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S1. Estimation of the vertical dimension of graphene liquid cell 

A. Thickness measurement by low-loss electron energy loss spectroscopy 

The thicknesses of a liquid encapsulated within a graphene liquid cell (GLC) can be measured 

using electron energy loss (EEL) spectroscopy and the log-ratio method (24).  

        (S1-1) 

where t is the thickness of the sample, l is the inelastic mean free path of electron, It is the total 

number of electrons in the spectrum, and I0 is the number of electrons which have lost no energy. 

To extract the contribution of the graphene windows from  of the GLC, the thickness of 

the liquid could be calculated as follows (25): 

        (S1-2) 

Here, can be measured from a dry, graphene-only region near a GLC in which 

two sheets of few-layer graphene overlaps. The inelastic mean free path of electrons at 200 keV in 

water, , is estimated to be 320 nm (26). 

In order to measure the thickness of the liquid in a GLC with Eq. (S1-2), the location of 

the GLC was first found in TEM mode, and EEL spectroscopy is performed in the same location 

in STEM mode. An annular dark-field STEM image showing the GLC and the nearby dry region 

is shown in Fig. 1B, and averaged EEL spectra obtained from those regions are shown in Fig. 1C. 

As a result,  and  is respectively obtained to be 0.28 and 0.25 with Eq. 

(S1-1), yielding the liquid thickness of ~9.6 nm. 

Above calculation relies on the assumption that the encapsulated liquid is pure water. 

Since the exact concentrations of the other components cannot be measured precisely, the 
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calculation is repeated by assuming that the GLC is filled only by NaCl. The electron inelastic 

mean free path at 200 keV in NaCl is given by 229 nm (27). The resulting thickness in the case of 

NaCl filling is ~6.9 nm. It is likely that the actual thickness of the encapsulated liquid would lie 

between two values (6.9 ~ 9.6 nm), obtained from the pure water and the pure NaCl in the GLC. 

This estimation for the liquid thickness made by EELS is consistent with results obtained from the 

geometrical analysis and the image simulations of GLC (see below). 

 

B. Thickness measurement by geometrical relationship in morphology of GLC 

The height of the liquid pocket can also be estimated using the geometrical scaling relationship 

between the height and the lateral size established for a bubble encased between a graphene 

monolayer and a substrate (28). When the encapsulated bubbles are smaller than approximately 

500 nm, they tend to be round with the height-to-radius ratio being approximately 0.1. For bubbles 

whose sizes are larger than 500 nm, they usually have triangular or trapezoidal shapes. We 

captured an image that shows shape and size of the liquid pocket containing nanoparticles recorded 

in movie S1 (Fig. S6). The liquid pocket shows a round shape with a radius of approximately 50 

nm so that it can be classified as a round-type bubble according to ref. (28). Considering the GLC 

is composed of two graphene sheets, the height of the liquid pocket can be estimated to be about 

10 nm with height-to-radius ratio, 0.1, and the radius, 50 nm, of the liquid pocket. 

 

C. Observation of transient overlaps between nanoparticles 

The thickness of the encapsulated liquid can be confirmed from the time-series TEM images 

showing overlaps between nanoparticles. We identified an event in which images of three 

nanoparticles stay overlapped for a few seconds without coalescence between them (Fig. S7). Each 



 
 

 

of the three nanoparticles can be identified in the time-series TEM images as the overlapped 

regions between them are darker than other regions. In addition, each of the nanoparticles initially 

overlapped by the others can be distinguished later as they diffuse away from the other 

nanoparticles. Therefore, the encapsulated liquid is expected to be thicker than the three 

nanoparticles arranged side by side along the viewing direction of the TEM with a little gap 

between them. Considering that the measured diameters of the three nanoparticles are given by 1.4 

nm, 1.4 nm, and 1.7 nm, and the length of ligand molecules on the nanoparticle surfaces is 0.7 nm, 

the thickness of the confined liquid is larger than at least 8.7 nm, which is the sum of the effective 

diameters of the three ligand-passivated nanoparticles. 

 

D. Comparison to simulated TEM images of GLC 

The estimated thickness of the GLC is further confirmed by comparing TEM images generated 

from model GLCs with known thicknesses and the experimental TEM images. At first, we 

performed molecular dynamics simulations for model GLCs consisting of TIP3P water molecules 

(29) between two sheets of graphene with the Large-scale Atomic/Molecular Massively Parallel 

Simulator (LAMMPS) package (18 Jun 2019 version) (30). The lateral dimensions of the 

simulation box were set to 82.38 Å by 82.38 Å. The simulation was performed multiple times by 

changing the height of the simulation box (the distance between two graphene sheets) from 4 nm 

to 12 nm with a step size of 2 nm. The top frozen graphene sheet was rotated in-plane by 11 degrees 

with respect to the bottom frozen graphene sheet to reproduce the bihexagonal pattern observed in 

the fast Fourier transform (FFT) of a TEM image in our experiment (see Fig. S8). The number of 

TIP3P water molecules varies with the height of the simulation box to match the density of water 

to 1 g/cm3. A CHARMM force field was implemented to simulate TIP3P water molecules under 



 
 

 

300 K and 1 bar. After an energy minimization and 100 fs-long NVT ensemble simulation with a 

time step of 1 fs and the Nosé-Hoover thermostat, we performed the NPT ensemble simulation 

with the Nosé-Hoover barostat for 100 ps. 

The TEM simulations of the model GLCs were performed using the multislice algorithm 

(31). The simulation boxes were split into 1 Å-thick slices parallel to the graphene sheets. 

Acceleration voltage, third-order spherical aberration, fifth-order spherical aberration of 

microscope, absolute temperature, and the number of phonon configurations were set to 200 kV, 

1 mm, 3 mm, 300 K, and 5, respectively. Varying values of defocus were used, explicitly, 0, -50, 

-100, and -150 nm. The standard deviation and the sampling size for the defocus distribution were 

set to 40 Å and 10 Å, respectively. The size of an objective aperature was set to 30 mrad with 

values of the minimum illumination angle and the maximum illumination angle being given by 0 

mrad and 1 mrad, respectively. Finally, Gaussian noise with a signal-to-noise ratio of 0.9 was 

added to make the simulated TEM images resemble experimental images. The FFTs of the 

resulting TEM images was performed using bulit-in scripts embedded in MATLAB. 

The hexagonal patterns, characteristic of hexagonal periodicity of a graphene, shown in the 

FFT of the simulated TEM images can be detected only if the thickness of the GLC is sufficiently 

thin, usually smaller than 10 nm (Fig. S9). Due to the randomly placed water molecules between 

the graphene sheets, the hexagonal FFT patterns become blurred and disappear as the thickness of 

the water layer increases. The maximum thickness beyond which the hexagonal pattern is not 

detectable was found to be 10 nm, which is in good agreement with our estimation of GLC 

thickness calculated using the geometrical relationship between the vertical and the lateral 

dimensions of the GLC. 

  



 
 

 

S2. Calibration of nanoparticle trajectories 

TEM observation performed at high magnifications often suffers from uncontrolled movement of 

a specimen stage, known as drift. The TEM specimen stage drift will hinder correct interpretations 

of nanoparticle dynamics unless properly managed. Based on the assumption that nanoparticles in 

the GLC do not show directional bias, mean nanoparticle velocity can be used to obtain drift-free 

nanoparticle trajectories. Here, the mean nanoparticle velocity, , in the a-

direction is calculated by averaging instantaneous velocities, , of individual nanoparticles 

in the a-direction (Figs. S10A and S10B, lines). The noisy profile of  was subsequently 

smoothened by an FFT filter using built-in scripts embedded in MATLAB (Figs. S10A and S10B, 

bold lines). The low-pass filtered mean velocities, , reflect the overall directionality of 

nanoparticles, which can be attributed to the movement of the TEM specimen stage. Finally, we 

calibrated nanoparticle trajectories with  as follows:  and 

, where  and  respectively denote the two-

dimensional coordinates of the ith nanoparticle at time t before and after calibration. The low-pass 

filtered mean velocities calculated after calibration are vanishingly small at any time t (Figs. S10C 

and S10D). 

The validity of the drift correction procedure described above was confirmed based on the 

in situ TEM movie of immobile nanoparticles dried on a substrate. The specimen was prepared by 

placing a drop of gold nanoparticle solution on a graphene-coated TEM grid and drying overnight. 

JEOL JEM-ARM200F TEM equipped with Gatan OneView detector installed at National Center 

for Inter-University Research Facility (NCIRF) was used to observe the nanoparticles on the 

graphene substrate. Due to the drift of the TEM specimen stage, all nanoparticles observed within 
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the field of view appear to move in one direction (Fig. S11A), and the mean nanoparticle velocities 

have non-zero values during the observation (Fig. S11C and S11D, lines). The low-pass filtered 

mean velocities (Figs. S11C and S11D, bold lines) can also be used to characterize the movement 

of the specimen stage and adjust the time-series images to obtain drift-corrected time-series TEM 

images. The drift-corrected time-series TEM images (Fig. S11B) and the mean nanoparticle 

velocities calculated after the correction (Fig. S11E and S11F) show that the preferential 

nanoparticle movement in one direction caused by the specimen stage drift can be successfully 

corrected by using our method. When this procedure is applied to nanoparticles moving in liquid, 

the nanoparticle movements show no preferential direction (Fig. S12). 

Calibration of nanoparticle trajectories utilizing the low-pass filtered mean velocity does 

not ensure that nanoparticle motion is free of bias. The effect of drift calibration on nanoparticle 

displacements can be monitored by calculating the mean nanoparticle displacement. It was found 

that the time-ensemble average, , of drift-corrected nanoparticle displacements is close to 

zero compared to the result before calibration but still has finite values at long times (Fig. S13). 

Because of the nonvanishing mean displacement at long times, the mean square displacement, 

, has slightly larger values than the variance, , of the 

nanoparticle displacement at long times (Fig. S14A). In fact, the difference between them is the 

same as the square of the mean nanoparticle displacement (Fig. S14B), indicating that the deviation 

of the mean square displacement from the variance originates from the nonzero mean 

displacement. In order to account for the fluctuation in nanoparticle displacements free of bias 

from the finite mean displacement, we considered the difference, , between nanoparticle 

displacement and mean nanoparticle displacement in the calculations of the variance of 

nanoparticle displacement and the non-Gaussian parameter. The number of nanoparticle 
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trajectories used for the calculation of the variance of nanoparticle displacement and the non-

Gaussian parameter is sufficient to achieve statistically reliable results (Fig. S15). 

  



 
 

 

S3. Off-lattice random walk model in dynamically heterogeneous environment 

A. Generalized transport equation 

In this subsection, we provide the derivation of the time-evolution equation of , which 

denotes the joint probability density that a random walker is located at position r and the 

environmental state is at G at time t.  can then be written as (38, 42) 

 (S3-1) 

where  is the probability density that a random walker is placed at the position r after N 

jumps. In a spatially homogeneous environment,  can be expressed as the (N-1)-time spatial 

convolution of , i.e.,  with  being 

equivalent to r, the Fourier transform of which is given by . Here, the Fourier 

transform, , of  is defined by . In addition, on the right-hand side 

of Eq. (S3-1),  denotes the joint probability that the total number of jumps made by a 

random walker is N and the environmental state is at G at time t.  satisfies Sung and 

Silbey’s generalized master equation (43): 

 (S3-2) 

On the left-hand side of Eq. (S3-2),  designates the Laplace transform of

 over t, where the Laplace transform, , of a function, , is defined by 

. On the right-hand side, the rate kernel, , is related to the environment-

coupled sojourn time distribution, , as  in the Laplace domain 
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(38).  is the time evolution operator describing the dynamics of hidden environmental 

variables, G, coupled to the random walker’s motion. 

In order to derive the time-evolution equation of , we take the first-order time 

derivative of Eq. (S3-1). The Fourier-Laplace transform of the resulting equation is given by 

 (S3-3) 

Substituting Eq. (S3-2) into Eq. (S3-3) and using the fact that 

 from Eq. (S3-1), we have 

 (S3-4) 

In such an isotropic environment that  is a function only of , where r indicates the 

length of a single jump made by a random walker,  can be rewritten as 

 (S3-5) 

which is also a function only of the magnitude, k, of the wave vector, k. In Eq. (S3-5), the second 

equality holds for the d-dimensional spherical coordinate system, where  and q respectively 

denote the dimension-dependent factor, , with  

being the gamma function defined by  and the angle between the two vectors, 

k and r.  indicates the volume of the shell enclosed by d-dimensional concentric spheres 

with radii r and r+dr. To obtain the final equation in Eq. (S3-5), we have used the following 
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relation: , where  denotes the nth-order 

Bessel function of the first kind. Substituting the infinite series expression of  into Eq. (S3-

5), the Maclaurin series of  can be easily obtained as 

 (S3-6) 

where  denotes the rising factorial defined by  and  is the qth-order 

moment of , i.e., . In Eq. (S3-6), only even q contributes to  because 

the odd-order moment of an unbiased symmetric distribution vanishes, explicitly, 

. For even q (=2m),  can be expressed as 

. From now on, we will use a new notation, , in replacement of  

to avoid confusion with the displacement moment discussed in subsection B. 

In the continuous, or small-k limit where only the first two terms on the right-hand side of 

the second equality in Eq. (S3-6) are kept, i.e., , Eq. (S3-4) reduces to the 

generalized diffusive transport equation (38): 

 (S3-7) 

where  denotes the environment-dependent diffusion kernel defined by  

. 
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stationary distribution of the environmental state, G, defined by . With this initial 

condition at hand, the expression of  is then given by , which 

further reduces to  by setting the initial position, , of a random walker to be 

the origin of the coordinate system, i.e., . Finally, the formal solution of  can be 

obtained as 

 (S3-8) 

When the dynamics of the environmental state, G, and the G-dependence of the rate kernel are 

modelled at an appropriate level, the analytical expression of Eq. (S3-8) can be found, which will 

be taken into account in subsection C. 

In the fast environmental fluctuation limit, Eq. (S3-7) reduces to the G-independent 

transport equation, , which corresponds to the generalized Fokker-

Planck equation (GFPE) mentioned in ref. (46). In the case of the Fickian diffusion, the G-

independent diffusion kernel, , must read as the s-independent diffusion constant, which 

means that the GFPE becomes the simple diffusion equation describing only the Fickian and 

Gaussian diffusion, not applicable to the Fickian yet non-Gaussian diffusion, as discussed in ref. 

(46). Note here that the main transport equation presented in ref. (38) is not the GFPE but Eq. (S3-

7) enabling a quantitative explanation of the non-Fickian and non-Gaussian transport dynamics as 

well as the Fikcian yet non-Gaussian transport dynamics. In ref. (38), it is never stated that the 

GFPE can be used to explain the Fickian yet non-Gaussian diffusion, which is misclaimed in ref. 

(46). 
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B. The first two moments of displacement 

In this subsection, we calculate the first two nonvanishing moments,  and 

 of the displacement vector, r, which are related to the G-dependent 

displacement distribution, , as 

 (S3-9) 

where  is defined by . Taking the second and fourth 

derivatives of  with respect to k and setting  in the resulting equations, we have 

 (S3-10) 

where q is the angle between the two vectors, k and r, defined by . In Eq. (S3-10), 

the third equality holds for the d-dimensional spherical coordinate system. To obtain the final 

equation in Eq. (S3-10), we have used the following relation: 

 for even q. 
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with  denoting the G-dependent diffusion kernel defined by . Using 

the fact that , we can obtain the expression of  from 

Eq. (S3-11), which is given by 

 (S3-12) 

Using the property of the Dirac delta function and , where 

 denotes the Laplace transform of the propagator, , or the conditional 

probability density that the environment is at state  at time t, given that the environment was at 

state  at time 0, Eq. (S3-12) can be rewritten as 

 (S3-13) 

Integrating both sides of Eq. (S3-13) over G and using the normalization condition, 

, we finally obtain the expression of the mean square displacement, 

, in the Laplace domain: 

, (S3-14) 

where  denotes the mean diffusion kernel defined by . 

Equation (S3-14) is equivalent to the expression of  given in ref. (38). 
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 (S3-15) 

Solving Eq. (S3-15) with respect to , we have 

  (S3-16) 

Using the fact that , Eq. (S3-16) can be rewritten as 

  (S3-17) 

The integration of Eq. (S3-17) over G yields the expression of : 
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In Eq. (S3-20),  denotes the deviation, , of the diffusion kernel 

from its average. Substituting , or Eq. (S3-14), into Eq. (S3-19), we finally 

obtain 

 (S3-21) 

In the small-jump length (l) limit, the second term on the right-hand side of Eq. (S3-21) vanishes, 

resulting in the same expression for  as in ref. (38). Before ending this section, it should be 

noted that the observed nanoparticle motion in the GLC shows ergodic behavior; both mean square 

displacements calculated in the two different ways, the ensemble average and the time-ensemble 

average, linearly increase with time and are the same as each other (Fig. S19). The theoretical 

results based on the ensemble average can thus be compared with the experimental results based 

on the time-ensemble average. 

C. Explicit model of diffusion kernel and environmental dynamics 

In this subsection, we provide an explicit model of the environmental state (G)-dependence of the 

diffusion kernel and the dynamics of G in accordance with the experimental data presented in Fig. 

2 of the main text. As shown in Fig. 2A, the variance of nanoparticle displacements linearly 

increases with time. In our theory considering a random walker’s motion without any bias in a 

specific direction, the mean square displacement consistent with the experimental result is given 

by  with  denoting the mean diffusion coefficient, or  in 

the Laplace domain. From comparison with Eq. (S3-14), it is found that the (G, s)-dependent 

diffusion kernel, , must be independent of s in our case, which can be achieved when  

is given by an exponential distribution with the G-dependent jump rate, , i.e., , 
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or   in the Laplace domain, resulting in . 

Subsequently,  becomes the G-dependent diffusion coefficient, explicitly, 

. , or D undergoes a time-dependent fluctuation, depending 

on the dynamics of G. 

How diffusion coefficients are distributed is one of important inputs required to model the 

dynamics of the environmental state. As shown in Fig. 2C, the nanoparticle diffusion coefficient 

follows a gamma distribution,  with  and  being the mean, , 

and variance, , respectively. A use of lognormal distribution can also be considered, but the 

gamma distribution model makes it possible to obtain the analytical expression of the displacement 

distribution as will be shown below. With  at hand,  can be rewritten as 

 (S3-22) 

In order to model the fluctuation of the diffusion coefficient, one can make use of the fact that the 

sum, , of n squared Gaussian random variables, , follows a chi-squared 

distribution: 

 (S3-23) 

where each Gaussian random variable contributing to Y has zero mean and unit variance, and they 

are mutually independent of each other, in short, . Equating Eq. (S3-23) with Eq. (S3-

22) with their own differentials, i.e., , it is found that the shape parameter, a, 

of the gamma distribution [Eq. (S3-22)] and the diffusion coefficient, D, are respectively given by 

 (S3-24A) 
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 (S3-24B) 

Assuming that  are stationary Markovian processes, also known as Ornstein-

Uhlenbeck processes, the time-evolution operator, , of the environmental variables, G,  can 

be explicitly written as 

 (S3-25) 

where  denotes the time-evolution operator of the ith Ornstein-Uhlenbeck mode, .  is 

the relaxation rate of the time correlation function for , given by . 

Substituting Eqs. (S3-24) and (S3-25) into Eq. (S3-8) with , we 

have, in the time domain, 

 (S3-26) 

where  is the constant defined by , which can be rewritten as  

using  and Eq. (S3-24A). In Eq. (S3-26), the stationary distribution, , is given by 

the product of n individual Gaussian distributions, i.e., 

. The Fourier transform, , of the normalized displacement 

distribution, , is then obtained by integrating both sides of Eq. (S3-26) over G: 

 (S3-27) 
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where  is defined by . In Eq. (S3-

27), we have employed the result given in ref. (44). to obtain the final equation. For simplicity, the 

relaxation rates, ’s, are here assumed to be the same as each other, i.e., . From Eq. 

(S3-27), we finally obtain the following expression of : 

;  (S3-28) 

When , Eq. (S3-28) with Eq. (S3-24A) is equivalent to Eq. (1B) presented in the main text. 

As shown in Eq. (S3-28), the k-dependence of  is determined by  so that we 

need to explicitly model the distribution, , of the jump length, l. In Fig. S20, it is shown that 

the distribution of the jump length, or the distance a nanoparticle travels in the two-dimensional 

field of view during the experimental time resolution follows an exponential distribution, 

 with  denoting the characteristic jump length. Using Eq. (S3-5) with , 

the Fourier transform, , of  is calculated as 

  (S3-29) 

The displacement distribution, , can be calculated by performing the inverse Fourier 

transform of Eq. (S3-28): 

  (S3-30) 

which corresponds to the inversion of the radial Fourier transform defined with Eq. (S3-5). When 

, Eq. (S3-30) reads as 

  (S3-31) 
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the short-time limiting expression of which is given by 

. Although  is equal to zero for nonzero r, the 

numerical estimation of  is not well-defined because  oscillates over k in 

such a divergent manner that its amplitude keeps increasing with k. In the large-k limit where  

given by Eq. (S3-29) vanishes, Eq. (S3-28) becomes independent of k so that the integrand in Eq. 

(S3-31) follows a divergent oscillatory tail, , resulting in the failure of the numerical 

estimation of Eq. (S3-31). To overcome this numerical problem in the calculation of Eq. (S3-31), 

we employ the -Padé approximant to  with Eq. (S3-29) (45), which diverges 

as  at large k, making the k-integration in Eq. (S3-31) numerically convergent. The 

-Padé approximant to  becomes negative at large k, which is unacceptable to 

. With the -Padé approximant to , a use of larger M yields more exact 

estimation of  at small r. In Fig. 2E and 2F, we have used M = 100 to calculate Eq. (S3-31) 

with Eqs. (S3-28) and (S3-29). In Fig. 2F, the small pixel limit of the nanoparticle displacement 

distribution was obtained by calculating Eq. (S3-31) with Eqs. (S3-28) and (S3-29), and 

. 

 The non-Gaussian character of Eq. (S3-31) with Eqs. (S3-28) and (S3-29) can be captured by 

the non-Gaussian parameter (NGP), , which is defined by  

(39, 40). For Gaussian displacement distributions,  is identical to zero. Nonzero positive 

NGP reflects the heterogeneous transport dynamics of a tracer particle (38). To calculate the NGP, 

we need the explicit expression of  and . In the present model for the diffusion kernel 
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and the environmental dynamics, which is characterized by Eqs. (S3-24) and (S3-25),  is 

simply given by . Substituting the Laplace transform, , of , given by 

 into Eq. (S3-21) and performing the inverse Laplace transform of the resulting 

equation, we have 

 (S3-32) 

where the diffusion kernel correlation function, , in the time domain can be explicitly 

calculated by using Eqs. (S3-24B) and (S3-25) in Eq. (S3-20). With Eq. (S3-24B) at hand, the 

time-domain expression of Eq. (S3-20) can be written as 

 (S3-33) 

In Eq. (S3-33), enjoying the fact that  are mutually independent Gaussian random variables, 

the fourth-order correlation, , can be easily calculated as 

 (S3-34) 

With this result, Eq. (S3-33) further reduces to 

 (S3-35) 

with  denoting the relative variance of D, i.e., . Finally, we obtain the explicit 

expression of the NGP, which is given by 
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 (S3-36) 

where the second- and fourth-order moments,  and , of the jump length distribution, 

, are respectively calculated as  and . The two-

dimensional version of Eq. (S3-36) is presented as Eq. (1A) in the main text. 

Equation (S3-36) for the non-Gaussian parameter can be used to find the value of the time 

scale, t, of the diffusion coefficient fluctuation. In Eq. (S3-36), values of  and  are obtained 

from diffusion coefficients of individual nanoparticles estimated from the variance of the 

displacement at times shorter than one second (see Figs. 1D and 1F); 0.12 nm2/s and 

0.26. The value of the characteristic jump length, , is obtained as 0.09 nm from the best fit 

of  to the experimental data for the jump length distribution (see Fig. S20). The 

value of t is obtained as 3.58 seconds from the best fit of Eq. (S3-36) to the experimental data 

for the NGP. In Eq. (S3-28), the number, n, of the Ornstein-Uhlenbeck modes is chosen to be eight, 

considering the relation between n and  in the present model, given by . 
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S4. Kinetics of two-step coalescence between ligand-passivated nanoparticles 

A. Two-step coalescence model 

In this subsection, we deal with how the survival probability, , that a pair of nanoparticles 

do not coalesce by time t are related to the distributions of the time elapsed at each step in the two-

step coalescence model discussed in Fig. 5 of the main text. At first, let  denote the 

distribution of time taken for a pair of nanoparticles initially distant by  to merge together. In 

addition, the distribution of time taken for a pair of nanoparticles initially distant by  to form the 

complex at contact separation, s, and the lifetime distribution of the encounter complex are 

respectively denoted by  and , as presented in the main text.  can then be 

expressed as the time convolution of  and : 

 (S4-1) 

whose Laplace-domain expression is given by 

 (S4-2) 

Using the relation between  and , i.e.,  in the time domain, 

or  in the Laplace domain,  can be written from Eq. (S4-2) as 

  (S4-3) 

where  and  respectively denote the Laplace-transformed survival probabilities 

related to  and  as  and  in the 
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same way as the relation between  and . The inverse Laplace transform of Eq. 

(S4-3) yields 

  (S4-4) 

When  is an exponential distribution givne by , Eq. (S4-4) reads as 

  (S4-5) 

In Eq. (S4-4) or (S4-5), the explicit expression of  hinges on the first encounter dynamics 

of coalescing nanoparticle pairs in the presence of fluctuating diffusivity, which will be treated in 

details in the next subsection. 

B. Radially symmetric propagator and associated survival probability 

On the basis of the transport model described in section S3, we derive the radially symmetric 

propagator, , which is the conditional probability density that a random walker is distant 

from the coordinate origin by r at time t, given that the initial distance of the random walker was 

 at time 0. Here,  satisfies the absorbing boundary condition, , at 

contact separation, s. The whole space integration of  is then nothing but : 

 (S4-6) 

At first, let us consider the boundary-free propagator,  in the two-dimensional 

space. In Eq. (S3-31),  is the displacement distribution, where r is just the magnitude of the 

displacement vector. When the initial position, , of a random walker is separated from the 

coordinate origin, the magnitude of the displacement vector is given by  

with q denoting the angle defined between two vectors, r and . In replacement of r with R, the 
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displacement distribution, , given in Eq. (S3-31) becomes the conditional probability 

density, , which is given by 

  (S4-7) 

The radially symmetric propagator, , is then obtained by averaging Eq. (S4-7) over q as 

  (S4-8) 

To obtain the final equation in Eq. (S4-8), we have used the addition theorem for the Bessel 

function, , i.e., . 

The radially symmetric propagator, , satisfying the absorbing boundary condition, 

, can be obtained by modifying the -dependent factor within the square 

bracket in Eq. (S4-8). When the diffusion coefficient, D, does not undergo any stochastic 

fluctuation but is constant over time as , and  in Eq. (S3-28) is replaced by 

 with , the analytical expression of  is given by (42) 

  (S4-9) 

where  and . In Eq. (S4-9),  and  respectively denote the 

nth-order modified Bessel functions of the first and the second kind. Using the Bromwich integral 

formula (62), the inverse Laplace transform of Eq. (S4-9) can be calculated as 
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  (S4-10) 

where  denotes the nth-order Bessel function of the second kind. Equation (S4-10) tells us 

how the -dependent factor in Eq. (S4-8) must be modified to make satisfy the 

absorbing boundary condition, . When a random walker obeys the generalized 

transport equation, Eq. (S3-4), characterized by Eqs. (S3-24) and (S3-25) with , 

 reads as 

  (S4-11) 

where  is given by Eq. (S3-28). 

To calculate the survival probability, , associated with Eq. (S4-11), let us substitute 

Eq. (S4-11) into Eq. (S4-6) with , resulting in 

   (S4-12) 

On the right-hand side of Eq. (S4-12), however, the numerical integration of 

 over r is not well-defined because for given k and s, 

 oscillates over r in such a divergent manner that its amplitude 

keeps increasing with r. Note here that  obtained after the whole-k integration is a well-

behaved function of r that satisfies the condition that  approaches zero in the large-r 
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limit. Introducing the exponentially decreasing function, , of r to solve the problem 

involved in the integration over r in Eq. (S4-12), Eq. (S4-12) can be rewritten as 

  (S4-13) 

After some manipulation with the Bessel functions in Eq. (S4-13), we finally have 

  (S4-14) 

In Eq. (S4-14), we don’t need to use the Padé approximant to  determining the k-

dependence of  unlike Eq. (S3-31) because for given s and , the k-dependent integrand 

itself in front of  gradually approaches zero in an oscillatory manner as k increases, assuring 

the convergence of the integration over k in Eq. (S4-14). When  in Eq. (S3-28) is replaced 

by , the one- and three-dimensional formulas of  and  are presented 

in ref. (60). 

Eq. (S4-11) or (S4-14) is applicable to the case where one nanoparticle moves with respect 

to the other nanoparticle pinned at the coordinate origin. For a pair of mobile nanoparitlces, the 

mean, , and the relative variance, , of the relative diffusion coefficient, , and the 

distribution, , of the relative jump length should be used instead of the mean, , and the 

relative variance, , of the diffusion coefficient, D, and the distribution, , of the jump length. 

Values of relative diffusion coefficients are estimated from the linear time dependence of the time-

averaged variance of the relative displacement, , defined for a given 

pair of coalescing nanoparticles 1 and 2. Here,  denotes the relative position vector, 
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, defined with  and  indicating the positions of the particles 1 and 2, respectively. In addition, 

like the distribution of the jump length, the distribution of the relative jump length can also be 

modelled as the exponential distribution,  with  denoting the characteristic 

relative jump length as shown in Fig. S20. With , , , and the 

Fourier transform, , of , given by , Eq. (S3-28) can then be 

rewritten as 

;  (S4-15) 

where  denotes the second-order moment of , calculated as . For a later use 

in Fig. S27, we also provide the diffusive transport version of Eq. (S4-15) as follows: 

;  (S4-16) 

where  in Eq. (S4-15) has been replaced by . 

In the two-step coalescence scheme described in Fig. 5A of the main text, s is defined as the 

contact separation upon a ligand-mediated contact between nanoparticles, i.e., the sum of the 

thickness of the double ligand layer, 1.4 nm, and the core-core contact distance, , 

defined for a given pair of coalescing nanoparticles 1 and 2 with  and  denoting the core radii 

of the particles 1 and 2. Because  varies from coalescing pair to coalescing pair, we need to 

consider the s-averaged survival probability, , which is obtained by averaging both 

sides of Eq. (S4-5) over s as 

  (S4-17) 
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where  is given by Eq. (S4-14) with Eq. (S4-15). In Fig. 5C of the main text, we presented 

the theoretical results obtained by calculating Eq. (S4-17) with the values of , , and  

given by  nm2/s, 0.375, and 0.196 nm, respectively. The value of the 

diffusivity relaxation time, t, which is one of intrinsic characteristics of the environment 

nanoparticles are embedded in, is chosen to be the same as determined in Fig. 2B in the main text. 

For the single-step coalescence scheme where two nanoparticles initially distant by  merge 

together upon a direct contact between their nanoparticle cores (Fig. 5A in the main text), we 

presented the theoretical results obtained by calculating  in Fig. 5C of the main text. 

Here, is obtained by averaging  over the core-core contact distance, , 

where  is the same as used in the two-step coalescence scheme except that s is replaced 

by , explicitly, 

  (S4-18) 

with  being given by Eq. (S4-15). 

Finally, we consider the survival probability, , accounting for coalescence events 

between nanoparticles located at various separations.  is equivalent to the ratio, 

, between the number densities of nanoparticles at a time  and the initial time, . The 

nanoparticle number density, , satisfies the following rate equation:  

,  (S4-19) 
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where  denotes the forward bimolecular coalescence rate coefficient, which is related to the 

fraction of nanoparticle pairs initially distant by  that coalesce per unit time, or  by 

(61) 

.  (S4-20) 

In Eq. (S4-20),  and  denote the initial pair correlation function and the short-range cutoff 

distance, respectively. With Eq. (S4-17) and  at hand, the corresponding rate cofficient can 

be written from Eq. (S4-20) as 

.  (S4-21) 

Using Eq. (S4-19), the relation between  and , given by Eq. (S4-21), can be obtained 

as 

.  (S4-22) 

Equation (S4-22) is used in Fig. S29 with Eqs. (S4-17) and (S4-21), the same parameter values as 

in Fig. 5C, and the initial pair correlation function being given by the short-time profile for the 

pair correlation function in Fig. 3D. The value of  is chosen as the sum of the mean nanoparticle 

diameter, 1.4 nm, and the thickness, 1.4 nm, of the double ligand layer formed upon nanoparticle 

contact. 
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S5. Rotational motion of nanoparticles 

The rotational diffusion coefficient of nanoparticles can be measured by tracking rotational motion 

of the nanoparticles. Although it is difficult to quantify rotational motion of a nanoparticle in low-

magnification TEM images for a spherical nanoparticle as observed in our experiments, the degree 

of the nanoparticle rotation can be estimated from changes in the lattice fringes of a crystalline 

nanoparticle in its time-series TEM images with a sufficient resolution (59). 

In our observations, we could identify the changes in the lattice fringes of three gold 

nanoparticles, with diameters ranging from 2.5 nm to 4 nm. As shown in the snapshots of the in 

situ TEM movie of a representative nanoparticle, (Fig. S24A and movie S4), the lattice fringes of 

the nanoparticle rotate over time. The lattice fringes of the nanoparticle correspond to the (111) 

lattice plane of gold, and are visible when the crystallographic planes of the nanoparticle are nearly 

parallel to the viewing direction in TEM.  The rotational motion of the rotating nanoparticles can 

be quantified by using the fast-Fourier transforms (FFTs) of the time-series TEM images. In Fig. 

S24B, the direction represented by the straight line joining two circles centered on a pair of peaks 

corresponds to Au [111] direction. The rotational motion of the nanoparticle can then be quantified 

by changes in the angle, , between the Au [111] direction of the nanoparticle and the horizontal 

line of the image during the observation. 

The rotational diffusion coefficient, , of the nanoparticles can be estimated by 

calculating the time-ensemble-averaged variance, , of the angular displacement. In our 

observations,  is linear in time lags, indicating that the rotational motion of the 

nanoparticles follows normal diffusion as shown in Fig. S24C. Based on the relation, 

, the optimized value of the rotational diffusion coefficient is found to be 0.318 
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rad2/s, which is in close agreement with the value, 0.265 rad2/s, of the rotational diffusion 

coefficient, estimated from the mean encounter complex lifetime identified as rotational relaxation 

time in the main text. It is also shown in Fig. S24D that the angular displacement distribution of 

the nanoparticle is well explained by the Gaussian distribution with the value of DR = 0.318 rad2/s. 

These agreement indicates that the rotational relaxation of the nanoparticles forming an encounter 

complex determines the lifetime of the complex, one of critical factors in kinetics of two-step 

coalescence between ligand-passivated nanoparticles. 

  



 
 

 

S6. Nanoparticle movement near the liquid-vapor interface in a GLC 

One interesting question to ask here would be, “How the observed diffusion and the coalescence 

of nanoparticles change when a liquid-vapor interface is introduced near the nanoparticles?” To 

answer this, we tracked ten nanoparticles in the vicinity of a nanobubble, which is generated with 

a relatively-low electron dose rate (Materials and Methods, and movie S5) (21). The nanoparticles 

near the nanobubble clearly show directed motion due to its growth (Fig. S25A). Note that no 

coalescence event between nanoparticles was observed despite the high density of nanoparticles 

at the liquid-vapor interface. The oriented attachment and coalescence between nanoparticles 

cannot occur when nanoparticle rotation is suppressed. The hindered rotation of nanoparticle is 

directly observed as a truncated nanoparticle pinned at the interface maintains a similar projected 

morphology during observation (Fig. S25B). 

The effect of the moving interface on nanoparticle transport can be understood by 

examining the mean and the variance of longitudinal or transverse displacements of nanoparticles 

in the direction parallel or perpendicular to the displacement vector joining the initial and the final 

positions (Figs. S25C and S25D). The mean longitudinal displacement, , grows linearly 

with time at a rate of 0.58 nm/s (Fig. S25C, orange line), which is close to the measured growth 

rate of the nanobubble, 0.47 nm/s (Figs. S25E and S26). These similar values demonstrate that the 

growth of the nanobubble causes the ballistic motion of nanoparticles. On the other hand, the mean 

transverse displacement, , is essentially zero for all observation times (Fig. S25C, blue 

line), indicating that there is no directional bias in the transverse direction. 

The degree of randomness in nanoparticle motion is reflected by the variance of 

nanoparticle displacements. The longitudinal diffusion coefficient, , and the transverse 

diffusion coefficient, , estimated from the linear time dependence of variances of longitudinal 
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and transverse displacements have similar values (Fig. S25D). The value, 0.17 nm2/s, is nearly the 

same as the value of the diffusion coefficient, 0.12 nm2/s, measured from the bubble-free GLC 

(Fig. 2A). Therefore, the moving interface near nanoparticles causes a shift of the mean particle 

position but has little influence on the fluctuation around the mean position. 

  



 
 

 

S7. Estimation of electron-beam induced heating of GLC 

The electron beam might affect the nanoparticle motion in the GLC through the local heating of a 

specimen induced by the irradiation. Small volume of the liquid encapsulated in a GLC (usually 

less than one attoliter) and an electron fluency required for high-resolution imaging might increase 

the temperature of the medium where nanoparticles diffuse. In addition, the presence of 

nanobubbles, which can be considered as a poor thermal conductor, in the vicinity of gold 

nanoparticles can signify the electron-beam induced heating effects. We calculated the amount of 

temperature rise for 1) gold nanoparticles in the quiescent GLC (movie S1) and 2) gold 

nanoparticles in a GLC with nanobubbles (movie S5). To estimate the maximum temperature rise 

caused by the electron beam, all energy dissipated during when electrons pass through the 

specimen is assumed to be converted to heat. According to previous studies (12, 64), the electron-

beam induced temperature rise, , of a particle in a medium is given by 

                         (S7-1) 

where Je, h, and dE/dX respectively denote the dose rate, the heat transfer coefficient of the 

surrounding medium, and the energy loss of the electron passing through the particle, all in SI 

units. Here, the first term of the right-hand side represents the temperature rise of a particle induced 

by the irradiation and its dissipation to the surrounding medium, and the second term of the right-

had side represents the temperature rise of the medium. The total energy loss of the electron, 

dE/dX, is expressed as the product of the energy dissipation over the unit length, dE/dx, and the 

mean particle size, rp. When the electron passes through a gold nanoparticle, dE/dx is given by 

0.261 eV/nm (12). In addition,  is given by (64) 
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where , a, Cp, and L respectively denote the thermal diffusivity, the beam radius, the specific 

heat capacity, and the liquid thickness.  represents the power adsorbed by a matter and given by 

          (S7-3) 

where  and S respectively denote the electron inelastic mean free path in the medium and the 

stopping power of the medium for electrons. Substituting Eqs. (S7-2) and (S7-3) into Eq. (S7-1) 

yields the temperature rise of the particle due to the electron beam irradiation.  

      (S7-4) 

For 200 keV electrons passing through the water, the value of  is estimated to be 320 nm 

by interpolating the values measured at 120 keV and 300 keV (51). The values of S, , hwater, 

and Cp of water are respectively given by 4.4768×10-14 J·m2/kg (65), 1.4×10-7 m2/s, 103 W/m2·K, 

and 4180 J/kg·K. In our experiment, a, L, rp, and Je are found to be about 30 nm, 10 nm, 0.7 nm, 

and 104 e-/Å·s. Putting these values into Eq. (S7-4) yields the value of the temperature rise of the 

gold nanoparticle fully immersed in a water, ~7 K. This value is only 2 % of the room temperature, 

and expected to give little effects on the nanoparticle mobility when the nanoparticles are 

suspended in the quiescent GLC (movie S1). 

The presence of gas bubbles near nanoparticles can increase the temperature rise induced 

by the electron beam due to the smaller heat transfer coefficient of the gaseous species. The gas 

bubble formed during liquid-phase TEM experiment is known to be hydrogen gas, but we here 

adopt properties of air for the calculations. For air, hair, , and Cp respectively amount to 10 

W/m2·K, 2.239×10-5 m2/s, and 1000 J/kg·K. When 200 keV electrons pass through the air, the 

value of S is given by 3.9584×10-14 J·m2/kg according to ref. (65).  is calculated to be 1252 nm 
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(66). As a result of calculations, the temperature of the gold nanoparticles fully surrounded by air 

is expected to increase by ~700 K. Although the degree of the temperature rise of the nanoparticles 

in the gas is significantly high, it should be noted that the observed nanoparticles indeed contact 

to both the encapsulated water and the gas bubble (movie S5). In this case, the heat of the 

nanoparticles can be transferred to the water and the air and the overall heat transfer coefficient 

can be obtained by simply adding the heat transfer coefficients of the air and the water by assuming 

parallel heat transfer processes, hoverall = hwater + hair ≈ hwater = 1000 W/m2·K. Therefore, it can be 

seen that the electron-beam induced heating would not be significant if the nanoparticles make 

contact with the liquid medium. Most of the heat generated by electron scattering would be 

dissipated through the liquid, and we believe that the electron-beam induced heating may not 

significantly influence the nanoparticle dynamics observed in this work. 

  



 
 

 

 

Fig. S1. Configuration of the graphene liquid cell. (A) TEM image showing liquid pocket within 

graphene liquid cell (GLC). In this image, the two holes of the carbon film TEM grids overlap. A 

sample liquid was encapsulated by two sheets of a suspended graphene in the overlapping region 

(Materials and Methods). (B) Schematic illustration of the side view showing the components of 

the GLC. 

  



 
 

 

 

Fig. S2. Size distribution of nanoparticles. The diameters of 69 nanoparticles, measured directly 

from the in situ TEM movie (movie S1), range from 0.5 nm to 3.5 nm. The mean and the standard 

deviation of the nanoparticle diameters is calculated to be 1.47 nm and 0.52 nm, respectively. 

  



 
 

 

 

Fig. S3. Raman spectrum of graphene synthesized by chemical vapor deposition. Raman 

spectrum is obtained for a graphene sample transferred on a holey carbon TEM grid with an 

excitation wavelength of 532 nm. The negligible D band at 1350 cm-1 indicates that the graphene 

has few defects and hydrocarbon contaminations. (inset) Optical micrograph of the graphene-

transferred TEM grid. 

  



 
 

 

  

Fig. S4. Formation and disappearance of nanobubbles in the GLC. (A) TEM image showing 

the formation of nanobubbles at an early stage of the in situ TEM observation, confirming the 

presence of an entrapped liquid in the GLC. (B) TEM image obtained after nanobubbles 

disappeared under a more intense electron beam irradiation than in (A). The images shown in (A) 

and (B) were obtained in the same spatial region, and the time interval between (A) and (B) is 5.47 

s. 

  



 
 

 

 

Fig. S5. Energy-dispersive X-ray spectroscopy of GLC. (A) Annular dark-field scanning TEM 

image of GLC. (white box) The region where energy-dispersive X-ray spectroscopy (EDX) is 

performed. The presence of liquid is confirmed by observing bubble formation in TEM mode prior 

to the scanning TEM imaging. (B) EDX spectrum obtained in the region marked with the white 

box in (A). (table) Quantification result of the EDX spectrum. The oxygen Ka peak indicates the 

presence of water within the GLC. The atomic ratio of sodium to oxygen is 0.057, which is below 

the solubility, 0.11 in atomic ratio, of NaCl in water. 

  



 
 

 

 

Fig. S6. The shape and the size of the liquid pocket within the GLC. (A) Raw TEM image of 

the liquid pocket, which was obtained by magnifying the center region of Fig. S1A. (B) TEM 

image shown in an overlaid by a circle to mark the boundary of the liquid pocket. The liquid pocket 

within the GLC has a blister-like shape with a radius of approximately 50 nm. The thickness of 

the liquid pocket is also estimated to be approximately 10 nm using the relationship between the 

radius and the thickness of the GLC reported in ref. (28). Note that the image was acquired from 

the in situ TEM observation for over three minutes in the center region of the GLC, which resulted 

in severe degradation of the GLC. The analysis described in the main text was performed over the 

first 18 seconds of the entire movie to circumvent the effects of GLC degradation on nanoparticle 

motion (Materials and Method). 

  



 
 

 

 

Fig. S7. Overlap event of three nanoparticles in GLC. (A) Time-series TEM images of the three 

nanoparticles, NP1, NP2, and NP3, which stay overlapped for a few seconds without coalescence 

between them. This overlap event indicates that the nanoparticles are located at different distances 

from the graphene surface (see section S1). (B) Trajectories of the three nanoparticles shown in 

(A). (C) Mean square displacements of the three nanoparticles shown in (A). The nanoparticle 

diffusivity varies slightly from nanoparticle to nanoparticle, presumably depending on the distance 

of the nanoparticle from the graphene surface. 

   



 
 

 

 

Fig. S8. Fast Fourier transform of a snapshot of the real-time TEM movie showing the 

presence of two graphene sheets. (A) Snapshot of the in situ TEM movie (movie S1). (B) Fast 

Fourier transform of the TEM image shown in (A), clearly showing two hexagonal patterns marked 

by orange and blue circles. Each hexagon indicates the presence of a single graphene sheet (see 

section S1 for more details). 

  



 
 

 

 

Fig. S9. Fast Fourier transforms of simulated TEM images of model GLCs with various 

values of thickness and defocus. Model GLCs consisting of TIP3P water molecules between two 

graphene sheets were simulated using the Large-scale Atomic/Molecular Massively Parallel 



 
 

 

Simulator package. Trajectories of all atoms in model GLCs can be converted into TEM images 

using the multislice algorithm (see section S1 for details). Fast Fourier transforms of the simulated 

TEM images clearly show a bihexagonal pattern like Fig. S8B when the vertical distance, d, 

between the two sheets is small, while the bihexagonal pattern becomes gradually blurred and 

finally disappear as d increases. 

  



 
 

 

 

Fig. S10. Calibration of TEM specimen stage movement. (A and B) Mean nanoparticle 

velocities in the (A) x-direction and (B) y-direction in the in situ TEM images. (lines) Experimental 

data. (bold lines) Smoothed profiles of mean nanoparticle velocities using the fast Fourier 

transform (FFT) filter method in MATLAB. (C and D) Mean nanoparticle velocities in the (C) x-

direction and (D) y-direction after calibration (see section S2 for details). (lines) Experimental data 

after calibration. (bold lines) Smoothed profiles of mean nanoparticle velocities after calibration. 

  



 
 

 

 
Fig. S11. Validation of our method for TEM specimen stage drift correction. (A) Time-series 

TEM images of gold nanoparticles dried on the graphene substrate moving in the direction of the 

TEM specimen stage drift. (dashed circle) Representative nanoparticle overlaid with its trajectory. 

In the rightmost panel, it is shown that the nanoparticle moves along the straight line parallel to 

the drift direction. (B) Time-series TEM images of gold nanoparticles after drift correction. 

(dashed circles) The nanoparticle marked in (A). In the rightmost panel, it is shown that the 



 
 

 

nanoparticle’s position after the drift correction does not change over time. (C and D) Mean 

nanoparticle velocities in the (C) x-direction and (D) y-direction in the in situ TEM images. (lines) 

Experimental data. (bold lines) Smoothed profiles of mean nanoparticle velocities using the fast 

Fourier transform (FFT) filter method in MATLAB. (E and F) Mean nanoparticle velocities in the 

(E) x-direction and (F) y-direction after calibration (see section S2 for details). (lines) 

Experimental data after drift correction. (bold lines) Smoothed profiles of mean nanoparticle 

velocities after drift correction. 

  



 
 

 

 

Fig. S12. Distribution of nanoparticle displacements during the experimental time resolution. 

Nanoparticle displacements in the (A) x-direction and (B) y-direction in the in situ TEM images 

during the temporal resolution. (symbols) Experimental data. (dashed lines) Gaussian fits best 

fitted to the central regions of the experimental data. (solid lines) Exponential fits best fitted to the 

tail regions of the experimental data. (dot-dashed lines) Power-law fits best fitted to the tail regions 

of the experimental data. As shown in the figure above, nanoparticle displacements are distributed 

as a single-peaked, unimodal distribution. Here, we could not detect any multimodal features (12) 

or any power-law characteristics of the displacement distributions caused by the large step 

movements (10, 15). 

  



 
 

 

 

Fig. S13. Mean nanoparticle displacements. (A and B) Mean nanoparticle displacements (A) 

before drift calibration and (B) after drift calibration. (lines) Mean nanoparticle displacements in 

the x-direction and in the y-direction. The mean displacements become close to zero as a result of 

drift calibration (see section S2 for details), but the mean displacements after calibration still show 

finite values at long times. In order to account for the bias-free fluctuation in nanoparticle 

displacements, we used the difference, , between nanoparticle 

displacement and mean nanoparticle displacement in calculations of the variance of nanoparticle 

displacement and the non-Gaussian parameter. 
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Fig. S14. Variance and mean square of nanoparticle displacements. (A) Variance of 

nanoparticle displacements (black symbols) and mean square displacement (MSD) (red symbols) 

of the nanoparticles. (B) The difference between the variance of nanoparticle displacements and 

the MSD (symbols). (line) Square of the mean displacement, . The square of the mean 

displacement is the same as the difference between the variance of nanoparticle displacements and 

the MSD, indicating that the MSD includes the contribution from the nonzero mean displacement. 

In order to account for the fluctuation in nanoparticle displacements free of bias from the nonzero 

mean displacement, we consider the central moments of the nanoparticle displacement (see section 

S2). 
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Fig. S15. Displacement distribution and related quantities measured for 20% less gold 

nanoparticles in the graphene liquid cell. (A) Distributions of nanoparticle displacements at 

various times. (filled symbols) Experimental data shown in Fig. 2E in the main text. (open 

symbols) Displacement distribution calculated after the random exclusion of 20 % of the 

nanoparticle trajectories used in Fig. 2E. (B) Time-ensemble-averaged variance of nanoparticle 

displacements. (filled symbols) Experimental data shown in Fig. 2A in the main text. (open 

symbols) Variance of displacement calculated after the random exclusion of 20 % of the 

nanoparticle trajectories. (C) Non-Gaussian parameter of the nanoparticle displacement. (filled 

symbols) Experimental data shown in Fig. 2B in the main text. (open symbols) Non-Gaussian 

parameter calculated after the random exclusion of 20 % of the nanoparticle trajectories. The 

nanoparticle displacement distributions, the variances of nanoparticle displacements, and the non-

Gaussian parameters, calculated using the subset of the nanoparticle trajectories deviate only 

slightly from those calculated using the full nanoparticle trajectories. 

  



 
 

 

 
Fig. S16. Transport dynamics investigated under various electron dose rate conditions. (A) 

Single-particle time-averaged variance of nanoparticle displacements observed at different dose 

rates: (orange) about 2,000 e-/Å2·s, (green) 6,000 ~ 8,000 e-/Å2·s, or about 7,000 e-/Å2·s for 

convenience (section S6 and movie S5), (grey) 10,000 ~ 14,000 e-/Å2·s, or about 12,000 e-/Å2·s 

for convenience (movie S1), and (blue) about 40,000 e-/Å2·s. The nanoparticles follow Fickian 

diffusion in the range of the electron dose rates investigated. (B) Inverse size dependence of 

diffusion coefficient of nanoparticles observed at different dose rates. (line) Stokes-Einstein 

relation shown in Fig. 2D in the main text. The diffusion coefficient shows a positive correlation 

with the inverse nanoparticle diameter, while the positive correlation is not as strong as the ideal 

Stokes-Einstein relation. (C) Distributions of jump lengths of nanoparticles observed at different 

dose rates. (lines) Exponential distributions best fitted to the experimental data. (D) Time profiles 

of displacements of similar sized nanoparticles during the experimental time resolution at different 

dose rates. The time profiles of the nanoparticle displacement show similar behavior in the range 

of the dose rates investigated. 



 
 

 

 

Fig. S17. Motion of oleylamine-passivated Pt nanoparticles suspended in o-dichlorobenzene 

solvent. (A) Snapshots of the in situ TEM movie of the Pt nanoparticles in a GLC (movie S2). (red 

lines) Trajectory of a represenatative nanoparticle with a diameter of 3.4 nm. The in situ TEM 

movie was captured for 52.26 seconds with a temporal resolution, Dt, of 0.26 seconds using the 

TEAM 1 microscope operated at 80 kV at the National Center for Electron Microscopy. (B) 

Variance of nanoparticle displacements of the nanoparticle marked in (A). (symbols) Experimental 

data. (black line) The best fit by .  is optimized to be 0.073 nm2/s. (C) Distributions of 

nanoparticle displacements at various times. (symbols) Experimental data. (lines) Exponential tails 

of the displacement distributions.   

  

4 D tá ñ Dá ñ



 
 

 

 

Fig. S18. Nanoparticles in graphene scroll. Time-series TEM images showing the nanoparticle 

motion in the liquid encapsulated within a graphene scroll were captured from movie S3 recorded 

under the same experimental condition as described in Materials and Methods and at the electron 

dose rate of about 10,000 ~ 14,000 e-/Å2·s. The graphene scroll containing the sample solution is 

formed as the graphene is unexpectedly rolled up during the GLC fabrication process. (0002) 

lattice planes of a multilayer graphene are visible, showing the side view of the graphene sheet, 

and marked with red color. As shown in movie S3, the nanoparticles located very close to the 

graphene surface, marked with blue color, do not show any noticeable movements, while the 

nanoparticles moving vigorously are away from the graphene surface. In combination with the 

overlapping event of three nanoparticles in the GLC (Fig. S7), our observation of the graphene 

scroll would suggest that most of the nanoparticles observed in movie S1 diffuse in the liquid, 

rather than on the graphene surfaces. 

  



 
 

 

 

Fig. S19. Equivalence between the time-ensemble-averaged mean square displacement and 

the ensemble-averaged mean square displacement of nanoparticles. (black symbols) Time-

ensemble-averaged mean square displacement (MSD) of the nanoparticles. (red symbols) 

Ensemble-averaged MSD of the nanoparticles. Both the time-ensemble-averaged MSD and the 

ensemble-averaged MSD linearly increase with time, and are the same as each other, indicating 

the ergodic behavior of the nanoparticles in the GLC. 

 
  



 
 

 

 

Fig. S20. Distributions of jump lengths and relative jump lengths of nanoparticles. (A) 

Distribution of jump lengths of nanoparticles. (symbols) Experimental data. (line) Exponential 

distribution, , with parameters fit to experimental data. The value of the characteristic 

length, lc, is found to be 0.10 nm, close to the value of lc, 0.09 nm, obtained from the optimization 

of non-Gaussian parameter (section S3, see also Fig. 2B in the main text). (B) Distribution of 

relative jump lengths of coalescing nanoparticles. (symbols) Experimental data obtained from 

relative displacements of nanoparticles before the formation of transient nanoparticle complexes. 

(line) Exponential distribution, , fit to the experimental data with the value of the 

characteristic length, lr, given by 0.196 nm (section S4). The optimized exponential distributions 

in (A) and (B) are in good agreement with the experimental data, i.e., the distributions of 

displacements and relative displacements at , respectively.   
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Fig. S21. Hypothetical diffusion coefficients of nanoparticles estimated by using the Stokes-

Einstein relation. Hypothetical diffusion coefficients of nanoparticles estimated under the 

assumption that the nanoparticles perfectly follow the Stokes-Einstein relation. They are calculated 

by inserting measured nanoparticle sizes into the Stokes-Einstein relation with the effective 

viscosity identified by the best fit in Fig. 2D in the main text. The mean and the relative variance 

of the hypothetical diffusion coefficient are calculated as 0.113 nm2/s and 0.106, respectively. The 

mean of the hypothetical diffusion coefficient is nearly the same as the observed mean diffusion 

coefficient, 0.12 nm2/s, but the relative variance of the hypothetical diffusion coefficient is smaller 

than the observed relative variance, 0.26, indicating that the observed heterogeneity in nanoparticle 

diffusivity does not result solely from the heterogeneity in nanoparticle size. 

  



 
 

 

 

Fig. S22.  Potential of mean force between nanoparticles. (symbols) Potential of mean force 

calculated from the experimental pair correlation function, . (inset) Histogram of 

nanoparticle diameters.  is obtained from surface-to-surface distances, rsurf, of 

nanoparticles tracked when the number of nanoparticles does not change for one second after 

beginning observation. In addition, only nanoparticles with diameters between 1 nm and 2 nm 

(colored bins in the inset) were chosen to account for the potential of mean force between similar 

sizes of nanoparticles. (line) Best fit of the model for the potential of mean force (55): 

             

On the right-hand side of the above equation, the first and second terms respectively represent the 

hydration repulsive potential and the van der Waals attractive potential with A and R denoting the 

Hamaker constant and the nanoparticle radius. Here, the value of R is 1.44 nm, the mean radius of 

the nanoparticles in question. The optimized values of the adjustable parameters are given by 

, , and 0.23 nm. Using the relationship between the 

hydration decay length, l, and the ligand length, Lligand, which is given by  (55), the 
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length of the tris(4-N-methylcarbamoylphenyl)phosphine ligand used in this work is estimates as 

0.72 nm (19). This value is consistent with the thickness, 1.4 nm, of the double ligand layer 

estimated from the surface-to-surface distance upon formation of transient nanoparticle complexes 

(see Fig. 4B in the main text and Fig. S23). 

  



 
 

 

 

Fig. S23. Surface-to-surface distances between coalescing nanoparticles. (A) Changes of 

surface-to-surface distances, rsurf, of 20 coalescing nanoparticle pairs over time (Fig. 4B in the 

main text). (B to D), Histograms of rsurf calculated using (B) 20 frames, (C) 15 frames, and (D) 10 

frames before coalescence. The histograms show a left-skewed peak around 1.4 nm. This 

result indicates that a pair of nanoparticles form a transiently stable complex around 1.4 nm, 

the distance where the potential of mean force attains its minimum value (see Fig. S22), and then 

coalesce.  
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Fig. S24. Rotational motion of ligand-passivated gold nanoparticles in the graphene liquid 

cell. (A) Time-series TEM images, showing rotational motion of a representative nanoparticle 

identified with time-dependent changes in Au (111) lattice fringes (movie S4). (B) Fast-Fourier 

transforms (FFTs) of the TEM images in (A). f represents the angle between the straight line 

joining two circles centered on a pair of peaks and the horizontal line (see section S5). (C) Time-

ensemble-averaged variance, , of the angular displacement for three nanoparticles showing 

clear lattice fringes. (symbols) Experimental data. (line) The best fit by . (inset) Double 

logarithmic plot. The optimized value of the rotational diffusion coefficient, , is found to be 

0.318 rad2/s, which is in close agreement with the value of  estimated from the mean encounter 

complex lifetime identified as rotational relaxation time in the main text. (D) Distributions of 

angular displacements,  during the temporal resolution  (left) and  (right). (histograms) 

Experimental data. (lines) Gaussian distributions with zero mean and the variance, 
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Fig. S25. Effect of liquid-vapor interface movement on nanoparticle motion. (A) Time-series 

TEM images showing the growth of a nanobubble at the right-bottom side of the images (marked 

with red), and representative trajectories of nanoparticles whose movements are influenced by the 

growing nanobubble (see also section S6 and movie S5). Scale bar, 5 nm. (B) Time-series TEM 

images of faceted nanoparticles (particle 2 in (A)), showing hindered rotational motion of the 

nanoparticle pinned at the liquid-vapor interface. Scale bar, 2 nm. (C) Mean displacements of the 

nanoparticles near nanobubble in the direction parallel to the final displacement of each 

nanoparticle (longitudinal direction, orange circles) and in the direction normal to the final 

displacement of each nanoparticle (transverse direction, blue circles). (orange line) Linear fit of 

mean longitudinal nanoparticle displacement, yielding a mean nanoparticle velocity of 0.58 nm/s. 

(blue line) Linear fit of mean transverse nanoparticle displacement, indicating negligible net 

nanoparticle movement in the transverse direction. (D) Variance of nanoparticle displacements in 



 
 

 

longitudinal direction (orange symbols), and transverse direction (blue symbols). (solid line) 

 with  indicating the mean diffusion coefficient obtained in Fig. 2A in the main text. 

(E) Nanobubble growth. (symbols) Experimental data. (line) Linear fit, yielding nanobubble 

growth rate of 0.47 nm/s. The value is comparable to the mean longitudinal nanoparticle velocity 

obtained in (C). 
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Fig. S26. Displacements of individual nanoparticles near nanobubble. Time-averaged mean 

displacements of the nanoparticles near nanobubble in their longitudinal directions (orange 

symbols) and in their transverse directions (blue symbols). See Fig. S25 for the definitions of the 

longitudinal and transverse directions. (red line) Linear fit of the experimental data for nanobubble 

size growth. This fit is given in Fig. S25E and reproduced here for comparison. 

  



 
 

 

 

Fig. S27. Comparison between two different theoretical predictions for two-step coalescence 

kinetics. (A to C) Survival probabilities as a function of time taken for a pair of nanoparticles 

initially distant by  to complete coalescence via the formation of transient complexes. Values of 

 in (A), (B), and (C) are 2.9 nm, 3.1 nm, and 3.4 nm, respectively. The formation of a transient 

complex between a pair of nanoparticles occurs upon first contact at the center-to-center 

separation, s, whose value is given by the sum of the average, 1.35 nm, of particle diameters over 

all coalescing nanoparticles and the thickness, 1.4 nm, of the double ligand layer. (red line) 

Theoretical prediction for a pair of nanoparticles following our random walk model in a 

dynamically heterogeneous environment [Eq. (S4-5) with Eqs. (S4-14) and (S4-15)]. (black line) 

Theoretical prediction for a pair of nanoparticles undergoing diffusive motion in a dynamically 

heterogeneous environment [Eq. (S4-5) with Eqs. (S4-14) and (S4-16)]. Eq. (S4-16) is given by 

the diffusion approximation of Eq. (S4-15) (see section S4). The difference between both 

theoretical predictions diminishes as  increases. This is because a nanoparticle pair initially 

distant by larger  should travel a distance much longer than the jump length scale before they 

can touch. 
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Fig. S28. Time-series TEM images of the nanoparticles forming encounter complexes. (lines) 

Trajectories of the nanoparticles which are supposed to form an encounter complex. (colored 

circles) Circle with a radius being the same as the sum of the nanoparticle radius and the ligand 

length, 0.7 nm, centered on the nanoparticle which is supposed to form an encounter complex. 



 
 

 

(grey circles) Circle with a radius being the same as the sum of the nanoparticle radius and the 

ligand length, 0.7 nm, centered on the nanoparticle which is supposed not to form an encounter 

complex. Weak overlaps between the grey circles and the colored circles for short time indicate 

that the encounter pair dynamics is little perturbed by the other nanoparticles near the encounter 

pair. 

  



 
 

 

 

Fig. S29. Survival probability of nanoparticles accounting for nanoparticle coalescence. 

(symbols) Experimental result for the survival probability of nanoparticles accounting for 

nanoparticle coalescence. This quantity is calculated as the ratio between the numbers of 

nanoparticles at a time t and the initial time zero. Here, nanoparticles moving in and out of the 

field of view are not counted. (lines) Corresponding theoretical result calculated with Eq. (S4-22) 

and an estimate, 0.007 nm-2, for the initial nanoparticle density. With the mean diffusion 

coefficient, nm2×s-1, given in Fig. 2A at hand, the distance a nanoparticle travels for 

 seconds along the viewing direction can be estimated as nm, which is less 

than the effective contact separation, 2.8 nm, between ligand-passivated nanoparticles, i.e., the 

sum of the mean nanoparticle diameter, 1.4 nm, and the thickness, 1.4 nm, of the double ligand 

layer formed upon nanoparticle contact. This means that nanoparticles undergoing coalescence at 

short times should be initially located at similar distances from the graphene surface, validating a 

use of the theoretical survival probability calculated in the two-dimensional space (see section S4). 

In this case, the initial number density for the nanoparticles located at similar vertical distances is 

supposed to be less than that, 0.03 nm-2, for all nanoparticles observed within the field of view. 
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Fig. S30. Nanoparticle dynamics during prolonged electron-beam irradiation. During the 

prolonged observation of the graphene liquid cell, the motion and spatial arrangement of 

nanoparticles become different from those described in Fig. 1 (see also movie S6). The time 

interval between the end of movie S1 and the start of movie S6 is 34 seconds. 

  



 
 

 

Movie S1. Drift-corrected TEM movie of nanoparticle diffusion in quiescent liquid cell 

Movie S2. TEM movie of diffusion of oleylamine-passivated Pt nanoparticles in liquid cell 

Movie S3. TEM movie showing nanoparticle motion within graphene scroll 

Movie S4. TEM movie of a rotating nanoparticle in liquid cell 

Movie S5. Drift-corrected TEM movie of nanoparticle diffusion in liquid cell with 
nanobubble 

Movie S6. TEM movie of nanoparticle dynamics in liquid cell after prolonged electron 
beam irradiation 
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