
Supplemental Materials

Supplemental Figure 1. Impact of individualized restriction of germline gene database on allelic assignment in 
AIRR-seq samples.



(A) The proportion of the two most frequent alleles for 100 individuals from the HUMAN3 dataset. Each column on 
the plot corresponds to one IGHV gene. For each sample (individual), three data points are shown: the fraction of 
sequencing reads assigned to the two most frequent alleles (violet: top_1, turquoise: top_2) and the total fraction of 
all remaining alleles (yellow: rest). The dashed gray line corresponds to the 5% threshold above which we consider 
allele fractions as not due to sequencing/PCR errors. Alignments were performed using MiXCR v3.0.12. (B) 
Analogous to A but for IGHJ genes. (C) Per-gene alignment scenarios can be divided into three general cases. Case 
1: a high fraction (> 90%) of sequencing reads assigned to the most frequent allele, and negligible fractions (<5%) of 
sequencing reads assigned to the remaining ones (which suggests a homozygous individual for a given gene). Case 
2: comparable fractions of sequencing reads assigned to the first and the second most frequent alleles and a low (< 
5%) total fraction of the remaining ones (suggesting a heterozygous individual). Case 3: a high (>5%) total fraction of 
the remaining alleles, suggesting a systematic alignment bias likely caused by gene duplication, which may lead to 
the presence of three or more alleles of the current gene. (D) Illustration of the generation of an AIRR-seq sample 
that contains more than two alleles of the same gene. (E) Example: the sequence diversity of IGHV1-69 alleles as 
quantified by the edit (Levenshtein) distance. (F) Example: the proportion of the IGHV1-69 alleles across the 99 
individuals of the HUMAN3 dataset: one column corresponds to one individual. The columns are ordered by the 
number of alleles present, and within each category for allelic diversity (4 alleles, 3 alleles, etc.) by the most frequent 
alleles. (G) The fraction of the remaining alleles is low and is below the 5% threshold for sequencing and PCR error, 
for most of the genes and most of the individuals after performing the full pipeline, i.e., with realignment of the 
sequences against the restricted set of alleles (see Supplemental Fig. S2).

Supplemental Figure 2 (relates to Supplemental Fig. S1). Pipeline for allele-level annotation of AIR sequencing reads 
using validated allele sets deposited in publicly available databases.
Diploidy and structural variations in the IGHV locus, along with the high similarity between the IGHV segments 
render annotation of AIRR-seq data a complex problem. The majority of the currently available annotation tools 
(Bolotin et al. 2015; Ye et al. 2013; Brochet et al. 2008; Ralph and Matsen 2016) may suggest several V segments for 
each sequencing read. Each sequencing read is processed independently, which may result in the presence of any 
number of alleles per gene in the annotations for a given sample. Thus, there is a need (see Supplemental Fig. S1) 
for a method to accurately restrict the set of IGHV alleles in AIRR-seq data for each individual. To address this need, 
we employed the following strategy: Step 1: we constructed a library of V allele nucleotide sequences based on 
IMGT (Lefranc 2001, downloaded on 2020-05-29) and OGRDB (Lees et al. 2020) downloaded on 2020-05-29), 
databases, and trimmed all sequences after the second Cysteine, nt position 312 according to the IMGT unique

2



numbering scheme (Lefranc et al. 2003). We performed trimming to ensure the absence of alignment errors which
may be caused by nucleotides located after position 312, i.e., in the VD junction (this problem was also noted by
(Mikocziova et al. 2020)). Step 2: for those alleles of the same gene that became identical after trimming (namely,
IGHV1-46*01=*03, IGHV3-7*02=*04, IGHV3-30*03=*18, IGHV3-33*01=*06, IGHV3-66*01=*04, IGHV4-28*01=*03),
we deleted all but one copy. If there were different genes that shared identical alleles (such as IGHV2-70*04 and
IGHV2-70D*04), we considered these genes operationally indistinguishable (Luo et al. 2019) and combined their
allele sets (again, leaving only one copy of the duplicated allele). Step 3: for each gene, we set a number k – the
maximum number of alleles that we expect to observe in a sample: default, k = 2, for diploid species. However, for
some individuals, there may exist more than two alleles for those genes whose allele sets were combined on the
previous step (Supplemental Fig. S1D). For those genes, we set k = 4 (and we set k = 6 for IGHV3-30 as its allele set
originates from 3 genes: IGHV3-30, IGHV3-30-3 and IGHV3-30-5). We also set k = 4 for those genes that are known
to have multiple copies (Watson and Breden 2012; Ford et al. 2020; Luo et al. 2019), see Supplemental Table 1),
Step 4: with the modified allele library, we annotated the AIR nucleotide sequencing reads of the given sample
using MiXCR (version 3.0.12). Step 5: for each gene, we detected the k most frequent alleles, restricted the allele
library to these alleles, thus obtaining an individually restricted allele library. Step 6 consisted of annotating all AIR
sequencing reads again using the individually restricted allele library. Note that the blue path (steps 1–3)
corresponds to preprocessing the allele library and hence those steps need to be performed only once if the original
allele database has not been updated. The orange (steps 4–5, computing the individually restricted allele library)
and violet (step 6, annotating the sequencing reads) paths, however, must be repeated for each AIRR-seq sample.
For murine data, we only cleaned the sequencing reads (i.e., assembled the contigs) using MiXCR (Bolotin et al.
2015): we used the MiXCR-computed clones, each clone multiplied by its abundance. We did not apply the allele
preprocessing workflow, since all considered subjects were inbred mice, so by definition, they share identical
germline gene sets.
Of note, when aligning the sequences with IGoR for the subsequent model inference, we used an increased D gene
alignment score threshold Supplemental Fig. S8): with the default threshold, the alignment module of IGoR
produced a huge amount of alignments that did not significantly impact nor the fitted model parameter values nor
the sequence Pgens evaluated using this model.

Supplemental Figure 3 (relates to Fig. 2). On the strategy not to filter unproductive sequences: RGMPs inferred from 
unproductive sequences exhibit similar patterns with higher variance compared to RGMPs inferred from all 
(unproductive and productive) sequences.
(A–B) Explicit and normalized JSDs between RGMPs inferred from unproductive sequences from the samples of the 
HUMAN 2 dataset show similar trends to the ones inferred from all (unproductive and productive) sequences (Fig. 2

3



K,L).. However, the range of the distances between replicates (shaded area) is wider due to the lower number of 
sequences. (C) Pairwise normalized JSDs between RGMPs inferred from all sequences (1A-5B) and from 
unproductive sequences only (1A_unp-5B_unp). Full sample-inferred (from both productive and unproductive 
sequences) RGMP sets are generally closer to the “unproductive-inferred” RGMP sets of the same corresponding 
sample (see the green diagonal in the lower-left/upper-right part), while showing comparable pairwise distances 
between RGMPs inferred from different samples (upper left quarter).
Although Marcou and colleagues suggest (Marcou et al. 2018) to filter out productive sequences for IGoR inference, 
we inferred RGM from both productive and unproductive reads. One of the reasons for this strategy is that we 
intended to fit the IGoR model to the most diverse available sequence space: if the VDJ recombination can produce 
a sequence (productive or unproductive), then we should take this sequence into consideration. To justify this 
decision, we reproduced part of our analysis for the distance between RGMP sets of human monozygotic twins and 
unrelated individuals from the HUMAN2 dataset with RGMPs inferred from unproductive sequences only): the data 
led to the same conclusion (i.e., the explicit and normalized JSDs between twin/unrelated subjects were consistently 
higher than the ones between replicates but have higher variance). Furthermore, we only worked with data from 
flow-cytometry sorted non-antigen-experienced cells (pre- and naïve B cells). As hypothesized in the studies in the 
field (Marcou et al. 2018; Sethna et al. 2020; Desponds et al. 2021), we argue that, although those cells have already 
undergone selection, the bias introduced by the selection is negligible when compared to the inter-individual 
differences: if selection impact on RGMP was too high, we would have seen that RGMP sets inferred from naïve B 
cell samples obtained from different subjects were indistinguishable (i.e., the distance would have been comparable 
to the distance caused by the noise). However, we see the opposite: although RGMP sets inferred from naïve B cell 
samples were closer to each other than RGMP sets inferred from pre-B cell samples, they were still clearly distinct
(Fig. 2E–G).

Supplemental Figure 4 (relates to Methods 4).
(A) Subsampling from a pair of experimental samples to obtain the 30 independent measures of the explicit JSD 
values for the sample size of S sequencing reads (S in [1000, 3000, 10000, 30000]). (B) In the case when the null 
hypothesis holds (A and B are data replicates), for the sample size of 3000 sequencing reads, p-values of the 
Student’s t-test for repertoire comparison replicated 30 times are distributed uniformly between 0 and 1, as shown 
by the empirical cumulative distribution function (ECDF). (C) In the case when the null hypothesis supposedly does 
not hold (A and B are samples obtained from twin subjects), for the sample size of 3000 sequencing reads, the 
p-value distribution is highly skewed towards 0.
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Supplemental Figure 5 (relates to Methods 2). Allele fractions in the HUMAN3 dataset after applying the pipeline 
described in Supplemental Fig. S2, similar to Supplemental Fig. S1G.
The yellow points corresponding to the fractions of the remaining (i.e., not among the top_k) alleles were 
redistributed across other colors – as each of the misaligned sequencing reads was re-aligned to one of the top_k 
alleles.

Supplemental Figure 6 (relates to Supplemental Fig. S1 and Methods 2). The theoretical probability to observe more 
than 5% incorrect allele assignments for reads originating from a given V segment.
The probability is calculated for the worst-case scenario under the following assumptions: (i) there are two alleles 
that differ by a single nucleotide substitution on position Pos_x. (ii) nucleotide substitutions in the sequencing reads 
are independent for different positions (as we talk about naïve B cell data and we can be sure that these
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substitutions are caused by sequencing/PCR errors and not somatic hypermutations), (ii) the number of errors per
read is below 4.5 (Wardemann and Busse 2019). In such conditions, the probability to misalign a read is the
probability for the nucleotide on position Pos_x to be mutated. Since two alleles differing by a single nucleotide
substitution is the worst case, the calculated probability is an upper bound for a probability to misalign an arbitrary
sequencing read. If there are sequencing reads in the sample and the probability to observe a SHM on a given
position is (which is proportional to the average number of mutations per sequencing read), then the

probability to observe more than 5% of misassigned alleles is . The zigzag shape of
the plot is due to the number of terms in the sum in the formula: every time the number of reads increases by
twenty, the upper limit for increases by one. The calculations show that the threshold of 500 reads ensures a
reliable probability of observing less than 5% misalignments even for the upper bound of the error rate.

V name Duplications References Max #alleles

IGHV1-2 yes (Watson and Breden 2012) 4

IGHV1-3 no 2

IGHV1-8 no 2

IGHV1-18 suspected (Luo et al. 2016) 2

IGHV1-24 no 2

IGHV1-45 no 2

IGHV1-46 yes (Watson and Breden 2012) 4

IGHV1-58 no 2

IGHV1-69 yes IMGT, (Watson and Breden 2012) 4

IGHV1-69-2 no 2

IGHV2-5 suspected (Watson and Breden 2012) 2

IGHV2-26 no 2

IGHV2-70 yes IMGT 4

IGHV3-7 no inferred from the data 4

IGHV3-9 no 2

IGHV3-11 yes (Watson and Breden 2012) 4

IGHV3-13 no 2

IGHV3-15 no 2

IGHV3-20 suspected (Luo et al. 2016) 2

IGHV3-21 suspected (Luo et al. 2016) 2

IGHV3-23 yes IMGT 4

IGHV3-30 yes IMGT 6

IGHV3-33 no inferred from the data 4

IGHV3-43 yes IMGT 2

IGHV3-48 no 2

IGHV3-49 no inferred from the data 4

IGHV3-53 yes (Watson and Breden 2012) 4
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IGHV3-62 no 2

IGHV3-64 yes (Watson and Breden 2012; Ford et al. 2020), IMGT 4

IGHV3-66 no inferred from the data 4

IGHV3-72 no 2

IGHV3-73 no 2

IGHV3-74 no 2

IGHV3-NL1 no 2

IGHV4-4 no 2

IGHV4-28 no 2

IGHV4-30-2 no 2

IGHV4-30-4 no 2

IGHV4-31 no 2

IGHV4-34 no 2

IGHV4-38-2 no 2

IGHV4-39 no 2

IGHV4-59 yes (Watson and Breden 2012; Ford et al. 2020) 4

IGHV4-61 no 2

IGHV5-10-1 no 2

IGHV5-51 no 2

IGHV6-1 no 2

IGHV7-4-1 no 2

Supplemental Table 1 (relates to Supplemental Fig. S1 and Methods 2). Maximum number of alleles set for each 
IGHV gene.
These numbers are based on the previously known information about IGHV copy numbers and on the high fractions 
of remaining alleles (not top_1 or top_2 alleles in terms of frequency) in the HUMAN3 dataset (Supplemental Fig. 
S1A).
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Supplemental Figure 7 (relates to Fig. 2). JSD-based distance for V segment-only and V segment-agnostic explicit 
and normalized JSD.
Analogous to Fig. 2 except for here the JSD was computed either using only the V choice probability distribution 
and V deletion profiles (columns 1 and 3) or in a V segment-agnostic way (columns 2 and 4) for MOUSE_PRE (upper 
left), MOUSE_NAIVE (upper right), HUMAN1 (lower left) and HUMAN2 (lower right) datasets.

8



Supplemental Figure 8 (relates to Supplemental Fig. S1 and Methods 2). IGoR D gene alignment score threshold 
can be increased without substantial change in the inferred RGMPs.
Here, we show the reasoning behind increasing the D gene alignment score thresholds in IGoR from 15 to 30.
(A) A synthetic dataset of 10000 sequencing reads generated using ImmuneSim was aligned using IGoR. With the 
default value for D gene alignment score threshold (15), IGoR produces an enormous number of alignments: more 
than 80 alignment variants per sequence per gene on average. We filtered the alignments, leaving only alignments 
with scores higher than 20 (violet), 25 (blue) and 30 (yellow). Filtering the alignments reduces the number of 
alignment variants per sequence per gene to the more realistic 8 (for threshold=25) or 2 (for threshold=30).
(B) After that, we inferred the RGMP for all four variants of alignments and used the four inferred RGMP sets to 
evaluate the sequence Pgens. To plot the Pgens estimated using the modified alignment score threshold as a 
function of the ones estimated using the default threshold, we showed them on a scatter plot: X-axis stands for the D 
gene alignment score threshold = 15, Y-axis stands for the higher ones. The Pgens are highly consistent (Pearson’s r 
> 0.93), suggesting that one can use IGoR with an increased D gene alignment score threshold. Out of 10000 
sequencing reads, 107 Pgens equaled zero (108 for threshold=30).
(C) The same as B, but all Pgens were computed using the same model (inferred from alignments computed with the 
default parameters) but using different alignments during the evaluation step. The Pgens are also consistent in this 
case (Pearson’s r > 0.93).
(D) The Pgen ratio distribution in a log-log scale (Pgens for higher score thresholds divided by Pgens for 
threshold=15).
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Supplemental Figure 9 (relates to Fig. 3). The normalized V segment-only JSD applied to the HUMAN3 dataset. 
Analogous to Fig. 3 but here the normalized JSD was calculated using only the V segment-related components (V 
segment choice and V deletion). The results support those obtained with the full model (Fig. 3).

Supplemental Figure 10 (relates to Fig. 3). The normalized V segment-agnostic JSD applied to the HUMAN3 
dataset.
Analogous to Fig. 3 but the normalized JSD was calculated only using V segment-agnostic components. The results 
support the ones obtained with the full model (Fig. 3).
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Supplemental Figure 11 (relates to Fig. 2). The normalized JSD distance for five twin pairs from the HUMAN2 
dataset.
The normalized JSD within the pairs of twins (left) and across the pairs of twins, i.e., for unrelated individuals (right) in 
the HUMAN2 dataset, sample size=30000 sequencing reads. The dashed lines correspond to the quartiles of the 
normalized JSD distribution. The normalized JSD for unrelated individuals is on average higher than the normalized 
JSD between the twins. In some cases, the normalized JSD for twins is lower than for unrelated individuals: we 
speculate that this may be because genetic factors account for only a small portion of the JSD and, consequently, 
variation in non-genetic factors may be stronger than the impact of genetic factors.
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Supplemental Figure 12 (relates to Fig. 5). Sensitivity of IGoR and the normalized JSD to the V choice probabilities. 
Identical to Fig. 5 but computed for the V choice parameter (instead of the J|V conditional choice parameter).

12



Supplemental Figure 13. The contribution of different recombination scenarios to the total sequence Pgen.
(A) An example of similarly probable recombination scenarios that lead to the same sequence. The same nucleotide 
can be attributed to the V3’ palindromic insertion (V3’_ins, scenario 1) or to the N1 insertion (N1_ins, scenario 2). 
Another nucleotide can be attributed to the N1 insertion (scenario 1) or to the D5’ palindromic insertion (D5’_ins, 
scenario 3). (B) A heatmap showing the 2D-histogram: number of scenarios considered by IGoR for a sequence and 
its corresponding total Pgen. Sequences with higher Pgens do not tend to consist of more scenarios (computed for 
the pair_1_twin_A sample from the HUMAN2 dataset). The dashed lines show quantiles (5th, 50th, and 95th) of the 
number of scenarios distribution. (C) The contribution of the best scenario (best scenario probability divided by the 
total Pgen) and its corresponding total Pgen (computed for the pair_1_twin_A sample from the HUMAN2 dataset).
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The dashed lines show quantiles (5th, 50th, and 95th) of the distribution of the best scenario contribution. (D-E) 
Analogous to B-C but computed for all samples from the HUMAN2 dataset.

Supplemental Figure 14. Number of unique alleles depending on the length of the V segment end and the actual 
distribution of the lengths of V segment ends spanned by sequencing reads of the HUMAN1 dataset.
The approach described in Methods 2 was designed for full-length AIRR-sequencing reads. However, we directly 
applied it also to the HUMAN1 dataset, which was created using shorter reads (2×130nt reads), as we required the 
allele databases to be identical when comparing RGMPs across different human datasets. Thus, our approach differs 
from that of Omer and colleagues, who chose a very similar approach but did not have the requirement to compare 
RGMPs across datasets – and thus specifically modified their analysis for short-read data (Omer et al. 2021). In the 
preprocessing, we filtered out all reads that contained less than 70 nucleotides in the V segment. We found that only 
33 out of 210 V-gene alleles become indistinguishable when this sequence cutoff was implemented. Moreover, there 
is no pair of alleles that belongs to different genes and becomes indistinguishable with the decreased read length –
and hence no genes needed to be merged as ‘potential duplications’. It is important to mention that, if two alleles 
are indistinguishable, we consistently discarded one in favor of the other for all related sequencing reads. Thus, 
although the pipeline designed for full-length reads may be too conservative for shorter reads, it is still directly 
applicable to them.
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Supplemental Figure 15. Evenness profiles for twin individuals from the HUMAN2 dataset show that data replicates
are not substantially affected by the variation of the clone size distribution.
If f_1, … f_i are the (normalized) clone sizes of a sample, then the evenness 𝛼E value is determined as shown in the 
formula on the figure, where k is the number of clones in the sample (Greiff et al. 2015). We computed evenness for
𝛼 in range from 0 to 10 with a step of 0.2 (except 1). For each experimental sample, we calculated the evenness 
profile for subsamples of size [1000, 3000, 10000, 30000]. Each curve corresponds to one subsample: the color 
indicates the original experimental sample the sequences were taken from, dashed lines correspond to data 
replicates, and the subsample size can be determined from the position of the curve: the higher the subsample size, 
the lower the evenness profile. Same as in the case of the JSD-RGMP-based distance between samples, for each 
sample, the evenness profile of its data replicate is closer to its own than to evenness profiles of other samples.
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