogs, proper post exposure management, increasing the awareness of the community and ensuring availability of post exposure prophylaxis at lower health facilities are the best approach of eliminating rabies [89, 93, 102]. Other studies have demonstrated that reinforcements of rabies surveillance system can improve rabies reporting, which ultimately allows for better estimates of the true

BMJ Open

rabies burden in the countries [35, 37, 43, 91]. Compliance with PEP regimens was significantly higher for patients following the implementation of automated reminders in comparison to patients attending normal clinics [43, 91]. Other studies concluded that preventing dog bites would most effectively reduce bite injuries by improving public health education among children below 15 years [43]. Public health education is also enhanced by encouraging early PEP initiation and completion, development and implementation of responsible dog ownership, animal behaviour educational programmes as well as improving human and veterinary health linkages [31, 43]. Evidence also showed that no rabies victim in Mozambique received full post-exposure vaccination and the factors significantly associated with human rabies were: age <15 years (p = 0.05), bite by stray dog (p = 0.002), deep wound (p = 0.02), bite in the head (p = 0.001), bite by unimmunized dog (p = 0.01), no use of soap and water (p = 0.001), and no PEP (p = 0.01) [40]. Studies have shown that all the rabies vaccines including suckling mouse brain virus (SMBV), fetal bovine kidney virus (FBKV), purified chicken embryo cell rabies vaccine, purified vero cell rabies vaccine, sheep brain anti- rabies vaccine, human diploid-cell vaccine and Purified equine rabies immunoglobulin) and RIG were efficacious. However, the WHO and OIE contraindicated SMBV and FBKV in both animals and humans [30, 32, 33, 37, 46, 47, 103, 105, 106]. Furthermore, a clinical trial with a purified chicken embryo cell rabies vaccine dose used intramuscularly every two years generated ineffective immune response to rabies virus [105] as the Zagreb protocol (2 intradermal injections of 0.1 mL at two sites, deltoids and/or thighs, on days 0, 3, 7 and 28) was not applied. Even though a randomized control trial showed antibody response 26.7% of SMBV recipients and 28.6% of FBKV recipients within a week, both SMBV and FBKV were equally efficacious and well tolerated [106], however those vaccines are contraindicated by WHO because of its association with neurological adverse reactions (severe allergic

encephalomyelitis), further these vaccines are inferior to modern vaccine in terms of potency and immunogenicity [108]. The table 3 describes available research evidence on human rabies in Africa.

Table 3: Mapping human rabies evidence identified in Africa

Evidence map	Studies	Impacts/Outcomes
Strengthening rabies	[36,37,43,88,89,91,93,102]	Reinforcements of rabies
surveillance		surveillance system can
		improve rabies reporting and
		increasing the awareness of
	6	the community and ensuring
		availability of post exposure
		prophylaxis at lower health
		facilities are the best
		approach of eliminating
		rabies.
Automated SMS reminders	[43,45, 91,99,100]	Compliance with PEP
and telephone contacts		regimens was significantly
		higher for patients following
		the implementation of
		automated SMS reminders
		and telephone contacts.
Public health education (PEP	[31,43,48,89,93,102]	Lack of enforcement of
initiation and completion,		regulations for licensing of
responsible dog ownership,		dogs and rabies vaccination
behaviour educational		increased human rabies
programmes and veterinary		morbidity and mortality.
health linkages)		
Accurate rabies diagnostic	[32,36,37,39,40,47,87,100]	The diagnosis of dog bite and
		rabies was clinical and
		laboratory-based. This
		improved accurate rabies
	[40.06.02]	cases reporting.
Mass dog vaccination	[40,86,93]	Even though the 70%
		coverage was not achieved,
		there was an inverse
		relationship between dog
		vaccination coverage and dog
		rabies cases during the study
		period.

SMBV, FBKV, purified	[30,32,33,36,47,103,105,106]	Studies have shown that all
chicken embryo cell rabies		the rabies vaccines and RIG
vaccine, purified vero cell		were efficacious and well
rabies vaccine, sheep brain		tolerated. However, the
anti- rabies vaccine, human		WHO contraindicated SMBV
diploid-cell vaccine and		and FBKV.
Purified equine rabies		
immunoglobulin (Zagreb		
protocol)		
Effective rabies control and	[37, 43, 86, 93]	PEP, mass dog vaccination,
management		and WHO dog bite injury-
		grading system
Integrated bites case	[32,33, 38,45,99,100]	Studies have shown the
management/ Rabies		importance of coordinated
Diseases Surveillance,		surveillance, prevention and
Prevention and Control	6	control in the eradication of
		rabies.

3.4.5. Adverse events and complications associated with rabies vaccination

Adverse events and complications associated with rabies vaccination were reported based on SMBV, FBKV, purified chicken embryo cell rabies vaccine, purified vero cell rabies vaccine, sheep brain anti- rabies vaccine, human diploid-cell vaccine and purified equine rabies immunoglobulin. All the 4-dose or Zagreb regimen was reported in all the RIG [109]. Among the studies reporting rabies vaccination, only one study using a purified vero cell rabies vaccine at D0 (2 doses), D7 (one dose) and D21 (one dose) study found that adverse events occurred in 6% of the patients with two doses and after the third dose 3% developed adverse event However, most of the adverse events were minor and associated with headache fever and pain at the injection site that occurred simultaneously on the same day of the vaccine injection [33]. Other studies did not report any adverse events and complications associated with rabies vaccination [30, 32, 37, 46, 47,103, 105, 106].

3.4.6. Research gaps identified

In this review, we identified 66.67% African countries reporting poor rabies diagnostic capacity, 50 % reported the lack of coordinated surveillance, 50% showed the lack of PEP course completion, 22.22% had insufficient rabies control, and 77.78% had low dog vaccination coverage. Insufficient knowledge and practice on rabies prevention was also identified as a gap. However, we did not find enough studies to evaluate this gap in Africa (Table 4).

The recorded data available so far has showed the underestimation of rabies diagnosis, post exposure prophylaxis and fatal human cases and could be attributed to poor diagnostic capacity and the absence of national rabies surveillance system. In African countries, rabies diagnostic is mostly clinical [21, 31, 33-35, 38, 41, 43, 44, 46, 49, 88-90, 93-95, 98, 103, 104] Among eleven studies including human rabies surveillance, only four reported adequate and successful surveillances [36,37,43,91], twelve studies reported lack of accurate data or non-existing surveillance data [31, 35, 38, 43, 44, 47, 49, 87-89, 103, 104] (Table 4). Other studies reported that dog-bite victims did not complete the post exposure anti human rabies vaccine course and were not likely to be post exposure prophylaxis [32, 33, 36, 42, 43, 45, 85, 90, 95, 98, 100] (Table 4). The exposure victims considered to be at risk of rabies either did not receive any PEP or did not receive all PEP vaccinations due to unavailability, shortage, cost barriers, insufficient knowledge about prompt PEP, category 1 exposure injury or misadvise [37, 41, 43, 45, 48, 49, 96, 99, 100]. A study has reported that the lack of PEP was the cause of 100% fatality rate in Democratic Republic of Congo [41]. There was significant difference between rural and urban exposure cases in respect to the time of arrival to the hospital and living in rural area was statistically associated with loss to follow up after the first dose [35, 48, 98, 101]. There was also high human rabies exposure rate in children and in the rural community [32, 35, 98, 101]. Insufficient knowledge

about rabies dangers and prevention, particularly prompt PEP, but also wound management, was the main cause of rabies deaths [45]. A higher proportion of human rabies exposures was caused by unprovoked dogs and of these, the majority were unvaccinated [34, 48]. Dog vaccination remains an urgent intervention gap. Among eighteen studies conducted in nine countries, none of them reported the target of 70% of dog vaccination (Table 4). The highest dog vaccination rate was reported in Algeria (67.3%) [86] and the lowest in Madagascar (10%) [47].

Table 4: Mapping research gaps and strengths in Africa

African		Мар	ping research	gaps and strer	gths in Africa	
countries	Diagnosti c capacity	Coordin ated surveilla nce	Lack of PEP course completion /PEP unavailable	Inefficient control	Insufficient knowledge and practice on rabies prevention	Low dog vaccination coverage(<70 %
Algeria	N/A	N/A	N/A	√ [91]	N/A	X [91]
Cameroon	√ [37]	√ [37]	X [37]	[37]	N/A	X [37]
Chad	X [109]	X [109]	X [109]	X [109]	N/A	X [109]
Democratic Republic of Congo	X [35,41]	X [35]	X [35,41]	X [35,43]	N/A	X [43]
Ethiopia	X [21,34,46	N/A	X [92]	X [34,92,102]	X [102]	X [34,92,102]
Ghana	X [49]	X [49]	X [49,85]	X [39,49,85]	N/A	X [39,85]
Ivory Coast	√ [36]	√ [36]	X [36]	X [36]	N/A	X [36]
Kenya	X [31]	X [31]	X [31]	X [31]	N/A	N/A
Madagascar	√ [32,47,87]	X [47,87]	X [32,47]	X [32,47,87]	N/A	X [32,47]
Malawi	X [93]	√ [93]	√ [93]	√ [93]	N/A	N/A

Mozambiqu	Х	X	Х	Х	N/A	X
e	[38]	[38]	[38]	[38]		[38]
Namibia	X	X	N/A	X	N/A	N/A
	[44]	[44]		[44]		
Nigeria	X	N/A	X	X	N/A	X
	[94,95]		[48,94-96]	[48,94-96]		[48]
Senegal	X		X	X		X
	[33]	[33]	[33]	[33]	[33]	[33]
Tanzania	X		X	X	X	N/A
	[91,98]	[90,98]	[42,45,90,9	[42,45,90,9	[45]	
			8,100]	8,100]		
Uganda	X	Х	X	X	N/A	X
	[88,89,10	[88,89,1	[103]	[88,89,103]		[88,103]
	3]	03]				
South			X	√	N/A	N/A
Africa	[43]	[43]	[43,97]	[43]		
Zimbabwe	$\overline{\mathbf{v}}$		N/A	X	N/A	X
	[40]	[40]		[40]		[40]

Footnote: "X: research gaps identified in different included studies; $\sqrt{2}$: research strengths identified icy in different studies; N/A: Not applicable"

4. Discussion

This is to our knowledge, the first scoping review synthesizing publically available data on rabies in Africa and to weigh such data in support of the global goal of 'zero human rabies deaths by 2030'. The purpose of this scoping analysis was to provide a summary of evidence on rabies morbidity, mortality, integrated rabies surveillance, prevention and control in Africa. Overall, studies have shown that African countries face a range of problems from the point of view of rabies surveillance, prevention and control that have a negative effect on rabies mortality and morbidity. Reviewing rabies morbidity and mortality rates across Africa, data obtained fluctuated largely over time and space in various countries, as well as in different regions or districts across the same area. While some countries may have shown significant improvement in rabies morbidity and mortality Page 33 of 89

BMJ Open

data, the morbidity and mortality rates in Africa generally remain high. Included studies showed no standardization in reporting human rabies outcomes, human rabies morbidity and mortality rates were reported in term of annual incidence and number of infected human rabies and deaths related to rabies. Moreover, small-scale studies may not reflect the national or regional human rabies morbidity and mortality rates. Then this was difficult to have an accurate picture per country and assess human rabies situation between African countries.

These are the consequences of lack of laboratory rabies confirmation, epidemiological surveillance, inadequate mass dog vaccination and PEP policy, and unreported clinical cases in African countries. Lack of monitoring data on rabies or low data quality is problematic, resulting in rabies being poorly addressed in most African countries. Results have also shown that, of the eleven countries in which rabies surveillance has been applied, only four studies reported that surveillance decreased rabies morbidity and mortality [36, 37, 43, 91]. Comparing old and new data (before and after the "zero rabies by 2030" target), rabies diagnostic and surveillance has not improved in most of the African countries. As a result, well-structured rabies surveillance enhanced the reporting of morbidity and mortality and also has a visible impact on rabies elimination strategy in Africa. While strategies have been subdivided into surveillance, prevention, control and management of rabies (see table of included studies), only three studies have shown the efficacy of the combination of surveillance, prevention and control of rabies [33, 38, 45]. However, passive surveillance has shown its limitations in rabies elimination because cases are reported clinically with or without laboratory-based strategies, inducing inaccurate diagnostic, scarcity of laboratory confirmation and poor reporting system [31, 44, 47, 88, 89, 103]. This is why both passive and active surveillance are preferable to strengthen rabies monitoring and reporting in African countries [110]. Strengthening rabies surveillance also is the foundation of

the provision of actionable data for efficient management of wildlife diseases [111]. Besides, the review has shown that strengthening surveillance, prevention and management of rabies has shown good evidence in three separate studies [33, 38, 45]. Coordination of surveillance, prevention and control of rabies can play an important role in the eradication of rabies in Africa. It is worth noting that specific awareness of when and where disease occurs is essential to the formulation of prevention, control and elimination strategies [111].

As seen above, the implementation of different rabies interventions at national level has never been reached in African countries. It is vital that African countries achieve the 2030 target of eliminating human rabies by providing readily accessible and affordable PEP in all countries in the continent where rabies infection is endemic. The exposure victims considered to be at risk of rabies either did not receive any PEP or did not receive complete PEP vaccinations due to unavailability, insufficient knowledge about prompt PEP shortage, cost barriers, or misadvise [37,41,45,49,96,99,100]. This could be emulated from Thailand, which has significantly reduced human deaths from rabies to fewer than 10 cases per year by educating the public and health workers and delivering PEP free of charge across the country before mass dog vaccination achieved the minimum 70 per cent coverage [112,113]. When provided correctly and in a timely manner, rabies PEP is almost 100% effective in the prevention of disease [73,114]. The findings of the review revealed that the dog victims found to be at risk of rabies either did not receive PEP or did not receive all the PEP vaccines due to unavailability, shortages, cost barriers, long distance travel to the hospital or misadvise [32, 33, 36, 37, 41, 42, 45, 49, 85, 90, 95, 96, 98-100]. It is important to remember that PEP combined with other treatments such as soap, water, wound dressing, antibiotics, tetanus prophylaxis and anti-rabies vaccination has been shown to be beneficial for dog bite victims. Two studies have shown that compliance with PEP regimens was

BMJ Open

substantially higher for patients who did not receive PEP after automated reminders [43, 91]. Taken together, our results point to a sub-optimal system requiring specific improvements to achieve prompt provision of rabies PEP for persons exposed to rabies [113].

Statistical modeling studies show that the annual vaccination of 70% of the canine population would induce adequate herd immunity to effectively eradicate canine rabies and subsequent human exposure [10, 45]. The lowest and highest reviewed dog vaccination rate was 10% and 67.3% respectively [10, 47] and no reliable data on dog vaccination were reported in most of the studies. This is because many campaigns, if conducted, struggle to achieve a 70% vaccination rate [10, 14]. This is due to husbandry practices, rabies knowledge, geographical area/location, and the ages of dogs [115]. Evidence has shown the dog mass vaccination systems have demonstrated some effectiveness in reducing human rabies morbidity and mortality in countries such as KwaZulu-Natal, South Africa [50, 66], Serengeti, Tanzania [50, 67, 69], Malawi [45, 70] and Chad [71, 72]. However, the Tanzanian study has shown that, if vaccine coverage was not sustained, rabies infection would resurface extremely quickly [35]. Despite effective monitoring of rabies at the Tanzania study site from 1998 to 2001, vaccine coverage decreased from 2001 to 2003 resulting in a new rabies outbreak, with human exposures increasing by six times in 2003 relative to previous vears [45]. Further, free mass dog vaccination intervention has proven to increase dog vaccination coverage. Government and stakeholders work actively to provide a free sustainable dog vaccination.

Besides, the evidence has also illustrated the effectiveness of other strategies, such as mobile phone touch tracing strategies, new rabies vaccines, integrated bite case management, wound management were correlated with PEP and/or mass dog vaccination. Africa is yet to recognize

rabies as an immediate public health problem; this may be due to a lack of awareness of the burden of disease and inadequate surveillance. Policies should be put in place to raise awareness of rabies at grassroots level and coordination between the appropriate agencies for improvements of the policies [48, 55].

The World Animal Health Information System (WAHIS) is a well-established global animal disease reporting system that reproduces the data submitted by countries to the OIE, but is also constrained by the under-reporting problems inherent in national reporting systems [116,117]. The need for regional, One Health-oriented reporting network has therefore become apparent [118,119]. The development of rabies-specific regional bulletins has been extremely effective in the Pan-American Health Organization field [118]. The Database such as the New Latin American Rabies Surveillance System (SIRVERA) should be applicable in Africa.

Indeed, the elimination of rabies is not feasible without African cooperation. No single country will retain rabies-free status unless it is brought under control in neighboring countries [114]. Regionally organized efforts are required to eradicate human rabies, taking into account country-specific needs and socio-cultural acceptability [114]. Canine-rabies-endemic regions have formed international rabies networks based on the successful the Meeting of Rabies Program Directors of the Americas (REDIPRA) model which enables them to create a unified and directed approach towards elimination within their regions [120]. REDIPRA meetings can be considered a model for coordination and governance in the world [7, 119, 120]. In Africa, the Pan-African Rabies Control Network (PARACON) was formed under the secretariat of GARC, as an Africa-focused advisory and networking initiative [120]. It was established in order to unify all sub-Saharan African countries and any related rabies networks in a One Health approach towards rabies control and

BMJ Open

elimination [120]. The PARACON facilitates the development and implementation of national rabies elimination strategies, with a focus on sustainability through governmental support [120]. However, the probability of meeting the 2030 goal without African and international solidarity is low, as more than two-thirds of countries are in the low-level human development community [121]. Leading countries should serve as role models, sharing their knowledge and skills so that no nation is left behind. African unification with international support will enable, the common goal of zero human rabies deaths to be achieved by 2030 [121]. Therefore, regional networks support, channel and pool efforts, support monitoring platforms will help make much progress [122]. Partnerships are important to the achievement of an objective and the last mile is going to be the most demanding [122]. In addition, contact and collaboration between human health and veterinary systems is also critical for the follow-up of both human and animal cases [123]. Data collected on alleged cases of human rabies, human exposures and rabid animals must be constantly reviewed and effectively disseminated [123]. Communication between the various national levels of healthcare administration is a crucial means of disseminating outcomes [123]. Finally, stakeholders need to be engaged in the long term to ensure that surveillance is effective [123]. Knowing that the Global Strategic Plan is catalytic and not intended to replace the strategies and commitments of individual countries [122], African countries should emphasize gaps, challenges, barriers and evidence applicable in the various districts, countries and regions as indicated in this present study. One Health interventions is provided by approaches to the prevention of human rabies deaths [124]. In African countries, the Ministry of Health, Animal Resources, Natural Resources, Environment and Tourism are in charge of implementing the canine and human rabies programs in accordance with local, national and international bodies.

Human rabies is 100% preventable through two complementary measures: first, PEP, which involves administration of rabies immunoglobulin and a multi-dose course of rabies vaccination to people bitten by suspected rabid animals; second, mass vaccination of animal reservoirs (primarily domestic dogs, the reservoir in the vast majority of human cases), which reduces the risk of human exposure and can ultimately result in rabies virus elimination [124].

New rabies control tests and technologies have been developed, such as oral rabies vaccine (ORV) may be considered as an additional tool for the canine rabies control and elimination. ORV is effective for instance in skunks, red foxes and raccoons, and lessons have been learned from recent outbreaks [125]. ORV has been demonstrated to be effective for the oral immunization of foxes, some of them being competitors for long baits year consumption. Switzerland eradicated wild rabies since 1985 [123]. However, Strategies to eliminate human rabies in Africa should adapt the REDIPRA model in African context, which emphasizes that people exposed to rabies have timely access to quality immunobiologicals, that appropriate levels of vaccination coverage in dogs in highly enzootic areas are maintained, that national rabies plans are strengthened and that systematic implementation is ensured, strengthen the surveillance system for human rabies transmitted by dogs and that national rabies plans are strengthened and that systematic implementation is ensured, training, and the development of a laboratory quality control system, particularly in highly enzootic areas, strengthen education, communication and advocacy in enzootic areas, to ensure the continuous political support that is necessary, develop and adopt a guide that delineates the requirements for declaring countries or areas free of human dogtransmitted rabies [120].

5. Conclusion

This comprehensive scoping review is of crucial importance in assessing various evidence of human rabies morbidity, mortality, monitoring, prevention and management. Rabies control strategies and case effects, available studies establishment to address various gaps are also important in the management of rabies in Africa. The analysis included past, existing and future viewpoints that are important for African countries to achieve zero dog-transmitted human rabies by 2030. The findings of forty-three studies included thirty-two quantitative retrospective studies, three mixed designs (retrospective and cross-sectional studies), three prospective cohort studies, two cross-sectional studies, one case control, one clinical trial and one randomized control study. Mapping the outcomes, the review included rabies morbidity (21 studies), mortality (15 studies), rabies prevention and control (16 studies), surveillance (9 studies), surveillance and prevention (5 studies), management and control (7 studies), surveillance, prevention and control (6 studies), strong research evidence (14 studies), rabies vaccination or PEP adverse events (4 studies) and research gaps were identified (41 studies).

Evidence has shown that human rabies morbidity and mortality remain high compared to rabies globally, and human rabies morbidity and mortality fluctuate in time and space across different African countries. In order to better understand this, the review has shown that monitoring, prevention and control of rabies diseases is inadequate and insufficient in most African countries. This is attributable to a variety of gaps and challenges across African countries. In addition, this study found insufficient and ineffective surveillance of rabies, unavailability of PEP, high cost, lack of information on prevention of rabies, and poor or non-existent data on dog vaccination. However, few studies have shown a thorough design of rabies measures such as enhanced

surveillance of rabies, regulation of rabies in dogs, proper post-exposure treatment, improved community awareness and availability of PEP in all rural areas, use of cell phone intervention to enhance surveillance of rabies, prevention and control of enhanced rabies morbidity, and more. In addition, African countries can learn about different community-based obstacles that can interfere with surveillance, prevention and control of rabies diseases. This is important to point out that no single country will preserve rabies-free status unless it is brought under control in neighboring countries [120]. That is why African countries should build a forum for rabies that may be significant to exchange data and experience on rabies. Finally, African countries can also look at futuristic rabies innovations such as ORV.

6. Patients and public involvement

No patients or the public were involved in this scoping review.

7. List of abbreviations

FBKV: Fetal Bovine Kidney Virus; FAO: Food and Agriculture Organization of the United Nations; GARC: Global Alliance for Rabies Control; JBI: Joanna Briggs Institute; OIE: World Organization for Animal Health; ORV: Oral Rabies Vaccine; PARACON: Pan-African Rabies Control Network; PEP: Post-Exposure Prophylaxis; PICO: Population-Interventions-Comparisons-Outcomes; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analysis; RABV: Rabies virus; REDIPRA: Rabies Program Directors of the Americas; RIG: Rabies Immunoglobulin; SMBV: Suckling Mouse Brain Virus; SIRVERA: New Latin American Rabies Surveillance System; WAHIS: World Animal Health Information System; V-RG: Vaccinia-rabies Glycoprotein Recombinant Virus; WHO: World Health Organization;

8. Footnotes

Author Contributions: PSN initiated the study project. PSN and JLT conducted the data extraction. Both authors wrote the review in consultation with JW, RT, AM, SVN, JLT, LN, NEN, GKH, MTG, AA, SD, RB and CD. All the authors reviewed and approved the final version of the manuscript. 'rred

Funding: None

Competing interests: None declared

Ethics Approval: Since this is a scoping review, there is no institutional requirement to obtain ethical clearance from the Health Research Ethics Committee of the Faculty of Medicine and Health Sciences, Stellenbosch University. We used data from open source and publicly available accessed on different databases as described in the methods.

Data availability statement: All data relevant to the study are included in the article.

Consent for publication: All authors review the manuscript and approved for the submission.

Acknowledgments: Not applicable

9. References

 Nel LH. Discrepancies in data reporting for rabies, Africa. Emerging infectious diseases 2013;19(4):529.

2. albi C, Holmes EC, De Benedictis P, Faye O, Nakoune E, Gamatie D, Diarra A, Elmamy BO, Sow A, Adjogoua EV and Sangare O. Evolutionary history and dynamics of dog rabies virus in western and central Africa. Journal of general virology 2009; 90(4):783-791.

 Nel LH, Rupprecht CE. Emergence of lyssaviruses in the Old World: the case of Africa.
 In: Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission. Springer 2007; 315:161-93.

4. Hampson K, Coudeville L, Lembo T, Sambo M, Kieffer A, Attlan M, et al. Estimating the global burden of endemic canine rabies. PloS Negl Trop Dis 2015; 9(4):e0003709.

5. Desa G, Birasa D, Deneke Y, Oljira D. Assessment of knowledge, attitude and practice (kap) of community toward rabies in Medawelabu district, bale zone, Ethiopia. International Journal of Research-Granthaalayah 2020; 8(3):29-42.

6. Cleaveland S, Lankester F, Townsend S, Lembo T, Hampson K. Rabies control and elimination: a test case for One Health. Veterinary Record 2014; 175(8):188-93.

7. World Health Organization. Rabies: rationale for investing in the global elimination of dog-mediated human rabies. World Health Organization, 2015. https://apps.who.int/iris/handle/10665/185195

8. Fooks AR, Banyard AC, Horton DL, Johnson N, McElhinney LM, Jackson AC. Current status of rabies and prospects for elimination. The lancet 2014; 384(9951):1389-99.

BMJ Open

9. Knobel DL, Cleaveland S, Coleman PG, Fevre EM, Meltzer MI, Miranda MEG, et al. Reevaluating the burden of rabies in Africa and Asia. Bulletin of the World Health Organization 2005; 83:360-8.

10. Lavan RP, King AIM, Sutton DJ, Tunceli K. Rationale and support for a One Health program for canine vaccination as the most cost-effective means of controlling zoonotic rabies in endemic settings. Vaccine 2017; 35(13):1668-74.

11. Dodet B, Tejiokem MC, Aguemon AR, Bourhy H. Human rabies deaths in Africa: breaking the cycle of indifference. International health 2015; 7(1):4-6.

12. Adesina MA, Olufadewa II, OgaH YI, Nwachukwu N. Incidence and Mortality from a Neglected Tropical Disease (Rabies) in 28 African Countries. Acta Neuropathologica Communications 2020; 64(2):46-51.

13. Interafrican Bureau for Animal Resources. Rabies distribution, 2013. https://www.auibar.org/rabies#Distribution Map for Africa

14. Cleaveland S. Epidemiology and control of rabies: The growing problem of rabies in Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene 1998; 92(2):131-4.

15. Knobel D and Conan A. Dog Ecology and Rabies Control in Africa World Small Animal Veterinary Association World Congress Proceedings. Age 2014; 4(9): 23.

16. Röttcher D and Sawchuk AM. Wildlife rabies in Zambia. Journal of wildlife diseases 1978;14(4): 513-517.

17. Botros BAM, Salib AW, Mellick PW, Linn JM, Soliman AK, Scott RM. Antigenic variation of wild and vaccine rabies strains of Egypt. Journal of medical virology 1988; 24(2):153-9.

Burrows R. Rabies in African wild dogs of Tanzania. Journal of wildlife diseases 1994;
 30(2):297-9.

Kat PW, Alexander KA, Smith JS, Munson L. Rabies and African wild dogs in Kenya.
 Series B: Biological Sciences 1995; 262(1364):229-33.

20. Foggin CM. The epidemiological significance of jackal rabies in Zimbabwe. In: Rabies in the Tropics. Springer, 1985:399-405.

21. Tefera G, Yimer E and Geyid A. Endemic existence of rabies in Ethiopia. Ethiopian Medical Journal 2002; 40(2): 163-10.

22. Nel LH, Sabeta CT, Von Teichman B, Jaftha JB, Rupprecht CE and Bingham J. Mongoose rabies in southern Africa: a re-evaluation based on molecular epidemiology. Virus research 2005, 109(2):165-173.

23. Woodroffe R, Prager KC, Munson L, Conrad PA, Dubovi EJ, Mazet JAK. Contact with domestic dogs increases pathogen exposure in endangered African wild dogs (Lycaon pictus). PloS one 2012; 7(1): e30099.

24. Scheepers JL, Venzke KAE. Attempts to reintroduce African wild dogs Lycaon pictus into Etosha National Park, Namibia. South African Journal of Wildlife Research-24-month delayed open access 1995; 25(4):138-40.

BMJ Open

25. Kat PW, Alexander KA, Smith JS, Munson L. Rabies and African wild dogs in Kenya.
Proceedings of the Royal Society of London. Series B: Biological Sciences 1995; 262(1364):22933.

26. Sabeta C, Ngoepe EC. Controlling dog rabies in Africa: successes, failures and prospects for the future. Revue scientifique et technique (International Office of Epizootics) 2018; 37(2):439-49.

27. Johnson N, Mansfield KL, Marston DA, Wilson C. et al. A new outbreak of rabies in rare Ethiopian wolves (Canis simensis). Archives of virology 2010, 155(7): 1175-1177.

28. Marino J, Sillero-Zubiri C, Deressa A Et al. Rabies and distemper outbreaks in smallest Ethiopian wolf population. Emerging infectious diseases 2017, 23(12): 2102.

29. Tomori O. Wild life rabies in Nigeria: experimental infection and transmission studies with the shrew (Crocidura sp.). Annals of Tropical Medicine & Parasitology 1980; 74(2):151-6.

30. Ramos J, Melendez N, Reyes F, Gudiso G, Biru D, Fano G, et al. Epidemiology of animal bites and other potential rabies exposures and anti-rabies vaccine utilization in a rural area in Southern Ethiopia. Annals of agricultural and environmental medicine 2015; 22(1):76-79.

31. Ngugi JN, Maza AK, Omolo OJ, Obonyo M. Epidemiology and surveillance of human animal-bite injuries and rabies post-exposure prophylaxis, in selected counties in Kenya, 2011-2016. BMC public health 2018; 18(1):996.

32. Rajeev M, Edosoa G, Hanitriniaina C, Andriamandimby SF, Guis H, Ramiandrasoa R, et al. Healthcare utilization, provisioning of post-exposure prophylaxis, and estimation of human rabies burden in Madagascar. Vaccines 2019; 37:A35-44.

33. Diallo MK, Dicko A, Richard V, Espie E. Human rabies post exposure prophylaxis at the Pasteur Institute of Dakar, Senegal: trends and risk factors. BMC Infectious Diseases 2019; 19(1):321.

34. Gebru G, Romha G, Asefa A, Hadush H, Biedemariam M. Risk Factors and Spatio-Temporal Patterns of Human Rabies Exposure in Northwestern Tigray, Ethiopia. Annals of global health 2019; 85(1):119.

35. Twabela AT, Mweene AS, Masumu JM, Muma JB, Lombe BP, Hankanga C. Overview of animal rabies in Kinshasa Province in the Democratic Republic of Congo. Plos one 2016; 11(4):e0150403.

36. Tiembre I, Broban A, Benie J, Tetchi M, Druelles S, L'Azou M. Human rabies in Cote d'Ivoire 2014-2016: Results following reinforcements to rabies surveillance. PLoS neglected tropical diseases 2018; 12(9): e0006649.

37. Sofeu CL, Broban A, Njifou NA, Blaise MJ, Sadeuh-Mba S A, Druelles S, et al. Improving systematic rabies surveillance in Cameroon: A pilot initiative and results for 2014-2016. Plos neglected tropical diseases 2018; 12(9):e0006597.

38. Salomão C, Nacima A, Cuamba L, Gujral L, Amiel O, Baltazar C, et al. Epidemiology, clinical features and risk factors for human rabies and animal bites during an outbreak of rabies in

BMJ Open

Maputo and Matola cities, Mozambique, 2014: Implications for public health interventions for rabies control. Plos neglected tropical diseases 2017; 11(7):e0005787.

39. Punguyire DT, Osei-Tutu A, Aleser EV, Letsa T. Level and pattern of human rabies and dog bites in Techiman Municipality in the Middle Belt of Ghana: a six year retrospective records review. Pan African Medical Journal 2017. Doi: 10.11604/pamj.2017.28.281.14218

40. Pfukenyi DM, Pawandiwa D, Makaya PV, Ushewokunze-Obatolu U. A retrospective study of wildlife rabies in Zimbabwe, between 1992 and 2003. Tropical Animal Health and Production 2009; 41(4):565-72.

41. Muyila DI, Aloni MN, Lose-Ekanga MJ, Nzita JM, Kalala-Mbikay A, Bongo HL, et al. Human rabies: a descriptive observation of 21 children in Kinshasa, the Democratic Republic of Congo. Pathogens and global health 2014; 108(7):317-22.

42. Mazigo HD, Okumu FO, Kweka EJ, Mnyone LL. Retrospective analysis of suspected rabies cases reported at Bugando Referral Hospital, Mwanza, Tanzania. Journal of global infectious diseases 2010; 2(3):216.

43. Kubheka V, Govender P, Margot B, Kuonza LR. Dog bites and human rabies in the Uthungulu District of Kwazulu-Natal province, 2008-2010: a review of surveillance data. Southern African Journal of Epidemiology and Infection 2013; 28(1):33-40.

44. Hikufe EH, Freuling CM, Athingo R, Shilongo A, Ndevaetela EE, Helao M, et al. Ecology and epidemiology of rabies in humans, domestic animals and wildlife in Namibia, 2011-2017. Plos neglected tropical diseases 2019; 13(4):e0007355.

45. Hampson K, Dobson A, Kaare M, Dushoff J, Magoto M, Sindoya E, et al. Rabies exposures, post-exposure prophylaxis and deaths in a region of endemic canine rabies. PloS Negl Trop Dis 2008; 2(11):e339.

46. Deressa A, Ali A, Bayene M, Selassie BN, Yimer E, Hussen K. The status of rabies in Ethiopia: A retrospective record review. Ethiopian Journal of Health Development 2010; 24(2):127-132.

47. Andriamandimby SF, Heraud Jean-Michel, Ramiandrasoa R, Ratsitorahina M, Rasambainarivo JH, Dacheux L, et al. Surveillance and control of rabies in La Reunion, Mayotte, and Madagascar. Veterinary Research 2013; 44(1):1-9.

48. Alabi O, Nguku P, Chukwukere S, Gaddo A, Nsubuga P, Umoh J. Profile of dog bite victims in Jos Plateau State, Nigeria: a review of dog bite records (2006-2008). The Pan African medical journal 2014; 18(Suppl 1):12.

49. Adomako BY, Baiden F, Sackey S, Ameme DK, Wurapa F, Nyarko KM, et al. Dog bites and rabies in the eastern region of Ghana in 2013-2015: a call for a one-health approach. Journal of tropical medicine 2018; 2018:5 pages

50. Athingo R, Tenzin T, Shilongo A, Hikufe E, Shoombe KK, Khaiseb S, et al. Fighting Dog-Mediated Rabies in Namibia-Implementation of a Rabies Elimination Program in the Northern Communal Areas. Tropical Medicine and Infectious Diseases 2020; 5(1):12.

51. Muller T, Demetriou P, Moynagh J, Cliquet F, Fooks AR, Conraths FJ, et al. Rabies elimination in Europe: a success story. In: In Rabies control: towards sustainable prevention at the

BMJ Open

source, compendium of the OIE, Global conf. on Rabies Control, Incheon-Seoul, 7-9 September 2011. 2012:31-44.

52. Velasco-Villa A, Escobar LE, Sanchez A, Shi M, Streicker DG, Gallardo-Romero NF, et al. Successful strategies implemented towards the elimination of canine rabies in the Western Hemisphere. Antiviral research 2017; 143:1-12.

53. World Health Organization. WHO Expert Consultation on Rabies: second report. World Health Organization, 2013. <u>https://apps.who.int/iris/handle/10665/85346</u>

54. Dodet B. The fight against rabies in Africa: From recognition to action. Vaccine 2009; 27(37):5027-32.

55. Kayali U, Mindekem R, Yemadji N, Vounatsou P, Kaninga Y, Ndoutamia AG, et al. Coverage of pilot parenteral vaccination campaign against canine rabies in N'Djamena, Chad. Bulletin of the World Health Organization 2003; 81:739-44.

56. Franka R, Smith TG, Dyer JL, Wu X, Niezgoda M, Rupprecht CE. Current and future tools for global canine rabies elimination. Antiviral research 2013; 100(1):220-5.

57. Zemanova S, Korytar L, Benko Z, Prokes M, Ondrejkova A. Ecological Factors of Transmission, Persistence and Circulation of Pathogens In Bat Populations. Folia Veterinaria 2019; 63(1):32-40.

58. Hampson K, Dushoff J, Cleaveland S, Haydon DT, Kaare M, Packer C and Dobson A. Transmission dynamics and prospects for the elimination of canine rabies. PLoS boil 2009; 7(3): e1000053.

59. Minyoo AB, Steinmetz M, Czupryna A, Bigambo M, Mzimbiri I, Powell G, Gwakisa P and Lankester F. Incentives increase participation in mass dog rabies vaccination clinics and methods of coverage estimation are assessed to be accurate. PLoS neglected tropical diseases 2015; 9(12): e0004221.

60. Lankester F, Davis A, Kinung'hi S, Yoder J, Bunga C, Alkara S, Mzimbiri I, Cleaveland S and Palmer GH. An integrated health delivery platform, targeting soil-transmitted helminths (STH) and canine mediated human rabies, results in cost savings and increased breadth of treatment for STH in remote communities in Tanzania. BMC public health 2019; 19(1): 1398.

61. Global Alliance for Rabies Control. Recent Research November 2017, 2017. https://rabiesalliance.org/resource/recent-research-november-2017

62. MEEREB. Rabies diagnostic and epidemiological data, 2018. https://www.fondationmerieux.org/wp-content/uploads/2017/11/4th-meereb-2018-florence-cliquet.pdf

63. Wallace RM, Mehal J, Nakazawa Y, Recuenco S, Bakamutumaho B, Osinubi M, et al. The impact of poverty on dog ownership and access to canine rabies vaccination: results from a knowledge, attitudes and practices survey, Uganda 2013. Infectious diseases of poverty 2017; 6(1):97.

64. Jibat T, Hogeveen H and Mourits MC. Review on dog rabies vaccination coverage in Africa: a question of dog accessibility or cost recovery? PLoS Negl Trop Dis 2015, 9(2): e0003447.

BMJ Open

65. Shwiff SA, Hatch B, Anderson A, Nel LH, Leroux K, Stewart D, et al. Towards Canine Rabies Elimination in KwaZulu-Natal, South Africa: Assessment of Health Economic Data. Transboundary and emerging diseases 2016; 63(4):408-15.

66. Cleaveland S, Kaare M, Tiringa P, Mlengeya T, Barrat J. A dog rabies vaccination campaign in rural Africa: impact on the incidence of dog rabies and human dog-bite injuries. Vaccine 2003; 21(17-18):1965-73.

67. Kaare M, Lembo T, Hampson K, Ernest E, Estes A, Mentzel C, et al. Rabies control in rural Africa: evaluating strategies for effective domestic dog vaccination. 2009; 27(1):152-60.

68. Hatch B, Anderson A, Sambo M, Maziku M, Mchau G, Mbunda E, et al. Towards Canine Rabies Elimination in Southern Eastern Tanzania: Assessment of Health Economic Data. Transboundary and emerging diseases 2017; 64(3):951-8.

69. Gibson AD, Handel IG, Shervell K, Roux T, Mayer D, Muyila S et al. The Vaccination of 35,000 Dogs in 20 Working Days Using Combined Static Point and Door-to-Door Methods in Blantyre, Malawi. PLoS neglected tropical diseases 2016; 10(7):e0004824.

70. Léchenne M, Oussiguere, A Naissengar K, Mindekem, R, Mosimann L, Rives, G, Hattendorf, Moto DD, Alfaroukh IO and Zinsstag J. Operational performance and analysis of two rabies vaccination campaigns in N'Djamena, Chad. Vaccine 2016; 34(4): 571-577.

71.Anyiam F, Léchenne M, Mindekem R et al. Cost estimate of canine rabies elimination by
parenteral mass vaccination in Chad, 2017.https://edoc.unibas.ch/57353/1/Lechenne thesis edoc%20version.pdf

72. Zinsstag J, Lechenne M, Laager M, Mindekem R, Oussiguere A, Bidjeh K, et al. Vaccination of dogs in an African city interrupts rabies transmission and reduces human exposure. Science translational medicine 2017; 9(421):eaaf6984.

73. Sreenivasan N, Li A, Shiferaw M, Tran CH, Wallace R, Blanton J, et al. Overview of rabies post-exposure prophylaxis access, procurement and distribution in selected countries in Asia and Africa, 2017-2018. Vaccine 2019; 37: A6-A13.

74. World Health Organization. 2016: the beginning of the end of rabies? 2016. https://www.who.int/rabies/resources/tlgh_rabies_oct_2016/en/

75. Bogel K, Motschwiller E. Incidence of rabies and post-exposure treatment in developing countries. Bulletin of the World Health Organization 1986; 64(6):883.

76. Taylor LH, Knopf L, Partners for Rabies Prevention. Surveillance of human rabies by national authorities-a global survey. Zoonoses and public health 2015; 62(7):543-52.

77. Kamani TM, Kazwala R, Mfinanga S, Haydon D, Keyyu J, et al. One Health: a concept led by Africa, with global benefits. The Veterinary Record 2015; 176(19): 496.

78. Acharya KP, Acharya N, Phuyal S, Upadhyaya M and Steven L. One-health approach: A best possible way to control rabies. One Health 2020; 10: 100161.

79. Otu, A., Effa, E., Meseko, C. *et al.* Africa needs to prioritize One Health approaches that focus on the environment, animal health and human health. *Nat Med* (2021). https://doi.org/10.1038/s41591-021-01375-w

BMJ Open

80. Jarvis S. Aiming for elimination of dog-mediated human rabies cases by 2030. Veterinary Record 2016; 178:86-7.

81. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Annals of internal medicine 2018; 169(7):467-73.

82. Peters MDJ, Godfrey CM, Khalil H, McInerney P, Parker D, Soares CB. Guidance for conducting systematic scoping reviews. International journal of evidence-based healthcare 2015;13(3):141-6.

83. Arksey H, O'Malley L. Scoping studies: towards a methodological framework. International journal of social research methodology 2005;8(1):19-32.

84. Tricco AC, Lillie E, Zarin W, O' Brien K, Colquhoun H, Kastner M, et al. A scoping review on the conduct and reporting of scoping reviews. BMC medical research methodology 2016; 16(1):15.

85. Edward FD, Osei-Tutu A, Gbeddy K, Quist C. A retrospective study of rabies cases at Techiman Municipal, Ghana, 2009-2012. International Journal of Infectious Diseases 2014; 21:179.

86. Kardjadj M, Yahiaoui F, Ben-Mahdi MH. Incidence of human dog-mediated zoonoses and demographic characteristics/vaccination coverage of the domestic dog population in Algeria. Rev. Sci,. Tech. Off. Int. Epiz 2019;38(3):000-000.

87. Reynes JM, Andriamandimby SF, Razafitrimo GM, Razainirina J, Jeanmaire EM, Bourhy H, et al. Laboratory surveillance of rabies in humans, domestic animals, and bats in madagascar from 2005 to 2010. Advances in preventive medicine 2011; 2011:6. https://doi.org/10.4061/2011/727821

Nyakarahuka L, Tweheyo R. Occurrence and mortality rates from rabies in Uganda, 2001 2009. International journal of infectious Diseases 2012; 16:e458.

89. Masiira B, Makumbi I, Matovu JKB, Ario AR, Nabukenya I, Kihembo C, et al. Long term trends and spatial distribution of animal bite injuries and deaths due to human rabies infection in Uganda, 2001-2015. PloS one 2018;13(8):e0198568.

90. Sambo M, Cleaveland S, Ferguson H, Lembo T, Simon C, Urassa H, et al. The burden of rabies in Tanzania and its impact on local communities. Plos Negl Trop Dis 2013;7(11): e2510.

91. Mtema Z, Changalucha J, Cleaveland S, Elias M, Ferguson HM, Halliday JE, et al. Mobile phones as surveillance tools: implementing and evaluating a large-scale intersectoral surveillance system for rabies in Tanzania. Plos medicine 2016;13(4): e1002002.

92. Teklu GG, Hailu TG, Eshetu GR. High incidence of human rabies exposure in northwestern tigray, Ethiopia: A four-year retrospective study. Plos neglected tropical diseases 2017; 11(1):e0005271.

93. Zimmer BL, Gamble L, Foster R, Kennedy N, Mayer D, Bailey J Burdon, et al. Assessment of the impact on paediatric rabies at Queen Elizabeth Central Hospital, Blantyre, Malawi,

BMJ Open

following a mass canine rabies vaccination programme. International Journal of Infectious Diesases 2019; 79:64.

94. Osaghae DO. Animal and human bites in children. West African journal of medicine 2011;30(6):421-424.

95. Ogundare EO, Olatunya OS, Oluwayemi IO, Inubile AJ, Taiwo AB, Agaja OT, et al. Pattern and outcome of dog bite injuries among children in Ado-Ekiti, Southwest Nigeria. Pan African Medical Journal 2017; 27:81.

96. Abubakar SA, Bakari AG. Incidence of dog bite injuries and clinical rabies in a tertiary health care institution: a 10-year retrospective study. Annals of African medicine 2012; 11(2):108-11

97. Kent SJW, Naicker B, Wood DR. Demographics and management of dog-bite victims at a level two hospital in KwaZulu-Natal. South African Medical Journal 2012; 102(11):845-7.

98. De Nardo P, Gentilotti E, Vairo F, Nguhuni B, Chaula Z, Nicastri E, et al. A retrospective evaluation of bites at risk of rabies transmission across 7 years: The need to improve surveillance and reporting systems for rabies elimination. PloS one 2018;13(7): e0197996.

99. Lushasi K, Steenson R, Bernard J, Changalucha JJ, Govella NJ, Haydon DT, et al. One Health in practice: using Integrated Bite Case Management to increase detection of rabid animals in Tanzania. Frontiers in Public health 2020; 8:13.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

100. Changalucha J, Steenson R, Grieve E, Cleaveland S, Lembo T, Lushasi K, et al. The need to improve access to rabies post-exposure vaccines: Lessons from Tanzania. Vaccine 2019;37: A45-53.

101. Yizengaw E, Getahun T, Mulu W, Ashagrie M, Abdela I, Geta M. Incidence of human rabies virus exposure in northwestern Amhara, Ethiopia. BMC infectious diseases 2018; 18(1):1-7.

102. Jemberu WT, Molla W, Almaw G, Alemu S. Incidence of rabies in humans and domestic animals and people's awareness in North Gondar Zone, Ethiopia. Plos Negl Trop Dis 2013;7(5): e2216.

103. Fevre EM, Kaboyo RW, Persson V, Edelsten M, Coleman PG, Cleaveland S. The epidemiology of animal bite injuries in Uganda and projections of the burden of rabies. Tropical medicine & international health 2005; 10(8):790-8.

104. Frey J, Mindekem R, Kessely H, Doumagoum MD, Naissengar S, Zinsstag J, et al. Survey of animal bite injuries and their management for an estimate of human rabies deaths in N'Djamena, Chad. Tropical Medicine & International Health 2013; 18(12):1555-62.

105. Olugasa BO, Odeniyi AO, Adeogun AO, Adeola OA. Antibody levels against rabies among occupationally exposed individuals in a Nigerian University. Vet Ital 2010; 46(1):21-8.

106. Harry TO, Adeiga A, Anyiwo CE and Nasidi A. Anti-rabies treatment of dog-bite victims in Lagos, Nigeria: trial of suckling mouse brain and fetal bovine kidney cell vaccines. vaccine 1984; 4: 257-260.

BMJ Open

107. World Health Organization Technical Report Series. WHO expert consultation on rabies,2005.

https://apps.who.int/iris/bitstream/handle/10665/85346/9789240690943_eng.pdf?sequence=1

108. World Health Organization. WHO Expert Consultation on Rabies-World Health.https://apps.who.int/iris/bitstream/handle/10665/85346/9789241209823_eng.pdf?sequenc e=1

109. Ren J, Yao L, Sun J and Gong Z. Zagreb regimen, an abbreviated intramuscular schedule for rabies vaccination. Clinical and Vaccine Immunology 2015; 22(1):1-5

110. Banyard AC, Horton DL, Freuling C, Müller T. and Fooks AR. Control and prevention of canine rabies: the need for building laboratory-based surveillance capacity. Antiviral Research 2013; 98(3): 357-364.

111. Kirby JD, Chipman RB, Nelson KM, Rupprecht CE, Blanton JD, Algeo TP, et al. Enhanced Rabies Surveillance to Support Effective Oral Rabies Vaccination of Raccoons in the Eastern United States. Tropical medicine and infectious disease 2017; 2(3):34.

112. Wilde H, Ghai S, Hemachudha T. Rabies: Still a silent killer targeting the poor. Vaccine 2017; 35(18):2293.

113. Wambura G, Mwatondo A, Muturi M, Nasimiyu C, Wentworth D, Hampson K, et al. Rabies vaccine and immunoglobulin supply and logistics: challenges and opportunities for rabies elimination in Kenya. Vaccine 2019; 37: A28-34. **BMJ** Open

114. World Health Organization. WHO expert consultation on rabies: third report. 1012 edition.World Health Organization, 2018.

115. Hergert M, Le Roux K and Nel LH. Risk factors associated with nonvaccination rabies status of dogs in KwaZulu-Natal, South Africa. Veterinary Medicine: Research and Reports 2016, 7: 75.

116. Taylor LH, Hampson K, Fahrion A, Abela-Ridder B, Nel LH. Difficulties in estimating the human burden of canine rabies. Acta Tropica 2017; 165:133-40.

117. Scott Terence P, Coetzer Andre, Fahrion Anna S, Nel Louis H. Addressing the Disconnect between the Estimated, Reported, and True Rabies Data: The Development of a Regional African Rabies Bulletin. Frontiers in veterinary science 2017; 4:18.

118. Scott TP, Coetzer A, De Balogh K, Wright N and Nel LH. The Pan-African Rabies Control Network (PARACON): A unified approach to eliminating canine rabies in Africa. Antiviral research 2015; 124: 93-100.

119. Gongal G, Wright AE. Human rabies in the WHO Southeast Asia Region: forward steps for elimination. Advances in Preventive Medicine 2011. <u>https://doi.org/10.4061/2011/383870</u>

120. Vigilato MAN, Molina-Flores B, Del Rio Vilas VJ, Pompei JC, Cosivi O. Canine rabies elimination: governance principles. Rev Sci Tech. 2018; 37(2):703-709.

121. Mbilo C, Coetzer A, Bonfoh B, Angot A, Bebay C, Cassama B, et al. Dog rabies control in West and Central Africa: A review. Acta Tropica 2020; 105459.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

122. World Health Organization. Driving progress towards rabies elimination. In: file:///C:/Users/Staff/Downloads/WHO-CDS-NTD-NZD-2019.04-eng.pdf. 2019.

123. Broban A, Tejiokem MC, Tiembre I, Druelles S, L'Azou M. Bolstering human rabies surveillance in Africa is crucial to eliminating canine-mediated rabies. PloS neglected tropical diseases 2018; 12(9): e0006367.

124. Cleaveland S, Sharp J, Abela-Ridder B, Allan KJ, Buza J, Crump JA, Davis A, Del Rio Vilas, VJ, De Glanville WA, Kazwala RR and Kibona T. One Health contributions towards more effective and equitable approaches to health in low-and middle-income countries. Philosophical Transactions of the Royal Society B: Biological Sciences 2017; 372(1725): 20160168.

125. Tataryn J, Buck P A. The Canadian Rabies Management Plan: An integrated approach to the coordination of rabies activities in Canada. Canada communicable disease report 2016; 42 (6):135-6.

Figure legend/caption

Figure 1: Human rabies distribution in thirty-two African countries (2011)

Figure 2: Flow diagram of human rabies mortality and morbidity associated with animal bites in Africa.

Figure 3: Distribution of forty-three studies in African countries.

to peer terien only

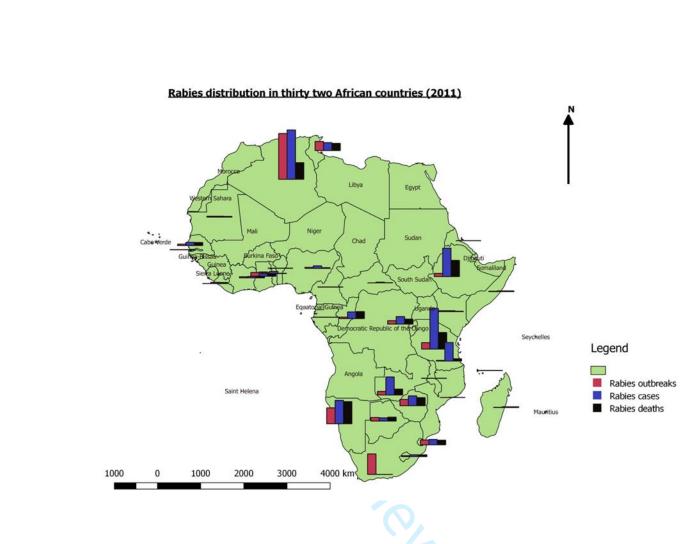


Figure 1: Human rabies distribution in thirty-two African countries (2011)

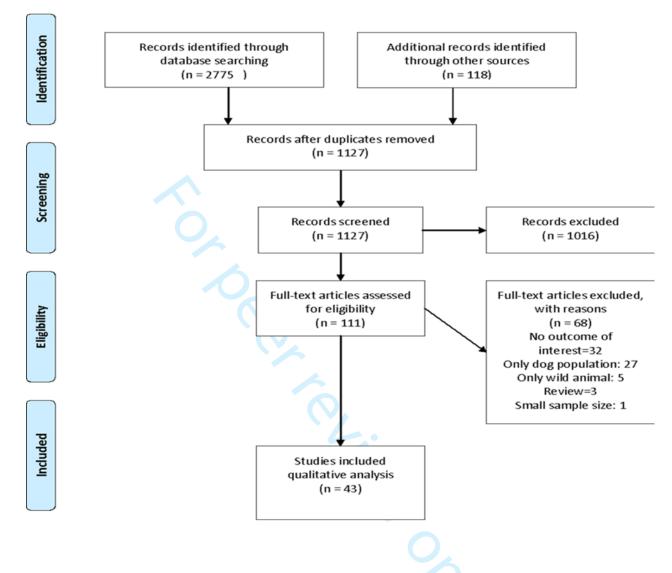
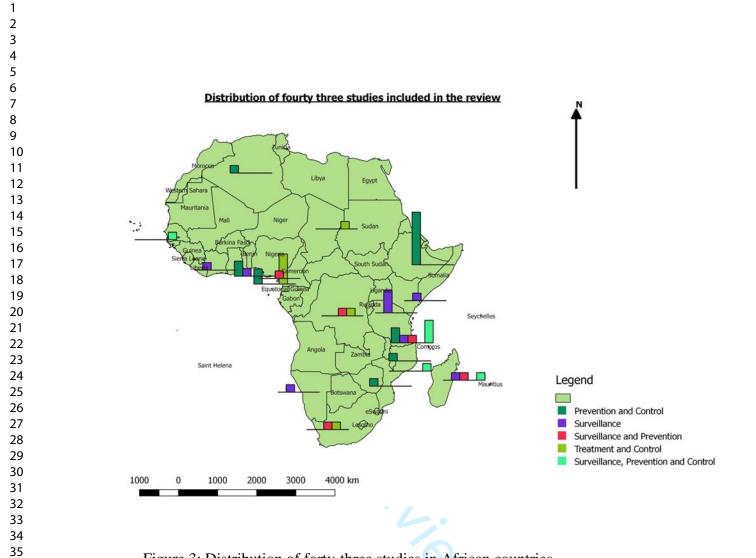
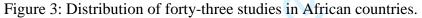




Figure 2: Flow diagram of human rabies mortality and morbidity associated with animal bites

in Africa. Note From PRISMA: www.prisma-statement.org [81]

BMJ Open

Supplementary material 1

Search Strategy:

Database: Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Daily and Versions(R) <1946 to May 25, 2020>

1 exp rabies/ or exp Rabies virus/ or rabies.mp.

2 africa*.mp. or exp Africa/

3 (Algeria or Angola or Benin or Botswana or Burkina Faso or Burundi or Cameroon or Cape Verde or "Central African republic" or Chad or Comoros or Congo or "Democratic Republic of Congo" or DRC or Djibouti or Equatorial guinea or Egypt or Eritrea or Ethiopia or Gabon or Gambia or Ghana or Guinea or Bissau or Ivory coast or ""Cote d ivoire" or Jamahiriya or Kenya or Lesotho or Liberia or Libya or Madagascar or Malawi or Mali or Mauritania or Mauritius or Mayotte or Morocco or Mozambique or Namibia or Niger or Nigeria or Principe or Reunion or Rhodesia or Rwanda or "Sao Tome" or Senegal or Seychelles or "Sierra Leone" or Somalia or "South Africa" or "St Helena" or Sudan or Swaziland or Tanzania or Togo or Tunisia or Uganda or Zaire or Zambia or Zimbabwe or "Central Africa" or "West Africa" or "East Africa" or "Southern Africa" or South Africa).mp.

- 4 2 or 3
- 5 1 and 4
- 6 mortality/ or mortality.mp.
- 7 fatality.mp.
- 8 morbidity.mp. or Morbidity/
- 9 surveillance.mp. or Population Surveillance/
- 10 (vaccine or vaccines).mp. or Vaccination/
- 11 6 or 7 or 8 or 9 or 10
- 12 Rabies Vaccines/
- 13 5 and 11
- 14 4 and 12

15 13 or 14

16 limit 15 to english language

tor peet review only

Supplementary Table 1: Extracting and charting data table

Author(year) and country	Study designs	Participants/Comparators	Interventions and Control conditions/Exposures	Outcomes	Key findings/Gaps/Challenges
Rabies prevention and control		[°] Or Dr			
Harry 1984 Nigeria	Randomiz ed control trial	136 patients aged three to 74 years.	Controlled treatment of dog-bite victims with suckling mouse brain (SMBV) versus fetal bovine kidney (FBKV) rabies vaccines.	By day 7, 26.7% of SMBV recipients and 28.6% of FBKV recipients showed antibody response These percentages increased to 95.1 and 81.1, respectively, by day 14, and by day 20 (for SMBV recipients) or day 30 (FBKV recipients) the	We have concluded that both vaccines are equally efficacious and well tolerated.

Page 67 of 89

				response was 100%. Titres dropped by day 90, but in no case to below 1 EU ml ⁻¹	
Tefera 2002 Ethiopia	5-year retrospecti ve study	15,940 people dog bite victims	post exposure anti- rabies prophylaxis treatment	320 people were reported to have died of rabies.	The result supports the hypothesis that there is a lack of appropriate reporting system on prevalence of rabies and i impact on humans.
Deressa 2010 Ethiopia	8-year retrospecti ve study	17,204 people received post exposure treatment	Post Exposure Prophylaxis 5% suspension of phenolized sheep brain tissue.	The fatal human cases were 386 humans with annual range of 35 to 58. The age and sex specific distribution showed that the most fatal cases were 42% from the age-group 0-14 category.	PEP against rabies varies from 35.96% to 64.4% across the study. The recorded data showed the underestimate of rabie diagnosis, post exposure prophylaxis and fatal human cases, which could be attributed due to the

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

				According to this record 66.66% of deaths were males and 33.33% were females.	absence of national rabies surveillance system.
Olugasa 2010	Clinical	Of these 70 healthy	A purified chicken-	Overall, antibody	Almost all those who had
Nigeria	trial	individuals, 29 (41.4%) consisting of 15 zoological garden workers (75.0%), 13 veterinarians (65.0%) and 1 veterinary student (3.3%)	embryo cell rabies vaccine One dose (1 ml of ≥ 2.5 IU/ml vaccine potency) was administered intramuscularly every two years immune to rabies virus (antibody titre >0.5 equivalent units per ml), while 41 (58.6%) were not immune.	levels increased from 1-5 years to 10-30 years on the job.	spent at least 10 years on the job had higher levels of rabies vaccination compliance and were immune.
Mazigo 2010	A 5-year	A total of 767 bite	Adherence to post-	mean annual	Only 28% of the victims
Tanzania	retrospecti	injuries inflicted by	exposure prophylaxis	incidence of ~58	completed the vaccination
i anzania	ve study	rabies-suspected animals were reported.	(PEP) regimen	cases per 100,000 (52.5% males, 47.5% females)	regime.

 BMJ Open

Jemberu 2013	Cross- sectional	120 selected dog owners 5 traditional healers in	clinical observation	Annual estimated rabies incidence of	Vaccination of dogs, proper
Ethiopia	and year	North Gondar zone,	A questionnaire on	2.33 cases per	post exposure management, and increasing the
	prospectiv	Ethiopia.	rabies people's	100,000 in	awareness of the
	e cohort	1	knowledge and	humans.	community are suggested to
	study		practices		reduce the disease burden.
				During the follow	
				up period, a total	
				of 32 in humans	
		· · · ·		were recorded	
				from which 3	
				humans ended with	
			- F	fatality.	
Edward 2014	3-year	546 dog-bite victims	Post-exposure	54 dog-bite victims	24% of dog-bite victims did
	retrospecti	were reported; 295	prophylaxis	bitten by rabies-	not complete the post
Ghana	ve study	(54%) were children <		positive dogs were	exposure anti human rabies
		15 years, 169 (31%)		reported.	vaccine course and were
		were between 15-59			not likely to be
		years and 82 (13%) were			postexposure prophylaxis.
		above 60 years.			
Ramos 2015	А	A total of 683 persons	All the patients	No important	99% of whom completed
	retrospecti	(51.1% females, 73%	received an anti-rabies	complications were	the vaccination course.
Ethiopia	ve,	children) with animal-	nervous-tissue	reported.	
	registry-	related bites.	vaccine.		
	based				
	study				

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12 13	
13 14	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25 26	
20 27	
27	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38 39	
39 40	
40 41	
41	
43	
44	
45	
46	

Kardjadj	A 13- year	Annual average of PEP	post-exposure	Annual average of	Overall dog rabies
2019 Algeria	retrospecti ve study	cases: 96,203 people	prophylaxis and dog vaccination	20.6 human rabies deaths	vaccination coverage rate of 68.78%.
Pfukenyi 2009 Zimbabwe	A retrospecti ve study	A total of 57 rabies- suspect human samples were examined and the 15–19-year age group had the highest number of cases.	Dog vaccination coverage	Among rabies- suspect, 42 (73.7%) were positive.	During the study period, there was an inverse relationship between dog vaccination coverage and dog rabies cases. Dog vaccination coverage decreased across the study from 100% to 50%.
Punguyire 2017 Ghana	6-year retrospecti ve records review	680 dog victims, the median age of rabies victims was 30 (range 3- 80 years).	Post-exposure prophylaxis of rabies Dog rabies vaccination	13 cases of human rabies were recorded.	Less than 35% of the suspected rabies dogs that bit people over the period were vaccinated. About 20% of the offending dogs had unknown vaccination
Teklu 2017 Ethiopia	Four-year Retrospect ive Study	In total, 2180 human rabies exposure cases were registered and followed for their PEP. the greatest exposed age	Prior to PEP administration for humans. Dog vaccination	The incidence of human rabies exposure cases calculated per 100,000 populations was 35.8, 63.0, 89.8	status. The total annually allocated PEP to the region, nearly 60% was utilized.

 BMJ Open

		group was >=15 years in		and 73.1 in 2012,	Data on the coverage of
		all		2013, 2014 and	preventive dog vaccinati
				2015, respectively.	and demography were no
		the study years			evident in the study area
De Nardo	6-year	14,624 patients attended	The adherence to	Mean incidence of	Overall, 46.0% of the tot
2018	retrospecti	the clinics because of	post-exposure	74 bites considered	number of individuals
	ve study	animal's bites. Eighty-	prophylaxis (PEP)	at risk of rabies	exposed to potentially ra
Tanzania		three per cent (12,098)		transmission per	animals completed the P
		individuals came from			course, while 6.5% (698)
		Dodoma Region.		100,000 persons	did not receive any dose.
			0	per year.	
					Living in rural area was
			1 Co		statistically associated w
			· C.		loss to follow up after the
				b .	first dose
			er revie	h.	(p < 0.001) or after the
					second dose ($p < 0.001$)
				Un	Females were more likely
					to be lost after the first de
					(p = 0.006).
Yizengaw	2-year	A total of 924 human	Anti-rabies post	High incidence rate	There was significant
2018	retrospecti	rabies exposure cases	exposure prophylaxis	of rabies exposure	difference between rural
	ve cross-	received the anti-rabies		was reported	and urban exposure cases
Ethiopia	sectional	post-exposure		during spring	(p = 0.001) in respect to
	study	prophylaxis. Of these,		(339%) and	time of arrival to the
		males accounted 55.2%			hospital. There was high

		and the median age was	A structured data	summer (26.4%)	human rabies exposure rate
		18 years (ranges: 1–80 years).	collection questionnaire	seasons.	in children and in the rural community.
		Forpe			The health status of most dogs (67.3%) involved in biting was unknown (they were stray dogs) and 28.8% were sick: develop the signs of rabid animal withi ten days follow up.
Gebru 2019	One-year retrospecti	368 human rabies exposure cases. Age	Recommendation to start PEP immediately	Incidence of human rabies	A higher proportion of human rabies exposures
Ethiopia	ve study	group of 5 to 14 years	after exposure,	exposure was 40	was caused by unprovoked
		old.	depending on the type	per 100,000	dogs (96.5%; 95% CI,
			of exposure.	populations.	94.0–98.0), and of these,
			Dog vaccination 14.1%	NOD!	the majority were unvaccinated (85.9%; 95% CI, 81.9–89.1).
Zimmer 2019	6-year	Children victims of dog	Pre and post a	14 paediatric rabies	The study shows the
	Retrospect	bite. The average age	comprehensive canine	cases were found	importance of eliminating
Malawi	ive study	was seven years (range	vaccine campaign	during the study	human rabies through
		3–11).		period. More males	canine rabies vaccination.
				than females were	
				affected (males: 10	

Page 7	73 of 89
--------	----------

				(71%); females: 4 (29%)).	
Rabies surveillance					
Fevre 2005 Uganda	Cross- sectional study	A total of 517 patients were interviewed in 10 randomly selected districts in Uganda in the 3 months of the study.	Passive surveillance Survey of dog bite injuries and rabies post-exposure treatment activities in treatment centres supplied with rabies vaccine.	Death in absence of post-exposure prophylaxis (PET), 592 (95% CI 345– 920) deaths One dose of PET is sufficient for protection following a rabid animal bite, 20 (95% CI 5–50) deaths annually. Complete course of PET is required for protection following a rabid animal bite, up to 210 (95% CI 115– 359) deaths would	Most patients are bitten by dogs, and that a considerable proportion of these are young children, who are at greater risk of developing rabies in the absence of treatment due t the location of the bites they receive. Active animal bite surveillance studies are required to improve our mortality estimates and determine the true burden of rabies in the Ugandan population
				occur, as 41% of patients did not	

D. O.				complete their course of PET.	
Reynes 2011 Madagascar	6-year retrospecti ve study	11 human samples were tested for rabies.	Laboratory Surveillance of domestic or tame wild terrestrial mammal and dog brains tested.	Nine of the 11 suspected human cases tested were laboratory confirmed for rabies.	Rabies remains endemic in Madagascar. this study has found the lack of epidemiological data in Madagascar
Nyakarahuka 2012 Uganda	9-year retrospecti ve study	Cumulative total of 117,085 rabies cases were reported in 9 years.	Surveillance reports from all the districts.	A total of 371 deaths of rabies were recorded.	Findings emphasize the need for active surveillance; follow up of people bitten by animals and mass dog vaccinations to alleviate this zoonotic threat.
Sambo 2013 Tanzania	Cross- sectional study	Human population (district) Ulanga: 193280 Kilombero: 321611 Serengeti: 176057 The ages of suspect bite victims ranged from 1 to	Extensive investigative interviews were used to estimate the incidence of human deaths and bite exposures.	Average annual incidence/ 100,000 Bites: 37.1;11.3 and 33.5 respectively Death: 2.4; 0.8 and 1.4 respectively	Ninety-four percent (391/415) of these suspects bite victims reported to health facilities for PEP.

		90 years. The majority of suspect bite victims (51%) were children less than 15 years of age.			
Adomako 2018	3-year retrospecti ve study	Overall, 4821 dog victims' bites. Most of the cases were in	The health and veterinary services on issues related to	Annual incidence of rabies cases of 172 per a	In the 82% of cases whe data was available, no postexposure prophylaxi
Ghana		children aged below 10 years.	surveillance and data quality.	population of 100,000.	(PEP) was administered. The fatality rate was 100
			er revie		The study found gross disparities in the number reported events and over impression of underreporting.
Masiira 2018	A 14-year retrospecti	A total of 208,720 patients with animal bite	Epidemiological surveillance data	A total of 486 suspected human	Strengthening rabies surveillance, controlling
Uganda	ve review	 injuries were treated at health facilities across the country. Up to 81% were patients >=5 years of age and 19% (n = 9,102) were below 5 years of age. 	•	rabies deaths were reported.	rabies in dogs and ensuring availability of post exposure prophylaxis at lower health facilities are the best approach of eliminating rabies.

Tiembre 2018	A 2-year	2968 weekly reports, all	Human rabies	50 cases of human	The study is the result of
	descriptive	were received by the	surveillance system in	rabies (15±18	enhancing human rabies
Ivory Coast	prospectiv	NIPH Anti-rabies	those 28 NIPH local	cases/year; annual	surveillance in Ivory Coast
	e	Center. Almost one-half	units, with specific	incidence =	
	observatio	of the human rabies	goals of improving the	0.06-0.08per	None of cases had received
	nal study	cases were in children	infrastructure,	100,000) and more	PEP. Post-exposure
		<=15 years old.	training,	than 30,000 animal	prophylaxis with rabies
			communication, and	exposures (annual	vaccine was administered
			government	incidence =	to all animal exposure
		· · ·	involvement.	41.8–48.0 per	victims presenting at the
				100,000).	NIPH local units; only
					about 57% completed the
			The second		full immunization schedule
Ngugi 2018	5-year	Among 7307 records	Surveillance of PEP	Human animal-bite	The study concluded
	retrospecti	analyzed, 7201 (98.6%)	was given, and	injuries incidence	preventing dog bites would
Kenya	ve study	had age recorded.	number of PEP doses	was 289 per	most effectively reduce bit
			administered.	100,000 persons	injuries by improving
		The median age was 22		with the highest	public health education
		years		incidence reported	among children below 15
				at 302 per 100,000	years, encouraging early
				and lowest at 121	PEP initiation and
				per 100,000	completion, development
				persons.	and implementation of
					responsible dog ownership
					and animal behaviour,
					educational programmes as
					well as improving human

					and veterinary health linkages.
Hikufe 2019	6-year	Of the total number of	Human rabies	Rabies cases have	Kavango, the region with
	retrospecti	113 cases, the majority	surveillance data were	been above 16	the highest human rabies
Namibia	ve study	(67%) were children and	retrieved from the	cases per year from	incidence was also the
		teenagers below 16 years	epidemiological	2011 until 2015	region with the lowest
		of age, peaking at 5–9	database of the	with a maximum	animal rabies surveillance
		years.	Ministry of Health.	of 23 cases	intensity.
		6		observed in 2015.	
			Surveillance in		
		C	animals is based on	Incidence: 1.0 and	
			the reporting of all	2.4 per 100,000	
			suspected cases.	inhabitants and per	
				year on average.	
Rabies				01.	
surveillance					
and					
prevention				5	
Andriamandi	6-year	24 946 patients visited	Laboratory	31 positive cases	None of these patients
mby 2013	Retrospect	the ARMC at the IPM,	surveillance of rabies	of human rabies 🥣	received PEP except for
	ive study	of which 97.2% (n = 24			one who started PEP late,
La Reunion,		299) received PEP.	Post-exposure		10 days after the suspecte
Marratta an 1		Males represented 54.3%	prophylaxis of rabies		bite.
Mayotte, and		(n = 1356) of the cases			
Madagascar		and ranged in age from			
		one to 97 years (median			

		= 18 years). Children under 15 years old represented 40.5% (n = 10 107) of the consultants.			Dog vaccination coverage in Madagascar was 10%
Kubheka 2013 South Africa	3-year retrospecti ve study	2 601 patients who were offered rabies PEP. The median age of the people bitten by dogs during the two years was 20 years (with a range from 1- 92 years). The majority (61.3%) were aged 5-29 years old.	human rabies surveillance database the uptake of the rabies PEP and patients telephone contact.	An average annualized rabies attack rate of 136 rabies cases per 100 000 dog-bite injuries (7/5 139). 6/7 died	83.7% [95% confidence interval (CI): 82.4-85.2] completed the PEP treatment.
Sofeu 2018	A one year	A total of 1,402 animal	The surveillance	Overall incidence	Overall, at least 421 (60%)
	retrospecti	exposures were reported	network consisted of	rate of 6.1	of the exposure victims
Cameroon	ve study	in the West region of	local, regional, and	exposures per	considered to be at risk of
		Cameroon.	national health and veterinary authorities. PEP and	100,000 people. One was confirmed positive for rabies	rabies either did not receive any PEP or did not receive all PEP vaccinations.
			immunizations		Only 12.6% (117/925) of
			received prior to the current exposure; and		dogs were reported to have been vaccinated and only
			the wound treatment		14.4% of the animal
			were recorded.		exposure cases were

Page 79 of 89	

					followed-up with a visit by a veterinarian
					No adverse events to PEP were reported.
Mtema 2016	A 5-year	Reports recorded bite	Automated SMS	Human rabies	Compliance with PEP
т	retrospecti	patients seeking PEP	(short message	cases (42 reported)	regimens was significantly
Tanzania	ve study	(14,565 records, 49%),	service, commonly	reflected issues	higher for patients
		detailing visits of	known as a "text"	with PEP supply.	following the
		approximately 5,800	message) reminders to	T 1 01 1	implementation of
		patients.	patients due for	Incidence of bite	automated reminders in
			further PEP doses.	patients seeking	comparison to patients
				PEP declined	attending clinics prior 7%
			Mass dog	substantially	of patients failed to obtain
			vaccinations	(>50%)	PEP.
			Mobile Phones as	h.	
			Surveillance Tools		
Twabela	A 5-year	A total of 5,053 attacks	Laboratory	29 were found	Rabies cases were three
2016	retrospecti	were recorded in the	surveillance	positive to rabies.	times higher in peri-urban
_010	ve study	veterinary clinics.		Providence of Inclusion	zone than in urban zone.
DRC		······	PEP and		
			immunizations		It was observed that amon
					the 5,053 attacks registere
					83 (1.6%) animals were
					killed and 15 (0.3%)
					disappeared just after attac

					without a follow-up or a veterinary observation.
Post exposure management					
Osaghae 2011 Nigeria	A twelve- year retrospecti ve study	105 episodes of human and animal bites Recorded. Comparators: N/A	Wound Management Twenty (%) domestic dogs were vaccinated while 11(%) and six (%) were not vaccinated and without known vaccination status respectively.	A 10-year-old girl had rabies and died on the second day of admission.	The anti-rabies vaccine was not administered to the children bitten by the vaccinated animals.
Alabi 2014 Nigeria	3-year retrospecti ve study and cross- sectional study	Only 195 (50.9%) of the 383 bite victims linked to a positive dog specimen could be traced. About three quarters (141 (73%)) of the victims were aged <16 years.	A review of detailed profiles of dog bite victims managed in the clinics.	54% of the victims took complete PEP. For those who did not complete PEP, 93% of the biting dogs were not vaccinated.	It has shown lack of enforcement of regulations for licensing of dogs and rabies vaccination.

 BMJ Open

Muyila 2014	A 8-month	21 cases were observed,	(9.5%) had their	100% of patients	The study revealed the dog
	retrospecti	rather three cases per	wounds treated and	showed furious	were not immunized for
DRC	ve study	month. There were 12	received an anti-rabies	rabies	rabies.
		boys (57.1%) and 9 girls	vaccine (ARV) after	manifestations	
		(42.9%). Biting animal	the bite incident. Two		
		was found to be dog in	(9.5%) patients	The case-fatality	
		all cases (100%).	received rabies	rate was 100%.	
			immunoglobulin		
			(RIG).		
Frey 2013	Cross-	Of 86 people exposed to	Post-exposure	Estimated annual	50% received post-
110y 2015	sectional	a suspected rabid animal.	vaccination and	incidence of bites	exposure vaccination and a
Chad	study	The median age was 18	wound cleaned.	from suspected	further 8% had their wound
	study	years, with a range	would cleaned.	rabid animals of	cleaned.
		between.		12.9/100 000 and	ereuneu.
				an incidence of 0.7	
		2 months and 79 years.		human rabies	
				deaths/ 100 000,	
				resulting in 7	
				estimated deaths	
				(95% confidence	
				interval 4–10	
				deaths) per year.	
Ogundare	Α	In all, 84 cases of dog	Treatments received	Six (7.1%) of cases	Although seventy-eight
2017	retrospecti	bite injuries were	in the hospital ranged	had rabies and	(92.9%) of the victims had
	ve study	managed constituting	from washing the bite	died.	post-exposure prophylaxis
Nigeria	, c stady	0.89% of the total	site with soap and		(PEP) with anti-rabies
0		consultations. Most of	water, to suturing of		

		the victims were aged 6-	lacerations and wound		them were managed
		12 years (60.7%) and	dressing, analgesics,		successfully and
		majority (71.4%) was	tetanus prophylaxis,		subsequently discharged
		boys.	anti-rabies vaccination		after ensuring adequate
			(ARV), intravenous		wound healing and
			fluids and diazepam		completion of the
			administration as well		vaccination regimen.
			as antibiotics		Thirty-three (39.3%) were
		Up h	administration.		lost to follow up.
Abubakar	A 10-year	81victims of dog bite	Wound care	Two cases of	Prevalence of dog bite was
2012		injuries. The majority,	0	clinical rabies were	highest, 41 (50.6%), during
	retrospecti	45 (55.6%), were	PEP and the	seen during the	the hot season (April-
Nigeria	ve study	children less than 18	Immunization	study period.	June) and low, 14 (17.3%),
		years while 36 (44.4%)	schedule		during the wet season
		were adults.			(July-October). None of
			` C		the victims was previously
				W a	immunized against rabies.
Kent 2012	A 4-year	A total of 821 patients	Advice only	Of the 821 bites,	Males present more
	retrospecti	complaining of dog bite.	5	642 (78%) were	frequently than females,
South Africa	ve study	Male children aged 6 -	Wound management	grade 3; 84 (10%)	and young males (ages
	5	10 years are most likely		were grade 2; and	
		to present with dog bites.	Give vaccine	43 (5%) were	6 - 10) are most likely to
				grade 1. In 52	present. This trend reverses
			Give anti-rabies	cases (7%), grade	after the age of 40 years,
			immunoglobulin	of bite was not	when females are more
				recorded.	likely to present than males
				Treatment with	We also showed that 99%

 BMJ Open

				rabies vaccine was	of grade 3 bite patients are
				started in 90% of	treated with rabies vaccine
				cases of grade 1	but the rate of treatment
				bites, 97% of grade	with immunoglobulin is
				2 bites and 99% of	lower (82%).
				grade 3 bites.	
		Forpe		Immunoglobulin	
		U h		was administered	
		· · ·		for 53% of grade 1	
				bites, 84% of grade	
				2 bites and 82% of	
			1 h	grade 3 bites.	
Rabies			· @		
Diseases					
Surveillance,			ľ Č		
Prevention					
and Control				OA	7
Lushasi 2020	Multi-	1,291 victims' bite. The	Integrated Bite Case	Only 63 of these	Throughout the study
	center	study was undertaken	Management (IBCM).	bite patients were	regions, PEP was
Tanzania	retrospecti	across 20 districts in 4	We trained	referred to other	unavailable for 74 bite
	ve study	regions in Southern,	government staff to	facilities for PEP	patients (5.7%) upon
		Central, and Northern	implement	with 43 assessed as	presentation to a health
		Tanzania.		being suspect	facility, during the period
			IBCM, comprising	rabies exposures.	of IBCM implementation.
			risk assessments of	Sixteen human	
			bite patients by health	deaths due to	

		Forpe	workers, investigations by livestock field officers to diagnose rabid animals, and use of a mobile phone application to support integration.	rabies were reported within the IBCM study districts. Overall bite patient presentations corresponded to an incidence of 17.4 bites per 100,000 persons per annum.	
Changalucha	5-year	About 36% of patient	Mobile phone-based	We detected an	Upon seeking care, a
2019	retrospecti ve and	presentations at health facilities were due to	surveillance records	average of 75.6	further 15% of probable
Tanzania	cross- sectional study	bites from probable rabid dogs (1,878/5,162 patients that sought care)	PEP was supplied free-of-charge to hospitals	and 19.3 probable rabies exposures per 100,000 persons per year.	rabies exposed persons did not obtain PEP due to shortages, cost barriers or mis advice.
		as assessed through contact tracing, with the remainder from healthy animals or animals with unknown status.	and selected outlying facilities in each district and training was provided to over 300 health workers in use of the updated Thai Red	Of 1005 individuals identified during contact tracing who received late and/or incomplete postexposure vaccination, 14 died showing	Of those that initiated PEP, 46% did not complete the course. Decentralized and free PEP increased the probability that patients received PEP and reduced delays in initiating PEP.

 BMJ Open

			Cross ID regimen (5-	clinical signs of	
			dose Essen IM	rabies.	
			regimen).		
			Qualitative interviews		
			with stakeholders at		
			different levels within		
			the health system to		
		Ur	characterize the		
		· · ·	logistics associated		
		Forpe	with PEP provision.		
Rajeev 2019	One-year	1019 patients reported to	A combined strategy	Annual incidence	A high proportion of
	retrospecti	the anti-rabies medical	of mass dog	of 42–110 rabies	rabies-exposed persons
Madagascar	ve study	centers (ARMC).	vaccination, enhanced	exposures and 1–3	from Moramanga sough
			surveillance, and	deaths per 100,000	(84%) and completed
			expanded access to	persons annually.	
			PEP.	Extrapolating an	PEP (90% of those that
				annual burden of	initiated PEP).
				282–745 human	
				rabies deaths with	
				current PEP	
				provisioning	
				averting 1499-	
				3958 deaths each	
				year.	

Page 86	of 89
---------	-------

Diallo 2019	А	1036 patients sought a	Post-exposure	No death was	Out of the patients
	prospectiv	consultation at the	prophylaxis	reported during the	receiving PEP, 162 (18%)
Senegal	e cohort	Pasteur Institute of	implementation	study period.	patients received two doses
	study was	Dakar for suspicion of	(consists of injection		only at D0, 185 (20.5%)
	carried out	rabies exposure.	of four intramuscular	Adverse events	three doses at D0 and D7
	from April		doses of a purified	were reported after	and 493 (54.5%) completed
	1,2013 to		vero cell rabies	the first two doses	the full 4-dose schedule.
	March 31,		vaccine).	by 6% of the	
	2014,			patients (42/678)	
		1 A	Dog rabies	(including 5	
			vaccination treatment	patients who also	
			(local treatment of	received equine	
			injuries, antibiotics	RIG at D0), and	
			administration, and	after the third dose,	
			previous rabies	by 3% (16/493).	
			vaccination),	Most of them were	
			knowledge of rabies	minor: headache	
			and attitudes in		
			respect to animal bite.	(46.5%), fever	
				(31%) and pain at	
				the injection site	
				(22%), and mostly	
				(74%) occurred on	
				the same day of the	
				vaccine injection	
				(up to 7 days).	

 BMJ Open

Hampson	5-year	1080 people were traced	Contact tracing was	Twenty-eight	Insufficient knowledge
2008	retrospecti ve study	and interviewed who had been bitten by animals.	used to gather data on rabies exposures,	deaths from suspected rabies	about rabies dangers and prevention, particularly
Tanzania	ve study	been bitten by animals.	rables exposures, post-exposure prophylaxis (PEP) delivered and deaths case reports from livestock offices and community-based surveillance activities.	suspected rables were recorded during the five- year period in the two districts, an average of 1.5/100,000 per year in Serengeti and 2.3 in Ngorongoro	prevention, particularly prompt PEP, but also wound management, was the main cause of rabies deaths. Received PEP: 685 (71%) Attended hospital: 971 (85%) PEP dramatically reduced the risk of developing rabies (OR 17.33, 95% CI 6.39–60.83).
Salomão 2017	A case control	819 cases of animal bites were registered, of which	Affixing posters in health units regarding	A total of 14 cases of fatal rabies,	No rabies victim received full post-exposure
Mozambique	study	64.6% (529/819) were from Maputo City. Same neighborhood	treatment of animal bites and post- exposure prophylaxis.	among them 12 died.	vaccination Factors significantly associated with human
		close to the human rabies victim's house were used as controls (case: control ratio of 1:4).	Delivery of additional quantities of anti- rabies vaccine to the Prophylaxis.		rabies were age <15 years (p = 0.05), bite by stray do (p = 0.002), deep wound (p = 0.02), bite in the head (p = 0.001), bite by

Decentralization of	unimmunized dog (p =
post-exposure	0.01), no use of soap and
prophylaxis.	water ($p = 0.001$), and no
	post-exposure prophylaxis
Vaccination of dogs in	(p = 0.01).
the neighborhoods	
where human rabies	
cases had occurred.	
Mass vaccination	
campaign of dogs.	
Porticipation of	
Participation of	
private veterinary	
clinics in animal	
vaccination.	
Collection of stray	
dogs in selected	
neighborhoods.	JA
neigheorneous.	
Community education	
regarding prevention	-
and control measures.	

Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
TITLE			
Title	1	Identify the report as a scoping review.	Page 1; Lines 1-2
ABSTRACT			
Structured summary	2	Provide a structured summary that includes (as applicable): background, objectives, eligibility criteria, sources of evidence, charting methods, results, and conclusions that relate to the review questions and objectives.	Page 3-4; Lines 32-57
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known. Explain why the review questions/objectives lend themselves to a scoping review approach.	Page 6-11; Lines 77-207
Objectives	4	Provide an explicit statement of the questions and objectives being addressed with reference to their key elements (e.g., population or participants, concepts, and context) or other relevant key elements used to conceptualize the review questions and/or objectives.	Page 11; Lines 199-20
METHODS			
Protocol and registration	5	Indicate whether a review protocol exists; state if and where it can be accessed (e.g., a Web address); and if available, provide registration information, including the registration number.	Not applicable
Eligibility criteria	6	Specify characteristics of the sources of evidence used as eligibility criteria (e.g., years considered, language, and publication status), and provide a rationale.	Page 12; Lines 214-22
Information sources*	7	Describe all information sources in the search (e.g., databases with dates of coverage and contact with authors to identify additional sources), as well as the date the most recent search was executed.	Page 12; Lines 222-22
Search	8	Present the full electronic search strategy for at least 1 database, including any limits used, such that it could be repeated.	Page 12; Lines 225-22
Selection of sources of evidence†	9	State the process for selecting sources of evidence (i.e., screening and eligibility) included in the scoping review.	Pages 12-13 Lines 226-23
Data charting process‡	10	Describe the methods of charting data from the included sources of evidence (e.g., calibrated forms or forms that have been tested by the team before their use, and whether data charting was done independently or in duplicate) and any processes for obtaining and confirming data from investigators.	Page 13; Lines 232-25
Data items	11	List and define all variables for which data were sought and any assumptions and simplifications made.	Page 14; Lines 251-26
Critical appraisal of individual sources of evidence§	12	If done, provide a rationale for conducting a critical appraisal of included sources of evidence; describe the methods used and how this information was used in any data synthesis (if appropriate).	Page 14; Lines 261-26
Synthesis of results	13	Describe the methods of handling and summarizing the	Page 14;

St. Michael's

2	
3	
4	
5	
6	
7	
8	
9	
1	0
1	1
1	
1	
1	
1	
1	
1	7
1	8
1	
	0
	1
2	
2	
	4
2	5
	6
2	7
	8
	9
3	
3	
3	3
3	4
3	5
3	6
3	7
	, 8
	9
3 4	
	-
4	-
4	
4	
4	
4	5
4	
4	
4	
4	_
-	0
5	1
	2
5	3
5	4
5	5
5	6
5	7
J	/ 0
2	8

1

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #	
		data that were charted.	Lines 264- 270	
RESULTS				
Selection of sources of evidence	14	Give numbers of sources of evidence screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally using a flow diagram.	Page 15; Lines 273-278	
Characteristics of sources of evidence	15	For each source of evidence, present characteristics for which data were charted and provide the citations.	Page 16; Lines 280-314	
Critical appraisal within sources of evidence	16	If done, present data on critical appraisal of included sources of evidence (see item 12).	Not applicable	
Results of individual sources of evidence	17	For each included source of evidence, present the relevant data that were charted that relate to the review questions and objectives.	page 60-73	
Synthesis of results	18	Summarize and/or present the charting results as they relate to the review questions and objectives.	Page 17-34; Lines 316-533	
DISCUSSION				
Summary of evidence	19	Summarize the main results (including an overview of concepts, themes, and types of evidence available), link to the review questions and objectives, and consider the relevance to key groups.	Page 35-41; Lines 534-679	
Limitations	20	Discuss the limitations of the scoping review process.	Page 5; Lines 66-75	
Conclusions	21	Provide a general interpretation of the results with respect to the review questions and objectives, as well as potential implications and/or next steps.	Page 41-42; Lines 680-710	
FUNDING				
Funding	22	Describe sources of funding for the included sources of evidence, as well as sources of funding for the scoping review. Describe the role of the funders of the scoping review. SMA-ScR = Preferred Reporting Items for Systematic reviews and	Page 41; Line 728	

JBI = Joanna Briggs Institute; PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews.

* Where sources of evidence (see second footnote) are compiled from, such as bibliographic databases, social media platforms, and Web sites.

† A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g., quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping review as opposed to only studies. This is not to be confused with *information sources* (see first footnote).
‡ The frameworks by Arksey and O'Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the process of data extraction in a scoping review as data charting.

§ The process of systematically examining research evidence to assess its validity, results, and relevance before using it to inform a decision. This term is used for items 12 and 19 instead of "risk of bias" (which is more applicable to systematic reviews of interventions) to include and acknowledge the various sources of evidence that may be used in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy document).

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann Intern Med. 2018;169:467–473. doi: 10.7326/M18-0850.

59