SUPPLEMENTARY INFORMATION

Serine 26 in Early Growth Response-1 is Critical for Endothelial Proliferation, Migration and Network Formation

Fernando S. Santiago, Yue Li and Levon M. Khachigian

Fig S1. Sequences and chromatographs from sequenced WT cells.

Alignment of *Egr-1* nucleotide sequences in WT cells with human *Egr-1* (NM_001964.3). Forward sequences are shown in the left upper panel while reverse complement sequences are shown in the upper right panel. The red box indicates the location of TCG (Ser26). Lower panels show the sequencing data. The translated amino acid sequence (partial) is shown. **A**, WT1; **B**, WT1; **C**, WT3 cells.

Fig S2. Sequences and chromatographs from sequenced MUT cells.

Alignment *Egr-1* nucleotide sequences in MUT cells with human *Egr-1* (NM_001964.3). Forward sequences are shown in the left upper panel while reverse complement sequences are shown in the upper right panel. The red box indicates the location of the TCG>GCG mutation (Ser26>Ala26). TCG (Ser26). Lower panels show the sequencing data. Green box indicates the location of silent PAM site. The translated amino acid sequence (partial), including the Ser26>Ala mutation (in red) is shown. **A**, M26A; **B**, M26B; **C**, M26C cells.

Fig S3. Sequences and chromatographs from sequenced DEL cells.

Alignment Egr-1 nucleotide sequences in MUT cells with human Egr-1 (P18146). Forward sequences are shown in the left upper panel while reverse complement sequences are shown in the upper right panel. Red box indicates the location of TCG (Ser26) in the reference sequence. Black box indicates the location of the 4-nucleotide deletion. Lower panels show the sequencing data. The translated amino acid sequence is shown, including nonsense sequences (in red, due to frameshift) and premature termination (*). A, DEL1; B, DEL2; C, DEL3 cells.

Fig S4. Copy number analysis in WT and M26 cells.

Copy number was determined by quantitative real-time PCR across the Egr-1 region and Ct values were normalized against Ct values for PCR across a control gene (Sp1).

Fig S5. PCR of CRISPR/Cas9 clones.

Long PCR of human *Egr-1* to test for insertions or indels downstream of Ser26. DNA size markers are shown.

Forward WT1

Query	70	CTCTCCAGCCTGCTCGTCCAGGATGGCCGCGGCCAAGGCCGAGATGCAGCTGATGTCCCC	129
Sbjct	262	ctctccagcctgctcgtccaggatggccgggccaaggccgagatgcagctgatgtcccc	321
Query	130	GCTGCAGATCTCTGACCCGTTCGGATCCTTTCCTCACTCGCCCACCATGGACAACTACCC	189
Sbjct	322	gctgcagatctctgacccgttcggatcctttcctcagtcgcccaccatggacaactaccc	381
Query	190	TAAGCTGGAGGAGATGATGCTGCTGAGCAACGGGGCTCCCCAGTTCCTCGGCGCCCGG	249
Sbjct	382	TAAGCTGGAGGAGATGATGCTGCTGAGCAACGGGGCTCCCCAGTTCCTCGGCGCCGCCGG	441

Reverse Complement WT1

Query	124	CTGCTCGTCCAGGATGGCCGCGGCCAAGGCCGAGATGCAGCTGATGTCCCCGCTGCAGAT	183
Sbjct	271	ĊŦĠĊŦĊĠŦĊĊĂĠĠĂŦĠĠĊĊĠĊĠĠĊĊĂĂĠĠĊĊĠĂĠĂŦĠĊĂĠĊŦĠĂŦĠŦĊĊĊĊĠĊŦĠĊĂĠĂŦ	330
Query	184	CTCTGACCCGTTCGGATCCTTTCCTCAC	243
Sbjct	331	ċtċtĠAċċċĠttċĠĠAtċċtttċċtċAċ <mark>tċĠc</mark> ċċAċċAtĠĠAċAAċtAċċċtAAĠċtĠĠA	390
Query	244	GGAGATGATGCTGCTGAGCAACGGGGCTCCCCAGTTCCTCGGCGCCCGCGGGGCCCCAGA	303
Sbjct	391	ĠĠĂĠĂŦĠĂŦĠĊŦĠĊŦĠĂĠĊĂĂĊĠĠĠĠĊŦĊĊĊĊĂĠŦŦĊĊŦĊĠĠĊĠĊĊĠĊĠĠĠĠĊĊĊĊĂĠĂ	450

MAAAKAEMQLMSPLQISDPFGSFPHSPTMDNYPKLEEMMLLSNGAPQFLGAAGAP EGSGSNSSSSSGGGGGGGGGGGGGSNSSSSSSTFNPQADTGEQPYEHL

FIG. S1A

Forward WT2

ĺ	Query	90	AGCCTGCTCGTCCAGGATGGCCCGCGCCAAGGCCGAGATGCAGCTGATGTCCCCGCTGCA	149
	Sbjct	268	AGCCTGCTCGTCCAGGATGGCCGCGGCCAAGGCCGAGATGCAGCTGATGTCCCCGCTGCA	327
	Query	150	GATCTCTGACCCGTTCGGATCCTTTCCTCACTCGCCCACCATGGACAACTACCCTAAGCT	209
	Sbjct	328	GATCTCTGACCCGTTCGGATCCTTTCCTCACTCGGCCACCATGGACAACTACCCTAAGCT	387
	Query	210	GGAGGAGATGATGCTGCTGAGCAACGGGGCTCCCCAGTTCCTCGGCGCCGCCGGGGCCCC	269
	Sbjct	388	GGAGGAGATGATGCTGCTGAGCAACGGGGCTCCCCAGTTCCTCGGCGCCCGCGGGGCCCC	447
1				

Reverse Complement WT2

105
195
339
255
399
315
459

MAAAKAEMQLMSPLQISDPFGSFPHSPTMDNYPKLEEMMLLSNGAPQFLGAAGAP EGSGSNSSSSSGGGGGGGGGGGGGSNSSSSSSTFNPQADTGEQPYEHL

FIG. S1B

FIG. S1C

MAAAKAEMQLMSPLQISDPFGSFPHSPTMDNYPKLEEMMLLSNGAPQFLGAAGAP EGSGSNSSSSSGGGGGGGGGGGGGGGSNSSSSSSTFNPQADTGEQPYEHLTQKDFI

170

Query

Query

Forward WT3 Query 71 CCAGCTCTCCAGCCTGCTCGTCCAGGATGGCCGCGGCCAAGGCCGAGATGCAGCTGATGT 130 ccAgetetecageetectectectecageAtggeegeceaaggeetecagee 317 Sbjct 258 tĠĂŦĠŤ CCCCGCTGCAGATCTCTGACCCGTTCGGATCCTTTCCTCACTCGCCCACCATGGACAACT 131 190 377 Sbjct 318 ACCCTAAGCTGGAGGAGATGATGCTGCTGAGCAACGGGGCTCCCCAGTTCCTCGGCGCCG 250 191 437 Sbjct 378

Reverse Complement WT3

Query	138	CAGGATGGCCGCGGCCAAGGCCGAGATGCAGCTGATGTCCCCGCTGCAGATCTCTGACCC	197
Sbjct	280	ĊĂĠĠĂŦĠĠĊĊĠĊĠĠĊĊĂĂĠĠĊĊĠĂĠĂŦĠĊĂĠĊŦĠĂŦĠŦĊĊĊĊĠĊŦĠĊĂĠĂŦĊŦĊŦĠĂĊĊĊ	339
Query	198	GTTCGGATCCTTTCCTCACTCGCCCACCATGGACAACTACCCTAAGCTGGAGGAGATGAT	257
Sbjct	340	dttcdgatcctttcctcadtcgcccaccatggacaactaccctaagctggaggagatgat	399
Query	258	GCTGCTGAGCAACGGGGCTCCCCAGTTCCTCGGCGCCCCGGGGCCCCAGAgggcagcgg	317
Sbjct	400	GCTGCTGAGCAACGGGGCTCCCCAGTTCCTCGGCGCCCCGGGGCCCCAGAGGGCAGCGG	459

Forward M26A

Query	68	CGACACCAGCTCTCCAGCCTGCTCGTCCAGGATGGCCGGGCCAAGGCCGAGATGCAGCT	127
Sbjct	253	cgAcAccAgctctccAgcctgctcgtccAggAtggccgcggccAAggccgAgatgcAgct	312
Query	128	GATGTCCCCGCTGCAGATCTCTG4TCC6TTCGGATCCTTTCCTCACGCGCCCACCATGGA	187
Sbjct	313	GATGTCCCCGCTGCAGATCTCTGACCCGTTCGGATCCTTTCCTCACTCGGCCCACCATGGA	372
Query	188	CAACTACCCTAAGCTGGAGGAGATGATGCTGCTGAGCAACGGGGCTCCCCAGTTCCTCGG	247
Sbjct	373	CAACTACCCTAAGCTGGAGGAGATGATGCTGCTGAGCAACGGGGGCTCCCCAGTTCCTCGG	432

Reverse Complement M26A

uery	132	CAGGATGGCCGCGGCCAAGGCCGAGATGCAGCTGATGTCCCCGCTGCAGATCTCTGATCC	191
ojct	280	CAGGATGGCCGCGGCCAAGGCCGAGATGCAGCTGATGTCCCCGCTGCAGATCTCTGACCC	339
Jery	192	GTTCGGATCCTTTCCTCACGCGCCCACCATGGACAACTACCCTAAGCTGGAGGAGATGAT	251
ojct	340	GTTCGGATCCTTTCCTCACTCGCCCACCATGGACAACTACCCTAAGCTGGAGGAGATGAT	399
Jery	252	GCTGCTGAGCAACGGGGCTCCCCAGTTCCTCGGCGCCCCGGGGCCCCAGAgggcagcgg	311
ojct	400	GCTGCTGAGCAACGGGGCTCCCCAGTTCCTCGGCGCCCCGGGGGCCCCAGAGGGCAGCGG	459

MAAAKAEMQLMSPLQISDPFGSFPHAPTMDNYPKLEEMMLLSNGAPQFLGAAGAP EGSGSNSSSSSGGGGGGGGGGGGGSNSSSSSSTFNPQADTGEQPYEHL

FIG. S2B

CAGAGA

230

MAAAKAEMQLMSPLQISDPFGSFPHAPTMDNYPKLEEMMLLSNGAPQFLGAAGAP EGSGSNSSSSSGGGGGGGGGGGGSNSSSSSSTFNPQADTGEQPYEHL

Forward M26B

Query	68	GCTCTCCAGCCTGCTCCAGGATGGCCGCGGCCAAGGCCGAGATGCAGCTGATGTCCC	127
Sbjct	261	GCTCTCCAGCCTGCTCGTCCAGGATGGCCGCGGCCAAGGCCGAGATGCAGCTGATGTCCC	320
Query	128	CGCTGCAGATCTCTGATCCGTTCGGATCCTTTCCTCACGCGCCCACCATGGACAACTACC	187
Sbjct	321	ĊĠĊŦĠĊĂĠĂŦĊŦĊŦĠ <mark>Ą<u>ĊĊĊ</u>ĠŦŦĊĠĠĂŦĊĊŦŦŦĊĊŦĊĂ<mark>ŎŢĊĠĊ</mark>ĊĊĂĊĊĂŦĠĠĂĊĂĂĊŦĂĊĊ</mark>	380
Query	188	CTAAGCTGGAGGAGATGATGCTGCTGAGCAACGGGGCTCCCCAGTTCCTCGGCGCCGCCG	247
Sbjct	381	ctAAGctGGAGGAGAtGAtGctGctGAGCAACGGGGCtccccAGttcctcGGcGccGccG	440

Reverse Complement M26B

		-	
Query	122	TGCTCGTCCAGGATGGCCGCGGCCAAGGCCGAGATGCAGCTGATGTCCCCGCTGCAGATC	181
Sbjct	272	TGCTCGTCCAGGATGGCCGCGGCCAAGGCCGAGATGCAGCTGATGTCCCCGCTGCAGATC	331
Query	182	TCTGATCCGTTCGGATCCTTTCCTCACGCGCCCACCATGGACAACTACCCTAAGCTGGAG	241
Sbjct	332	tctgAccccGttcggAtcctttcctcActcggccAccAtggAcAActAccctAagctggAg	391
Query	242	$GAGATGATGCTGCTGAGCAACGGGGCTCCCCAGTTCCTCGGCGCCCCGGGGCCCCAGA_{\mathrm{G}}$	301
Sbjct	392	GAGATGATGCTGCTGAGCAACGGGGCTCCCCAGTTCCTCGGCGCCCCGGGGCCCCAGAG	451

FIG. S2C

MAAAKAEMQLMSPLQISDPFGSFPHAPTMDNYPKLEEMMLLSNGAPQFLGAAGAP EGSGSNSSSSSGGGGGGGGGGGGGSNSSSSSSTFNPQADTGEQPYEHL

144

Query 85 CCTGCTCGTCCAGGATGGCCGCGGCCAAGGCCGAGATGCAGCTGATGTCCCCGCTGCAGA Sbjct 270 CCTGCTCGTCCAGGATGGCCGCGGCCAAGGCCGAGATGCAGCTGATGTCCCCGCTGCAGA

Sbjct	270	CCTGCTCGTCCAGGATGGCCGCGGCCAAGGCCGAGATGCAGCTGATGTCCCCGCTGCAGA	329
Query	145	TCTCTGATCCGTTCGGATCCTTTCCTCACGCGCCCACCATGGACAACTACCCTAAGCTGG	204
Sbjct	330	tctctgacccgttcggatcctttcctcactcgcccatggacaactaccctaagctgg	389
Query	205	AGGAGATGATGCTGCTGAGCAACGGGGCTCCCCAGTTCCTCGGCGCCCCGGGGCCCCAG	264
Sbjct	390	AGGAGATGATGCTGCTGAGCAACGGGGCTCCCCAGTTCCTCGGCGCCCCGGGGGCCCCAG	449

Reverse Complement M26C

Query	75	GCTCCAGCCCCGGGCTGCAcccccCGCCCCGACACCAGCTCTCCAGCCTGCTCGTCCAG	134
Sbjct	223	ĠĊŦĊĊĂĠĊĊĊĊĠĠĠĊŦĠĊĂĊĊĊĊĊĠĊĊĊĊĠĂĊĂĊĊĂĠĊŦĊŦĊĊĂĠĊĊŦĠĊŦĊĠŦĊĊĂĠ	282
Query	135	GATGGCCGCGGCCAAGGCCGAGATGCAGCTGATGTCCCCGCTGCAGATCTCTGATCCGTT	194
Sbjct	283	ĠĂŦĠĠĊĊĠĊĠĠĠĊĊĂĂĠĠĊĊĠĂĠĂŦĠĊĂĠĊŦĠĂŦĠŦĊĊĊĊĠĊŦĠĊĂĠĂŦĊŦĊŦĠĂ <u>ĊĊĊ</u> ĠŦŦ	342
Query	195	CGGATCCTTTCCTCACGCGCCCACCATGGACAACTACCCTAAGCTGGAGGAGATGATGCT	254
Sbjct	343	CGGATCCTTTCCTCACTCGCCCACCATGGACAACTACCCTAAGCTGGAGGAGAATGATGCT	402

Forward DEL1

Reverse Complement DEL1

Query	134	CAGGATGGCCGCGGCCAAGGCCGAGATGCAGCTGATGTCCCCGCTGCAGATCTCTGACC-	192
Sbjct	280	ĊĂĠĠĂŦĠĠĊĊĠĊĠĠĊĊĂĂĠĠĊĊĠĂĠĂŦĠĊĂĠĊŦĠĂŦĠŦĊĊĊĊĠĊŦĠĊĂĠĂŦĊŦĊŦĠĂ <mark>Ċ</mark> ĊĊ	339
Query	193	¢GGATCCTTTCCTCACTCGCCCACCATGGACAACTACCCTAAGCTGGAGGAGATGAT	249
Sbjct	340	GTT¢ĠĠA†ĊĊ†††ĊĊ†ĊAĊ†ĊĠĊĊĊAĊĊA†ĠĠAĊAAĊ†AĊĊĊ†AAĠĊ†ĠĠAĠĠAĠA†ĠA†	399
Query	250	GCTGCTGAGCAACGGGGCTCCCCAGTTCCTCGGCGCCCGCGGGGCCCCAGAGGgcagcgg	309
Sbjct	400	ĠĊŦĠĊŦĠĂĠĊĂĂĊĠĠĠĠĠĊŦĊĊĊĊĂĠŦŦĊĊŦĊĠĠĊĠĊĊĠĊĊĠĠĠĠĊĊĊĊĂĠĂĠĠĠĊĂĠĊĠĠ	459

MAAAKAEMQLMSPLQISDPDPFLTRPPWTTTLSWRR*

Forward DEL2

Reverse Complement DEL2

MAAAKAEMQLMSPLQISDPDPFLTRPPWTTTLSWRR*

FIG. S3B

Forward DEL3

Reverse Complement DEL3

MAAAKAEMQLMSPLQISDPDPFLTRPPWTTTLSWRR*

FIG. S3C

FIG. S4

FIG. S5