
OME-NGFF: a next-generation file format
for expanding bioimaging data-access
strategies

In the format provided by the
authors and unedited

Brief CommuniCation
https://doi.org/10.1038/s41592-021-01326-w

Supplementary information

https://doi.org/10.1038/s41592-021-01326-w

Moore et al Supplementary Information, p. S-1

Supplementary Information

OME-NGFF: a next-generation file format for expanding
bioimaging data access strategies

Josh Moore1, Chris Allan2, Sébastien Besson1, Jean-Marie Burel1, Erin Diel2, David Gault1, Kevin Kozlowski2, Dominik
Lindner1, Melissa Linkert2, Trevor Manz3, Will Moore1, Constantin Pape4, Christian Tischer4, Jason R. Swedlow1,2*

1University of Dundee, Dundee, Scotland, UK
2Glencoe Software, Inc. Seattle, WA, USA
3Harvard Medical School, Boston, MA, USA
4European Molecular Biology Laboratory (EMBL), Heidelberg, Germany

*email: j.r.swedlow@dundee.ac.uk

Table of Contents
Supplementary Table 1: Characteristics of three binary containers for imaging data…………………………………S-1
Supplementary Note: Scaling strategies for interoperable bioimaging data formats…………………………………. S-2
References ……....... S-5

Supplementary Table 1: Characteristics of three binary containers
for imaging data
 TIFF HDF5 NGFF

First release 1986 1998 2016

Maturity (in imaging) Ubiquitous Well-supported Emerging

Base structure Sequence of 2D
planes

Hierarchy of ND arrays Hierarchy of ND arrays

Multi-file support With OME metadata With internal links Natively

Pyramidal images With OME metadata BDV, Imaris OME-Zarr

Advantages Tool support Feature rich format Simplicity

Limitations Scalability Parallel writes Large number of small
files

Ideal use case Laptop Powerful workstation,
or cluster

Online archive, or
public resource

Moore et al Supplementary Information, p. S-2

Supplementary Note: Scaling strategies for interoperable
bioimaging data formats

Introduction
For 15 years, the Open Microscopy Environment (OME) has provided the community an alternative to a
common file format, namely the Bio-Formats translation library 1. Rather than declaring and maintaining a
single standardized format, OME’s strategy has been to focus on bioimage data access API. This has achieved
a de facto standardisation of bioimaging metadata, with the OME Data Model 2 being incorporated into many
open and commercial software tools and most recently, several “minimal information” specifications across a
wide variety of bioimaging domains and applications 3–6. The diversity of the domains covered by these
specifications is an example of the range of applications of biological imaging and pace of innovation
discussed in the main text and helps explain why biological imaging has so far failed to agree on and adopt a
single data format.

However, the authors acknowledge that no single format is likely to satisfy all use cases, programming
environments and technology domains (see Supplementary Table 1 for comparison of functionality and
limitations). For instance, the requirements of an imaging technology manufacturer, that needs a file format
with optimised write performance, are very different from those of a computational scientist building new
machine learning (ML) technologies or a public data repository that has to publish and serve many millions to
billions of image datasets. The analysis below details OME’s previous experiences trying to bridge this tension
and, along with the results reported in the main text, underscores the need for a new chunked, parallelized
data storage and access mechanism, enabling advanced AI applications and public data resources.

Limits of On-the-fly Translation
One classically successful approach to provide unified access to bioimaging data uses a library that
dynamically translates bioimage metadata and binary data from the innumerable proprietary file formats
(PFFs) that exist in this domain (Extended Data Figure 3). This strategy is provided by several open source
solutions, including the authors’ Bio-Formats 1, a Java-based library that supports >150 PFFs; OpenSlide 7, a
C++ library that focuses on PFFs used in whole slide imaging (WSI); and aicsimageio 8, a Python library that
wraps vendor libraries for simplified numpy access. Translating data in real-time has worked well for many
applications, and such translation libraries have become the reference APIs in their fields. For datasets
smaller than 10 gigabytes (GB) that are accessed by a single or a small number of users, this strategy will
likely continue.

However, large, public data resources like the Allen Cell Explorer (https://www.allencell.org/), Image Data
Resource (IDR; https://idr.openmicroscopy.org) 9, Systems Science of Biological Dynamics Database (SSBD;
https://ssbd.riken.jp/database/) 10, and others have revealed the fundamental bottlenecks created by the
computational cost and time required for repeated translation of massive collections of PFFs. The same
problem occurs in data hungry applications like machine learning, where the overhead of real-time
translation precludes the use of even larger, more richly annotated datasets. The common thread in these
use cases is high levels of data re-use, where the same binary data may be accessed 1000s of times or more.
In this case, repeated translation wastes CPU cycles, access time and energy.

Furthermore, the outputs of these applications remain fundamentally isolated from the original data when
either the complexity or licensing of PFFs prevents the writing of further analytical metadata in the same
format. This is important because maintaining continuity between original and derived datasets is a key
requirement for experimental provenance and reproducibility

https://paperpile.com/c/IfJx5b/h6O8a
https://paperpile.com/c/IfJx5b/Nrv78
https://paperpile.com/c/IfJx5b/fz1Y+aKJI+mXeZn+D6nWF
https://paperpile.com/c/IfJx5b/h6O8a
https://paperpile.com/c/IfJx5b/ySlbV
https://paperpile.com/c/IfJx5b/c7eY9
https://www.allencell.org/
https://idr.openmicroscopy.org/
https://paperpile.com/c/IfJx5b/Ioxxu
https://ssbd.riken.jp/database/
https://paperpile.com/c/IfJx5b/uMiOB

Moore et al Supplementary Information, p. S-3

(https://www.force11.org/group/fairgroup/fairprinciples). Finally, individual dataset volumes have grown
with the advent and popularization of imaging modalities that support large tissue samples, such as digital
pathology, light sheet microscopy (LSM), and focused ion beam-scanning electron microscopy. In these
applications, efficient, high performance data access requires multi-resolution representations (often
referred to as pyramidal data) that enable zoomable visualization and selectable levels of resolution for
interactive navigation and scalable analysis. Providing multi-resolution support across >150 PFFs is simply not
practical nor computationally efficient. In short, for the applications that are becoming strategic
opportunities for new directions in bioimaging, real-time translation no longer scales.

Challenges of Permanent Conversion
A distinct approach -- converting data from PFFs to a common, well-defined format -- solves the
computational demands of repeated and real-time image translation but requires a format that has broad
application and utility, long-term stability, multiple open-source implementations and the support of the
community. Some success has been achieved with OME-TIFF, a 2D-optimized, multi-resolution image format
that captures acquisition metadata as OME-XML in the TIFF header 1,2,11. Reference software
implementations are available in Java (https://github.com/ome/bioformats/), C++
(https://gitlab.com/codelibre/ome/ome-files-cpp) and Python (e.g.,
https://github.com/AllenCellModeling/aicsimageio, https://github.com/apeer-micro/apeer-ometiff-library,
https://github.com/cgohlke/tifffile). OME-TIFF is supported by several commercial imaging companies (see
https://www.openmicroscopy.org/commercial-partners/) and is the recommended format for public data
projects like Image Data Resource (IDR) or Allen Institute of Cell Science, making their data available from
https://open.quiltdata.com/b/allencell/.

As our and others' use of existing tools for conversion to OME-TIFF grew, TIFF’s linear binary layout became a
bottleneck. Larger files took increasingly long to write. This problem was most obvious in projects that
required the conversion of large numbers of whole slide images from PFFs to OME-TIFF for use in "data
lakes", large repositories of structured and unstructured data that are used for AI training sets
(https://pathlake.org; https://icaird.com). The need for a scalable conversion motivated our development of
two tools, bioformats2raw (https://github.com/glencoesoftware/bioformats2raw) and raw2ometiff
(https://github.com/glencoesoftware/raw2ometiff). Together they provide a parallel pipeline using Bio-
Formats to convert any supported PFF into multi-resolution OME-TIFF. This is achieved by breaking images
into atomic "chunks", writing them independently to disk, and generating pyramidal data from them when
none are available, whereupon a second process can efficiently write these chunks into TIFF (Extended Data
Figure 3). With this conversion pipeline, OME-TIFF becomes a performant solution for domains handling
larger planar data, for example whole slide images in digital pathology.

A fundamental issue with OME-TIFF, however, is that though it supports 5D images (e.g., space, time,
channel), its binary data access remains limited to TIFF’s 2D tiles. This means that loading a small 3D region
requires multiple reads from different locations in a file rather than reading one contiguous block. While
storage of individual planes of image data that encompass hundreds of GB and dozens of pyramidal
resolutions of data is possible, performance suffers when scaling to multi-dimensional, multi-TB datasets,
e.g., LSM datasets. The benchmark we report in the main text of this article is an example, where the LSM-
like test data formatted in TIFF consumed too much memory for completing the benchmark.

One solution to the dimensionality issue is HDF5, a multi-dimensional data format that internally supports
chunk-based access 12. Several open HDF5 bioimage file formats have been designed and implemented 13–16
and libraries exist for these various formats in several of the major programming languages. The HDF5-based
BigDataViewer file format 14 has proven to be quite powerful for the LSM community, as it provides a
convenient integrated format and the chunking required for interactive visualization of the large 3D
timelapse datasets produced by LSM. Oxford Instruments have released another open HDF5-based
implementation that is widely used and includes a format specification

https://paperpile.com/c/IfJx5b/h6O8a+Nrv78+mTsH0
https://github.com/ome/bioformats/
https://gitlab.com/codelibre/ome/ome-files-cpp
https://github.com/AllenCellModeling/aicsimageio
https://github.com/apeer-micro/apeer-ometiff-library
https://github.com/cgohlke/tifffile
https://www.openmicroscopy.org/commercial-partners/
https://open.quiltdata.com/b/allencell/
https://pathlake.org/
https://icaird.com/
https://github.com/glencoesoftware/bioformats2raw
https://github.com/glencoesoftware/raw2ometiff
https://paperpile.com/c/IfJx5b/Ke7G3
https://paperpile.com/c/IfJx5b/eSOn1+pU80n+CHyMu+QiqkZ
https://paperpile.com/c/IfJx5b/pU80n

Moore et al Supplementary Information, p. S-4

(https://imaris.oxinst.com/support/imaris-file-format) as well as an open reference implementation,
ImarisWriter 17.

These formats have performed well for interactive visualization and analysis, but there remain limitations for
processing and integration of large numbers of HDF5 datasets. Parallel writing of HDF5 files is not supported
for regular users without specialised environments. Server applications like HSDS mitigate this problem, but
require additional dependencies and computational power, making solutions harder to adopt and thus less
widely available to the global community. Also, unlike TIFF, the HDF5 format does not inherently specify an
N-dimensional image type, so each HDF5 bioimaging implementation is in effect its own file format, growing
the number of PFFs.

An issue with both TIFF and HDF5 is that any format must eventually be stored on a hard-drive or other
permanent memory structure. Filesystems have been the workhorse of the imaging community since its
inception. They enable low-latency, "random access" to large binary data files. This speed is an underlying
assumption of most visualization and analysis applications, but filesystems are relatively expensive and their
complexity comes with relatively high maintenance costs. With the ascendance of cloud computing, an
alternative is to use a loosely-defined storage technology (often called "object storage") that treats individual
files as distinct immutable objects. Object storage provides relatively simple read and write procedures that
transfer whole objects (often called "chunks"). Each object is stored redundantly across multiple servers,
which offers improved parallelization and scalability in exchange for increased access latency. To make use of
the advantages of object storage, a modern format, accommodating contemporary dataset volumes and
dimensionality, is needed that does not require the whole binary structure to be accessed as a single
monolithic block on disk or in the cloud. While a monolithic strategy works for smaller files, it is
fundamentally limiting for multi-TB, multi-dimensional and multi-modal imaging datasets.

While the TIFF and HDF5 implementations remain valuable in their respective domains, their inability to
cover all use cases are examples of the pitfalls of format standardization. Creating a data format standard
requires equal consideration for performance, usability, and structure, with a balance of community-driven
specification and extensibility. Historically, OME-TIFF and OME-XML were highly specified but lacked optimal
adaptability to novel data volumes and high dimensionality, while HDF5 was highly extensible and thereby
suffered a branching into multiple PFFs. Improved performance motivated early adoption, especially given
high usability, but providing a clear structure for binary data and metadata is essential to yield a cohesive
landscape of new tools, rather than a divergence of format variants. Extensibility, however, is necessary for
adoption by new domains or vendors and integration with novel analytical approaches that were not
considered at the point of initial specification.

Formats with Interoperable Metadata
Our work is based on the premise that a single file format cannot be optimal for the wide variety of
bioimaging use cases. How can we build and use multiple open bioimaging formats without again requiring a
translation library? The solution is to guarantee interoperability between the formats themselves. All data in
one format should be losslessly convertible to the other, supported formats. The key to achieving this is a re-
evaluation of the metadata format that OME has been maintaining for over 15 years. The Zarr format
described in the main text provides the opportunity for this. Zarr metadata is stored as a block of JSON at
each level of a hierarchy of arrays. This framework is simple enough to be represented in HDF5’s more
powerful attribute system, but also powerful to encompass OME-TIFF metadata completely (Extended Data
Figure 4).

Additionally, this redefinition of the OME metadata for NGFFs provides an opportunity to specify conventions
that will apply to and support the breadth of formats needed by the community. In collaboration with RIKEN,
an initial version of a Resource Description Framework (RDF)-based representation of OME metadata has
been published 18,19. We aim to store this RDF metadata in its JSON-LD representation within the NGFF

https://imaris.oxinst.com/support/imaris-file-format
https://paperpile.com/c/IfJx5b/ICXoc
https://paperpile.com/c/IfJx5b/zyvu+SuYC

Moore et al Supplementary Information, p. S-5

structure, permitting third-party definition of metadata specifications as well as integration with existing
efforts to improve the findability of datasets like Bioschemas 20.

While the rapid pace of innovation in bioimaging continues, the core data structures -- binary pixel data and
experimental, acquisition and analytic metadata -- are likely common to most imaging experiments and
datasets. Indeed, recent work on minimal bioimaging metadata standards have focused on a collection of
core concepts including those from OME that can be extended to support domain- and application-specific
requirements 4,21 . As a participant in the “Recommended Metadata for Biological Images” effort to develop a
minimal bioimaging metadata specification 3, we aim to provide open reference software and formats that
implement the proposed minimal metadata specification and can be widely adopted and extended by the
bioimaging community.

Building a Community Format
As we investigated candidates for the intermediate multifile, "chunked" representation for parallelizing the
bioformats2raw/raw2ometiff conversion pipeline, we realized that these data structures could complement
existing TIFF- and HDF5-based workflows and enable new types of parallel bioimaging use cases. We
collectively refer to these formats as NGFFs. We have focused on two very similar, open source strategies for
laying out binary data. N5 (https://github.com/saalfeldlab/n5) is a binary data format that uses embedded
directories and defined multi-dimensional chunking to provide fast, cloud-competent image data storage. N5
was developed by the Fiji community 22 and there are now several examples of public datasets in N5. Zarr
(https://github.com/zarr-developers) follows a nearly identical strategy of storing chunks in individual files
across directories and was originally adopted for handling genomic and geospatial data, similarly with a
number of datasets available publicly 23. Since 2018, the two communities have worked together to unify the
two formats via an updated Zarr specification (v3). That work forms the basis for OME-NGFF as reported in
the main article.

It should be noted that although these formats provide an initial basis for development, as the needs of the
community are catalogued, more sophisticated formats like TileDB Embedded may join this list of supported
NGFF formats. TileDB Embedded uses a database-like storage engine based on sparse and dense multi-
dimensional arrays to service chunks of data and as it is an open source C++ run-time library, data can be
accessed from Java, Python and several other programming languages. However, a long-term commitment to
format support by the users, developers, and funders should be demonstrated to avoid a new translation
bottleneck.

In summary, we hope to show that by covering the breadth of community requirements with an
interoperable suite of select formats we can ultimately deliver a truly FAIR bioimaging data standard.

References
1. Linkert, M. et al. Metadata matters: access to image data in the real world. J. Cell Biol. 189, 777–782

(2010).
2. Goldberg, I. G. et al. The Open Microscopy Environment (OME) Data Model and XML file: open tools for

informatics and quantitative analysis in biological imaging. Genome Biol. 6, R47 (2005).
3. Sarkans, U. et al. REMBI: Recommended Metadata for Biological Images-enabling reuse of microscopy

data in biology. Nat. Methods (2021) doi:10.1038/s41592-021-01166-8.
4. Ropelewski, A. J. et al. Essential Metadata for 3D BRAIN Microscopy. arXiv [q-bio.OT] (2021).
5. Wittner, R. et al. ISO 23494: Biotechnology – Provenance Information Model for Biological Specimen

And Data. in Provenance and Annotation of Data and Processes 222–225 (Springer International
Publishing, 2021). doi:10.1007/978-3-030-80960-7_16.

6. Holub, P. et al. Towards a Common Standard for Data and Specimen Provenance in Life Sciences. (2021).

https://paperpile.com/c/IfJx5b/535b
https://paperpile.com/c/IfJx5b/aKJI+l9cB
https://paperpile.com/c/IfJx5b/fz1Y
https://github.com/saalfeldlab/n5
https://paperpile.com/c/IfJx5b/BLLbW
https://github.com/zarr-developers
https://paperpile.com/c/IfJx5b/CBqNz
http://paperpile.com/b/IfJx5b/h6O8a
http://paperpile.com/b/IfJx5b/h6O8a
http://paperpile.com/b/IfJx5b/h6O8a
http://paperpile.com/b/IfJx5b/h6O8a
http://paperpile.com/b/IfJx5b/h6O8a
http://paperpile.com/b/IfJx5b/h6O8a
http://paperpile.com/b/IfJx5b/h6O8a
http://paperpile.com/b/IfJx5b/h6O8a
http://paperpile.com/b/IfJx5b/Nrv78
http://paperpile.com/b/IfJx5b/Nrv78
http://paperpile.com/b/IfJx5b/Nrv78
http://paperpile.com/b/IfJx5b/Nrv78
http://paperpile.com/b/IfJx5b/Nrv78
http://paperpile.com/b/IfJx5b/Nrv78
http://paperpile.com/b/IfJx5b/Nrv78
http://paperpile.com/b/IfJx5b/Nrv78
http://paperpile.com/b/IfJx5b/fz1Y
http://paperpile.com/b/IfJx5b/fz1Y
http://paperpile.com/b/IfJx5b/fz1Y
http://paperpile.com/b/IfJx5b/fz1Y
http://paperpile.com/b/IfJx5b/fz1Y
http://paperpile.com/b/IfJx5b/fz1Y
http://dx.doi.org/10.1038/s41592-021-01166-8
http://paperpile.com/b/IfJx5b/fz1Y
http://paperpile.com/b/IfJx5b/aKJI
http://paperpile.com/b/IfJx5b/aKJI
http://paperpile.com/b/IfJx5b/aKJI
http://paperpile.com/b/IfJx5b/aKJI
http://paperpile.com/b/IfJx5b/aKJI
http://paperpile.com/b/IfJx5b/mXeZn
http://paperpile.com/b/IfJx5b/mXeZn
http://paperpile.com/b/IfJx5b/mXeZn
http://paperpile.com/b/IfJx5b/mXeZn
http://paperpile.com/b/IfJx5b/mXeZn
http://paperpile.com/b/IfJx5b/mXeZn
http://paperpile.com/b/IfJx5b/mXeZn
http://dx.doi.org/10.1007/978-3-030-80960-7_16
http://paperpile.com/b/IfJx5b/mXeZn
http://paperpile.com/b/IfJx5b/D6nWF
http://paperpile.com/b/IfJx5b/D6nWF
http://paperpile.com/b/IfJx5b/D6nWF
http://paperpile.com/b/IfJx5b/D6nWF
http://paperpile.com/b/IfJx5b/D6nWF

Moore et al Supplementary Information, p. S-6

doi:10.5281/zenodo.5093125.
7. Goode, A., Gilbert, B., Harkes, J., Jukic, D. & Satyanarayanan, M. OpenSlide: A vendor-neutral software

foundation for digital pathology. J. Pathol. Inform. 4, (2013).
8. AICSImageIO Contributors. AICSImageIO: Image Reading, Metadata Conversion, and Image Writing for

Microscopy Images in Pure Python. (GitHub).
9. Williams, E. et al. The Image Data Resource: A Bioimage Data Integration and Publication Platform. Nat.

Methods 14, 775–781 (2017).
10. Tohsato, Y., Ho, K., Kyoda, K. & Onami, S. SSBD: a database of quantitative data of spatiotemporal

dynamics of biological phenomena. Bioinformatics (2016).
11. Besson, S. et al. Bringing Open Data to Whole Slide Imaging. in Digital Pathology 3–10 (Springer

International Publishing, 2019). doi:10.1007/978-3-030-23937-4_1.
12. The HDF Group. Hierarchical Data Format. (1997-2021).
13. Sommer, C., Held, M., Fischer, B., Huber, W. & Gerlich, D. W. CellH5: a format for data exchange in high-

content screening. Bioinformatics 29, 1580–1582 (2013).
14. Pietzsch, T., Saalfeld, S., Preibisch, S. & Tomancak, P. BigDataViewer: visualization and processing for

large image data sets. Nat. Methods 12, 481–483 (2015).
15. Ingargiola, A., Laurence, T., Boutelle, R., Weiss, S. & Michalet, X. Photon-HDF5: An Open File Format for

Timestamp-Based Single-Molecule Fluorescence Experiments. Biophys. J. 110, 26–33 (2016).
16. Millard, B. L., Niepel, M., Menden, M. P., Muhlich, J. L. & Sorger, P. K. Adaptive informatics for

multifactorial and high-content biological data. Nat. Methods 8, 487–493 (2011).
17. Beati, I., Andreica, E. & Majer, P. ImarisWriter: Open Source Software for Storage of Large Images in

Blockwise Multi-Resolution Format. arXiv [cs.DC] (2020).
18. Kobayashi, N., Moore, J., Onami, S. & Swedlow, J. R. OME Core Ontology: An OWL-based Life Science

Imaging Data Model. in 149–150.
19. Moore J, Kobayashi N, Kunis S, Onami S, Swedlow JR. On Bringing Bioimaging Data into the Open

(World). in SWAT4HCLS 2019 44–53.
20. Gray, A., Goble, C. & Jimenez, R. Bioschemas: From Potato Salad to Protein Annotation.

https://iswc2017.semanticweb.org/paper-579/.
21. Nelson, G. et al. QUAREP-LiMi: A community-driven initiative to establish guidelines for quality

assessment and reproducibility for instruments and images in light microscopy. arXiv [q-bio.OT] (2021).
22. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682

(2012).
23. Miles, A. et al. zarr-developers/zarr-python: v2.5.0. (2020). doi:10.5281/zenodo.4069231.

http://paperpile.com/b/IfJx5b/D6nWF
http://dx.doi.org/10.5281/zenodo.5093125
http://paperpile.com/b/IfJx5b/D6nWF
http://paperpile.com/b/IfJx5b/ySlbV
http://paperpile.com/b/IfJx5b/ySlbV
http://paperpile.com/b/IfJx5b/ySlbV
http://paperpile.com/b/IfJx5b/ySlbV
http://paperpile.com/b/IfJx5b/ySlbV
http://paperpile.com/b/IfJx5b/ySlbV
http://paperpile.com/b/IfJx5b/c7eY9
http://paperpile.com/b/IfJx5b/c7eY9
http://paperpile.com/b/IfJx5b/c7eY9
http://paperpile.com/b/IfJx5b/c7eY9
http://paperpile.com/b/IfJx5b/Ioxxu
http://paperpile.com/b/IfJx5b/Ioxxu
http://paperpile.com/b/IfJx5b/Ioxxu
http://paperpile.com/b/IfJx5b/Ioxxu
http://paperpile.com/b/IfJx5b/Ioxxu
http://paperpile.com/b/IfJx5b/Ioxxu
http://paperpile.com/b/IfJx5b/Ioxxu
http://paperpile.com/b/IfJx5b/Ioxxu
http://paperpile.com/b/IfJx5b/uMiOB
http://paperpile.com/b/IfJx5b/uMiOB
http://paperpile.com/b/IfJx5b/uMiOB
http://paperpile.com/b/IfJx5b/uMiOB
http://paperpile.com/b/IfJx5b/mTsH0
http://paperpile.com/b/IfJx5b/mTsH0
http://paperpile.com/b/IfJx5b/mTsH0
http://paperpile.com/b/IfJx5b/mTsH0
http://paperpile.com/b/IfJx5b/mTsH0
http://paperpile.com/b/IfJx5b/mTsH0
http://dx.doi.org/10.1007/978-3-030-23937-4_1
http://paperpile.com/b/IfJx5b/mTsH0
http://paperpile.com/b/IfJx5b/Ke7G3
http://paperpile.com/b/IfJx5b/Ke7G3
http://paperpile.com/b/IfJx5b/Ke7G3
http://paperpile.com/b/IfJx5b/eSOn1
http://paperpile.com/b/IfJx5b/eSOn1
http://paperpile.com/b/IfJx5b/eSOn1
http://paperpile.com/b/IfJx5b/eSOn1
http://paperpile.com/b/IfJx5b/eSOn1
http://paperpile.com/b/IfJx5b/eSOn1
http://paperpile.com/b/IfJx5b/pU80n
http://paperpile.com/b/IfJx5b/pU80n
http://paperpile.com/b/IfJx5b/pU80n
http://paperpile.com/b/IfJx5b/pU80n
http://paperpile.com/b/IfJx5b/pU80n
http://paperpile.com/b/IfJx5b/pU80n
http://paperpile.com/b/IfJx5b/CHyMu
http://paperpile.com/b/IfJx5b/CHyMu
http://paperpile.com/b/IfJx5b/CHyMu
http://paperpile.com/b/IfJx5b/CHyMu
http://paperpile.com/b/IfJx5b/CHyMu
http://paperpile.com/b/IfJx5b/CHyMu
http://paperpile.com/b/IfJx5b/QiqkZ
http://paperpile.com/b/IfJx5b/QiqkZ
http://paperpile.com/b/IfJx5b/QiqkZ
http://paperpile.com/b/IfJx5b/QiqkZ
http://paperpile.com/b/IfJx5b/QiqkZ
http://paperpile.com/b/IfJx5b/QiqkZ
http://paperpile.com/b/IfJx5b/ICXoc
http://paperpile.com/b/IfJx5b/ICXoc
http://paperpile.com/b/IfJx5b/ICXoc
http://paperpile.com/b/IfJx5b/ICXoc
http://paperpile.com/b/IfJx5b/zyvu
http://paperpile.com/b/IfJx5b/zyvu
http://paperpile.com/b/IfJx5b/SuYC
http://paperpile.com/b/IfJx5b/SuYC
http://paperpile.com/b/IfJx5b/SuYC
http://paperpile.com/b/IfJx5b/SuYC
http://paperpile.com/b/IfJx5b/535b
http://paperpile.com/b/IfJx5b/535b
https://iswc2017.semanticweb.org/paper-579/
http://paperpile.com/b/IfJx5b/535b
http://paperpile.com/b/IfJx5b/l9cB
http://paperpile.com/b/IfJx5b/l9cB
http://paperpile.com/b/IfJx5b/l9cB
http://paperpile.com/b/IfJx5b/l9cB
http://paperpile.com/b/IfJx5b/l9cB
http://paperpile.com/b/IfJx5b/l9cB
http://paperpile.com/b/IfJx5b/BLLbW
http://paperpile.com/b/IfJx5b/BLLbW
http://paperpile.com/b/IfJx5b/BLLbW
http://paperpile.com/b/IfJx5b/BLLbW
http://paperpile.com/b/IfJx5b/BLLbW
http://paperpile.com/b/IfJx5b/BLLbW
http://paperpile.com/b/IfJx5b/BLLbW
http://paperpile.com/b/IfJx5b/BLLbW
http://paperpile.com/b/IfJx5b/CBqNz
http://paperpile.com/b/IfJx5b/CBqNz
http://paperpile.com/b/IfJx5b/CBqNz
http://paperpile.com/b/IfJx5b/CBqNz
http://paperpile.com/b/IfJx5b/CBqNz
http://dx.doi.org/10.5281/zenodo.4069231
http://paperpile.com/b/IfJx5b/CBqNz

	SpringerNature_NatMeth_1326_ESM.pdf
	Supplementary Information
	OME-NGFF: a next-generation file format for expanding bioimaging data access strategies
	Table of Contents
	Supplementary Table 1: Characteristics of three binary containers for imaging data
	Supplementary Note: Scaling strategies for interoperable bioimaging data formats
	Introduction
	Limits of On-the-fly Translation
	Challenges of Permanent Conversion
	Formats with Interoperable Metadata
	Building a Community Format

	References

