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Supplementary results 27 

The experimental procedure of this study 28 

Postmortem tissue samples were collected during the autopsy of 3 patients who were deceased 29 

from respiratory failure caused by SARS-CoV-2 infection at Wuhan Jinyintan Hospital. We 30 

collected the samples of lung and muscle from Patient 1, the samples of lung, heart, liver, spleen, 31 

kidney, intestine, brain and muscle from Patient 2, and the samples of lung, heart, liver, spleen, 32 

kidney, brain and muscle from Patient 3 (Supplementary Fig. S1A, Table S1-S3). Besides, lung 33 

paracancerous tissue samples from two lung cancer patients were collected for comparison. For 34 

each tissue sample, total proteins were extracted and processed by trypsin, and the resulting 35 

peptides were subjected to tandem mass tag (TMT) 11-plex labeling (Supplementary Fig. S1B). 36 

The peptide samples were individually labeled and analyzed in 2 batches by using liquid 37 

chromatography with tandem mass spectrometry (LC-MS/MS) (Supplementary Fig. S1B). To 38 

eliminate the batch effect, the pooling mixture of the 19 samples was used as an internal control 39 

for each batch, and allocation of the 19 samples was completely random (Table S2 and S3). 40 

Prior to the proteomic profiling, we analyzed the pathology of pulmonary autopsy specimens 41 

from patients 2 and 3. The main pathological change of the post-mortem lung tissues from two 42 

patients was diffuse alveolar damage (Supplementary Fig. S1C), which is similar with that caused 43 

by SARS-CoV [1]. The histology was represented mainly by a widespread destruction of 44 

pulmonary architecture, with extensive fibromyxoid exudate, alveolar haemorrhage, formation of 45 

hyaline membranes, and interstitial thickening. In addition, the ultrastructure of these lung tissue 46 

samples under transmission electron microscopy revealed several virion-like particles in alveolar 47 

epithelial cells (Supplementary Fig. S1D). These virion-like particles were approximately 80-120 48 

nm in diameter, with spiky-like projections on the surface and typical electron lucent center, which 49 

display typical coronavirus morphology of SARS-CoV-2 virion [2]. Furthermore, the 50 

immunofluorescent staining assays were performed to detect the presence of SARS-CoV-2 51 

nucleocapsid protein (NP) in lung tissue samples (Supplementary Fig. S1E). 52 

 53 

A protein atlas of eight COVID-19 postmortem tissue types 54 

From the LC-MS/MS analysis, we obtained 49,815 non-redundant peptides, with a number 55 

ranged from 36,046 to 37,855 peptides in 3 lung, 2 kidney, 2 liver, 1 intestine, 2 brain, 2 heart, 3 56 

muscle and 2 spleen samples of COVID-19 postmortem tissues, as well as 2 normal lung samples 57 
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(Fig. 1A). These peptides were mapped to their corresponding protein sequences, and we used the 58 

reporter ion MS2 module of the MaxQuant software package for protein quantification [3]. From 59 

the results, we observed that 5346 human proteins were quantified in at least one sample (Table 60 

S4), with protein numbers ranged from 4776 to 5000 (Fig. 1B). The protein coverage of using 61 

TMT-labeling strategy on multiple samples is expected to be lower compared to that on single 62 

sample, because the complexity is increased due to the mixture of multiple samples. Both human 63 

and SARS-CoV-2 protein sequences were included for database search, while no viral proteins 64 

were detected in any tissue samples, probably due to the background of large amount of host 65 

proteins.  66 

After data normalization, we obtained the normalized protein expression (NPE) values of 67 

proteins (Table S5). Then, we used an entropy-based method [4, 5] to identify 226 potential tissue-68 

specific proteins (TSPs), including 158 TSPs in brain and 68 TSPs in other tissues, respectively 69 

(Supplementary Figs. S2C, S2D, S3 and S4, Table S6). This result is consistent with the existing 70 

knowledge, since brain is one of the most specialized organs in the human body. Thus, it’s not 71 

surprised that brain has most potential TSPs. Also, a hierarchical clustering was conducted for all 72 

proteins in the eight tissue types, and the result was visualized by a software package named 73 

Heatmap Illustrator (HemI) [6]. Obviously, different tissue types had distinct molecular signatures, 74 

and potential TSPs can be directly recognized from the heatmap (Supplementary Fig. 2D). Based 75 

on the annotations of GeneCards (https://www.genecards.org/) [7], a comprehensive database for 76 

human genes, several TSPs were picked out and shown for each tissue sample (Supplementary 77 

Figs. S3 and S4). 78 

 79 

Proteomic alterations reveal that human tissues are differentially affected in response to 80 

COVID-19 81 

To probe the protein changes upon SARS-CoV-2 infection, we downloaded the proteomic 82 

datasets of six normal human tissues from the Human Proteome Map (HPM) [8], with a number 83 

of quantified proteins ranged from 12,007 to 16,868 (Supplementary Fig. S5A). Compared to 84 

HPM, > 96.0% of proteins quantified in this study were covered by HPM (Supplementary Fig. 85 

S5B). To enable an unbiased comparison between COVID-19 and normal samples, the same z-86 

score plus min-max and median centering methods were used to individually normalize each 87 

dataset (Supplementary Fig. S5C,). The distribution of original COVID-19 protein expressions 88 

https://www.genecards.org/
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and HPM data before normalization and the NPE values after normalization were shown in 89 

Supplementary Figure S3D and S3E. We showed that the protein expressions of all datasets were 90 

normalized and normally distributed. Moreover, the PCA analysis demonstrated that COVID-19 91 

and normal tissues could be unambiguously separated, irrespective of the data source 92 

(Supplementary Fig. S3F). 93 

To identify differentially expressed proteins (DEPs), we used a tool named Model-based 94 

Analysis of Proteomic data (MAP) to analyze each pair of COVID-19 and normal tissues [9]. 95 

Muscle and spleen samples were not analyzed due to the lack of the corresponding normal tissues 96 

data in HPM. In contrast with conventional statistical methods, MAP did not estimate technical 97 

and systematic errors from technical replicates. Based on a hypothesis that technical and 98 

systematic errors might be approximately identical for quantified proteins within a small window, 99 

the standard normal distribution was adopted to model the proteomic data and directly calculate a 100 

p-value for each protein (Table S7).  101 

 102 

A COVID-19-associated protein-protein interaction network 103 

We mapped the protein-protein interactions between SARS-CoV-2-encoded proteins and 104 

DEPs by using a published interactome data of SARS-CoV-2 proteins [10]. We obtained 110 105 

known virus-host protein-protein interactions (PPIs) between 23 viral proteins and 110 interacting 106 

DEPs differentially regulated in postmortem lung tissues (Table S12). Other lung DEPs were also 107 

included for modeling an integrative virus-host molecular network. These interacting DEPs were 108 

classified into 6 groups according to their functions, including immune response, metabolic 109 

process, transcription/translation, cell signaling/development, transport, and cytoskeleton 110 

organization, which are participate in almost all the major biological functions in host 111 

(Supplementary Fig. S9). Moreover, Gene Ontology (GO) analysis showed that these DEPs were 112 

generally involved in several immune response-related processes, including Rab protein signal 113 

transduction, blood coagulation and neutrophil degranulation (Supplementary Fig. S9 and Table 114 

S13), which are consistent with the previous findings that cytokine storm, alveolar macrophage 115 

activation, intravascular coagulation and microthrombosis are frequently presented in severe 116 

COVID-19 cases [11, 12]. Together, these results suggest that SARS-CoV-2-encoded proteins 117 

might affect the functions of the interacting host proteins in infected lungs.   118 
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Supplementary discussion 119 

COVID-19 is caused by SARS-CoV-2, which is the third coronavirus to cause severe 120 

respiratory disease in humans besides SARS-CoV and Middle East respiratory syndrome 121 

coronavirus (MERS-CoV). Since its emergence from late 2019 [13], the outbreak of SARS-CoV-122 

2 has resulted in tremendous impacts on global health, social and economics, making COVID-19 123 

a global pandemic and the worst public health crisis once a century.  124 

About 20% COVID-19 patients have been reported to develop severe or critical conditions 125 

[14], and the mortality rate of critically ill cases can reach over 60% [15]. The main targets of 126 

SARS-CoV-2 are human low respiratory tract and lung, while many other organs, including liver, 127 

heart, intestine, kidney, central nervous system and muscle have been also found to be injured [16-128 

18]. Among the broad symptoms of COVID-19, fever, pneumonia, respiratory failure, acute 129 

respiratory distress syndrome (ARDS), 130 

 and sepsis are frequently observed complications, which are usually associated with 131 

pathophysiological changes such as alveolar macrophage activation, lymphopenia, cytokine 132 

release syndrome, thrombosis and intravascular coagulation in severe COVID-19 patients [11, 13, 133 

19-23]. However, despite of extensive efforts made by global scientific community to study this 134 

emerging coronavirus disease, the molecular mechanisms underlying its pathogenesis, particularly 135 

the pathogenesis of COVID-19-associated multiorgan injuries, are still barely understood, which 136 

represents a major obstacle to fully understand and find out effective ways to combat against this 137 

deadly coronavirus disease. In this study, we provide the postmortem tissue proteomic datasets 138 

that provides the most direct and reliable evidence of the pathophysiological changes of human 139 

bodies in response to SARS-CoV-2 infections, and uncovers that SARS-CoV-2 infection affected 140 

different set of host processes in different organs or tissues, which probably contribute to the 141 

pathogenesis of COVID-19-associated multiorgan injuries.  142 

One of the key findings obtained here is that proteins and pathways are differently altered in 143 

distinct human tissues or organs in response to COVID-19. In a recent study, Nie et al. identified 144 

that immune- and inflammation-related pathways were significantly up-regulated in multiple 145 

organs, such as lung, spleen, heart, kidney, and thyroid [24]. However, our analysis found that 146 

these processes, such as humoral immune response, complement activation, B-cell mediated 147 

immunity, acute phase response and cytolysis, were upregulated only in lungs from all the tissues 148 

examined, showing that excessive immune response and inflammation were extensively occurred 149 
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in lungs. Consistently, our histopathological examinations also showed that interstitial 150 

mononuclear/macrophage cell infiltration and inflammation were presented in lung tissues. On the 151 

other hand, cell morphology maintenance-related pathways were downregulated in lungs. These 152 

results indicated that the microscopic structure of alveolar cells and lungs were severely damaged, 153 

consistent with the postmortem pathological and histopathological observations in the current 154 

study and by others that extensive fibromyxoid exudation, alveolar haemorrhage and thrombosis 155 

were found in lungs [25, 26]. Therefore, we conclude that the excessive inflammation in lungs of 156 

severe COVID-19 cases increases vascular permeability and activates coagulation cascades, 157 

resulting in vascular thrombosis and probably a systemic hypoxia, and also causes a widespread 158 

destruction of pulmonary architecture and functions. Our findings are in accordance with previous 159 

clinical and autopsy observations that severe or critical ill COVID-19 patients are frequently 160 

associated with massive intravascular thrombus, hypoxemia, and ARDS [13, 15, 17, 19-22, 25-161 

27], which are pathophysiologically associated with cytokine storm, alveolar macrophage 162 

activation, intravascular coagulation and microthrombosis [11, 12, 23]. 163 

On the other hand, unlike the host protein responses in lungs, our study revealed that the DEPs 164 

in tissues of liver, kidney, intestine, brain, and heart are mainly present in pathways involved in 165 

organ movement, respiration, and metabolism. For example, some shared altered pathways, 166 

including muscle filament sliding and contraction, cellular respiration, NADH metabolic process, 167 

hydrogen peroxide metabolic process, and glucose catabolic process, were found to be 168 

significantly downregulated in kidney, liver, intestine, and brain, and these findings were highly 169 

consistent with the Nie’s study [24]. These results indicated that these tissues were affected by 170 

hypoxia and their functions and morphology were dramatically impaired, which are consistent 171 

with the previous clinical data that multiorgan failure are frequently observed complications in 172 

severe COVID-19 cases [13, 15, 20, 21]. Surprisingly, based on our proteomic data, very few 173 

immune- or inflammation-related pathways were found to be significantly altered in other 174 

organs/tissues, indicating that the leading cause of multiorgan injuries in non-lung organs/tissues 175 

is hypoxia but not excessive inflammation. Thus, we propose that lung is the center of the virus-176 

host battlefields of COVID-19, and the excessive inflammatory responses to SARS-CoV-2 177 

infection in lungs result in the thrombosis and destruction of pulmonary architecture and functions, 178 

leading to hypoxia of multiple organs in the whole body and subsequent disease aggravation.  179 
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Omics studies under the pathophysiological conditions caused by viral infections are powerful 180 

weapons to explore the pathogenesis of viral infectious diseases, establish animal models as well 181 

as develop potential clinical treatments. After the outbreak of COVID-19, both direct RNA 182 

sequencing (DRS)-based transcriptomic and LC-MS/MS-based proteomic, metabolomic or 183 

lipidomic profilings were conducted for analyzing SARS-CoV-2 and/or host samples [15, 24, 28-184 

35]. Particularly, Gordon et al. generated a SARS-CoV-2-encoded protein interactome using 185 

affinity-purification mass spectrometry (AP-MS) [10]. In this study, using this interactome data, 186 

we generated 110 known virus-host PPIs between 22 viral proteins of SARS-CoV-2 and 110 187 

interacting DEPs in lung tissues, suggesting that these viral proteins directly affect the expressions 188 

and/or functions of these interacting host proteins. Therefore, it would be intriguing to integrate 189 

the omics data to generate a more comprehensive picture of the pathogenicity of SARS-CoV-2 190 

and the pathogenesis of COVID-19.  191 

Taken together, our findings demonstrate the significant pathophysiological alternations of 192 

host proteins/pathways associated with multiorgan injuries of COVID-19, which provides 193 

invaluable knowledge about COVID-19-associated host responses and sheds light on the 194 

pathogenesis of COVID-19.  195 
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Supplementary Methods 196 

Ethics and Human Subjects 197 

All work performed in this study was approved by the Wuhan Jinyintan Hospital Ethics 198 

Committee (No. KY-2020-15.01). Diagnosis of SARS-CoV-2 infection was based on the New 199 

Coronavirus Pneumonia Prevention and Control Program (6th edition) published by the National 200 

Health Commission of China.  201 

 202 

Patient and Samples 203 

We analyzed postmortem tissue samples from 3 patients who died from respiratory failure 204 

caused by SARS-CoV-2 infection at Wuhan Jinyintan Hospital. Briefly, Patient 1 is a 53-year-old 205 

female. Patient 2 is a 62-year-old male. Patient 3 is a 66-year-old female (Table S1). All the 206 

patients had fever, cough and shortness of breath and progressed into ARDS due to severe 207 

pulmonary lesions with significantly decreased lymphocytes. Finally, all these patients died of 208 

respiratory failure.  209 

We collected the samples of lung and muscle from patient 1, the samples of lung, heart, 210 

liver, spleen, kidney, intestine, brain and muscle from patient 2, and the samples of lung, heart, 211 

liver, spleen, kidney, brain and muscle from patient 3. Besides, lung paracancerous tissue samples 212 

from 2 lung cancer patients (a 65-year-old male and a 57-year-old female) were collected for 213 

comparison (Table S1). For all the three deceased COVID-19 patients, the interval time between 214 

patient decease and autopsy was less than 1 h, and postmortem specimens were immediately frozen 215 

in liquid nitrogen after dissection. All the samples were treated according to the biocontainment 216 

procedures of the processing of SARS-CoV-2-positive sample. For the cancer patients, the 217 

paracancerous tissue samples were resected from the patients and also immediately stored in liquid 218 

nitrogen before further treatment. 219 

 220 

Haematoxylin and eosin staining and immunofluorescence analysis 221 

Tissues from the case were fixed with 4% paraformaldehyde for 24 h. Tissues were then 222 

embedded in optimal cutting temperature (OCT) compound and cut into 3.5-μm sections using 223 

Rotary Microtome (Thermo Scientific™ HM 355S). Mounted microscope slides were fixed with 224 

paraformaldehyde and stained with haematoxylin and eosin for histopathological examination. 225 



 

 

9 

 

Slides were dewaxed with dimethylbenzene and gradient alcohol, antigen repaired with 226 

ethylene diamine tetraacetic acid (pH=8.0), then blocked by incubating with 5% bovine serum 227 

albumin (BIOSHARP, Hefei, China) at 37 °C for 30 min, followed by overnight incubation at 4 °C 228 

with the rabbit anti- SARS-CoV-2 nucleocapsid protein (NP) antibody (1:200) [2] in phosphate 229 

buffered solution. After washing, slides were then incubated for 1 h at room temperature with 230 

fluorescein isothiocyanate-conjugated goat-anti-rabbit IgG (Proteintech) in PBS, then stained with 231 

2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride (DAPI, Beyotime, Nanjing, China) 232 

and observed under a fluorescence microscope (Nikon A1 MP STORM). 233 

 234 

Transmission electron microscopy 235 

Tissues from the case were fixed with 2.5% (weight/volume) glutaraldehyde, post-fixed with 236 

1% osmium tetroxide, and then dehydrated with gradient alcohol (from 30%-100%), embedded 237 

with epoxy resin. Ultrathin sections (80 nm) of embedded cells were prepared, deposited onto 238 

Formvar-coated copper grids (200 mesh), double-stained with uranium acetate and lead citrate, 239 

then observed under 200 kV Tecnai G2 electron microscope (ThermoFisher Scientific FEI). 240 

 241 

Sample preparation 242 

The tissue samples were first homogenized in lysis buffer consisted of 2.5% SDS/100 mM 243 

Tris-HCl (pH 8.0) [36].  The wet weight, protein concentration and total protein weight for each 244 

tissue sample are shown in Table S2. After 15 min of incubation in the boiling water bath, the 245 

samples were subjected to treatment with ultra-sonication. After centrifugation (12000 × g, 15 246 

min), proteins in the supernatant were precipitated by adding 4 times of cold acetone. The protein 247 

sample was dissolved in 8 M Urea/100 mM Tris-HCl (pH 8.0). After centrifugation, the 248 

supernatant was used for reduction reaction (10 mM DTT, 37°C for 1 h), and followed by 249 

alkylation reaction (40 mM iodoacetamide, room temperature/dark place for 30 min). Protein 250 

concentration was measured by Bradford method. Urea was diluted below 2 M using 100 mM 251 

Tris-HCl (pH 8.0). Trypsin was added at a ratio of 1:50 (enzyme: protein, w/w) for overnight 252 

digestion at 37°C. The next day, trifluoroacetic acid (TFA) was used to bring the pH down to 6.0 253 

to end the digestion. After centrifugation, the supernatant was subjected to peptide purification 254 

using Sep-Pak C18 desalting column. The peptide eluate was dried in vacuum and stored at -20°C 255 

for later use. 256 
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Tandem mass tag (TMT) labeling was performed according to manufacturer's instructions. 257 

Briefly, peptides were reconstituted in TMT reagent buffer, and the samples were separately 258 

labeled with different TMT labeling reagents. The labeled samples were then mixed and subjected 259 

to Sep-Pak C18 desalting. The complex mixture was fractionated using high pH reversed-phase 260 

liquid chromatography (RPLC) and combined into 20 fractions. Each fraction was dried in vacuum 261 

and stored at -80°C until MS analysis. 262 

 263 

LC-MS/MS analysis 264 

LC-MS/MS data acquisition was carried out on a Q Exactive HF-X mass spectrometer 265 

coupled with an Easy-nLC 1200 system (both Thermo Scientific). Peptides were first loaded onto 266 

a C18 trap column (75 μm × 2 cm, 3 μm particle size, 100 Å pore size, Thermo) and then separated 267 

in a C18 analytical column (75 μm × 250 mm, 3 μm particle size, 100 Å pore size, Thermo). 268 

Mobile phase A (0.1% formic acid) and mobile phase B (80% ACN, 0.1% formic acid) were used 269 

to establish the separation gradient. The total collection time of each TMT batch mass spectrum is 270 

20 h. Each batch is divided into 20 components and subjected to 60 min LC gradient per fraction. 271 

A constant flow rate was set at 300 nL/min. For data-dependent acquisition (DDA) mode analysis, 272 

each scan cycle consisted of one full-scan mass spectrum (R = 120 K, AGC = 3e6, max IT = 50 273 

ms, scan range = 350–1800 m/z) followed by 20 MS/MS events (R = 45 K, AGC = 1e5, max IT = 274 

86 ms). High energy collision dissociation (HCD) collision energy was set to 32. Isolation window 275 

for precursor selection was set to 1.2 Da. Former target ion exclusion was set for 45 s. 276 

 277 

Database research 278 

MS raw data were analyzed with MaxQuant (V1.6.6) using the Andromeda database search 279 

algorithm. The human proteome database contained 20,366 Swiss-Prot/reviewed human protein 280 

sequences downloaded from UniProt (https://www.uniprot.org/proteomes/UP000005640, on 281 

March 17, 2020), whereas the SARS-CoV-2 proteome database contained 12 protein sequences 282 

derived from its CDS regions (https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2, on March 17, 283 

2020) [37]. The two databases were merged and reverse decoy sequences were generated. Then, 284 

spectra files were searched against the merged database using the following parameters: Type, 285 

TMT; Variable modifications, Oxidation (M), Deamidation (NQ), Acetyl (Protein N-term); Fixed 286 

modifications, Carbamidomethyl (C); Digestion, Trypsin/P. The MS1 match tolerance was set as 287 

https://www.uniprot.org/proteomes/UP000005640
https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2


 

 

11 

 

20 ppm for the first search and 4.5 ppm for the main search. The MS2 tolerance was set as 20 ppm. 288 

Search results were filtered with 1% false discovery rate (FDR) at both protein and peptide levels. 289 

Proteins denoted as decoy hits, contaminants, or only identified by sites were removed, and the 290 

remaining proteins were used for further analysis. 291 

 292 

Proteomic data imputation and normalization 293 

To ensure the data quality, only 4993 proteins quantify in ≥ 10 samples were reserved. The 294 

missing values were imputed with values representing a normal distribution around the detection 295 

limit of the mass spectrometer. For each sample, the mean and standard deviation (S.D.) of the 296 

distribution of the raw protein intensities were determined. Then a new distribution with a 297 

downshift of 1.5 S.D. and a width of 0.3 S.D. was created. The total data set was imputed using 298 

these values, enabling statistical analysis. 299 

After imputation, the intensity-based expression value of a protein was first normalized based 300 

on its expression level in the control sample of the same batch to eliminate the batch effect. Then, 301 

the proteomic data of each sample was normalized into a similar distribution using the z-score 302 

transformation, one of the mostly used normalization methods. For each sample, the mean 303 

expression value μ and S.D. δ were first calculated. For a protein i with the expression level of xi, 304 

its normalized z-score was calculated as below: 305 

𝑧𝑖 =
𝑥𝑖 − 𝜇

𝛿
 306 

For each zi, we re-scaled it into a value ranged from 0 to 1 by min-max normalization shown as 307 

below: 308 

𝑧𝑖
∗ =

𝑧𝑖 − 𝑀𝑖𝑛

𝑀𝑎𝑥 − 𝑀𝑖𝑛
  309 

Where Max and Min were maximum and minimum expression values in the sample. The median 310 

centering method was further used, and the NPE value for i was calculated as below: 311 

𝑁𝑃𝐸𝑖 =
𝑧𝑖

∗

𝑀𝑒𝑑𝑖𝑎𝑛
 312 

After z-score coupled with min-max and median centering normalizations, NPE values of proteins 313 

follow a logarithmic normal distribution (log2) centered at zero.  314 

The proteomic data imputation and normalization was conducted using Perseus 1.6.14 [3]. 315 

To test whether different tissue-specific proteomes could be distinguished, PCA was performed 316 
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using Scikit-learn 0.22.1 (https://scikit-learn.org/stable/), a powerful toolkit for data mining and 317 

analysis. 318 

 319 

Human normal proteomic data 320 

From the HPM portal (http://humanproteomemap.org/) [8], pre-compiled proteomic datasets 321 

of lung, kidney, liver, colon, frontal cortex and heart in adults were downloaded, containing 12,335, 322 

12,252, 16,800, 14,813, 16,868, and 12,007 quantified proteins, respectively. The HPM proteomic 323 

datasets were also imputed and normalized by the same methods described above.  324 

 325 

Identification of tissue-specific proteins 326 

As previously described [4, 5], an entropy-based method was adopted to identify potential 327 

TSPs in human COVID-19 tissues. For each protein, its relative NPE (rNPE) value in a tissue j 328 

was defined as below: 329 

𝑟𝑁𝑃𝐸𝑗 =
𝑁𝑃𝐸𝑗

∑ 𝑁𝑃𝐸𝑁
1

 330 

Where NPEj was the normalized expression value in the tissue j, and Σ NPE was the sum of all 331 

NPE values in all tissue samples. N was the total number of COVID-19 tissues. Then, the Shannon 332 

entropy H of this protein across different tissues could be calculated as below: 333 

𝐻 = − ∑ 𝑟𝑁𝑃𝐸𝑗 × 𝑙𝑜𝑔2(𝑟𝑁𝑃𝐸𝑗)

𝑁

1

 334 

Where the value of H ranged from 0 to log2(N). A smaller H score represented a higher probability 335 

of a protein to be a real TSP. Based on the distribution of H scores, proteins with entropy < 2.5 336 

were reserved as potential TSPs.  337 

 338 

Model-based identification of differentially expressed protein (DEPs) 339 

In this study, MAP was directly used to identify potential DEPs for each pair of COVID-19 340 

and normal tissues [8]. For a two-sample comparison, MAP first ranks all proteins based on their 341 

log2-intensity changes. Then, MAP estimates local technical and systematic errors for each small 342 

interval by considering the changes of all proteins in the interval, and significantly altered proteins 343 

can be detected. Thus, MAP does not require technical replicates, which are commonly used for 344 

estimation of the same parameters. For a tissue type with multiple samples, the mean NPE value 345 

https://scikit-learn.org/stable/
http://humanproteomemap.org/
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was calculated for each protein. Then, the log2 ratios of COVID-19 vs. normal tissues for all 346 

proteins were determined and ordered based on their values. For using MAP, default parameters 347 

were adopted, with a sliding window size of 400 proteins, a step size of 100 proteins, and a fraction 348 

of 50 proteins [8]. In MAP, the Benjamini–Hochberg method was used for adjustment of multiple 349 

testing, and an adjusted p-value < 0.05 was selected to identify potential DEPs. Fold changes of 350 

postmortem vs. normal tissues were also present for identified DEPs.  351 

 352 

GSEA enrichment analysis 353 

The software package of GSEA v4.0.3 was downloaded (https://gsea-msigdb.org) [38], as 354 

well as the gene set collection of GO biological processes with gene symbols 355 

(c5.bp.v7.1.symbols.gmt). A stringent threshold of FDR q-val < 0.01 was adopted to detect GO 356 

biological processes significantly up- or down-regulated in COVID-19 tissues.  357 

 358 

Re-construction of a virus-host protein interaction network 359 

From the Human Protein Atlas (HPA), we obtained 331 known virus-host PPIs 360 

(https://www.proteinatlas.org/humanproteome/sars-cov-2) reported by a recent study [10]. Since 361 

lung is the potentially major virus-host battlefield of COVID-19, only 110 virus-host PPIs were 362 

reserved for 23 SARS-CoV-2 proteins/mature peptides and 110 interacting DEPs in postmortem 363 

lung tissues. The 198 DEPs of 16 up-regulated biological processes in COVID-19 lung tissues 364 

were also included. Based on the functional annotations in UniProt, we classified the 308 lung 365 

DEPs into 6 classes, including cell signaling/development, cytoskeleton organization, immune 366 

response, metabolic process, transcription/translation, and transport. Then, 1,771,193 human 367 

known PPIs of 18,839 proteins were integrated from 7 public databases, including BioGrid [39], 368 

IID [40], InBio MapTM [41], Mentha [42], HINT [43], iRefIndex [44] and PINA [45]. For the 308 369 

lung DEPs, we extracted 2,478 PPIs for 298 unique proteins, and the virus-host protein interaction 370 

network was constructed and visualized with Cytoscape 3.6.1 software package [46]. 371 

 372 

GO enrichment analyses 373 

The two-sided hypergeometric test was adopted for the enrichment analysis of the 110 SARS-374 

CoV-2 interacting DEPs. Here, we defined: 375 

N = number of human proteins annotated by at least one term 376 

https://gsea-msigdb.org/
https://www.proteinatlas.org/humanproteome/sars-cov-2
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n = number of human proteins annotated by term t 377 

M = number of the 110 DEPs by at least one term  378 

m = number of the 110 DEPs annotated by term t 379 

Then, the E-ratio was calculated, and the P value was computed with the hypergeometric 380 

distribution as below: 381 

E-ratio = 

𝑚

𝑀
𝑛

𝑁

 382 

P value = ∑
(

𝑀
𝑚′)(

𝑁−𝑀
𝑛−𝑚′)

(
𝑁
𝑛

)

𝑛
𝑚′=𝑚 , (E-ratio > 1) 383 

In this study, GO annotation files (on 03 January 2020) were downloaded from the Gene Ontology 384 

Consortium Web site (http://www.geneontology.org/), and we obtained 19,714 human proteins 385 

annotated with at least one GO biological process term. 386 

 387 

Comparison of DEPs identified from other proteomic studies 388 

Prior to our study, there were 7 omics studies of host protein changes upon SARS-CoV-2 389 

infection, including 5 in cell lines, 1 in lung tissues, and 1 in 144 autopsy samples from 7 organs. 390 

These works included: 1) Bojkova et al. used the stable isotope labeling by amino acids in cell 391 

culture (SILAC) labeling and quantified 6385 proteins in the human colon epithelial carcinoma 392 

cell line Caco-2 with or without SARS-CoV-2 infection [28]; 2) Bezstarosti et al. used the label-393 

free technique and quantified 6503 proteins from the African green monkey kidney Vero E6 cells 394 

with or without SARS-CoV-2 infection [32]; 3) Grenga et al. used the label-free technique and 395 

quantified 3320 proteins from Vero cells with or without SARS-CoV-2 infection [34]; 4) 396 

Appelberg et al. used the TMT labeling and quantified 7757 proteins in the human hepatocyte-397 

derived cellular carcinoma cell line Huh7 with or without SARS-CoV-2 infection [35]; 5) Leng et 398 

al. obtained 3 lung tissue samples from 2 COVID-19 patients, and quantified 3321 proteins using 399 

the label-free technique [31]; 6) Nie et al. used TMT 16-plex labeling and quantified 11,394 400 

proteins from 144 autopsies of 7 organs including lung, spleen, liver, kidney, heart, testis and 401 

thyroid in 19 COVID-19 patients [24]; 7) Thorne et al. conducted transcriptomic, proteomic and 402 

phosphoproteomic quantifications of human airway epithelial Calu-3 cells infected by 3 new 403 

SARS-CoV-2 strains, including the B lineage isolate BetaCoV/Australia/VIC01/2020 (VIC), 404 

B.1.13 lineage isolate hCoV-19/England/IC19/2020 (IC19), and B.1.1.7 lineage isolate hCoV-405 

http://www.geneontology.org/
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19/England/204690005/2020 B (Kent), for 10 or 24 h [47]. Calu-3 cells infected with empty vector 406 

were taken as the mock control. On average, the numbers of identified proteins ranged from 3600 407 

to 4000.  408 

From Leng’s study, we obtained 641 pre-determined DEPs in lung with COVID-19 [31]. 409 

From Bojkova’s paper, we obtained 2734 DEPs from Caco-2 cells after SARS-CoV-2 infection 410 

[32]. From Nie’s paper, we obtained 1606, 1585, 642, 1969, and 919 DEPs from lung, renal cortex, 411 

renal medulla, liver, and heart of COVID-19 patients [24]. From Thorne’s study, we obtained 48 412 

non-redundant DEPs in new virus strains against mock or between different new strains, while 413 

DEPs in Mock_10h against Mock_24h were not considered [47].  414 

 415 

Data and Software Availability  416 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 417 

Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner repository with 418 

the dataset identifier PXD019970.  419 
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Supplementary Figure  524 
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Figure S1. Study design and patients. A, Overview of postmortem tissue samples that were 526 

analyzed to generate a draft map of COVID-19 patient’s proteome are shown. B, The workflow of 527 

tissue samples preparation. C, Pathological changes of lung tissue in two patients with COVID-528 

19. The tissues were fixed with paraformaldehyde and stained with the hematoxylin an eosin (HE). 529 

D, SARS-CoV-2-like particles (black arrowed) observed by electron microscopy in lung tissues 530 

(left, original magnification 9600×; right, original magnification 7800×). E, SARS-CoV-2 531 

nucleocapsid (NP) protein (green) and DAPI (blue) detected by immunofluorescence staining.  532 
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 533 

Figure S2. Proteomic profiling of eight types of COVID-19 postmortem tissues. A, 534 

Normalization of the proteomic data using the z-score plus min-max and median centering methods. 535 

B, PCA analysis of the proteomic data with NPE values. C, An entropy-based prediction of 536 

potential TSPs (entropy < 2.5). D, A heatmap of protein expressions in the eight types of 537 

postmortem tissues, after a hierarchical clustering. Selected proteins in boxes include well-538 

characterized (red) and potential (white) TSPs.  539 
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 541 

Figure S3. Normalized expression levels of the selected potentially tissue-specific proteins (TSPs) 542 

in tissues of lung, kidney, liver and intestine. The potentially TSPs were identified by the entropy-543 

based method (Entropy score H < 2.5). For tissue types with multiple samples, the mean NPE 544 

values was calculated for each protein. 545 
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 546 

Figure S4. Normalized expression levels of the selected TSPs in tissues of brain, heart, muscle 547 

and spleen. TSPs were identified by the entropy-based method (Entropy score H < 2.5). For tissue 548 

types with multiple samples, the mean NPE values was calculated for each protein. 549 

  550 
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 551 

Figure S5. A comparison of the proteomic data in postmortem tissues against normal tissues 552 

in HPM. A, The distribution of numbers of quantified proteins for six tissues obtained from HPM. 553 

B, The overlap of quantified proteins in HPM and this study. C, The z-score plus min-max and 554 
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median centering normalizations of the HPM proteomic data. D, The distribution of protein 555 

expressions of our and HPM data sets before normalization. E, The distribution of NPE values of 556 

our and HPM data sets after normalization. F, The PCA separation of COVID-19 and normal 557 

tissues, irrespective of the data source. G-I, MAP-based identification of potential DEPs in (G) 558 

intestine, (H) brain and (I) heart of postmortem tissues. 559 
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Figure S6. Normalized expression levels of DEPs. A, Normalized expression levels of the most 562 

changed DEPs in lungs and other tissues. B, Normalized expression levels of 57 DEPs shared by 563 

more than 4 tissues. DEPs were identified by MAP (Adjusted p-value < 0.05). For tissue types 564 

with multiple samples, the mean NPE values was calculated for each protein. 565 

  566 
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 567 

Figure S7. Additional analyses of DEPs. A, Visualization of up-regulated processes in postmortem 568 

brain and liver, using the word cloud illustrator WocEA. B, Top 10 mostly changed DEPs in three 569 
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differentially regulated processes. C, Normalized expression levels of lung DEPs in the 570 

differentially regulated processes. GSEA analysis of lung DEPs in additional four processes. The 571 

mean NPE values was calculated for each protein.  572 
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 573 

Figure S8. Comparison of the DEPs identified in this study to other published proteomic studies 574 

[24, 28, 31], including in A, lung, B, kidney, C, liver, D, heart, and E, intestine. More details were 575 

shown in Table S9.  576 
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 578 

Figure S9. A virus-host protein interaction network. In the network, the 308 up- (pink) and 579 

down-regulated (cyan) DEPs in postmortem lung tissues were classified into 6 groups based on 580 

their major functions. The PPIs between the 23 SARS-CoV-2 proteins (orange) were shown in 581 

yellow links, whereas PPIs between host proteins were shown in grey links.  582 
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 583 

Fig. S10. GO analysis of 110 SARS-CoV-2 interacting DEPs in lung tissues. GO enrichment 584 

analysis of SARS-CoV-2 interacting DEPs. Two-sided hypergeometric test, m > 5, P value < 0.01. 585 


