

Supplemental Figure S1. Expression pattern and subcellular localization of GAUT10 and GAUT11.

A, GUS staining of tissues from pGAUT10::GUS and pGAUT11::GUS transgenic plants. (i) and (vii), 1-d-old embryo; (ii) and (viii), 6-d-old light-grown seedling; (iii) and (ix), true leaf from 9-d-old seedlings; (iv) and (x), inflorescence from 4-week-old plants; (v) and (xi), a flower; (vi) and (xii), siliques. Bars = 0.5 mm in (i), (iii), (v), (vii), (ix) and (xi), and 2 mm in (ii), (iv), (vi), (viii), (x) and (xii). B, GUS staining of rosette leaves from 3-week-old pGAUT10::GUS and pGAUT11::GUS transgenic lines. The GUS signals were abundant in guard cells. Bars = 20 µm. C, YFP-tagged GAUT10 and GAUT11 fusion proteins are co-localized with GONST1-OFP (Golgi apparatus marker) in Golgi in young *Nicotiana. benthamiana* leaf epidermis. The signals were visualized with a laser confocal microscope. Bars = 25 µm.

Supplemental Figure S2. Gene structure and transcript analyses of *GAUT10* and *GAUT11*.

A, Genomic structure of *GAUT10* and *GAUT11* genes and T-DNA insertions in the *gaut10-3* and *gaut11-3* mutant lines. Exons and introns are indicated as black box and black line, respectively. Inverted triangles represent the sites of T-DNA insertion. B and C, RT-qPCR analysis of *GAUT10* and *GAUT11* transcript abundance using gene-specific primers in *gaut10-3* (B) and *gaut11-3* (C) plants, respectively. Values are means \pm SE. $n \geq 3$. D and E, RT-qPCR quantification of *GAUT10* and *GAUT11* expression levels in Col-0, *g10g11*, *GAUT10* complementation (*G10_{com} 1#, 3#, 5#*) lines (D) and *GAUT11* complementation (*G11_{com} 3#, 5#, 6#*) lines (E), respectively. Values are means \pm SE. $n \geq 3$. F and G, RT-qPCR quantification of *GAUT10* and *GAUT11* expression levels in Col, *g10g11*, *GAUT10* overexpression (*G10_{oE} 4#, 13#, 14#*) lines (F) and *GAUT11* overexpression (*G11_{oE} 1#, 7#, 13#*) lines (G), respectively. Values are means \pm SE. $n \geq 3$.

Supplemental Figure S3. Total uronic acid content and PME activity are not changed in *GAUT10* or *GAUT11* overexpression lines.

A, Uronic acid measurements in the leaves of 4-week-old Col-0, *GAUT10*-overexpression $(G10_{OE} 4\#, 13\#)$ and *GAUT11*-overexpression $(G11_{OE} 7\#, 13\#)$ plants. Values are means \pm SE, three biological replicates. No significantly difference (ns), $P \ge 0.05$; Student's *t*-test. B, PME activity in the leaves of 4-week-old Col-0, *GAUT10*-overexpression $(G10_{OE} 4\#, 13\#)$ and *GAUT11*-overexpression $(G11_{OE} 7\#, 13\#)$ plants. Values are means \pm SE, three biological replicates. No significantly difference (ns), $P \ge 0.05$; Student's *t*-test. B, PME activity in the leaves of 4-week-old Col-0, *GAUT10*-overexpression $(G10_{OE} 4\#, 13\#)$ and *GAUT11*-overexpression $(G11_{OE} 7\#, 13\#)$ plants. Values are means \pm SE, three biological replicates. No significantly difference (ns), $P \ge 0.05$; Student's *t*-test.

Supplemental Figure S4. Phenotypic characterization of g10g11 mutant.

A, Images of Col-0 and g10g11 plants. Bars = 3 cm. B, Col-0 and g10g11 plants had similar plant height. Bars = 5 cm. C, Seed germination of Col-0 and g10g11 under light conditions. Values are means \pm SE. $n \ge 200$ seeds per genotype, ***P < 0.001; Student's *t*-test. D, Stomata density in the abaxial epidermis from Col-0 and g10g11 plants grown under normal growth conditions. Values are means \pm SE. $n \ge 10$ leaves per genotype, No significantly difference (ns), $P \ge 0.05$; Student's *t*-test. E, Stomata index (the ratio of the number of stomata per unit area to the number of epidermal cells) in the abaxial epidermis from Col-0 and g10g11 plants grown under normal condition. Values are means \pm SE. $n \ge$ 10 leaves per genotype, No significantly difference (ns), $P \ge 0.05$; Student's *t*-test.

Supplemental Figure S5. *GAUT10* and *GAUT11* modulate stomatal dynamics in response to light and CO₂ changes.

A and B, Stomatal conductance of Col-0 and g10g11 plants in response to changes in light intensity or CO₂ concentrations. Original data of Fig 5A-B. Experiments are repeated three times. Values are means \pm SE, $n \ge 3$ leaves per genotype per experiment. C and D, Changes in stomatal conductance of Col-0 and g10g11 plants per minute during stomatal opening (C) and stomatal closure (D) in response to CO₂ concentration changes in (B). Values are means \pm SE, *P < 0.05; Student's *t*-test. E and F, Stomatal conductance of Col-0, g10g11, GAUT10 and GAUT11 complementation lines in response to light intensity or CO₂ concentration changes. Experiments are repeated three times. Values are means \pm SE, $n \ge 3$ leaves per genotype per experiment. Original data of Fig 5C-D. G and H, Stomatal conductance in Col-0, g10g11, GAUT10 and GAUT11 overexpression lines in response to light intensity or CO₂ concentrations changes. Original data of Fig 5E-F. Experiments are repeated three times. Values are means \pm SE, $n \ge 3$ leaves per genotype per experiment.

Supplemental Figure S6. Control images for immunolabeling in guard cell walls.

Sample controls were incubated with anti-rat-IgG coupled to fluorescein isothiocyanate (FITC) without primary antibody (LM19 or LM20). Samples show a very low level of fluorescence in the green channel, the magenta signal indicates Calcofluor White fluorescence in the same guard cell pairs. Bars = $5 \mu m$.

Supplemental Figure S7. Expression levels of *PME* and *PG* genes in the g10g11 mutant.

A, Expression levels of *PME34* and *PME6* in rosette leaves from 3- to 4-week-old Col-0 controls and *g10g11* mutants. Values are means \pm SE. $n \ge 3$. B, Expression levels of *PGX1*, *PGX2*, *PGX3*, *ADPG1*, *ADPG2*, *PGL1*, *QRT2*, *NMA*, and *PGA4* in rosette leaves from 3- to 4-week-old Col-0 and *g10g11* plants. Values are means \pm SE. $n \ge 3$.

Supplemental Figure S8. Schematic of gene structure and transcript analyses of *PME6* and *PGX3*.

A, A brief structure diagrams show the editing sites of *PME6* and *PGX3* genes in *pme6-c* (*pme6-crispr*) and *pgx3-c* (*pgx3-crispr*), respectively. Exons are represented by boxes and introns by light lines, heavy black line indicates promoter region. Blank areas represent deletion regions. B, RT-PCR analyses of *PME6* and *PGX3* transcript levels in *pme6-c* and *pgx3-c* mutants, respectively. *Actin7* was served as a control.

Supplemental Figure S9. *PME6* mutation rescues stomatal dynamic response to CO₂ and light changes in *g10g11*.

A and B, Stomatal conductance of Col-0, g10g11, pme6-c and g10g11pme6-c in response to light intensity or CO₂ concentration changes. Original data of Fig 7E-F. Values are means \pm SE, $n \ge 3$ leaves per genotype per experiment. Experiments are repeated three times. C and D, Stomatal conductance of Col-0, g10g11, and g10g11pgx3-c in response to light intensity or CO₂ concentration changes. Original data of Fig 8E-F. Values are means indicate \pm SE, $n \ge 3$ leaves per genotype per experiment. Experiments are repeated three times.

Supplemental Figure S10. *pgx3-c* mutant showed defects in seedling development and cotyledon stomatal development.

A, Light-grown *pgx3-c* seedlings (6-day-old) exhibited shorter primary root length. Bar = 0.5 cm. B, Cotyledon shape of 7-day-old Col-0 and *pgx3-c* seedlings. C, Dark-grown *pgx3-c* seedlings (4-day-old) showed shorter etiolated hypocotyl compared with Col-0. Bar = 0.5 cm. D, Cotyledon stomata in 7-day-old Col-0 and *pgx3-c* seedlings. Bar = 15 μ m. E-H, Measurements of cotyledon stomatal complex length (E), pore length (F), pore width (G) and the ratio of pore length to stomatal complex length (H) in 7-day-old Col-0 and *pgx3-c* seedlings. Values are means \pm SE ($n \ge 60$ stomata from at least 6 plants per genotype, ****P* < 0.001; Student's *t*-test).

Supplemental Figure S11. Mutation of *PME6* or *PGX3* does not affect the increased PME or PG activity in the *g10g11* mutant.

A, PME activity in the leaves of 4-week-old Col-0, g10g11, pme6-c and g10g11pme6-cplants. Values are means \pm SE, three biological replicates; P < 0.05, one-way ANOVA and Tukey's test. B, PG activity in the leaves of 4-week-old Col-0, g10g11, pme6-c and g10g11pme6-c plants. Values are means \pm SE, three biological replicates; P < 0.05, one-way ANOVA and Tukey's test. C, PG activity in the leaves of 4-week-old Col-0, g10g11 and g10g11pgx3-c plants. Values are means \pm SE, three biological replicates; P < 0.05, 0.05, one-way ANOVA and Tukey's test.

Primer name	Primer sequence (5'-3')	Method	Vector	Usage
gaut10-3-LP	AGAGTCTTGCAGCTGCTTGAG			Genotyping
gaut10-3-RP	TTTGCAGCGAAGAGAAAGAAG			Genotyping
gaut11-3-LP	CAACCAATTGCCCAAATATTG			Genotyping
gaut11-3-RP	GAAAACCCGAAAGGAGAAAAG			Genotyping
SALK-LBb1.3	ATTTTGCCGATTTCGGAAC			Genotyping
SAIL-LB3	TAGCATCTGAATTTCATAACCAATCTCGAT	ACAC		Genotyping
qGAUT10-F	ACCTAGACCCTCTATTCCTAAGCG			RT-qPCR
qGAUT10-R	TGACGAGCAACGGAAGTAGGAC			RT-qPCR
qGAUT11-F	GCGAGGTAGAAGGAGATTGTCGAG			RT-qPCR
qGAUT11-R	TCGGTTCTCGTGTCTCTCTCAAG			RT-qPCR
qPME6-F	GTTATAAAGACGGTGACAGAG			RT-qPCR
qPME6-R	CCGTAGCCGTAATCCAATAG			RT-qPCR
qPGX3-F	AAGTCCACCGATTCATTTCG			RT-qPCR
qPGX3-R	TCCGGCAATAACTCAACCTC			RT-qPCR
com-GAUT10-F	GGGGTACCAGTGTTAGCAAAGATGAT	Kpn I	pGreenII 0179	Complementation
com-GAUT10-R	GGACTAGTGTGTGAATATCAGAGAATAT	Spe I	(Hellens et al., 2000)	Complementation
com-GAUT11-F	AGGGGCCCATTTGGTTAGTGTTGTAAAT	Apa I	pGreenII 0179	Complementation
com-GAUT11-R	GGACTAGTTATTTAAAAACGTAGAACAG	Spe I		Complementation
proGAUT10-F	GGGGACAAGTTTGTACAAAAAGCAGGCT	Gateway cloning	pMDC163 (Curtis and	GUS staining
	TAAGTGTTAGCAAAGATGAT		Grossniklaus, 2003)	
proGAUT10-R	GGGGACCACTTTGTACAAGAAAGCTGGGT			GUS staining
	AAGTTACTGTACTCGCAGAGC			
proGAUT11-F	GGGGACAAGTTTGTACAAAAAAGCAGGCT	Gateway Cloning	pMDC163	GUS staining
	TAGGTATTTGGTTAGTGTTGT			
proGAUT11-R	GGGGACCACTTTGTACAAGAAAGCTGGGT			GUS staining
	ACTTCCGCTACAAGTTTACCC			
GAUT10-CDS-F	GGGGACAAGTTTGTACAAAAAGCAGGCT	Gateway cloning	pEarleyGate 101	Overexpression
	TAATGAGAAGGAGAGGAGGG		(Earley et al., 2006)	
GAUT10-CDS-R	GGGGACCACTTTGTACAAGAAAGCTGGGT			Overexpression
	AATGAAAATTGCATTGTTGC			
GAUT11-CDS-F	GGGGACAAGTTTGTACAAAAAGCAGGCT	Gateway cloning	pEarleyGate 101	Overexpression
	TAGTAGCGGAAGATGAGGCG			
GAUT11-CDS-R	GGGGACCACTTTGTACAAGAAAGCTGGGT			Overexpression
	AAGCTGTGACACAATCTTGT			
target1-PME6	AGCTATGGCCGCGCTTAACG	Golden Gate assembly	pYLCRISPR/Cas9Pubi-B	Crispr editing
target2-PME6	CCTTGTGGTCAGCTCCACCA		(Ma et al., 2015)	Crispr editing
target1-PGX3	GGACTCGGGTACGGGTCGGA	Golden Gate assembly	pHEE401E	Crispr editing
target2-PGX3	GGCCATTCCTCTGGTCCGTC		(Wang et al., 2015)	Crispr editing

Supplemental Table S1. Primers used in this study.

Supplemental Table S2. Measurement of stomatal dimensions in *g10g11* and *GAUT* complementation lines.

Genotype	Avg	Avg	Avg	Avg	Avg
	stomatal	guard cell	stomatal pore	stomatal pore	pore length/
	complex length	width	length	width	complex
	(µm)	(µm)	(µm)	(µm)	length
Col-0	$21.99\pm0.22^{\text{a}}$	$5.64\pm0.09^{\rm a}$	$11.31\pm0.16^{\rm a}$	$1.910\pm0.055^{\mathrm{a}}$	$0.50\pm0.005^{\rm a}$
g10g11	$24.33\pm0.19^{\text{b}}$	$6.41\pm0.13^{\text{b}}$	12.97 ± 0.19^{b}	1.596 ± 0.079^{b}	$0.52\pm0.006^{\text{b}}$
$GAUT10_{com}3^{\#}$	$21.94\pm0.16^{\text{a}}$	$5.75\pm0.13^{\rm a}$	$11.07\pm0.15^{\rm a}$	$1.999\pm0.055^{\mathrm{a}}$	$0.50\pm0.008^{\rm a}$
$GAUT10_{com}5^{\#}$	$21.88\pm0.20^{\text{a}}$	$5.76\pm0.12^{\rm a}$	$11.15\pm0.15^{\rm a}$	$1.897\pm0.058^{\text{a}}$	$0.49\pm0.006^{\rm a}$
$GAUT11_{com}5^{\#}$	$22.27\pm0.16^{\text{a}}$	$5.84\pm0.14^{\text{ab}}$	$11.05\pm0.15^{\rm a}$	$1.993\pm0.052^{\mathrm{a}}$	$0.50\pm0.007^{\rm a}$
$GAUT11_{com}6^{\#}$	$21.81\pm0.19^{\text{a}}$	$5.80\pm0.15^{\rm a}$	$11.00\pm0.16^{\text{a}}$	$1.910\pm0.059^{\mathrm{a}}$	$0.49\pm0.008^{\rm a}$

Stomatal complex length, guard cell width, pore length, pore width, and the ratio of pore length to stomatal complex length in 3- to 4-week-old Col-0, g10g11, $G10_{com}3^{\#}$, $G10_{com}5^{\#}$, $G11_{com}5^{\#}$ and $G11_{com}6^{\#}$ plants. Values are means \pm SE, ($n \ge 60$ stomata from at least 6 plants per genotype, three independent experiments; P < 0.05, one-way ANOVA and Tukey's test).

Supplemental Table S3. Measurement of stomatal dimensions in cotyledons of Col-0, *g10g11* and *g10g11pgx3-c* plants.

Genotype	Avg	Avg	Avg	Avg	Avg
	stomatal	guard cell	stomatal pore	stomatal pore	pore length/
	complex length	width	length	width	complex
	(µm)	(µm)	(µm)	(µm)	length
Col-0	$24.29\pm0.22^{\text{a}}$	$4.79\pm0.06^{\rm a}$	$13.13\pm0.18^{\text{a}}$	$2.909\pm0.068^{\text{a}}$	$0.54\pm0.004^{\rm a}$
g10g11	28.53 ± 0.28^{b}	$5.52\pm0.14^{\text{b}}$	16.49 ± 0.21^{b}	$2.820\pm0.083^{\text{a}}$	$0.58\pm0.004^{\text{b}}$
g10g11pgx3 - c	28.53 ± 0.24^{b}	$5.76\pm0.08^{\text{b}}$	16.46 ± 0.17^{b}	$2.784\pm0.073^{\text{a}}$	0.58 ± 0.004^{b}

Stomatal complex length, guard cell width, pore length, pore width, and the ratio of pore length to stomatal complex length in cotyledons of 7-day-old Col-0, g10g11 and g10g11pgx3-c seedlings. Values are means \pm SE, ($n \ge 60$ stomata from at least 6 plants per genotype, two independent experiments; P < 0.05, one-way ANOVA and Tukey's test).

Genotype	Avg	Avg	Avg	Avg	Avg
51	stomatal	guard cell	stomatal pore	stomatal pore	pore length/
	complex length	width	length	width	complex
	(µm)	(µm)	(µm)	(µm)	length
Col-0	$23.68\pm0.22^{\text{a}}$	$5.03\pm0.07^{\rm a}$	$10.66\pm0.17^{\text{a}}$	$1.880\pm0.059^{\rm a}$	$0.44\pm0.004^{\rm a}$
$GAUT10_{OE}4^{\#}$	$23.88\pm0.20^{\text{a}}$	$5.23\pm0.07^{\rm a}$	$10.59\pm0.19^{\rm a}$	$1.881\pm0.071^{\rm a}$	$0.44\pm0.005^{\text{a}}$
$GAUT10_{OE}13^{\#}$	$23.18\pm0.16^{\rm a}$	$5.15\pm0.07^{\rm a}$	$10.21\pm0.15^{\rm a}$	1.843 ± 0.067^{a}	$0.44\pm0.006^{\rm a}$
GAUT11 _{0E} 7 [#]	$23.39\pm0.21^{\text{a}}$	$5.16\pm0.06^{\rm a}$	$10.23\pm0.18^{\rm a}$	$1.826\pm0.070^{\mathrm{a}}$	$0.43\pm0.005^{\text{a}}$
$GAUT11_{OE}13^{\#}$	$24.21\pm0.26^{\text{a}}$	$5.23\pm0.08^{\text{a}}$	$11.07\pm0.19^{\rm a}$	$1.837\pm0.090^{\mathrm{a}}$	$0.45\pm0.004^{\text{a}}$

Supplemental Table S4. Measurement of stomatal dimensions in Col-0 and *GAUT* overexpression lines.

Stomatal complex length, guard cell width, pore length, pore width, and the ratio of pore length to stomatal complex length in 3- to 4-week-old Col-0, $G10_{OE}4^{\#}$, $G10_{OE}13^{\#}$, $G11_{OE}7^{\#}$ and $G11_{OE}13^{\#}$ plants. Values are means \pm SE, ($n \ge 60$ stomata from at least 6 plants per genotype, two independent experiments; P < 0.05, one-way ANOVA and Tukey's test).

Genotype	Avg	Avg	Avg	Avg	Avg
	stomatal	guard cell	stomatal	stomatal pore	pore length/
	complex length	width	pore length	width	complex
	(µm)	(µm)	(µm)	(µm)	length
Col-0	$22.52\pm0.46^{\rm a}$	$4.70\pm0.07^{\rm a}$	$12.72\pm0.31^{\rm a}$	$1.926\pm0.061^{\text{a}}$	$0.56\pm0.006^{\rm a}$
g10g11	25.67 ± 0.28^{b}	$5.70\pm0.08^{\text{b}}$	15.44 ± 0.35^{b}	1.612 ± 0.040^{b}	0.60 ± 0.010^b
рте6-с	$21.99\pm0.26^{\rm a}$	$4.53\pm0.07^{\rm a}$	$12.41\pm0.27^{\rm a}$	$1.972\pm0.077^{\text{a}}$	$0.55\pm0.008^{\rm a}$
g10g11pme6-c	24.73 ± 0.42^{b}	5.50 ± 0.07^{b}	$14.85\pm0.34^{\text{b}}$	1.574 ± 0.043^{b}	0.60 ± 0.007^{b}
g10g11pgx3-c	25.90 ± 0.34^{b}	$5.42\pm0.07^{\text{b}}$	$15.57\pm0.33^{\text{b}}$	1.662 ± 0.039^{b}	0.60 ± 0.007^{b}

Supplemental Table S5. Measurement of stomatal dimensions in mature leaves of Col-0, *g10g11*, *pme6-c*, *g10g11pme6-c* and *g10g11pgx3-c* plants.

Stomatal complex length, guard cell width, pore length, pore width, and the ratio of pore length to stomatal complex length in mature leaves of 3- to 4-week-old Col-0, g10g11, pme6-c, g10g11pme6-c and g10g11pgx3-c plants. Values are means \pm SE, ($n \ge 60$ stomata from at least 6 plants per genotype, three independent experiments; P < 0.05, one-way ANOVA and Tukey's test).