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Supplementary Text 

Text S1: Mapping words to pre-trained BPEmb subword vectors 

In short, the BPEmb vocabulary is based on a text corpus, which was segmented into its subwords using 

byte-pair encoding. That is, smaller subword units (e.g., letters) most frequently co-occurring in the 

corpus were iteratively merged into larger units (e.g., syllables) and added to the vocabulary until the 

predefined maximum of merge operations was reached (i.e., vocabulary size). The corresponding 

embeddings were trained with the GloVe algorithm (101). Importantly, the length of subwords ranged 

from single letters to complete words. For example, the inflected verb “[sie] fischte” [“fished”; 3rd person 

singular, simple past, active voice, indicative of “to fish”] consists of one subword embedding 

representing its word stem “fisch” and another embedding representing its suffix “te”, whereas the more 

frequent word “Wasser” [“water”] is represented by only one embedding.  

Text S2: Architecture of language models 

In a simple recurrent neural network (RNN), the hidden state ℎ𝑝−1 stores all relevant context and is

sequentially passed to the next cell where it is updated with information from word 𝑤𝑝. More

specifically, the recurrent input and the bottom-up input are combined into the cell input vector 𝑔𝑝:

𝑔𝑝 = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑤𝑝 + 𝑈𝑔ℎ𝑝−1 + 𝑏𝑔),

where tanh is the activation function, 𝑊𝑔 ∈ 𝑅𝑛×𝑒 and 𝑈𝑔 ∈ 𝑅𝑛×𝑛 are trainable weight matrices, n is the

number of neurons (or units), 𝑏 ∈ 𝑅𝑛×1 is a bias term, 𝑤𝑝 ∈ 𝑅𝑒×1 and ℎ𝑝−1 ∈ 𝑅𝑛×1.

In the continuously updating LSTM, the cell state 𝑐𝑝 acts as long-term memory, whereas the hidden

state ℎ𝑝 incorporates information relevant to the cell output (i.e., the prediction of the next word). The

integration of new information and the information flow between the two memory systems is controlled 

by three gating mechanisms. First, the cell state is updated. The forget gate 𝑓𝑝 determines which

information from the previous cell state 𝑐𝑝−1 has become irrelevant and should be removed by:

𝑓𝑝 = 𝜎(𝑊𝑓𝑤𝑝 + 𝑈𝑓ℎ𝑝−1 + 𝑏𝑓),

where 𝜎 is the sigmoid activation function. The input gate 𝑖𝑝 determines which information from

candidate state 𝑔𝑝 should be added to the cell state by:

𝑖𝑝 = 𝜎(𝑊𝑖𝑤𝑝 + 𝑈𝑖ℎ𝑝−1 + 𝑏𝑖).

The new cell state  𝑐𝑝 is created by:

𝑐𝑝 = 𝑓𝑝 ⨀ 𝑐𝑝−1 + 𝑖𝑝⨀ 𝑔𝑝,



where 𝑐𝑝−1 ∈ 𝑅𝑛×1. Second, the hidden state is updated. The output gate 𝑜𝑝 determines which

information from long-term memory 𝑐𝑝 might become relevant shortly and should be added to the

hidden state by: 

𝑜𝑝 = 𝜎(𝑊𝑜𝑤𝑝 + 𝑈𝑜ℎ𝑝−1 + 𝑏𝑜).

The new hidden state ℎ𝑝 is created by:

ℎ𝑝 = 𝑜𝑝 ⨀ 𝑡𝑎𝑛ℎ(𝑐𝑝).

The sparsely-updating HM-LSTM employs a revised updating rule where information from the lower 

layer is only fed forward at the end of an event (i.e., a sequence of words closely related to each other). 

To this aim, 𝑧𝑝
𝑙  is introduced which marks the end of an event:  

𝑧̃𝑝
𝑙 = ℎ𝑎𝑟𝑑 𝑠𝑖𝑔𝑚(𝑧𝑝

𝑙−𝑝
𝑊𝑧ℎ𝑝

𝑙−1 + 𝑈𝑧ℎ𝑝−1
𝑙 + 𝑏𝑧

𝑙 ),

𝑧𝑝
𝑙 = {

1 
0

if 𝑧̃𝑝
𝑙 > 0.5

otherwise,

where hard sigm is the hard sigmoid activation function. If 𝑧𝑝
𝑙−1 = 1, the hidden state ℎ𝑝

𝑙  and cell state

𝑐𝑝
𝑙  are computed like in a vanilla LSTM cell (“update mechanism”). Otherwise, the hidden state ℎ𝑝

𝑙  and 

cell state 𝑐𝑝
𝑙  are simply the copy of ℎ𝑝−1

𝑙  and 𝑐𝑝−1
𝑙  (“copy mechanism”), respectively.

Text S3: Prediction of the next word 

LSTM and HM-LSTM cells form the representations of information relevant to speech prediction, 

whereas the actual prediction of the next word takes place in the output module. Here, hidden states at 

word position p are combined across the different layers of the language model by: 

ℎ𝑝
𝑟 =  𝐿𝑅𝑒𝐿𝑈 (∑ 𝑊𝑟

𝑙ℎ𝑝
𝑙

𝐿

𝑙=1

), 

where LReLU is the leaky rectified linear unit activation function and L is the number of layers. The 

combined hidden state ℎ𝑝
𝑟  is mapped to a fully connected dense layer of as many neurons as there are 

words in the vocabulary and squashed to values in the interval [0,1], which sum to 1: 

𝑑𝑝 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑑ℎ𝑝
𝑟 + 𝑏𝑑),

where softmax is the squashing function, 𝑊𝑑 ∈ 𝑅𝑣×𝑛  and 𝑏𝑑 ∈ 𝑅𝑣×1. Each neuron in vector 𝑑𝑝 indexes

one particular word in vocabulary v and denotes its probability of being the next word. Finally, the word 

referring to the highest probability in the distribution is chosen by: 

𝑠𝑝 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑑𝑝),

where 𝑠𝑝 is the predicted next word in a story.



Text S4: Training of language models 

All other architectural choices were based on results from systematic ablation tests on HM-LSTM cells 

(86). Accordingly, the optimizer’s initial learning rate of 0.001 was reduced by a factor of 0.02 when 

performance on the validation set did not improve over one epoch. Gradients were clipped at a value of 

1. We applied layer normalization to all inputs after multiplication with their respective weight matrices

(102). Further, we added an l2-norm penalty term for weight size to the loss function (λ = 0.0005). The 

dense layer in the output module was excluded from normalization and regularization. No dropout of 

units was applied during training. 

Text S5: Convolving features with the hemodynamic response function 

For features of predictiveness and linguistics, we modelled (higher frequency, randomly spaced) 

information on the word level as hemodynamic responses sampled at the (lower frequency, equally 

spaced) TR of fMRI data. This was achieved by creating feature vectors of zeros corresponding to the 

length of a functional run with a sampling frequency of 1,000 Hz, which allowed word onsets and offsets 

to be represented with high temporal precision. For each word in a run, a boxcar function, which was 

scaled to the feature’s value at that particular word, was placed on all samples falling in between word 

onset and offset. The resulting vector including feature values for all words in a run was convolved with 

SPM’s canonical hemodynamic response function (HRF (103)) and downsampled to the TR. Acoustic 

features, on the other hand, were already sampled to the TR and therefore directly convolved with the 

HRF. 

Text S6: Preprocessing structural and functional MRI 

Structural MRI data preprocessing. MRI data were preprocessed with fMRIPrep 1.2.4 (104), which 

is based on Nipype 1.1.6 (105) and employs Nilearn 0.5.0 (106) in many internal operations. For each 

participant, the T1w image was corrected for intensity non-uniformity using N4BiasFieldCorrection 

(ANTs 2.1.0 (107)) and then skull-stripped using the OASIS template in antsBrainExtraction.sh (ANTs 

2.2.0). Individual brain surfaces were reconstructed from T1w and T2w reference images using recon-

all (FreeSurfer 6.0.1 (108)). The T1w reference image was spatially normalized to the 

MNI152NLin2009cAsym template (109) through nonlinear registration with antsRegistration (ANTs 

2.2.0 (110)).  

A brain mask was created by reconciling ANTs-derived and FreeSurfer-derived segmentations of the 

cortical grey matter according to a customized variation of the implementation in Mindboggle (111). 

Brain tissue segmentation of cerebrospinal fluid, white matter and grey matter was performed on the 

T1w reference image using FAST (FSL 5.0.9 (112)). 



Functional MRI data preprocessing. For each functional run, BOLD time series were motion 

corrected using mcflirt (FSL 5.0.9 (113)) and slice time corrected using 3dTshift (AFNI 20160207 

(114)). After unwarping BOLD images based on the susceptibility distortion estimated from field maps, 

the BOLD reference image was aligned to the native T1w reference image using boundary-based 

registration with six degrees of freedom (115) as implemented in bbregister (FreeSurfer). BOLD images 

were resampled to standard space. To correct for head motion, non-aggressive Automatic Removal of 

Motion Artifacts using Independent Component Analysis (ICA-AROMA (116)) was performed on the 

resampled and smoothed (6 mm FWHM Gaussian kernel) BOLD images. On average, 50.54 % of the 

maximal 200 components per functional run (Ra = 32.93–71.78 %, SD = 9.21 %) were classified as 

motion-related artefacts. Additional confounding noise time series like the average signal within 

cerebrospinal fluid and white matter as well as framewise displacement were calculated in Nipype 

following the definitions by Power and colleagues (117). A Discrete Cosine Transform (DCT) basis set 

of six functions with a cut-off at 0.008 Hz was generated for temporal high-pass filtering. 

After running fMRIPrep, we regressed out high-pass filters as well as cerebrospinal fluid and white 

matter signals from the BOLD time series using 3dTproject (AFNI 19.2.24). To avoid reintroducing 

previously removed artefacts into the functional data (118), we projected the ICA-AROMA artefact 

components onto the additional nuisance covariates and used the residuals as predictors orthogonal to 

prior predictors. The denoised BOLD images were resampled to the fsaverage5 template in surface space 

by averaging across the cortical ribbon in 5 equally spaced steps at each vertex using trilinear 

interpolation. All resamplings can be performed with a single interpolation step: volumetric resamplings 

were performed using antsApplyTransforms (ANTs 2.1.0) with Lanczos interpolation; surface 

resamplings were performed using mri_vol2surf (FreeSurfer). In each functional run, the first 10 

baseline volumes as well as the last volume were removed from time series and all further analysis were 

carried out on z-scored single-vertex BOLD time series. 

Functional alignment to a common space. To account for small spatial variations in intersubject 

response tuning, functional time series were projected into a common space using searchlight 

hyperalignment across the whole cortex as described by Guntupalli and colleagues (119). Here, we 

centred a sphere (or searchlight) with a radius of 20 mm on each vertex and determined the optimal 

rotation of response vectors (or functional time series) within each searchlight in three iterations using 

Procrustes transformation. An intermediate common space was initialized by rotating one participant’s 

response vectors to best match the responses of a randomly chosen reference participant. All other 

participants were successively brought into alignment, with the average of all previously rotated 

response vectors as a reference. In a second iteration, all original response vectors were aligned to the 

intermediate common space and the average of resulting rotated response vectors became the final 

common space. In the third iteration, hyperalignment parameters mapping single participant’s original 

response vectors to the final common space were calculated. Parameters corresponding to vertices of 



overlapping searchlights were averaged. We ran hyperalignment on four independent data splits (i.e., 

pairing up every fourth of eight functional runs) and averaged transformation matrices across data splits 

to derive final parameters for each participant. Hyperalignment was performed in PyMVPA (2.6.6 

(120)). 

Text S7: Decoding model 

In our decoding approach (similar to e.g., Ref. (93)), we quantified how much information multiple 

vertices jointly contain about a feature of predictiveness. For each language model, five separate 

backward models were estimated in each of six temporo-parietal parcels of single participants, one for 

word surprisal at each timescale. We modelled timescale-specific surprisal as a function of neural 

activity in all vertices forming a parcel by: 

𝑠 = 𝐴𝑤 +  𝜖, 

where 𝑠𝑠𝑎𝑚𝑝𝑙𝑒𝑠×1 is the stimulus vector of a feature, 𝐴𝑠𝑎𝑚𝑝𝑙𝑒𝑠×𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 is the activity matrix of

BOLD time courses corresponding to the vertices of a parcels, 𝑤𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠×1 is a vector of model weights,

𝜖𝑠𝑎𝑚𝑝𝑙𝑒𝑠×1 is a vector of random noise.

The same cross-validation scheme as described for the encoding model was applied. However, 

instead of predicting BOLD activity, we here reconstructed surprisal at different timescales. By 

correlating the actual stimulus time series with the one predicted on the held-out testing set, we obtained 

the decoding accuracy of a parcel. Decoding accuracies were z-scored to the null distribution of 

accuracies determined for scrambled stimulus time series. We compared decoding accuracies between 

language models in each hemisphere, parcel and timescale by means of a Monte Carlo approximated 

permutation test (n = 10,000) on the difference of means. Resulting p-values were corrected for multiple 

comparisons using FDR correction.  



Figure S1. Evaluating language models. (A) For each language model (LSTM: red, HM-LSTM: blue), we 

extracted the rank of the next word from the probability distribution of all candidate words. Language models 

ranked more than 50 % of words in the text as one of 18 top candidates words (out of more than 90,000 words). 

(B) Spearman correlations of word surprisal between single layers of language models, separately for LSTM (left)

and HM-LSTM (right). In addition, correlations with full models are shown. (C) Spearman correlations of word

surprisal between language models.



Figure S2. Inter-metric correlations. Spearman correlations between outputs from single layers of language 

models for (A) surprisal and entropy, (B) surprisal and dissimilarity as well as (C) entropy and dissimilarity, 

separately for LSTM (left) and HM-LSTM (right). In addition, correlations with full models are shown. 



Figure S3. Decoding surprisal at multiple timescales. (A) Timescale-specific surprisal was decoded from 

regions of interest. Matrices depict decoding accuracies determined on held-out testing data and z-scored to null 

distributions drawn from scrambled surprisal, separately for the LSTM (top) and HM-LSTM (bottom) in the left 

(L) and right hemisphere (R). Note that comparably lower decoding accuracies in more parietal regions mirrored

the lower intersubject correlations in parietal compared to temporal regions (Figure 3), which are commonly found

during natural listening (e.g., Ref. (121–123)). This indicates an overall greater variability of neural responses in

parietal regions irrespective of timescale-specific surprisal. Of note, some z-scored decoding accuracies in more

superior parcels fell below an average value of 1.96. However, z-scores were indicative of significance only on

the level of single participants. Line plots illustrate patterns of decoding accuracies across timescales in select

regions of interest; error bands represent ±SEM.  (B) Decoding accuracies were contrasted between language

models by means of a permutation test on the mean of differences; black circles indicate pFDR < 0.05; maps indicate

location of parcels. EAC: early auditory cortex, AAC: auditory association cortex, LTC: lateral temporal cortex,

TPOJ: temporo-parieto-occipital junction, IPC: inferior parietal cortex, SPC: superior parietal cortex.



Figure S4. Encoding secondary metrics of predictiveness at multiple timescales. (A) Temporo-parietal BOLD 

time series were mapped onto the dissimilarity of speech derived at five timescales, separately for the continuously 

updating LSTM (top) and the sparsely updating HM-LSTM (bottom) in both hemispheres. Maps show t-values 

from timescale-specific weights of dissimilarity tested against zero; positive t-values indicate an increase of BOLD 

activity in response to more dissimilar words; white outlines: parcels; coloured outlines: short (light) to long (dark) 

timescales. (B) Same as above, but for word entropy. 



Figure S5. Testing for a processing hierarchy of secondary metrics of predictiveness. Along the dorsal stream, 

linear functions were fit to peak coordinates of (A) dissimilarity, (B) entropy and (C) entropy-weighted surprisal 

across timescales. Resulting slope parameters were compared to empirical null distributions (LSTM: red, HM-

LSTM: blue) and between language models (LSTM vs. HM-LSTM: grey), separately for both hemispheres; black 

circles: grand-average slope parameters; insets: coefficients of determination for single-subject fits. n.s.: not 

significant. 



Figure S6. Variance uniquely explained by groups of regressors. (A) The temporo-parietal variance uniquely 

explained by acoustic features was calculated as the difference between the squared encoding accuracy of models 

including all groups of regressors and the squared encoding accuracy of models including scrambled acoustic 

regressors while keeping all other regressors intact, separately for both hemispheres and language models. (B) 

Maps of variance uniquely explained by linguistic features (i.e., word frequency, word length, content vs. function 

word). (C) Maps of variance uniquely explained by word surprisal (i.e., surprisal at single timescales and for full 

model). 
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