Supplementary Information

Reductive inactivation of the hemiaminal pharmacophore for resistance against tetrahydroisoquinoline antibiotics

Wan-Hong Wen¹, Yue Zhang¹, Ying-Ying Zhang¹, Qian Yu², Chu-Chu Jiang², Man-Cheng Tang¹, Jin-Yue Pu¹, Lian Wu¹, Yi-Lei Zhao², Ting Shi²*, Jiahai Zhou³*, and Gong-Li Tang^{1,4}*

¹State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

²State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

³CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

⁴School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China

*Correspondence: Gong-Li Tang, Email: <u>gltang@sioc.ac.cn</u> Jiahai Zhou, Email: <u>jiahai@siat.ac.cn</u> Ting Shi, Email: <u>tshi@sjtu.edu.cn</u>

Contents

Supplementary Tables	.4
Supplementary Table 1. Strains and plasmids used in this study	,4
Supplementary Table 2. List of PCR primers used in this study	6
Supplementary Table 3. Statistics of X-ray crystallographic data collection an	ıd
model refinements	,7
Supplementary Table 4. NMR spectroscopic data for 18	8
Supplementary Table 5. NMR spectroscopic data for 19.	.9
Supplementary Table 6. Information of homologous proteins selected by blas	tP
in this study1	0
Supplementary Figures	1
Supplementary Figure 1. Construction and verification of <i>napW</i> gene-knocko	ut
mutant (⊿napW, TG3022) of S. lusitanus NRRL 8034	1
Supplementary Figure 2. Construction and verification of homW (Ahom)	V,
TG3023) and dual-gene (<i>AnapW&AhomW</i> , TG3024) gene-knockout mutants of	S.
lusitanus NRRL 8034	1
Supplementary Figure 3. Overproduction in E. coli and purification of tw	/0
enzymes utilized in this study	2
Supplementary Figure 4. Cartoon representation of chain A of NapW structure	2
Supplementary Figure 5. Overlapping for structures of NapW-NADPH complete	ex
and NapW	3
Supplementary Figure 6. Overproduction in E. coli and purification of NapW and	ıd
mutants utilized in this study	3
Supplementary Figure 7. Catalytic activity of the NapW mutants to ND	М
detected by HPLC.	4
Supplementary Figure 8. The potential energy surface obtained from umbrel	la
sampling1	4
Supplementary Figure 9. The RMSD values of MD simulations in WT an	ıd
D165A mutant systems.	5
Supplementary Figure 10. The RMSF values of MD simulations in WT and	ıd
D165A mutant	5
Supplementary Figure 11. The probability of water number within 3.4 Å of C)3
atom of NDM in MD simulations	.6

Supplementary Figure 12. Analysis of NapW/BmGDH cascade reaction	17
Supplementary Figure 13. NOEs (indicated by red arrows) determined	l the
stereochemistry of compound 2.	18
Supplementary Figure 14. Overproduction in E. coli and purification of Sfr	nO1,
homO1a and homO1b utilized in this study	19
Supplementary Figure 15. HR-MS/MS analysis of 16	20
Supplementary Figure 16. HR-MS/MS analysis of 17	21
Supplementary Figure 17. HR-MS/MS analysis of ET-745 (8)	22
Supplementary Figure 18. Structure characterization data of 18	26
Supplementary Figure 19. Structure characterization data of 19	30
Supplementary Figure 20. Fermentation analysis of LMM producing strain	n, <i>S</i> .
candidus LL-AP191	31
Supplementary Figure 21. Sequence similarity network (SSN) analysis of Na	ıpW-
homologues	31
Supplementary Figure 22. Overproduction in E. coli and purification of	SDR
utilized in this study	32
Supplementary Figure 23. Enzymatic assays of NapW and homologous pro	teins
towards 1 were detected by HPLC analysis	33
Supplementary Figure 24. Enzymatic assays of NapW and homologous pro	teins
towards 16 were detected by HPLC-MS.	34
Supplementary Figure 25. Enzymatic assays of NapW and homologous pro	teins
towards 7 were detected by HPLC analysis	35
Supplementary Figure 26. Enzymatic assays of NapW and homologous pro	teins
towards 18 were detected by HPLC analysis	36
Supplementary References	37

Supplementary Tables

Strains	Characteristics	References
<i>E. coli</i> DH5α	Host for general cloning	Invitrogen
E. coli BL21 (DE3)	Host for protein expression	Invitrogen
E. coli Rosetta (DE3)	Host for protein expression	Novagen
<i>E. coli</i> S17-1	Donor strain for conjugation between <i>E. coli</i> and <i>S. lusitanus</i> NRRL 8034	4
<i>S. lusitanus</i> NRRL 8034	Wild type, NDM producing strain	NRRL
<i>S. lavendulae</i> NRRL 11002	Wild type, SFM producing strain	NRRL
S. candidus LL- AP191 (NRRL 3110)	Wild type, LMM producing strain	NRRL
S. lusitanus TG3022	\triangle <i>napW</i> gene knockout mutant	This work
S. lusitanus TG3023	$\triangle homW$ gene knockout mutant	This work
S. lusitanus TG3024	△ napW& homW gene knockout mutant	This work
Plasmids		
pMD19-T	Ap^{R} , E. coli subcloning vector	Takara
pKC1139	Am^R , E. coli-Streptomyces shuttle vector for gene 4 inactivation	
pET28a	Km^R , Protein expression in <i>E. coli</i>	Invitrogen
pET37b	Km^R , Protein expression in <i>E. coli</i>	Invitrogen
pRSF-BmGDH	Expression vector for D-Glucose dehydrogenase from Bacillus megaterium (BmGDH)	5
pTG3032	pKC1139 derivative for gene inactivation of <i>napW</i>	This work
pTG3046	pKC1139 derivative for gene inactivation of <i>homW</i>	This work
pTG3044	pET37b derivative containing gene <i>napW</i> for protein expression in <i>E. coli</i>	This work
pTG3045	pET28a derivative containing gene <i>napW</i> for protein expression in <i>E. coli</i>	This work
pTG3047	pET28a derivative containing gene <i>sfmO1</i> for protein expression in <i>E. coli</i>	This work
pTG3048	pET37b derivative containing gene <i>homO1a</i> for protein expression in <i>E. coli</i>	This work

Supplementary Table 1. Strains and plasmids used in this study.

pTG3049	pET37b derivative containing gene <i>homO1b</i> for protein expression in <i>E. coli</i>	This work
pTG3050	pET37b derivative containing gene <i>slvW1</i> for protein expression in <i>E. coli</i>	This work
pTG3051	pET37b derivative containing gene <i>slvW2</i> for protein expression in <i>E. coli</i>	This work
pTG3052	pET37b derivative containing gene SDR-Pb for protein expression in <i>E. coli</i>	This work
pTG3053	pET37b derivative containing gene SDR-Cc for protein expression in <i>E. coli</i>	This work
pTG3054	pET37b derivative containing gene SDR-Rm for protein expression in <i>E. coli</i>	This work
pTG3055	pET37b derivative containing gene SDR-Mb for protein expression in <i>E. coli</i>	This work
pTG3056	pET37b derivative containing gene SDR-Li for protein expression in <i>E. coli</i>	This work
pTG3057	pET37b derivative containing gene SDR-Cs for protein expression in <i>E. coli</i>	This work
pTG3058	pET37b derivative containing gene SDR-Ss for protein expression in <i>E. coli</i>	This work
pTG3059	pET37b derivative containing mutated <i>napW</i> (E113A) gene for protein expression	This work
pTG3060	pET37b derivative containing mutated <i>napW</i> (W213A) gene for protein expression	This work
pTG3061	pET37b derivative containing mutated <i>napW</i> (R176A) gene for protein expression	This work
pTG3062	pET37b derivative containing mutated <i>napW</i> (D165A) gene for protein expression	This work
pTG3063	pET37b derivative containing mutated <i>napW</i> (N177A) gene for protein expression	This work

Abbreviations: Ap^R , ampicillin resistance; Am^R , apramycin resistance; Km^R , kanamycin resistance.

Primers	Sequences	Application
<i>napW</i> -L-for	GAATTCTCTGATGGCCGGTGTCTCCAAG	
napW-L-rev	TCTAGACAGCTCGCTCAGGAGTACGG	Gene knockout
<i>napW</i> -R-for TCTAGACGTCTCGGACCGGTTGTACTC		. Gene knockout
napW-R-rev	AAGCTTCCGAGTACGACGAGGAACACGTG	1
napW-gt-for	GAACAGCGCGGTCACCGATACC	Genotype
<i>napW</i> -gt-rev	CGACTGGACGAGTACTGCACACCGT	validation
homW-L-for	GAATTCTACTCCTCGCGCTGTTCGACGCTG	
homW-L-rev	TCTAGAGACGTCACCGGCTACCGCTGAC	Gene knockout
homW-R-for	TCTAGACGGCTGTGTCATTCACGGCCTCC	
homW-R-rev	AAGCTTCGACGAAGGAGTCAGCAGCATGG	
homW-gt-for	CAGGACGTCCAGCGAGCCGAAGG	Genotype
homW-gt-rev	GAAGCGCCCGCGGTCACTGAGG	validation
homW-for	CATATGACACAGCCGTTGCGGGACAAGG	Protein
homW-rev	AAGCTTGCGGTAGCCGGTGACGTCGGCCG	expression
	GGCGGCCCGCGTCCTGC	expression
SlvW1-for	CATATGACAGGGTCATCGAAAGGTCCGC	Protein
SlvW1-rev	AAGCTTGCGATACCCCGTGACGTCG	expression
SlvW2-for	CATATGGATGACATGAGCAACGAGGACA	Protein
SlvW2-rev	AAGCTTGCGGTAGTCGTCAGGGGAGGC	expression
NapW-E113A-for	GGGAGGTGCCCGACTGTTCGAGTTCGACA	Site-directed
NapW-E113A-rev	ACAGTCGGGCACCTCCCCAGACGTCGTTGA	mutation
NewWD165A for	GATGACCGCGGGGGACGGCCGCGTACAACG	Site-directed
Napw-D103A-101	G	mutation
NapW-D165A-rev	CCGTCCCCGCGGTCATCTCCACCACGAGTC	Inutation
NapW-R176A-for	CCACTACGCGAACTCGTACTTCTACGACCT	Site-directed
NapW- R176A -rev	ACGAGTTCGCGTAGTGGCTGCCGTTGTACG	mutation
NapW-N177A-for	CTACCGCGCGTCGTACTTCTACGACCTGGT	Site-directed
NapW- N177A-rev	AGTACGACGCGCGGTAGTGGCTGCCGTTGT	mutation
NanW-W213A-for	CGGTGACGCTCACGCCGGGCGCGATGCGTT	Site directed
1\ap \\- \\ 21511-101	CGGAGATGATGCT	She-unecicu
NapW-W213A -rev	AGCATCATCTCCGAACGCATCGCGCCCGGC	mutation
1 up 10	GTGAGCGTCACCG	-
HomO1a-for	TTTAAGAAGGAGATATACATATGGTGACGG	Site-directed
HomO1a-rev		mutation
HomO1b-for	GCCCGATCC	Site-directed
	TCGAGTGCGGCCGCAAGCTTGCGGTCGTGC	mutation
HomO1b-rev	CAGCCGTCCGGCCGGGTTCC	
<u> </u>	ATATGAATTCCATATGACCGACGGCGTCCGC	
SfmO1-tor	AC	Protein
U.amO1 may	ATATAAGCTTTTACTCGAGCAAGGGGGTAC	expression
HolliO1-lev	CCAGCGGTC-	

Supplementary Table 2. List of PCR primers used in this study.

	NapW	NapW-NADPH complex
Data collection		
Wavelength (Å)	0.97853	0.97918
Space group	P2	$P2_{1}$
Cell dimension		
a, b, c(Å)	117.149, 134.438, 117.216	116.42, 116.04, 134.76
α, β, γ(°)	90.000, 90.041, 90.000	90.00, 90.04, 90.00
Resolution (Å)	50.00-2.08 (2.12-2.08)	58.27-2.00 (2.05-2.00)
R _{merge} (%)	14.2 (99.7)	8.2 (84.6)
$R_{meas}(\%)$	15.4 (107.7)	8.9 (92.0)
I/σ(I)	10.778 (2.200)	12.9 (2.4)
Completeness (%)	100.0 (100.0)	99.0 (99.4)
Redundancy	6.9 (7.0)	6.8 (6.6)
Unique reflections	216044	238915
CC _{1/2}	0.990 (0.725)	0.999 (0.836)
Structure refinement		
Resolution (Å)	41.332 - 2.083	58.269 - 2.000
No. reflections	213192	238769
R_{work}/R_{free} (%)	21.02/24.91	17.75/20.17
No. atoms	18962	21109
Protein	17583	18693
Ligand		768
Water	1379	1648
Root mean square deviations		
bonds (Å)	0.0092	0.007
angles (Å)	0.93	1.16
B factor, overall (Å ²)	22.2	35.8
B factor, protein atoms (Å ²)	21.8	35.0
B factor, Ligand (Å ²)		35.4
B factor, water molecules $(Å^2)$	27.3	45.6
Ramachandran plot (%)		
Favored (%)	98.27	97.55
Allowed (%)	1.73	2.45
Outliers (%)	0.00	0.00
PDB code	7BTM	7BSX

Supplementary Table 3. Statistics of X-ray crystallographic data collection and model refinements.

Position	δC, type	δH (mult., J in Hz)
1	51.67, CH	4.27 (br s, 1H)
3	49.88, CH	3.34 (m, 1H, 9.0)
4	23.80, CH ₂	2.73 (dd, 1H, 2.3, 17.2)
		2.13 (m, 1H)
5	187.56, C	
6	130.68, C	
6-M	8.30, CH ₃	1.94 (s, 3H)
7	155.49, C	
7-OM	61.39, CH ₃	3.88 (s, 3H, overlap)
8	181.91, C	
9	137.79, C	
10	141.99, C	
11	61.25, CH	3.88(m, 1H, overlap)
13	60.69, CH	4.04 (dd, 1H, 3.0, 6.7)
14	27.40, CH ₂	2.17 (m, 1H)
		1.70 (m, 1H)
15	36.04, CH	2.65 (m, 1H)
16	62.71, CH ₂	3.62 (m, 1H, overlap)
		3.55 (dd, 1H, 3.7)
17	78.60, CH	4.86 (d, 1H, 3.2)
18	68.62, CH ₂	3.75 (dd, 1H, 2.6)
		3.65 (m, 1H, overlap)
1'	97.06, CH	5.05 (d, 1H, 4.6)
2'	37.86, CH ₂	2.02(dd, 1H, 4.8, 14.9)
		1.88 (d, 1H, 14.8)
3'	66.97, C	
3'-M	28.60, CH ₃	1.29 (s, 3H)
4'	69.91, CH	3.14 (br s, 1H)
4'-NM	46.99, CH ₃	3.03 (s, 3H)
4'-NM	41.68, CH ₃	3.03 (s, 3H)
5'	62.16, CH	3.95(dd, 1H, 1.8, 7.3)
6'	17.19, CH ₃	1.44 (d, 3H, 7.2)

Supplementary Table 4. NMR spectroscopic data for 18.

In D₂O, 500 MHz for ¹H and 125 MHz for ¹³C NMR; chemical shifts are reported in ppm. All signals are determined by ¹H -¹H COSY, HSQC and HMBC correlation.

Position	δC, type	δH (muti., J in Hz)
1	56.06, CH	4.08 (br s, 1H)
3	55,62, CH	2.91 (d, 1H, 10.5)
4	24.88, CH ₂	2.67 (m, 1H, overlap)
		2.14 (m, 1H)
5	186.00, C	
6	128.66, C	
6-M	8.75, CH ₃	1.94 (s, 3H, overlap)
7	155.66, C	
7-OM	61.03, CH ₃	3.97 (s, 3H, overlap)
8	181.48, C	
9	137.88, C	
10	140.80, C	
11	58.38, CH	3.66 (m, 1H)
13	61.83, CH	3.86 (br s, 1H)
14	30.67, CH ₂	2.06 (m, 1H, overlap)
		1.95 (m, 1H, overlap)
15	37.91, CH	2.54 (m, 1H)
16	63.94, CH ₂	3.66 (m, 1H, overlap)
		3.61 (m, 1H)
17	54.27, CH ₂	3.09 (d, 1H, 11.0)
		2.87 (d, 1H, 11.6)
18	68.16, CH ₂	3.79 (dd, 1H, 3.4, 10.4)
		3.54 (dd, 1H, 10.3)
1'	98.34, CH	4.89 (d, 1H, 4.6)
2'	41.01, CH ₂	1.83 (dd, 1H, 4.7, 14.2)
		1.72 (d, 1H, 14.2)
3'	65.99, C	
3'-M	29.01, CH ₃	1.18 (s, 3H)
4'	69.21, CH	2.06 (br s, 1H, overlap)
4'-NM	44.72, CH ₃	2.65 (s, 6H, overlap)
5'	65.35, CH	3.96 (m, 1H, overlap)
6'	18.87, CH ₃	1.31 (d, 3H, 7.0)

Supplementary Table 5. NMR spectroscopic data for 19.

In CDCl₃, 600 MHz for ¹H and 150 MHz for ¹³C NMR and DEPT135; chemical shifts are reported in ppm. All signals are determined by ¹H -¹H COSY, HSQC and HMBC correlation.

Name	Accession	Origin	Identity
NapW	WP_121719702.1	S. lusitanus NRRL 8034	100%
homW	MT230905	S. lusitanus NRRL 8034	76%
SfmO1	ABI22118.1	S. lavendulae NRRL11002	56%
homO1a	MT230906	S. lavendulae NRRL11002	62%
homO1b	MT230907	S. lavendulae NRRL11002	60%
SlvW1	WP_003978122.1	S. lividans 1326	74%
SlvW2	EOY50906.1	S. lividans 1326	61%
SDR-Pb	WP_076164526.1	Paenibacillus	75%
SDR-Cc	WP_099700661.1	Chroococcales cyanobacterium	67%
SDR-Rm	WP_028745990.1	Rhizobium mesoamericanum	65%
SDR-Mb	OJY30843.1	Myxococcales bacterium	53%
SDR-Li	WP_002092909.1	Leptospira interrogans	49%
SDR-Cs	PRW56829.1	Chlorella sorokiniana	44%
SDR-Ss	WP_094604007.1	Sporomusa silvacetica	34%

Supplementary Table 6. Information of homologous proteins selected by blastP in this study.

Supplementary Figures

Supplementary Figure 1. Construction and verification of napW gene-knockout mutant ($\Delta napW$, TG3022) of *S. lusitanus* NRRL 8034. **a**, Double crossover process. **b**, Genotyping validation of three $\Delta napW$ mutant clones. One single crossover mutant clone and wild type (WT) were performed as negative control.

Supplementary Figure 2. Construction and verification of *homW* ($\Delta homW$, TG3023) and dual-gene ($\Delta napW\&\Delta homW$, TG3024) gene-knockout mutants of *S. lusitanus* NRRL 8034. **a**, Double crossover process. **b**, Genotyping validation of three $\Delta homW$ mutant clones and three $\Delta napW\&\Delta homW$ mutant clones. Control panels were plasmids pTG3032 and pTG3046 as positive control. Wild type (WT) was performed as negative control.

Supplementary Figure 3. Overproduction in *E. coli* and purification of two enzymes utilized in this study. **a**, SDS-PAGE analysis of purified homW. **b**, SDS-PAGE analysis of purified NapW.

Supplementary Figure 4. Cartoon representation of chain A of NapW structure.

Supplementary Figure 5. Overlapping for structures of NapW-NADPH complex (helix/sheet/loop, red/yellow/green) and NapW (helix/sheet/loop, cyan/magenta/tint).

Supplementary Figure 6. Overproduction in *E. coli* and purification of NapW and mutants utilized in this study. These proteins were analyzed by SDS-PAGE.

Supplementary Figure 7. Catalytic activity of the NapW mutants to NDM detected by HPLC. The HPLC analysis with UV detected at 270 nm.

Supplementary Figure 8. The potential energy surface obtained from umbrella sampling. The d(OD2-O3) represents the distance between the OD2 of Asp165 and O3 of NDM. The d(C7-C4N) represents the distance between the C7 of NDM and the C4N of NADPH.

Supplementary Figure 9. The RMSD values of MD simulations in WT and D165A mutant systems. The RMSD values of 4×50 ns MD simulations in wild type and D165A mutant systems respectively. The wild type system was colored in blue while D165A mutant system was colored in orange. The RMSD values of 2×150 ns MD simulations in wild type system were demonstrated in the bottom.

Supplementary Figure 10. The RMSF values of MD simulations in WT and D165A mutant. The RMSF values of 4×50 ns MD simulations in wild type system and D165A mutant systems were shown in blue and orange respectively. The RMSF values of 2×150 ns MD simulations in wild type system were shown in green.

Supplementary Figure 11. The probability of water number within 3.4 Å of O3 atom of NDM in MD simulations. The water number within 3.4 Å of O3 atom of NDM was counted in two 150 ns trajectories. In the upper right, the representative water molecule was shown.

Supplementary Figure 12. Analysis of NapW/BmGDH cascade reaction. **a**, Result of NapW/BmGDH cascade reaction is detected by HPLC compared with controls, the HPLC analysis with UV detected at 270 nm. **b**, NapW-catalyzed product **2** is analyzed by ESI-MS. **c**, NapW/BmGDH-catalyzed product, ²H-**2** is analyzed by ESI-MS.

Supplementary Figure 13. a, NOEs (indicated by red arrows) determined the stereochemistry of compound 2. b, The NOE (indicated by red dashed arrows) between 4'-H_a and 7-H_a indicated the positions of 7-H_a and 7-H_b in space.

Supplementary Figure 14. Overproduction in *E. coli* and purification of SfmO1, homO1a and homO1b utilized in this study. These proteins were analyzed by SDS-PAGE.

Supplementary Figure 15. HR-MS/MS analysis of 16. a, HR-MS/MS analysis of 16.b, Analysis of fragments of 16.

Supplementary Figure 16. HR-MS/MS analysis of 17. a, HR-MS/MS analysis of 17.b, Analysis of fragments of 17.

Supplementary Figure 17. HR-MS/MS analysis of ET-745 (8). a, HR-MS/MS analysis of 8. b, Analysis of fragments of 8.

b

Formula Calculator Results	S
----------------------------	---

Ion Formula	m/ z	m/ z (Calc)	Diff (ppm)	DBE	Score (MFG)
C27 H42 N3 O8	536.2970	536.2966	-0.67	9	99.76
C30 H40 N4 O5	536.2970	536.2993	4.34	13.5	90.76
C39 H38 N O	536.2970	536.2948	-4.13	22	91.55
Ion Formula	m/ z	m/ z (Calc)	Diff (ppm)	DBE	Score (MFG)
C27 H43 N3 O8	268.6526	268.6520	-2.39	9	96.97
C30 H41 N4 O5	268.6526	268.6533	2.61	13.5	96.41

S24

Supplementary Figure 18. Structure characterization data of 18. The stereochemistry of 18 was determined by comparing with LMM¹. **a**, Structure of 18. **b**, HR-MS analysis of 18. HRMS (ESI): m/z = 536.2970 ([M+H]⁺), m/z (calculated [calc.]) = 536.2966 ([M+H]⁺) consistent with the molecular formula C₂₇H₄₁N₃O₈; UV max: 222 nm, 272 nm. **c**, ¹H NMR spectrum of 18. **d**, ¹³C NMR spectrum of 18. **e**, ¹H-¹H COSY spectrum of 18. **f**, HSQC spectrum of 18. **g**, HMBC spectrum of 18.

b

Formula	Calcu	lator	Result	S

Ion Formula	m/ z	m/ z (Calc)	Diff (ppm)	DBE	Score (MFG)
C24 H45 N2 O10	260.6543	260.6532	-4.38	4.5	90.78
C27 H43 N3 O7	260.6543	260.6545	0.78	9	99.68
Ion Formula	m/ z	m/ z (Calc)	Diff (ppm)	DBE	Score (MFG)
Ion Formula C24 H44 N2 O10	m/ z 520.3015	m/ z (Calc) 520.2990	Diff (ppm) -4.72	DBE 4.5	Score (MFG) 89.47

d

S29

Supplementary Figure 19. Structure characterization data of 19. a, Structure of 19. b, HR-MS analysis of 19. HRMS (ESI): $m/z = 520.3015 ([M+H]^+)$, m/z (calculated [calc.]) = 520.3017 ([M+H]^+) consistent with the molecular formula $C_{27}H_{41}N_3O_7$; UV max: 222 nm, 272 nm. c, ¹H NMR spectrum of 19. d, ¹³C NMR spectrum of 19. e, DEPT135

spectrum of **19**. **f**, ¹H-¹H COSY spectrum of **19**. **g**, HSQC spectrum of **19**. **h**, HMBC spectrum of **19**.

Supplementary Figure 20. Fermentation analysis of LMM producing strain, *S. candidus* LL-AP191. The HPLC analysis with UV detected at 270 nm. The peaks of **18** and **19** both were detected in fermentation supernatant.

Supplementary Figure 21. Sequence similarity network (SSN) analysis of NapW-homologues. 4771 homologous proteins of NapW (above 34% sequence identity with NapW) were clustered by sequence identity cut-off² at 0.9. The SSN was generated from the representatives of the clusters and NapW, homW, SfmO1, homO1a, homO1b by using the online Enzyme Function Initiative-Enzyme Similarity Tool³. Cytoscape was used to view the SSN with an alignment score threshold of 10⁻¹⁰⁵. The proteins mentioned in manuscript were marked.

Supplementary Figure 22. Overproduction in *E. coli* and purification of SDR utilized in this study. **a**, SDS-PAGE analysis of SlvW1 and SlvW2. **b**, SDS-PAGE analysis of SDRs: SDR-Pb, SDR-Cc, SDR-Rm, SDR-Mb, SDR-Li, SDR-Cs, SDR-Ss.

Supplementary Figure 23. Enzymatic assays of NapW and homologous proteins towards 1 were detected by HPLC analysis with UV absorption wavelength at 270 nm. (I) Substrate 1 prepared by NapU-catalyzed reaction + NADPH, (II) Standard 2, (III) 1 + NADPH + SDR-Pb, (IV) 1 + NADPH + SDR-Cc, (V) 1 + NADPH + SDR-Rm, (VI) 1 + NADPH + SDR-Mb, (VII) 1 + NADPH + SDR-Li, (VIII) 1 + NADPH + SDR-Cs, (IX) 1 + NADPH + SDR-Ss, (X) 1 + NADPH + NapW, (XI) 1 + NADPH + homW, (XII) 1 + NADPH + SfmO1, (XIII) 1 + NADPH + homO1a, (XIV) 1 + NADPH + homO1b, (XV) 1 + NADPH + SlvW1, (XVI) 1 + NADPH + SlvW2.

Supplementary Figure 24. Enzymatic assays of NapW and homologous proteins towards 16 were detected by HPLC-MS. (I) Substrate 16 prepared by SfmC-catalyzed reaction + NADPH, (II) 16 + NADPH + SDR-Pb, (III) 16 + NADPH + SDR-Cc, (IV) 16 + NADPH + SDR-Rm, (V) 16 + NADPH + SDR-Mb, (VI) 16 + NADPH+SDR-Li, (VII) 16 + NADPH + SDR-Cs, (VIII) 16 + NADPH + SDR-Ss, (IX) 16 + NADPH + NapW, (X) 16 + NADPH + homW, (XI) 16 + NADPH + SfmO1, (XII) 16 + NADPH + homO1a, (XIII) 16 + NADPH + homO1b, (XIV) 16 + NADPH + SlvW1, (XV) 16 + NADPH + SlvW2.

Supplementary Figure 25. Enzymatic assays of NapW and homologous proteins towards 7 were detected by HPLC analysis with UV absorption wavelength at 270 nm. (I) Substrate 7 + NADPH, (II) 7+ NADPH + SDR-Pb, (III) 7 + NADPH + SDR-Cc, (IV) 7 + NADPH + SDR-Rm, (V) 7 + NADPH + SDR-Mb, (VI) 7 + NADPH + SDR-Li, (VII) 7 + NADPH + SDR-Cs, (VIII) 7 + NADPH + SDR-Ss, (IX) 7 + NADPH + NapW, (X) 7 + NADPH + homW, (XI) 7 + NADPH + SfmO1, (XII) 7 + NADPH + homO1a, (XIII) 7 + NADPH + homO1b, (XIV) 7 + NADPH + SlvW1, (XV) 7 + NADPH + SlvW2.

Supplementary Figure 26. Enzymatic assays of NapW and homologous proteins towards 18 were detected by HPLC analysis with UV absorption wavelength at 270 nm. (I) Substrate 18 + NADPH, (II) Standard 19, (III) 18 + NADPH + SDR-Pb, (IV) 18 + NADPH + SDR-Cc, (V) 18 + NADPH + SDR-Rm, (VI) 18 + NADPH + SDR-Mb, (VII) 18 + NADPH+SDR-Li, (VIII) 18 + NADPH + SDR-Cs, (IX) 18 + NADPH + SDR-Ss, (X) 18 + NADPH + NapW, (XI) 18 + NADPH + homW, (XII) 18 + NADPH + SfmO1, (XIII) 18 + NADPH + homO1a, (XIV) 18 + NADPH + homO1b, (XV) 18 + NADPH + SlvW1, (XVI) 18 + NADPH + SlvW2.

Supplementary References

- Whaley, H. A., Patterson, E. L., Dann, M., Shay, A. J. & Porter, J. N. Isolation and characterization of lemonomycin, a new antibiotic. *Antimicrob. Agents Chemother*. 14, 83-86 (1964).
- 2. Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT Suite: A web server for clustering and comparing biological sequences. *Bioinformatics* **26**, 680-682 (2010).
- Gerlt, J. A. et al. Enzyme function initiative-enzyme similarity tool (EFI-EST): A web tool for generating protein sequence similarity networks. *Biochim. Biophys. Acta.* 1854, 1019-1037 (2015).
- 4. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. Practical Streptomyces Genetics (John Innes Foundation, Norwich, UK) (2000).
- Ye, Q. et al. Construction and co-expression of a polycistronic plasmid encoding carbonylreductase and glucose dehydrogenase for production of ethyl (*S*)-4-chloro-3-hydroxybutanoate. *Bioresour. Technol.* 101, 6761-6767 (2010).