
Article
Brain rhythms define disti
nct interaction networks
with differential dependence on anatomy
Highlights
d Coherence, power correlation, and Granger causality among

>200 sites across 15 areas

d These interaction metrics peak at the theta, beta, high-beta,

and gamma rhythms

d The 4 rhythms define distinct interaction networks, largely

independent of power

d The networks differentially depend on anatomy, strongly for

gamma, weakly for beta
Vezoli et al., 2021, Neuron 109, 3862–3878
December 1, 2021 ª 2021 The Authors. Published by Elsevier In
https://doi.org/10.1016/j.neuron.2021.09.052
Authors

Julien Vezoli, Martin Vinck,

Conrado Arturo Bosman,
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In brief

The brain ismuchmore than the sumof its

parts because those parts interact in

complex networks. Vezoli et al. show that

at least 4 distinct interaction networks

coexist, mediated by the neuronal

synchronization of 4 brain rhythms. These

rhythm-defined networks are

differentially dependent on the strengths

of anatomical projections.
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SUMMARY
Cognitive functions are subserved by rhythmic neuronal synchronization across widely distributed brain
areas. In 105 area pairs, we investigated functional connectivity (FC) through coherence, power correlation,
and Granger causality (GC) in the theta, beta, high-beta, and gamma rhythms. Between rhythms, spatial FC
patterns were largely independent. Thus, the rhythms defined distinct interaction networks. Importantly, net-
works of coherence and GC were not explained by the spatial distributions of the strengths of the rhythms.
Those networks, particularly the GC networks, contained clear modules, with typically one dominant rhythm
per module. To understand how this distinctiveness and modularity arises on a common anatomical back-
bone, we correlated, across 91 area pairs, the metrics of functional interaction with those of anatomical pro-
jection strength. Anatomywas primarily related to coherence andGC, with the largest effect sizes for GC. The
correlation differed markedly between rhythms, being less pronounced for the beta and strongest for the
gamma rhythm.
INTRODUCTION

Cognitive functions emerge in distributed neuronal networks

through local and interareal neuronal interactions, constituting

a complex interaction network. A full account of this interaction

network will be fundamental for understanding brain function.

Neuronal interaction networks depend on structural neuronal

connectivity networks, and central insights have been obtained

from anatomy. Anatomical tract tracing based on tracer injec-

tions in animals has revealed that connection strengths decrease

exponentially with distance and are highly structured with char-

acteristic motifs (Ercsey-Ravasz et al., 2013; Horvát et al., 2016;

Theodoni et al., 2021). While anatomical connectivity (AC) is

necessary for neuronal interaction, it is not identical to it. A given

anatomical projection may or may not be used for neuronal inter-

actions at a given moment, and it may be used for neuronal

interactions of different kinds (e.g., mediating activation, sup-

pression, modulation). While AC is typically measured in regard

to monosynaptic connections, interareal neuronal interactions
3862 Neuron 109, 3862–3878, December 1, 2021 ª 2021 The Author
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can extend to di- and polysynaptic interactions. While much of

anatomical tract tracing, including the data used here, is focused

on cortico-cortical connections, neuronal interactions may also

use subcortical pathways (Guillery and Sherman, 2002).

Interareal neuronal interactions are subserved by neuronal

entrainment and synchronization (Bosman et al., 2012; Brovelli

et al., 2004; Gregoriou et al., 2009; Grothe et al., 2012; Lobier

et al., 2018; Siegel et al., 2008). Interareal neuronal synchroniza-

tion can be assessed by local field potential (LFP) coherence,

and entrainment can be assessed by LFP Granger causality

(GC). Both coherence and GC can be determined per frequency,

resulting in coherence or GC spectra. Also, neuronal interactions

can lead to correlated power fluctuations, which can be as-

sessed by power correlation spectra. Intriguingly, neuronal

rhythms in different frequency bands mediate different types of

interareal interactions. We showed previously that among 8

macaque visual areas, interareal GC is stronger in the bottom-

up direction for theta and gamma, and stronger in the top-

down direction for beta (Bastos et al., 2015b). This raises the
s. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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possibility that different rhythms define distinct interaction net-

works, including coherence and GC networks, as also sug-

gested by previous analyses of power correlations in human

subjects (Brookes et al., 2011; de Pasquale et al., 2010; de Pas-

quale et al., 2012; Hipp et al., 2012; Hipp and Siegel, 2015). Our

previous analysis only took into account the GC asymmetry be-

tween bottom-up and top-down directions, per area pair,

thereby accounting for only a very small component of the total

GC variability. We related these GC asymmetries to differences

in the laminar pattern between anatomical bottom-up and top-

down projections, per area pair, again accounting for merely a

tiny part of the total variability in anatomical projections. Anatom-

ical projection strengths show amuch larger variance, in fact, >5

orders of magnitude, across different area pairs (Markov et al.,

2014a). Here, we establish the full variability in interareal power

correlation, coherence, and GC across all pairs of simulta-

neously recorded sites and brain areas, which we directly relate

to the full variability in interareal anatomical projection strength

across those area pairs.

We use a unique high-resolution micro-electrocorticography

(mECoG) dataset providing simultaneous LFP signals from 218

recording sites distributed across 15 areas, in 2 awake ma-

caques. The complete 2183 218 matrices of power correlation,

coherence, and GC revealed the respective interaction networks

to consist of clearly defined modules, and that the coherence

and GC networks are independent of the underlying power dis-

tributions. Intriguingly, those interaction networks agree partly

for some pairs of frequency bands, while differing markedly be-

tween others, as observed in human subjects (Williams et al.,

2021). This is remarkable given that all rhythms operate on the

same anatomical backbone, suggesting that they are differen-

tially affected by AC. To understand this better, we analyzed

the mutual dependence between on the one hand, interareal po-

wer correlation, coherence, or GC, and on the other hand, the

strength of the corresponding anatomical projections. Anatom-

ical projection strength was assessed by retrograde tracer injec-

tions and quantification of labeled neurons in many cortical

areas. Across area pairs, the resulting cortico-cortical projection

strengths predicted power correlation less than coherence, and

they weremost predictive of GC. Importantly, anatomical projec-

tion strengths predicted coherence and GC much better in the
Figure 1. Stimuli, attention task, recording site distribution, FC spectr

(A) Two macaque monkeys were trained to release a lever when a change occur

while maintaining fixation and ignoring changes to the distractor stimulus, the s

rewarded with liquid reward (blue droplets). Task delays for Monkeys 1 and 2 are g

and target change.

(B) Pooled recording sites of both monkeys on the surface of the INIA19 template

area color legend on the right, based on the Kennedy lab nomenclature (Markov et

of area 8/FEF; V4, fourth visual area; TEO, temporal-occipital area; DP, dorsal pre

area (posterior auditory association cortex); 5, area 5; S1, primary somatosenso

cortex; F2, corresponding to the caudal part of dorsal premotor cortex; F4, co

examples of interareal coherence (in blue) and GC (green: feedforward; black:

feedback projections). Spectra show means over all trials ± 99.9% confidence in

(C) Each line is the average coherence spectrum for a pair of cortical areas, in 1 of

recorded cortical areas, there are 105 area pairs, hence, 105 average coherence s

Method details). Therefore, each area pair corresponds to several interareal site p

this plot. For each of the 4 frequency bands, the peak frequencies (PFs) and the c

Method details, and the FWHMs are indicated in this figure by the gray-shaded

See also Figure S1.
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gamma band than in the beta band, with intermediate values

for the high-beta band. Finally, as we had previously found that

beta is stronger in the top-down and gamma stronger in the

bottom-up direction, we reanalyzed the correlation between

anatomical projection and functional interaction strength, inde-

pendently for the 2 directions. This showed that variability in

beta-based interactions was more related to projections in the

top-down direction, and variability in gamma-based interactions

to projections in the bottom-up direction. These findings provide

a fuller account of cortical interaction networks defined by brain

rhythms and reveal a previously unsuspected richer landscape.

RESULTS

Interareal functional connectivity (FC) occurs in 4
characteristic frequency bands
We investigated neuronal activity in large-scale brain networks in

2 macaque monkeys performing a selective visual attention task

(Figure 1A; see Method details). We focused on the task period

with sustained visual stimulation and attention. Attention condi-

tions were pooled to increase sensitivity, except where explicitly

noted. Chronically implanted subdural mECoG grids with 252

electrodes allowed simultaneous recording from 218 local bipo-

lar derivations, referred to as (recording) sites, distributed over

large parts of the left hemisphere (Figure 1B for the combined

sites of both monkeys, Figure S1A for the sites per monkey),

and covering 15 cortical areas. We computed the following fre-

quency-resolved FC metrics between all possible site pairs:

(1) coherence, a metric of interareal synchronization; (2) power

correlation, the Spearman rank correlation between fluctuations

in band-limited power; and (3) GC, a metric of directed interareal

influence (seeMethod details). Coherence and power correlation

are undirected metrics, whereas GC is a directed metric that al-

lows the calculation of influences in both directions. For analyses

at the level of site pairs, we used all possible site combinations—

per monkey z23,000 coherence or power-correlation spectra,

and z46,000 GC spectra (after exclusion of site pairs with

spectra indicative of artifactual coupling, which amounted to

1.7% of all site pairs in monkey 1 and 1.1% in monkey 2; see

Method details). The 15 simultaneously recorded cortical areas

allowed for the analysis of FC for 105 area pairs. Each area
a, and frequency bands

red to the target stimulus, the stimulus with the same color as the fixation dot,

timulus with a different color than the fixation dot. Correct performance was

iven in seconds. Errors bars indicate possible time of occurrence for cue onset

brain (see Figure S1A for sites per monkey). Sites are colored according to the

al., 2011). V1, primary visual cortex; V2, secondary visual cortex; 8L, lateral part

lunate area; 7A and 7B, parts A and B of parietal area 7; TPt, temporo-parietal

ry cortex; 8M, medial part of area 8/FEF; F1, corresponding to primary motor

rresponding to the caudal part of the ventral premotor cortex. Spectra show

feedback, plain/dashed lines point to the cortical area sending feedforward/

tervals from bootstrap estimates over trials.

the monkeys (Monkey 1: left plot; Monkey 2: right plot). With 15 simultaneously

pectra per plot. Each area has been recorded with several recording sites (see

airs. The spectra of site pairs belonging to a given area pair were averaged for

orresponding full width at half-maximum (FWHM) are given in the Results and

areas.
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Figure 2. Brain rhythms define distinct interaction networks

(A–D) Data from monkey 1 (see Figure S2 for monkey 2). Note that the color scales are logarithmic.

(A) The 4 matrices in this column show coherence (lower triangular matrix) and power correlation (upper triangular matrix) for the frequency bands listed to their

left. Each matrix entry corresponds to the respective FC value of 1 pair of recording sites, calculated across all available post-cue data epochs (see Method

details), and averaged over the frequency bins in the respective frequency bands (see Results and Method details). Matrix entries with non-significant FC are

masked in gray (non-parametric randomization test by shuffling data epochs, corrected for multiple comparisons across site pairs). The axes list the cortical

areas, fromwhich the sites have been recorded, with the areas ordered according to their hierarchical level (Chaudhuri et al., 2015). Area boundaries are indicated

by gray lines on thematrices. Each area, and its corresponding recording sites, is given a color code. The sites will maintain these area-specific colors, when they

are reordered in the modularity analysis shown in (B) and (D).

(B) Same FC values as in (A), but reordered according tomodules obtained from a consensus modularity analysis (seeMethod details). Modules are separated by

gray lines. The modularity analysis was performed separately for coherence and power correlation (i.e., separately on those triangular matrices), and consensus

(legend continued on next page)
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was recorded from several sites (see Method details), such that

each interareal interaction was assessed by several interareal

site pairs. The spectra of site pairs belonging to a given area

pair were averaged for all of the analyses at the level of

area pairs.

Figure 1B shows example coherence and GC spectra for

several pairs of cortical areas. These spectra show distinct

peaks, which are specific for the respective pair of brain areas.

Across all 105 area pairs, average FC spectra showed peaks

for 4 characteristic brain rhythms, with some individual differ-

ences across the 2 monkeys (Figure 1C for coherence, Fig-

ure S1B for power correlation and GC): The theta rhythm (3 ±

2 Hz in monkey 1 and 4 ± 3 Hz in monkey 2; peak ± full width

at half-maximum [FWHM]), the beta rhythm (18 ± 5 Hz in monkey

1 and 15 ± 5 Hz in monkey 2), the high-beta rhythm (34 ± 5 Hz in

monkey 1 and 32 ± 4 Hz in monkey 2), and the gamma rhythm

(75 ± 8 Hz in monkey 1 and 62 ± 8 Hz in monkey 2) (Figures

1B, 1C, and S1B). All further analyses focus on these 4 rhythms.

For analyses at the 4 corresponding frequency bands, FC values

were averaged over the frequency bins in the monkey-specific

frequency bands and subsequently averaged over monkeys.

For analyses of full spectra, the FC spectra were aligned to the

4 monkey-specific peak frequencies (PFs) and subsequently

averaged over monkeys.

Different rhythms define distinct FC networks
For each band, we calculated all FC metrics for all pairs of

recording sites. The resulting FC matrices for monkey 1 are

shown in Figures 2A and 2C; The same analysis for monkey 2

is shown in Figures S2A and S2C; The individual matrices cannot

be directly averaged over animals because the numbers of

recording sites per area differ between monkeys (see Method

details). The 4 frequency bands showed distinct interaction net-

works. We defined distinctiveness D = 1-R2, with R2 being the

coefficient of determination (squared Pearson correlation coeffi-

cient) across all site pairs, between matrices of one FC type

(concatenated over the 2 animals), separately for all combina-

tions of frequency bands (Figure 2E). As an example, GC net-

works were least distinct between beta and high-beta, with

D = 0.29, and most distinct between beta and gamma, with

D = 0.75. As it is known that FC metrics in different frequency

bands tend to jointly decrease with distance (Leopold et al.,

2003; Nelson and Pouget, 2012), we partialized the calculation
was obtained over the 4 frequency bands. The color codes on the margin indicate

codes are separate for the upper and lower triangular matrix.

(C) Similar to (A), but for GC. GC is a directed metric, requiring the full matrix. Each

y axis to a site in the area listed on the x axis.

(D) Similar to (B), but for GC. GC modularity analysis was performed on the fu

quency bands.

(E–G) Data averaged over both monkeys.

(E) Distinctiveness (1-R2; see Results) between patterns of FC of a given type (as l

patterns of FC are the triangular matrices shown in (A) for coherence and power c

the distinctiveness after partialization for distance on the cortical surface.

(F) Distinctiveness (1-R2; see Results) between patterns of FC of a given type (as lis

(specifically log10ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

powersite13powersite2
p Þ), and in the frequency bands listed pe

distance on the cortical surface.

(G) Same as (F), but only for GC and replacing the product of power by the powe

See also Figure S2.
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of R2 for distance, which increased all D values. Hence for GC

networks, D between beta and high-beta increased to 0.74,

and D between beta and gamma increased to 1. Note that D

was overall much lower for power correlation than for coherence

or GC.

The almost complete distinctiveness, after distance partiali-

zation, between FC networks for some frequency-band combi-

nations is remarkable, given that all networks emerge on the

same AC network. If the shared AC network does not account

for the distinct interaction networks, then these interaction net-

works may be accounted for by different distributions of power

across recording sites for the different frequency bands. We

calculated the same distinctiveness metric between FC and

the co-occurrence of power, concretely, for example, between

the gamma-GC matrix and the matrix of the products of

average gamma power values of the corresponding site pairs

(specifically log10ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

powersite13powersite2
p Þ), again either with

or without partializing for cortical distance (Figure 2F). Staying

with the example of the gamma GC network, distinctiveness

was 1, both with and without partialization for distance. We

considered that GC may be particularly related to power in

the sending-area sites, and therefore also calculated D be-

tween, for example, the gamma-GC matrix and the matrix of

average gamma power values of the corresponding sending-

area sites (specifically log10(power); Figure 2G). This left D

values essentially unchanged at 1 (with and without partializa-

tion). Thus, band-specific FC networks, as assessed, for

example, by gamma and beta GC, are highly distinct and

contain structure beyond power distributions. Note that the D

values were overall much lower for power correlation than for

coherence or GC.

Note that the GC matrices (Figure 2C) list both the sending

areas (on the y axis) and the receiving areas (on the x axis) ac-

cording to their hierarchical level. In this manner, differences be-

tweenGC in the bottom-up versus top-down direction described

previously (Bastos et al., 2015b) can be appreciated by appropri-

ately comparing the upper and lower triangular GC matrices (for

the 8 visual areas investigated in Bastos et al. [2015b], i.e., V1,

V2, 8L, V4, TEO, DP, 8M, 7A). This illustrates that these bot-

tom-up versus top-down differences account for only a small

fraction of the full GC variability that we investigate here.

Visual inspection of the FC matrices suggested that band-

specific interaction networks may form distinct modules. We
per site the respective cortical area as introduced in (A); note that those color

matrix entry corresponds to the GC from a site in the cortical area listed on the

ll matrix, and consensus community structure was obtained over the 4 fre-

isted per row), for all combinations of frequency bands (listed per column). The

orrelation, and the full matrices shown in (C) for GC. Values in parentheses are

ted per row in E), and the pattern of the product of power at the respective sites

r column. Values in parentheses are the distinctiveness after partialization for

r at the sending site, the site from which the GC originates.
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therefore performed a modularity analysis that rearranges con-

nectivity matrices so that highly connected sites (‘‘nodes’’) are

contained in the same module (see Method details; Rubinov

and Sporns, 2010). The resulting partitioning is referred to as

community structure. To obtain 1 consensus community struc-

ture over the 4 frequency bands, we combined (for example)

the GC matrices for the 4 bands in the same way as previous

studies combined connectivity matrices over participants. For

the example of GC in monkey 1 (Figure 2D), this revealed that

module 1 was dominated by gamma, module 2 by high-beta,

and module 3 by beta, with relatively strong links between mod-

ules 2 and 3, and weak links between both of these modules and

module 1. The modularity analysis for monkey 2 is shown in Fig-

ure S2 and shows an overall similar pattern for GC. To charac-

terize overall modularity, we calculated the modularity index.

Networks with high modularity index show strong intramodule

and weak intermodule connectivity. Modularity indices are re-

ported in Figures 2 and S2, on the margins of the corresponding

(triangular) matrices. Modularity indices were much lower for po-

wer correlation than for coherence or GC.

To investigate whether band-specific FC networks have

meaningful brain-topographical patterns, we calculated, for

each site pair, a metric that is referred to as ‘‘strength.’’ Coher-

ence strength of a recording site is the average coherence of

that site with all other sites (excluding sites within a 2-mm radius

to avoid residual volume conduction effects). Power correlation

strength is defined accordingly. For GC, we defined the GC-

outflow strength of a site as the average GC of that site to all

other sites, and GC-inflow strength as the average GC to that

site from all other sites. Averaging collapses the FC matrices

onto their margins, and allows visualization of topographical dis-

tributions as strength maps (Figure 3, averaged over monkeys;

see Method details). Strength maps, for most combinations of

FC type and frequency band, showed contiguous clusters with

the tendency to respect sulcal anatomy, and thereby most

strength maps showed clear and meaningful topographies.

We also demonstrate that weak long-distance FC deviates

significantly from randomized intersite FC (Figure S3A; see

Method details). Significant interareal FC covers long distances

(>20 mm) for all frequencies; FC at gamma extends up to

50 mm and FC at beta, theta, and high-beta beyond 60 mm.

FC network topographies correlate with AC
We next investigated whether these FC patterns could be partly

explained by known patterns of AC. We previously showed that

GC asymmetries are related to the feedforward/feedback char-

acter of the respective anatomical projections (Bastos et al.,

2015b), as quantified by the supragranular labeled neuron

(SLN) percentage value (Barone et al., 2000; Markov et al.,

2014b). In the present study, we address another fundamental

aspect of an anatomical projection, namely its strength, which

is captured by the fraction of labeled neurons (FLN) (Vezoli

et al., 2004). After injection of a retrograde tracer into area A,

retrogradely labeled neurons are counted across the brain

(e.g., in area B). The FLN of the projection from B to A is the num-

ber of labeled neurons found in B divided by the total number of

neurons found across the brain. In this way, FLN reflects the frac-

tion of neurons projecting to A that originates in B. While the ma-
jority of projections to a given cortical area arises from within the

area itself (�80%), we are concerned here with projections

arising from other areas and so estimate the extrinsic fraction

of labeled neurons (FLNe) (Markov et al., 2011).

We were interested in how interareal FC, assessed by coher-

ence, power correlation, and GC, relates to interareal AC, as-

sessed by FLNe. We used a dataset based on 28 retrograde

tracer injections across 14 cortical areas (Figure 4A). These 14

areas were identical to the 15 areas recorded electrophysiolog-

ically, except that they did not include the temporo-parietal area

(TPt). The 14 areas resulted in a 14 3 14 matrix of 182 FLNe

values (Figure 4C). Note that this is a directed matrix of AC, in

which FLNe from area A to area B is quantified independently

of the FLNe in the reverse direction. Thus, the following ana-

lyses relate the full FLNe matrix (Figure 4C) to the corresponding

part of the full GC matrix. By contrast, the matrices of coher-

ence and power correlation assess overall FC irrespective of di-

rection. To relate them to AC strength, we averaged FLNe over

the 2 directions, giving a triangular matrix with 91 entries (Fig-

ure 4B). Spectra were averaged over all site pairs of a given

area pair (Figures S3C and S3D) and subsequently over the 2

animals (Figure S4). Hence, we determined the PFs per monkey

and per rhythm (theta, beta, high-beta, gamma), and expressed

frequencies relative to the per-monkey PFs. This suggested that

overall, coherence and GC increased with increasing FLNe (Fig-

ure S4A). For this analysis, we excluded FLNe values based on

<10 labeled neurons (Figure S4A) to ensure the reliability of

FLNe estimation (Markov et al., 2014a). The pattern held,

when we included those FLNe values (Figure S4B), or when

we replaced them by estimates from a model fitted to neuron

counts from the non-zero FLNe values (Figure S4C; see Method

details).

FLNe-FC correlations differ across FC types and
frequencies
To quantify the observed patterns, we performed linear regres-

sion analysis between log10(FC) and log10(FLNe) separately for

all combinations of FC type (coherence, power correlation and

GC) and frequency band (theta, beta, high-beta, gamma) (Fig-

ure 5). For each combination, there was a significantly positive

correlation (p < 4.17E�3 after Bonferroni correction for multiple

comparisons), but with a wide range of correlation strengths

(Figure 5A). FLNe was least predictive for FC at beta, with ex-

plained variance (R2 values) for beta power correlation or beta

GC of 0.14. FLNe was most predictive of theta (R2 = 0.47) and

high-beta coherence (R2 = 0.39) and gamma GC (R2 = 0.42).

To capture the size of the FLNe effect on FC, we used a regres-

sion analysis (Figure 5B). We performed a simple linear regres-

sion with the dependent variable log10(FC) and the independent

variable log10(FLNe). We then used the linear fit to calculate the

expected FC at the minimal FLNe value, in other words,

FC(min(FLNe)), and at the maximal FLNe value, in other words,

FC(max(FLNe)). The ratio FC(max(FLNe)) / FC(min(FLNe)) was

used as the FLNe-related FC change (Figures 5B and 5C). This

metric is related to the regression slope, but normalizes for differ-

ences in FC across frequencies that are not due to FLNe. We

derived error estimates by 100 bootstrap replications over trials

(Figures 5B and 5C) (Efron and Tibshirani, 1994).
Neuron 109, 3862–3878, December 1, 2021 3867



Figure 3. Topographies of FC strengths

All of the panels show FC strength topographies averaged over both monkeys, with the FC type (coherence, power correlation, GC outflow, GC inflow) listed

above the columns and the frequency bands listed to the left of the rows. The strengthmetric for a given FC type and frequency band is defined per recording site:

the coherence (or power correlation) strength of a given site is the average coherence (or power correlation) of that site with all other sites; the GC outflow strength

of a given site is the average GC directed from that site to all other sites; the GC inflow strength of a given site is the average GC directed to that site from all other

sites. Strength topographies of the 2monkeys have been co-registered to the same template brain and then averaged over themonkeys. Gray masking indicates

non-significant strength (comparison to a random graph with equal weight distribution; false discovery [FDR] corrected for multiple comparisons over sites; see

Method details). The template brain in the upper right of the figure shows the cortical area boundaries.

See also Figure S3.
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This analysis revealed that the 3 types of FC showed

different degrees of dependency with FLNe. The power corre-

lation was the least FLNe dependent, coherence was interme-

diate, and GC was by far the most strongly FLNe dependent.

The spectrum for power correlation did not show any clear

peaks (even when scaled independently). The spectrum for

coherence showed peaks for high-beta and gamma, and a

local trough for beta, while that for GC showed a small peak

in the theta range and substantial peaks for high-beta and

gamma, and again a local trough for beta. These results sug-

gest that the dependence of coherence and GC on AC has a
3868 Neuron 109, 3862–3878, December 1, 2021
characteristic spectral pattern. At the individual PFs for gamma

and high-beta (and partly also for theta), this dependence is

stronger than at neighboring frequencies; by contrast, at the

individual PFs for beta, this dependence is weaker than at

neighboring frequencies.

FC is both stimulation and task dependent, which is likely to

dynamically influence its dependence on AC. Therefore, we ob-

tained this spectrum forGC separately for the pre-stimulus base-

line period, and for the 2 attention conditions during the post-cue

period (Figure S5A). During the baseline, the spectrum showed

much less of a gamma peak and higher values for beta. With
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Figure 4. Anatomical connectivity assessed

by FLNe

(A) Each colored dot indicates the injection site of a

retrograde tracer, shown here on a template brain.

(B) FLNe values for all indicated pairs of areas,

averaged over the projections in the respective 2

directions, for example, V1-to-V4 and V4-to-V1.

(C) FLNe values for all indicated projections from the

areas listed on the y axis to the areas listed on the x

axis. Black matrix entries indicate projections for

which <10 labeled neurons were counted (see also

Figure S4). Those entries were discarded for the

average shown in (B).

(B and C) Note the logarithmic grayscale, which

applies to both panels and spans 6 orders of

magnitude.

See also Figure S4.
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attention, values tended to be reduced for theta and high-beta

and enhanced for gamma.

FC-FLNe correlations are not explained by distance, yet
FC predicts FLNe
FLNe declines exponentially with interareal distance, a phenom-

enon referred to as the exponential-distance rule (EDR), charac-

terized by the exponential decay rate, l (see Ercsey-Ravasz

et al., 2013). The EDR held for the subset of areas investigated

here (Figure S5B), with l = 0.202/mm for distance through white

matter, consistent with previous reports (Ercsey-Ravasz et al.,

2013). Importantly, the EDR holds for the present FC data (Fig-

ure S5B, all bands averaged for simplicity), but with exponential

decay rates that were substantially lower (0.01–0.08/mm; values

per band and FC type reported in Table S1) (Fischer et al., 2018;

Leopold et al., 2003; Nelson and Pouget, 2012). Figure S5B

shows linear relationships between log10(FLNe) or log10(FC)

and distance, which is equivalent to an exponential decay of

FLNe or FC with distance. Furthermore, Figure 5A shows linear

relationships between log10(FC) and log10(FLNe). Hence, for

further regression analyses, we use log10(FC), log10(FLNe), and

the non-log-transformed distance.

The joint dependence of FC and FLNe on distancemay explain

the observed correlation between FLNe and FC. Note that this

would not explain the observed frequency dependence of the

FLNe-FC correlation. Nevertheless, we investigated the extent

to which the FLNe-FC relation is explained by distance by per-

forming a multiple linear regression (MR), with the dependent

variable being log10(FLNe) and the independent variables being

log10(FC) for theta, beta, high-beta, and gamma, and additionally

the distance (as distance metric, we use distance on the cortical

surface [Figure 6] or distance through the white matter [Fig-

ure S6], both giving similar results [Table S2]). Note that this anal-
Neuro
ysis also informs us whether FLNe can be

partly predicted by FC metrics. Figure S6E

shows that FC alone (without distance in-

formation) is strongly predictive of FLNe,

with explained variance (R2 full model)

ranging from 0.48 for GC to 0.56 for coher-

ence (Table S2). This is interesting

because FLNe cannot be obtained for the
human brain, as it requires active retrograde transport of tracer

injected into the living brain (Donahue et al., 2016). By contrast,

FC, and in particular GC, can be obtained for the human brain,

and GC has already been shown to relate to the anatomical

SLN metric (Michalareas et al., 2016).

TheMR analysis revealed that all of the FCmetrics were signif-

icantly predictive of FLNe for some frequency bands, and impor-

tantly, that this was the case when distance was included as an

independent variable (Figure 6A). Specifically, power correlation

was significantly FLNe predictive in the beta and gamma bands.

Coherence and GC were FLNe predictive in the gamma band.

Note that those FC metrics predicted FLNe so accurately that

the contribution of distance was not significant. Figure 6A shows

results obtained for distance measured on the cortical surface.

When distance was measured through white matter, this ex-

plained slightly more FLNe variance, but overall, the pattern of

results was highly similar (Figure S6).

To further investigate the differential FLNe-predictive power

of the FC metrics in the different bands and of distance, we

performed the following analysis. We determined R2 values

for the full MR models, separately for power correlation, coher-

ence, and GC (Figure 6B). We repeated this analysis after

excluding either one of the frequency bands or distance as

an independent variable, in other words, we calculated R2

values for reduced models. Figure 6C shows the R2 difference

between the full and the reduced model (similar to a stepwise

linear regression approach); the x axis lists the independent

variable that had been removed, such that the corresponding

y axis values reflect the improvement in R2 value when this var-

iable is included. For all FC metrics, the removal of distance

reduced R2 values by only relatively small amounts, less than

the removal of most of the individual band-wise FC metrics.

As above, distance through white matter had a larger effect,
n 109, 3862–3878, December 1, 2021 3869
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but overall, the pattern of results was highly similar (Figure S6C).

Also, complete removal of distance as an independent variable

left the overall pattern of results qualitatively unchanged, and

as expected, regression coefficients for FC increased (Figures

S6D–S6F).

Note that these analyses revealed that all log10(FC) metrics

were linearly related to distance (Figure S5B), leading to a

multi-collinearity among the independent variables. We per-

formed several analyses to control for this (Figures S5C, S5D,

and S7C–S7E; Table S2; see Method details). We also used

simpler MR models, each with the dependent variable being

log10(FLNe), and each with the independent variables being dis-

tance and the log10(FC) of merely 1 frequency band (Figure S8).

Most of these models found a significant effect of distance. For

the power correlation, only gamma was significantly FLNe pre-

dictive. For coherence and GC, all frequency bands except

beta were significantly FLNe predictive.

FLNe-FC relations depend on corresponding SLN values
The analyses so far suggest that FLNe partly determines FC

values, with a specific spectral pattern. We had previously found

that one aspect of FC, namely GC between 2 areas, is related to

another aspect of AC, namely the feedforward/feedback charac-

teristics of the corresponding connections captured by the SLN

metric. When retrograde tracer is injected in area A and the

labeled cells are counted in area B, separately for the supragra-

nular (Nsupra) and infragranular (Ninfra) compartments of B, then

the SLN of the A-to-B projection is

Nsupra = ðNsupra + NinfraÞ:

The larger the SLN metric, the more the corresponding projec-

tion is of the feedforward type. Projections with SLN > 0.5 are

considered feedforward, and projections with SLN < 0.5 are

considered feedback. We previously found that if the SLN indi-

cates that area B is higher in the hierarchy than area A, then

theta- and gamma-band GC is stronger in the A-to-B (feedfor-

ward) than the B-to-A (feedback) direction, whereas beta-band

GC is stronger in the B-to-A (feedback) than the A-to-B (feedfor-

ward) direction (Bastos et al., 2015b). Here, we investigate

whether this SLN-GC relationship influences the above-

described dependence of GC on FLNe.

To investigate this, we selected 2 groups of projections,

namely strongly feedforward projections, with SLN > 0.7, and

strongly feedback projections, with SLN < 0.3. Within those 2

groups, we calculated the FLNe-related GC change for all fre-

quencies (i.e., as in Figure 5C, but split for SLN). For feedfor-

ward projections, the change spectrum showed peaks at theta
Figure 5. FC and AC display frequency-dependent covariance

(A) Scatterplots between the 3 FC types (indicated to the left of the rows) and FLNe

for which the combined FLNe in both directions was based on >10 labeled neuron

the FLNe in the same direction as the corresponding GC was based on >10 labe

analysis. Note logarithmic scaling on x and y axes.

(B) With both axes in log10 units, subtraction of FC values between minimum and

FC (right).

(C) FLNe-related FC change as a function of FC frequency. Log10(FC) spectra (c

before averaging over monkeys and then correlated with log10(FLNe). Means ov

See also Figure S5.
and gamma, separated by a relative trough around beta (Fig-

ure 7A, green line). For feedback projections, the change spec-

trum showed the strongest peak at high-beta and a smaller one

at gamma (Figure 7A, black line). Figure 7B shows the corre-

sponding scatterplots at the PFs of each rhythm. For gamma

GC, FLNe explained 48% (R2 value) of the variance in the feed-

forward and 37% in the feedback direction, whereas for beta

GC, FLNe explained 15% in the feedback direction and none

in the feedforward direction (0.0001%, not significant [n.s.]).

The absence of a significant relation between FLNe and beta

GC in the feedforward direction is also reflected in the beta-

band trough (Figure 7A, in green). We next determined the

asymmetry index of the FLNe-related changes by taking the

difference of the feedforward- minus the feedback-related

spectrum and dividing by their sum (Figure 7A, inset). This

asymmetry index showed particularly pronounced negative

values for beta and positive values for gamma, with much

smaller effects for theta and high-beta. To test whether this

result depended on the particular SLN cutoff (0.7/0.3), we

repeated the same analysis for various cutoffs and found that

the observed effects generally showed a gradual dependence

on SLN values (Figure 7C).

When we perform this analysis separately for the 2 attention

conditions in the post-cue period, we find that attention

strengthens particularly the relation between FLNe of feedfor-

ward connections and feedforward GC in the gamma band (Fig-

ure S7A). By contrast, this relation is essentially lost during the

baseline, when gamma is weak (Figure S7B).
Mapping frequency-specific FC networks onto the
anatomical core-periphery structure
We established that FC is related to both the strength (FLNe)

and the feedforward character (SLN) of anatomical projections.

The analysis of anatomical projections has integrated those 2

metrics, demonstrating that areas can be arranged in a bowtie

structure: some areas are in the knot (the core) and others in

the two fans (peripheries) of the bowtie (Markov et al., 2013).

Areas inside the core are densely interconnected and with

strong (high FLNe) connections, whereas areas in the fans

are connected less densely with areas in the core and with

weaker connections to those areas. We found FC strength in

the gamma frequency band to dominate in the left fan areas

of the bowtie structure (Figure 8A), the areas sending predom-

inantly feedforward projections to the core. FC strength at other

frequencies was more evenly distributed among core and pe-

riphery (Figures 8B–8D). Overall, FC strength was the strongest

in the high-beta frequency band for the core and in the beta
. For coherence and power correlation, each dot corresponds to a pair of areas,

s (N = 60). For GC, each dot corresponds to an anatomical projection for which

led neurons (100). FC values were averaged over monkeys before correlation

maximum AC values (left) can be interpreted as FLNe-related fold change of

olor coded, legend top right) have been aligned to individual peak frequencies

er all trials ± 99.9% confidence intervals from bootstrap estimates over trials.
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Figure 6. Multiple regression discloses distance as poor predictor

of the structure-function relationship

(A) Violin plots of model estimates (left column: t-statistic; right column: beta

coefficients) for each of the 5 variables considered, namely FC in the 4 fre-

quency bands and distance, separately per FC type (as indicated above

each row).

(B) Total explained variance (R2) for the 3 models (color-legend, top right).

Means ± 99.9% confidence intervals from bootstrap estimates over trials.

(C) Difference in total explained variance of the 3 models (same color code as

in B) between the full and the reduced model, after removing the parameter

listed on the x axis. This estimates the contribution of each of the 5 parameters

to the total explained variance.

See also Figures S6 and S8.
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frequency band for right-fan areas of the bowtie structure (Fig-

ure 8C), areas sending predominantly feedback projections to

the core.

DISCUSSION

In summary, we report andmake available, for each of 4 rhythms,

the full pattern of z23,000 coherence and power-correlation

values and z46,000 GC values, among 218 recording sites

distributed over 105 pairs of cortical areas in 2 awake, task-per-

forming macaque monkeys. We find that the rhythms define

distinct interaction networks that are largely independent of the

spatial distribution of power, particularly for coherence and

GC. Modularity analyses revealed that beta, high-beta, and

gamma GC are largely contained in separate modules, with rela-

tively strong links between the beta and high-beta modules, and

relatively weak links between beta and gamma modules. The

coexistence of distinct rhythm-specific functional interaction

networks on a fixed anatomical backbone partially reflects the

differential dependence of the rhythmic interactions on cortico-

cortical anatomical projections. Projection strength, assessed

by FLNe, was predictive of all FC types in all frequency bands,

but with marked differences: weakest for power correlation, in-

termediate for coherence, and strongest for GC, and weakest

for beta and much stronger for high-beta and gamma. This sug-

gests that high-beta and particularly gamma-based interactions

prominently depend on direct cortico-cortical projections. The

relative independence of beta FC from AC may be due to the

known geometry of feedback projections (Markov et al.,

2014b) and/or to a more prominent dependence on pathways

involving subcortical structures (Guillery and Sherman, 2002); it

may make beta an ideal candidate to quickly establish new FC

structures based on learning and top-down cognition, including

prediction (Miller et al., 2018). Intriguingly, FC in the different fre-

quency bands jointly predicted about half of the FLNe variability

across projections. In a MR, this rendered the previously re-

ported strong influence of distance insignificant. As FC and AC

values for this study have been obtained in separate animals,

the prediction of AC by FC in a given individual is likely even

higher. This suggests that FC metrics could provide estimates

for AC in humans, with relevance for science and medicine

(Becker and Hervais-Adelman, 2020; Smith et al., 2015). Finally,

GC in the gamma band showed a much stronger relation to

FLNe in the feedforward than in the feedback direction, and

conversely, GC in the beta band showed no significant relation



A

B

C

Figure 7. Anatomical influence on FC

strength depends on frequency and direc-

tion

(A) Frequency-resolved spectra of the FLNe-

related change in GC (same as red line in Fig-

ure 5C), plotted separately for feedforward (in

green, SLN R 0.7) and feedback connections (in

black, SLN% 0.3), extracted from linear regression

shown in (B). Inset (top right) displays asymmetry

index (see Results) for all frequency bands. A

positive (negative) asymmetry index indicates

larger effect size in feedforward (feedback)

direction.

(B) Same as bottom row of Figure 5A, but sepa-

rately for feedforward (green) and feedback (black)

connection, as defined for (A).

(C) Same as (A), but varying the selection threshold

for feedforward (left) or feedback (right) connec-

tions. Left plot: selecting more strongly feedfor-

ward projections, with higher SLN thresholds, re-

sulted in lower FLNe-related GC changes for all

frequency bands, except the gamma band, where

this effect reversed. Right plot: selecting more

strongly feedback projections, with lower SLN

thresholds, resulted in lower FLNe-related GC

changes. Note different axes scales for feedfor-

ward and feedback. Inset (top right): asymmetry

index (see Results) for varying threshold. Color

code for varying SLN thresholds detailed in legend.

Ordinate axes in (A) and (C) start from 1. All plots

show means over all trials ± 99.9% confidence in-

tervals from bootstrap estimates over trials.

See also Figure S7.
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to feedforward, but did show a sizeable relation to feed-

back FLNe.

This latter set of results is likely related to our previous finding

that for a given pair of areas in visual cortex, beta GC is stron-

ger in the feedback than the feedforward direction, whereas

theta and gamma GC are stronger in the feedforward than

the feedback direction (Bastos et al., 2015b). Across area pairs,

interareal GC asymmetries were linearly related to the corre-

sponding interareal hierarchical separation, as quantified by

the anatomical SLN metric. SLN quantifies, for a given anatom-

ical projection, the extent to which it originates from supragra-

nular neurons. The more a projection is feedforward (feedback)

(i.e., the more hierarchical levels it bridges in the feedforward

[feedback] direction), the closer its SLN is to 1 (to 0). SLN is

normalized for the total number of parent neurons of the projec-

tion and is independent of projection strength. By contrast,

FLNe quantifies, for a given anatomical projection, how many
Neuro
neurons it comprises, normalized by the

total number of labeled neurons (see

below for more discussion on this).

FLNe does not take the laminar distribu-

tion of the parent neurons into account,

and it is thereby independent of the feed-

forward/feedback character of the pro-

jection. In fact, FLNe and SLN have an in-

verted U-shaped relation. The strongest
projections, with the largest FLNe, are between areas on similar

hierarchical levels, with SLN close to 0.5 (Markov et al., 2013).

Across interareal projections, FLNe ranges over 5 orders of

magnitude. Here, we have related this large range of FLNe

values to corresponding values in coherence, power correla-

tion, and GC across an edge-complete 14 3 14 matrix,

including both visual and non-visual areas.

The calculation of FLNe involves a normalization. When area B

is the area injected with retrograde tracer, the FLNe from area A

to area B is the number of labeled neurons in A normalized by the

total number of retrogradely labeled neurons outside B. There-

fore, FLNe can be considered to be a strength metric of the

A-to-B projection relative to all other projections to B. Given

this normalization of FLNe, one could consider similarly normal-

izing GC from A to B by the total GC inflow to B from all recorded

areas.We performed this GC normalization and repeated theMR

analysis of Figures 6A and 6C. Overall, this increased the effects
n 109, 3862–3878, December 1, 2021 3873
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Figure 8. FC strength displayed on the AC-derived core-periphery structure

For cortical areas both recorded by the ECoG and used to build the core-periphery structure (highlighted areas) (Markov et al., 2013), the color code displays the

FC strength of the respective area, separately per FC type (as indicated above the columns), and separately per frequency band (as indicated to the left of the

rows). FC strength values were averaged over monkeys before normalization into the range 1–5 (color scale, bottom right), separately for each frequency band.

See also Figure S3.
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for beta while reducing the effects for gamma, although effects

still remained much weaker for beta than gamma, and the latter

at similar levels as high-beta (and no frequency band reaching

significance). Importantly, distance still had relatively minor

effects. Note that this GC normalization is dependent on the spe-

cific areas recorded by our ECoG, which constitutes only a sub-

set of areas and therefore cannot strictly be compared to the

normalization of FLNe. Note also that GC from A to B is normal-

ized by the power in B. The power in B can be considered a

metric of the total, interareal and local, synaptic input to B (Pe-

saran et al., 2018). Thus, GC already entails a normalization

similar to that of FLNe.

The relation of FLNe with FC metrics was weakest for power

correlation, intermediate for coherence, and strongest for GC.

The fact that GC is strongly related to FLNe may partly reflect

the fact that GC assesses the strength of the directed interareal

influence, just as FLNe assesses the strength of the directed in-

terareal projection. Anatomical projections are always directed

from the area containing the parent neurons to the area contain-

ing the synaptic contacts. Thus, there is a natural correspon-
3874 Neuron 109, 3862–3878, December 1, 2021
dence between FLNe andGC. Intriguingly, GC is also particularly

interesting for using the observed prediction of AC by FC in hu-

mans. FCmetrics based on non-invasively recorded signals from

the human brain are challenging to interpret because those sig-

nals reflect mixtures of many brain sources (Palva et al., 2018;

Schoffelen and Gross, 2009). As signal mixing is essentially

instantaneous, it is explicitly rejected in the calculation of GC,

which estimates causal, and thereby time-delayed, interactions

(Michalareas et al., 2016). The investigation of neuronal synchro-

nization in the human brain is of the utmost importance, which

has motivated the development of very advanced methods (Far-

ahibozorg et al., 2018; Wang et al., 2018), some of which capi-

talize on the exclusion of instantaneous interactions (Colclough

et al., 2015; Hipp et al., 2012; Nolte et al., 2004; Pascual-Marqui

et al., 2017; Stam et al., 2007; Vinck et al., 2011).

These and related approaches in human participants link

higher-order cognitive functions, including attention andworking

memory, to brain-wide networks synchronized at different fre-

quency bands (Gross et al., 2002, 2004; Hipp et al., 2011; Kujala

et al., 2007; Lobier et al., 2018; Rouhinen et al., 2020; Siegel
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et al., 2008). Intrinsic brain networks in addition to task-related

networks have been investigated with source-projected magne-

toencephalography (MEG) and have revealed well-characterized

resting-state networks through power correlation at different fre-

quency bands (Brookes et al., 2011; de Pasquale et al., 2010; de

Pasquale et al., 2012; Hipp et al., 2012; Hipp and Siegel, 2015).

Source-projected human MEG has revealed intriguing relations

between brain rhythms and anatomy. Source-projected MEG

resting state recordings from 187 participants revealed domi-

nant PFs across the cortex in the theta- to alpha-band range,

decreasing along the posterior-anterior axis and negatively

correlated to cortical thickness, a proxy of cortical hierarchical

level (Mahjoory et al., 2020). Source-projected MEG data from

participants performing an attention task on visual stimuli

showed stimulus-induced occipital gamma-band activity with

PFs that had a positive correlation, across 123 participants,

with the local cortical thickness (van Pelt et al., 2018). Of partic-

ular relevance to the present study, source-projected MEG

demonstrated that across 26 participants attentional top-down

effects on alpha and gamma power in occipital cortex have a

positive correlation to frontoparietal structural connectivity as-

sessed with high angular resolution diffusion imaging magnetic

resonance measurements (Marshall et al., 2015). Furthermore,

alpha-band synchronization between superior-occipital cortex

and the parietal lobule is modulated by attention, and its hemi-

spheric asymmetry across 28 participants is predicted by the

asymmetry in frontoparietal structural connectivity (D’Andrea

et al., 2019).

Some of these studies capitalized on interindividual variability

by performing correlation across many participants. By contrast,

the typical approach in awake non-human primate research, due

to economical constraints and ethical considerations, has been

limited to two or so animals per study. This low N precludes

cross-subject correlations and generally cross-subject statisti-

cal approaches, and it also limits inferences to the investigated

sample, as in the present study (Fries and Maris, 2021). At the

same time, chronic large-scale electrophysiological recordings

in non-human primates provide coverage of many areas,

although not as wide as MEG, with excellent spatial resolution

and signal-to-noise ratio. This revealed that during a selective

attention task, top-down GC from area 7A to V1 enhanced bot-

tom-up GC from V1 to V4, and most strongly so when the top-

down GC targeted the precise site from which the bottom-up

GC originated (Richter et al., 2017). This result, in combination

with the finding that occipito-parietal attention effects depend

on frontoparietal structural connectivity (D’Andrea et al., 2019;

Marshall et al., 2015), known to convey top-down influences, al-

lows interesting predictions. The strength of top-down anatom-

ical projections, assessed with FLNe, may predict the strength

of attention effects at the top-down targets, assessed with

mECoG. This is beyond the present study, but a fascinating topic

for the future.

AC studies have shown that in non-human primates, the large

range of cortical projection strengths, coupled with the EDR, re-

sults in the cortex being spatially embedded (Ercsey-Ravasz

et al., 2013), so that the spatial pattern of long-distance connec-

tions is a defining feature of the cortical network (Horvát et al.,

2016). Spatial embedding has been reported in humans and
mice, indicating that it is a general characteristic of the cortex

(G�am�anuț et al., 2018; Horvát et al., 2016; Perinelli et al., 2019;
Roberts et al., 2016;Rubinov et al., 2015). This leads to a high het-

erogeneity that is expressed structurally in a pronounced core-

periphery organization (Markov et al., 2013). The present findings

suggest that functional connectivity based on entrainment and

synchronization shows a similarly high degree of heterogeneity,

which is expressed in the modular organization found in the pre-

sent study. Exploration of this functional heterogeneity promises

to be a highly fruitful avenue for future research.
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iso2mesh Open Source http://iso2mesh.sf.net/cgi-bin/index.cgi

Brain Connectivity toolbox Open Source http://sites.google.com/site/bctnet/

R R Development Core Team, 2013 https://www.R-project.org/

CORTEX NIMH CORTEX RRID:SCR_006837

Plexon Plexon, USA https://plexon.com

Neuralynx Digital Lynx system Neuralynx, USA https://neuralynx.com
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Pascal Fries (pascal.

fries@esi-frankfurt.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The averaged functional connectivity spectra and the functional connectivity matrices of frequency-band averages for all pairs of

recording sites are available at https://zenodo.org/record/5511890.

Code used for this study is freely available, and the respective references are reported below.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were approved by the animal ethics committee of Radboud University (Nijmegen, the Netherlands). Data from two

adult male Rhesus monkeys (Macaca mulatta) were used in this study.

METHOD DETAILS

Visual attention task
Stimuli and behavior were controlled by the software CORTEX (NIMH). After touching a bar, the acquisition of fixation, and a pre-stim-

ulus Baseline period of 0.8 s, two isoluminant and isoeccentric stimuli (drifting sinusoidal gratings, diameter: 3 degrees, spatial fre-

quency: �1 cycles/degree; drift velocity: �1 deg/s; resulting temporal frequency: �1 cycle/s; contrast: 100%) were presented on a

CRT monitor (120 Hz refresh rate non-interlaced). In each trial, the light grating stripes of one stimulus were slightly tinted yellow, the

stripes of the other stimulus were slightly tinted blue, assigned randomly (Figure 1A). After a variable Pre-cue period (1-1.5 s in Mon-

key 1, 0.8-1.3 s in Monkey 2), the color of the fixation point changed to blue or yellow, indicating the stimulus with the corresponding
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color to be the behaviorally relevant one. Either one of the stimuli, irrespective of being cued or not, could change at a random time

between stimulus onset and 4.5 s after cue onset. The period between cue onset and stimulus change is referred to as the Post-cue

period. The stimulus change consisted of the stimulus’ stripes undergoing a gentle bend, lasting 0.15 s. A trial was considered correct

and themonkey was rewarded when the bar was released within 0.15-0.5 s of the change in the cued stimulus. No reward but a time-

out was given when monkeys released the bar in response to equally likely changes of the non-cued stimulus. In Monkeys 1 and 2,

94% and 84% of bar releases, respectively, were correct reports of changes in the relevant stimulus. Trials were terminated without

reward when the monkey released the bar outside the response window, or when it broke fixation (fixation window: 0.85 degree

radius in Monkey 1, 1 degree radius in Monkey 2). Trials with attention directed to the stimulus in the visual hemifield contralateral

to the recorded hemisphere are referred to as Attended, trials with attention ispilateral as Unattended. The analyses presented

here pooled trials from those two attention conditions, unless otherwise specified, and they used only trials with correct behavioral

report. The analyses used the period in the trial, during which stimuli were presented, and the monkey paid attention to one of them,

i.e., the Post-cue period. The exception are Figures S5A, S7A, and S7B, which also used the Baseline period preceding stimulus

onset (Bastos et al., 2015b). In total, the analyses used 9 sessions from Monkey 1 and 14 sessions from Monkey 2.

Neurophysiological recordings
Neuronal signals were recorded from the left hemisphere in two male rhesus monkeys using subdural ECoG grids consisting of 252

electrodes (1 mm diameter), which were spaced 2-3 mm apart. Two nearly identical copies of the ECoG grid were used in the two

animals. Signals were amplified by eight 32-channel Plexon headstage amplifiers (Plexon, USA), against a silver wire implanted epi-

durally over the right occipital cortex (common recording reference). Signals were then high-pass (low-pass) filtered at 0.159Hz

(8kHz) and digitized at approximately 32 kHz with a Digital Lynx acquisition system (Neuralynx, USA). Local Field Potentials were

obtained by low-pass filtering at 250 Hz and down sampling to 1 kHz. Offline, the signals were re-referenced to remove the common

recording reference through local bipolar derivations, i.e., sample-by-sample differences, between neighboring electrodes. Note that

this procedure also allows rejection of headstage-specific noise and greater signal localization (Richter et al., 2019). Bipolar deriva-

tions were obtained for all pairs of immediately neighboring electrodes on the same lane of the ECoG grid, which were also recorded

through the same headstage (Bastos et al., 2015b). We refer to bipolar derivations as ‘‘(recording) sites.’’ The spatial position of each

site was defined to be the midpoint between the two constituting electrodes. In both monkeys, the 252 electrodes resulted in 218

recordings sites. Site pairs with spectra indicative of artifactual coupling (broadband FC outliers, identified by visual inspection)

were excluded from all analyses of all FC types: In monkey 1, this applied to 392 out of a total of 23.653 coherence and power cor-

relation spectra (1.7%), and 784 out of a total of 47.306 GC spectra (1.7%); In monkey 2, this applied to 269 out of a total of 23.653

coherence and power correlation spectra (1.1%), and 538 out of a total of 47.306 GC spectra (1.1%). Power line artifacts at 50 Hz and

its harmonics up to the Nyquist frequency, as well as screen refresh-rate artifacts (120Hz) were estimated and subtracted from the

data using a Discrete Fourier Transform. In order to minimize volume conduction effects, we excluded site pairs with an inter-site

distance (along the dural surface) of less than 4 mm from the calculation of interareal averages. Note that this corresponds to the

diameter of an anatomical macrocolumn: Anatomical tract-tracing studies have shown that 95% of intrinsic connections are located

within a distance of 1.9 mmcentered on the injection site (Markov et al., 2011). Note that values of power correlation were very similar

and highly correlated to values of orthogonalized power correlation (Figure S1C), used to exclude spurious coupling due to volume

conduction (Hipp et al., 2012). Orthogonalized power correlation was computed with the FieldTrip function ft_connectivity_powcor-

r_ortho, excluding zero-lag contribution on a trial-by-trial basis.

Data analysis
All analyses were performed in MATLAB (MathWorks) using FieldTrip (https://www.fieldtriptoolbox.org) (Oostenveld et al., 2011) and

customscripts. Except otherwise noted, analyses useddata recordedduring thePost-cueperiod (asdefined above, in thedescription

of the visual attention task; see also Figure 1A). The first 0.3 s after cue onset were discarded to minimize cue-related transients. The

remainingdatauntil the first changeof oneof the stimuli (either target or distractor) were segmented into non-overlapping epochsof 1 s

length. The exception to this are the analyses presented in Figures S5A, S7A, and S7B. These analyses include data from theBaseline

period, whichwasmerely 0.8 s long, and, after discarding 0.3 s of post-fixation transients, left merely 0.5 s of approximately stationary

signals. To ease comparison, thePost-cue data shown in Figures S5A, S7A, and S7Bwere also segmented into non-overlapping 0.5 s

epochs (again after discarding 0.3 s of cue-related transients). In total, this led to the following numbers of epochs and the following

amounts of time. For thePostCue,weused 1565 (2067) epochs of 1sec, i.e., the total duration of datawas 1565 s (2067 s) forMonkey 1

(Monkey 2). For the Baseline, we used 4239 (4396) epochs of 0.5 s, i.e., the total duration of data was 2119.5 s (2198 s) for Monkey 1

(Monkey 2). For the split Attention conditions, we used 1510 and 1358 (2540 and 2542) epochs of 0.5 s i.e., the total duration of data

was 755 and 679 s (1270 and 1271 s), respectively, for the Attended and the Unattended conditions in Monkey 1 (Monkey 2).

Data epochs of 1 s length were multitapered using three Slepian tapers (Mitra and Pesaran, 1999) and Fourier-transformed (using

the FieldTrip function ‘‘ft_freq_analysis’’ with the configuration option ‘‘mtmfft’’), resulting in a spectral resolution of 1 Hz and a

spectral smoothing of ± 1.5 Hz. Data epochs of 0.5 s length were multitapered using three Slepian tapers, zero-padded to 1 s,

and Fourier-transformed (same FieldTrip approach), resulting in an interpolated spectral resolution of 1 Hz and a spectral smooth-

ing of ± 3 Hz. The Fourier transforms were the basis for calculating the FC spectra, i.e., coherence spectra (Baker et al., 1997),

spectra of power correlation across epochs (Bruns et al., 2000) and the GC spectra. These FC spectra were first calculated per
e2 Neuron 109, 3862–3878.e1–e5, December 1, 2021
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monkey, across all epochs of a given condition (Post-cue, Attended, Unattended, Baseline), and subsequently averaged over the

two monkeys. Note that power correlation has frequently been calculated across partly overlapping windows, whereas we calcu-

lated power correlation across the non-overlapping epochs described above. GC spectra were estimated through non-parametric

spectral matrix factorization of the cross-spectral density matrices, eliminating the need of explicit autoregressive data modeling

with its inherent assumptions (Dhamala et al., 2008). For visualization only, FC spectra were smoothed with a frequency-dependent

boxcar with a width of ± 1% of the respective center frequency.

We defined theta, beta, high-beta and gamma frequency bands, separately for each monkey, for each FC type, and for each task

period (Baseline and Post-cue). The respective analyses used frequency bands that were specific per monkey, per FC type and per

task period, yet averaged over site pairs and area pairs as detailed in the following. Per monkey, and per FC type, we first averaged

FC spectra over all site pairs of a given area pair, separately for the 105 area pairs. To the resulting spectra, we applied an algorithm

that blindly detected peaks and their corresponding peak frequencies (PFs) and full widths at half maximum (FWHM). PFs and FWHMs

were similar for a givenmonkey across FC types. Yet, the twomonkeys showed individual values, as expected frompreviouswork (Ro-

henkohl et al., 2018; van Pelt et al., 2018). We report here PF and FWHM values averaged over area pairs and FC types, separately per

monkey. Note that some area pairs showed spectra that lacked some of the peaks, and correspondingly did not contribute to the defi-

nitionof thecorresponding rhythms frequencyband. For thePost-cueperiod, the theta rhythmwasat 3±2Hz (PF±FWHM) inMonkey1,

and 4± 3Hz inMonkey2; the beta rhythmwas at 18± 5Hz inMonkey1and15± 5Hz inMonkey2; the high-beta rhythmwasat 34± 5Hz in

Monkey1 and 32 ± 4Hz inMonkey2; and the gamma rhythmwas at 75± 8Hz inMonkey1 and 62 ± 8Hz inMonkey2 (Figures 1B, 1C, and

S4A). In both monkeys, the theta, beta, high-beta and gamma band peaks were the only peaks detected. The same approach was

applied for theBaselineperiod, andgavenearly identical results,even thoughonly fewsitepairsshowedagammapeakduring theBase-

line. Analyses of FC in these four frequency bands averaged the respective FC metric over the frequency bins in the respective band.

Part of the same raw LFP data have been used in previous studies (Bastos et al., 2015a; Brunet et al., 2014; Richter et al., 2017;

Rohenkohl et al., 2018; Spyropoulos et al., 2018). In particular, in one previous study, we used data from 8 visual areas, and focused

our main analysis on the difference between bottom-up and top-down GC per area pair (Bastos et al., 2015b); this GC difference was

related to the corresponding anatomical metric of the feedforward/feedback character of the projection, the SLNmetric. The current

study uses data from 15 brain areas, including visual and non-visual areas; it analyzes GC, coherence and power correlation and

analyzes their full variability (not merely the area-wise GC difference) across all possible combinations of areas (and site pairs);

this full FC variability is related to the corresponding anatomical metric of projection strengths, the FLNe metric.

Volume registration of individual ECoG grids
The anatomical MRI of each subject was spatially coregistered with the 3D positions of electrode locations using the FieldTrip toolbox

(Oostenveld et al., 2011). These 3D positions were obtained by projecting the 2D positions (from high-resolution intraoperative photo-

graphs, using thesulci for alignment (Bastosetal., 2015b) ontoeach individual brain surfaceusing the iso2mesh toolbox (FangandBoas,

2009). Each individual anatomical MRI was coregistered, using linear and non-linear coregistration with FSL (Smith et al., 2004), to the

F99 template brain containing anatomical atlases information (Van Essen, 2012) (Figure S1). This enabled us to assign each site to the

underlyingcortical areaasdone in (Bastosetal., 2015b),but here for all the15areascoveredbyECoGgrids (V1,V2, 8L,V4, TEO,DP,8M,

7A,S1,TPt,5,7B,F1,F4andF2).This resulted in the followingnumbersof sitesperarea inMonkey1:V1:24,V2:9,V4:17,DP:10, TEO:6,

8M: 6, 8L: 2, 7A: 7, S1: 20, 5: 13, TPt: 3, 7B, 20, F1: 23, F4: 4, F2: 17; and the following numbers of sites per area inMonkey 2: V1: 48, V2:

12, V4: 16, DP: 8, TEO: 3, 8M: 2, 8L: 3, 7A: 10, S1: 22, 5: 14, TPt: 2, 7B, 27, F1: 22, F4: 4, F2: 15. Furthermore, each individual anatomical

MRIwas aligned andwarped to the INIA19macaquebrain template (Rohlfing et al., 2012), and the respective transformationmatrixwas

then applied to a volume containing all ECoG electrode positions. This allowed us to combine the two ECoG grids on this template sur-

face (Figure 1B) to create FC strengthmaps (Figures 2 and 3), after averaging overlapping parts of the two ECoGgrids. Distances sepa-

rating recording sites along the dural surface were determined with the fast-marching toolbox in MATLAB (MathWorks).

Retrograde tracing database
Acquisition and analysis of the anatomical dataset has been reported in (Chaudhuri et al., 2015; Markov et al., 2014a; Molnár et al.,

2020). Updates, atlases and additional information concerning the anatomical dataset that was used for this work is available at

http://core-nets.org. We used the fraction of labeled neurons (FLNe, defined in the Results section) to quantify AC strength. We

used the proportion of supragranular labeled neurons (SLN, also defined in the Results section) to quantify the feedforward or feed-

back nature of an anatomical projection. Furthermore, we used interareal white-matter distances. For comparison of FC with AC, we

selected areas and the corresponding site pairs of the ECoG grids, if they were also injected with retrograde tracers. This resulted in a

total of 14 areas, which were electrophysiologically recorded in two macaques, and injected with tracers in a separate cohort of 26

macaques. The list of selected areas is: V1, V2, 8L, V4, TEO, DP, 8M, 7A, S1, 5, 7B, F1, F4, F2.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical tests were based on the combined data from both animals with ECoGs, constituting a fixed-effect analysis that results in

inferences limited to the investigated sample of two animals (Fries and Maris, 2021). To lend equal weight to each animal, data were

first combined within each animal (across sites, site pairs, trials) and subsequently averaged over the two animals.
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After definition of the four frequency bands per monkey, we tested which inter-areal site pairs showed significant FC, i.e., FC that

reliably exceeded the bias level. This was done separately per FC type, i.e., power-correlation, coherence andGC. The bias level was

estimated by randomly pairing epochs before FC calculation. For each of 100 randomizations, the maximum over all site-pairs was

placed into a randomization distribution and site pairs were considered significant, if their FC exceeded the 97.5th percentiles of the

randomization distribution (corresponding to a two-sided test).

Wherever possible, data from both monkeys were combined. The combined results amount to a fixed-effect analysis, allowing an

inference on our sample of two animals, as in most other neurophysiology studies. Results presented are averages over interareal

pairs and over all epochs. 99.9% confidence intervals were estimated from a bootstrap procedure over epochs as described in Efron

and Tibshirani (1994): One-hundred bootstrap estimates of the mean were calculated for each area pair and each monkey, before

averaging over monkeys. Averaging over monkeys was done after peak-alignment for each of the four frequency bands of interest.

The correlation between log10(FC) and log10(FLNe) was then performed and relevant statistics extracted, i.e., rho, p value and

slope. We additionally extracted the FLNe-related FC change as the difference between FC values predicted (by linear regression)

for minimal and maximal FLNe values. Due to the log10-transformation, the FLNe-related FC change reflects a fold change.

In order to investigate whether log10(FLNe) can be predicted by log10(FC) independently of distance, we performed a partial cor-

relation in the form of a MR, according to the equation

log10ðFLNeÞ = b1x1 + b2x2 + . + bnxn + bdd + c;

with xn being the log10(FC) for frequency band n, and d being the distance on the cortical surface (Figure 6) or through thewhitematter

(Figure S6) (giving similar results, Table S2). The regression was calculated across area pairs, i.e., 182 area pairs for GC, and 91 area

pairs for coherence and power correlation, as explained in the results section. FC values were first averaged for each area pair, over

the corresponding site pairs, then over monkeys.

Note that the decay rates reported in the results were calculated using the natural logarithm as described in Ercsey-Ravasz

et al. (2013).

By integrating distance into the regression model, we controlled for this potentially confounding variable and provide the partial

correlation coefficients. However, in parallel to the expected bias reduction, the risk of data collinearity could in turn potentially

reduce the precision of model estimates. Analyses revealed that all (log-transformed) FC metrics were linearly related to distance,

leading to a multi-collinearity among the independent variables that may have affected the MR analysis. To investigate the severity

of this, we performed several control analyses. First, we controlled for the non-violation of the ordinary least square assumption and

plotted the residuals of theMRas a function of the predicted FLNe values separately for each FCmetric (Figure S5C). This revealed no

systematic relationships, i.e., no indication of relevant unobserved (hidden) variables. Second, we verified that variance inflation fac-

tors (VIFs) remained below critical levels, in particular for variables with significant model coefficients (Figure S5D). The VIF for a given

predictor variable indicates the degree to which collinearity potentially inflates the standard error of its coefficient estimates, thereby

reducing statistical power and warranting caution in the interpretation for this predictor. VIFs start at 1 meaning no correlation be-

tween predictor variables and any other; values between 2.5 and 5 indicate moderate correlation but not warranting corrective mea-

sures; values above 5 indicate a critical level (Dodge, 2008; Everitt and Skrondal, 2008). However, it is also important to note that

values below 10 indicate that multicollinearity does not pose a serious problem to the MR model (Forthofer et al., 2008). We deter-

mined VIFs, separately per FC metric and frequency band (Figure S5D). These values were below the critical threshold for all

combinations of FC metrics and frequency bands that had been found significantly predictive of FLNe in the previous analysis (Fig-

ure S5D). Third, we performed an analysis of structural coefficients and general dominance (Figures S7C–S7E). We computed

squared structure coefficients (rs2), general dominance (GenDom) and relative importance weights (RIW), as well as direct and

shared effects for each variable, including distance (Figures S7C–S7E; Table S2). Importantly, even in the presence of correlation

between variables, multicollinearity does not compromise the interpretation of MR coefficients provided this is done on grounds

of outcome from analyses allowing assessment and control for collinearity, e.g., considering dominance or relative importance of

partial regression coefficients. Hence, in addition to structure coefficients – measured already independently of collinearity and

dividing each variable’s contribution to the multiple regression effect – we measured direct effects of predictors and shared effects

between predictors through ‘unique’ and ‘common’ coefficients calculated from commonality analysis (CA, performed with y-hat

package under R, https://www.R-project.org/). For each predictor, the squared structure coefficients (rs2) characterize the shared

amount of variance with - or the individual contribution to - the multiple regression effect (R2), and therefore should be interpreted

as the amount of explained effect rather than explained variance of the dependent variable. In case of multicollinearity, CA provides

the very useful direct and shared coefficients of total explained variance (R2) to each subset of predictors from all possible subsets

regression. It additionally allows identification of so-called ‘suppressor’ variables, through negative common coefficients, which es-

timate the amount of predictive power lost by other predictors when removing the considered variable(s) from the MR model. Direct

or ‘Unique’ effects are comparable to change in the multiple coefficient of determination from squared semi-partial correlation after

inclusion of a variable at last position of a hierarchical regression. Formulas for direct and shared components of a predictor variable

Xi from amodel with n predictors are, respectively Ui = -(1-Xi)XjXk. Xn) and Ci = -(1-Xi)(1-Xj)(1-Xk).(1-Xn). Other relative importance

measures considered and reported in Table S2 are Effect Size (for adjusted R2), General Dominance weights (GenDom – average of

overall conditional dominance weights i.e., additional contribution to multiple R2 computed in all possible predictors combination

comparisons) and Relative Importance Weights (RIW – proportional contribution to multiple R2 after correcting correlation among
e4 Neuron 109, 3862–3878.e1–e5, December 1, 2021
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predictors). Dominance analysis ranks predictors based on explained variance for all pairwise comparisons andminimizes the contri-

bution of predictors in presence of collinearity. Thus, conclusions fromGenDom and RIW should be consistent. Importantly, the sum

of all weights equal the multiple R2 of the MR model for both.

Similar to the principle of stepwiseMR, we calculated the individual variables’ contribution to the R2 of the full-model by comparing

the latter to the R2 of the reduced model after removing this variable (Figures 6C, S6C, and S6F). We performed regression analyses

for each of the 100 samples per predictor variable estimated from bootstrap over epochs, except for distancemeasures which do not

change across trials.

Modularity analysis was performed using the latest version of the Brain Connectivity toolbox and the modularity, agreement and

consensus functions (Rubinov and Sporns, 2010). For each of the three FCmetrics separately, we computed a consensus community

structure using the agreement matrix obtained from the concatenated degenerate partitions across the four frequency bands. This

allowed to compare FC distributions between frequency bands, over the same set of modules (Figures 2 and S2). Degenerate par-

titions were obtained for each frequency band and FC metric by varying the resolution parameter between 0.1-10 (the classical res-

olution parameter value being 1, smaller values detecting larger modules and higher values detecting smaller modules). The

consensus partition was computed with a re-clustering resolution of 0.25 (proportion of resolution parameters, for which any two

vertices were assigned to the same class, across all four frequency bands), reapplied 100 times on the agreement matrix. The modu-

larity values (q) reported on themargins of thematrices in Figures 2 and S2were obtainedwith the classical resolution parameter of 1.

All violin plots use bootstrap estimates over trials, their shape along the y axis uses a kernel density estimate with a self-optimized

bandwidth of the density kernel (https://github.com/bastibe/Violinplot-Matlab/blob/master/violinplot.m).

Statistical significance for average FC strength maps (Figure 3) was calculated by comparing experimentally obtained values for

each site to values resulting from permutation of labels across sites i.e., the null model. This procedure was repeated 1000 times and

corrected formultiple comparison, using a controlled false discovery rate of 20%with an alpha of 0.05 (Korn et al., 2007). By doing so,

we compared the topography of frequency-specific maps to those obtained from a random graph with the same number of nodes,

the same number of edges, and the same weight distribution i.e., same values as the original FC values.
Neuron 109, 3862–3878.e1–e5, December 1, 2021 e5
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(B) Same as Fig. 1C, but including power correlation and GC spectra. Spectra from Monkey 1 are in the left column, 
those of Monkey 2 in the right column. The coherence spectra in this figure are identical to those in Fig. 1C and 
merely included for completeness.
(C) Scatter plot of power correlation versus orthogonalized power correlation. Each dot corresponds to one pair of 
recording sites in Monkey 1 (red dots) or Monkey 2 (black dots), excluding sites within a 2 mm radius to avoid 
residual volume conduction effects. Note that power correlation and orthogonalized power correlation values were 
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Figure S3. Per monkey: Site-pair-wise FC versus distance, FC strength topographies, FLNe-
ranked FC spectra, and FC strength displayed on the AC-derived core-periphery structure.
Related to Figure 3 and Figure 8.
(A) Scatter plots of FC versus distance on the cortical surface (each dot corresponds to one pair of 
recording sites from separate cortical areas), separately per FC type (color code on bottom right), per 
frequency band (as indicated above the four quadrants of the panel), and per monkey (as indicated for 
odd versus even rows). Black dots indicate lack of significance (comparison to a random graph with 
equal weight distribution; FDR-corrected for multiple comparisons over sites, see Methods).
(B) Same analyses as in Fig. 3, but showing data for the average over both monkeys (larger brains) and 
separately per monkey (smaller brains: Monkey 1 on left, Monkey 2 on right). To allow optimal 
comparison, significance masking was removed. Analyses were performed separately per FC type (as 
indicated to the left of the four quadrants of the panel), and per frequency band (as indicated on the 
upper left corner of each column).
(C) Same as left part of Fig. S4A, but for Monkey 1.
(D) Same as left part of Fig. S4A, but for Monkey 2.
(E) Same as Fig. 8, but for Monkey 1.
(F) Same as Fig. 8, but for Monkey 2.
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Figure S4. FLNe and FLNe-sorted FC spectra. Related to Figure 4.
(A) Coherence, power correlation and GC values (color coded) as a function of frequency (y-axis, relative to per-monkey 
band-wise peak frequencies) and as a function of FLNe rank (x-axis) of the respective interareal pair. For coherence and 
power correlation, ranking used FLNe averaged over the two directions as shown in the triangular matrix on the bottom right 
of the panel. For GC, ranking used FLNe as shown in the full matrix on the top right of the panel. FC values were first 
averaged over all respective interareal site pairs and subsequently over animals.
(B) Same as (A), but including FLNe values based on less than 10 neurons, while still excluding FLNe values of zero. The 
corresponding FLNe matrices are shown on the right. 
(C) Same as (A), but including FLNe values based on less than 10 neurons, and replacing FLNe values of zero by estimates 
assuming Poisson distributions fitted to neuron counts from non-zero FLNe distributions. The corresponding FLNe matrices 
are shown on the right.
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Figure S5. AC-FC correlation for attention conditions and baseline; AC and FC correlate with interareal 
distance. Related to Figure 5.
(A) Same as the FLNe-related GC change shown as red line in Fig. 5C, but here separately for the two attention conditions

 

and 
the baseline period, as indicated in the color legend on the top right of the panel. Spectra show means over all trials ± 99.9% 

(B) Linear regression of log10(FLNe), log10(Coherence), log10(Power correlation) and log10(Granger Causality) against 
interareal distance on the brain surface (purple) or through white-matter (pink). For FLNe, each dot corresponds to an interareal 
projection with more than 10 labeled neurons (N=100), for coherence and power correlation, each dot corresponds to a pair

 

of 
cortical areas (N=105), for GC, each dot corresponds to a directed interareal influence (N=210). FC values were averaged

 

over 
the four individual frequency bands and over the two monkeys. Individual decay rates are presented in Table S1.
(C) Scatterplots of residuals against predicted variable verify homoscedasticity for each FC metric.
(D) Variance Inflation Factor (VIF) calculated for each predicting variable of the three models, with interareal distance on

 

the 
brain surface (top) or through white-matter (WM, middle) as an additional predicting variable or not (bottom).
Dashed (VIF = 2.5) and plain lines (VIF = 5) show moderate correlation range still below critical level.

confidence intervals from bootstrap estimates over trials.
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Figure S6. Multiple linear regression with or without interareal distance as additional predictor. 
Related to Figure 6.
(A-C) Same as Figure 6A-C, but using interareal distance through white-matter (WM).
(D-F) Same as Fig.6A-C, but not including interareal 
In (B) and (E), means and ± 99.9% confidence intervals from bootstrap estimates over trials.

distance as predicting variable.
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Vezoli et al., Brain rhythms define distinct interaction networks

Figure S7. AC-FC correlation split by SLN and attention conditions; Commonality analysis 
summary. Related to Figure 7.
(A) Same as Fig. 7A (main panel), but separately for the two attention conditions indicated at the top.
(B) Same as Fig. 7A (main panel), but for the Baseline period.
(C-E) Unique (Direct) and Common (Shared) effects for all predictor variables as proportion of the 
regression effect (i.e. multiple R2) for MR models with and without distance as additional regressor and 
for the three FC metrics: Coherence (C), Power Correlations (D), Granger Causality (E). Common 
(Shared) effects are summed separately for positive and negative effects. Inset displays summed 
Common negative effects for all pairs of predictors involving beta-band synchronizations, Sum ± SD. 
Results demonstrate that FC in the gamma band is the dominant variable, with the strongest direct effect 
and the highest relative importance in MR models predicting FLNe, with or without partial regression of 
distance. Commonality analysis identified a substantial proportion of the regression effect caused by 
suppression in MR models, consistently involving FC in the beta-frequency band (sum of negative 
shared coefficients for Coherence, Power Correlation and GC: 9.73%-29.4%-15.03% without distance, 
17.64%-29.75%-17.79% with surface-distance and 12.97%-27.74%-15.98% with WM-distance). The 
amount of overall suppression caused by beta-band FC in the model was strongest when combined 
with FC in the gamma-frequency band (insets Fig.S7C-E) suggesting subtle involvement of cross-
frequency interactions in the observed regression effect. Furthermore, in all models, we observed that 
beta-band FC contributed the least to the MR effect (i.e. lowest rs2). Hence, even if poorly predictive of 
FLNe, the main contribution of beta-band FC to the MR effect was to increase FLNe-predictive power 
o
Spectra in (A-B) show means over all trials ± 99.9% confidence intervals from bootstrap estimates over 
trials. (C-E) Mean ± SEM.

f the remaining variables and mostly for gamma-band FC.
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Figure S8. Multiple regression per frequency band. Related to Figure 6.
Similar analysis as Fig. 6, showing T-statistics and Beta weights of multiple linear regressions, with the dependent 
variable being log10(FLNe), and the independent variables being distance (on the cortical surface) and log10(FC), 
but now separately for theta, beta, high-beta and gamma, as indicated on the x-axes. The different FC types are 
shown in the four rows. 



TableS1. Exponential decay rates of FC measures with interareal distance.  

Mean over all trials ± SEM estimated from bootstrap over trials. 

 

 Interareal 

distance 

Coherence Power Correlations Granger Causality 

Theta 
WM 0.024 ± 0.0005 mm-1 0.028 ± 0.004 mm-1 0.055 ± 0.0012 mm-1 

surface 0.016 ± 0.004 mm-1 0.018 ± 0.003 mm-1 0.034 ± 0.0008 mm-1 

Beta 
WM 0.033 ± 0.0003 mm-1 0.032 ± 0.001 mm-1 0.063 ± 0.0007 mm-1 

surface 0.021 ± 0.0002 mm-1 0.019 ± 0.001 mm-1 0.039 ± 0.0005 mm-1 

High-Beta 
WM 0.042 ± 0.0004 mm-1 0.028 ± 0.003 mm-1 0.085 ± 0.0008 mm-1 

surface 0.027 ± 0.0003 mm-1 0.018 ± 0.002 mm-1 0.055 ± 0.0005 mm-1 

Gamma 
WM 0.027 ± 0.0004 mm-1 0.015 ± 0.002 mm-1 0.075 ± 0.0008 mm-1 

surface 0.018 ± 0.0003 mm-1 0.010 ± 0.001 mm-1 0.049 ± 0.0006 mm-1 

 

  



TableS2. Summary statistics of multiple regression models for FLNe.  

Relative importance measures (Commonality Analysis: Direct and Shared coefficients, General 

Dominance – GenDom., adjusted Effect Size and Relative Importance Weights – RIW) performed on 

the mean over all trials; otherwise, mean ± 99.9% CI estimated from bootstrap over trials. 

 

Coherence 

 

  

Predictors R2 Radj
2 NRMSE rs

2 
Beta 

values 

Beta 

weights 
sig. Direct Shared GenDom. 

Effect 

size 
RIW 

 
0.563 

± 0.02 

0.522 

± 0.02 

0.23 

± 0.002 
         

Theta    
0.83 ± 

0.08 

1.73 ± 

1.65 

0.20 ± 

0.19 
ns 0.0068 0.4606 0.153 0.136 0.138 

Beta    
0.34 ± 

0.02 

1.33 ± 

0.26 

0.28 ± 

0.05 
< 0.1 0.0241 0.1914 0.066 0.105 0.079 

High-beta    
0.69 ± 

0.03 

1.66 ± 

0.75 

0.34 ± 

0.15 
ns 0.0183 0.3919 0.125 0.203 0.123 

Gamma    
0.51 ± 

0.04 

2.23 ± 

0.53 

0.43 ± 

0.10 
0.0165 0.0562 0.2851 0.123 0.213 0.144 

Surface 

dist. 
   

0.65 ± 

0.02 

0.01 ± 

.003 

0.17 ± 

0.04 
ns 0.0056 0.3678 0.096 -0.093 0.080 

 
0.569 

± 0.01 

0.528 

± 0.01 

0.23 

± 0.002 
         

Theta    
0.83 ± 

0.08 

1.58 ± 

1.59 

0.19 ± 

0.19 
ns 0.0057 0.4618 0.144 0.123 0.133 

Beta    
0.34 ± 

0.02 

0.76 ± 

0.22 

0.16 ± 

0.04 
ns 0.0064 0.1850 0.057 0.057 0.068 

High-beta    
0.69 ± 

0.03 

1.04 ± 

0.76 

0.21 ± 

0.15 
ns 0.0061 0.3858 0.115 0.119 0.114 

Gamma    
0.50 ± 

0.04 

1.52 ± 

0.57 

0.29 ± 

0.11 
ns 0.0206 0.2645 0.104 0.141 0.123 

WM dist.    
0.84 ± 

0.02 

-0.02 ± 

.005 

-0.21 ± 

0.04 
ns 0.0072 0.4674 0.146 0.126 0.128 

 
0.558 

± 0.01 

0.525 

± 0.02 

0.23 

± 0.002 
         

Theta    
0.84 ± 

0.08 

1.56 ± 

1.60 

0.18 ± 

0.19 
ns 0.0055 0.4619 0.184 0.121 0.162 

Beta    
0.34 ± 

0.02 

-1.14 ± 

0.22 

0.24 ± 

0.04 
< 0.1 0.0188 0.1726 0.080 0.086 0.091 

High-beta    
0.70 ± 

0.03 

1.44 ± 

0.75 

0.29 ± 

0.15 
ns 0.0137 0.3782 0.152 0.166 0.146 

Gamma    
0.51 ± 

0.04 

2.02 ± 

0.53 

0.39 ± 

0.10 
0.02 0.0511 0.2340 0.142 0.186 0.160 



Table S2 (continued). Summary statistics of multiple regression models for FLNe.  

Mean over all trials ± 99.9% CI estimated from bootstrap over trials.  

 

Power correlations 

 

  

Predictors R2 Radj
2 NRMSE rs

2 
Beta 

values 

Beta 

weights 
sig. Direct Shared GenDom. 

Effect 

size 
RIW 

 
0.545 

± 0.08 

0.502 

± 0.08 

0.23 

± 0.01 
         

Theta    
0.43 

± 0.28 

0.83 

± 1.21 

0.19 

± 0.24 
ns 0.0164 0.2193 0.092 0.086 0.094 

Beta    
0.25 

± 0.07 

2.03 

± 0.75 

0.49 

± 0.18 
0.0028 0.0859 0.0525 0.107 0.167 0.118 

High-beta    
0.29 

± 0.18 

0.05 

± 0.86 

0.01 

± 0.20 
ns 0.0001 0.1565 0.051 0.004 0.049 

Gamma    
0.39 

± 0.14 

2.44 

± 1.06 

0.49 

± 0.21 
0.0011 0.1051 0.1103 0.149 0.210 0.159 

Surface 

dist. 
   

0.67 

± 0.10 

-0.01 

± 0.01 

-0.14 

± 0.18 
ns 0.0070 0.3608 0.146 0.079 0.125 

 
0.571 

± 0.05 

0.529 

± 0.06 

0.23 

± 0.007 
         

Theta    
0.41 ± 

0.26 

0.61 ± 

1.15 

0.14 

± 0.23 
ns 0.0087 0.2770 0.086 0.063 0.089 

Beta    
0.24 ± 

0.06 

-1.50 ± 

0.77 

0.36 

± 0.18 
0.0316 0.043 0.0981 0.089 0.124 0.100 

High-beta    
0.27 ± 

0.17 

0.11 ± 

0.73 

0.03 

± 0.17 
ns 0.0004 0.1562 0.050 0.010 0.049 

Gamma    
0.38 ± 

0.14 

1.97 

± 1.00 

0.40 

± 0.20 
0.0085 0.0618 0.1536 0.129 0.170 0.139 

WM dist.    
0.83 ± 

0.08 

-0.03 ± 

0.02 

-0.32 

± 0.17 
< 0.1 0.0321 0.4425 0.216 0.204 0.194 

 
0.539 

± 0.10 

0.504 

± 0.11 

0.23 

± 0.01 
         

Theta    
0.39 ± 

0.26 

1.25 ± 

1.32 

0.24 

± 0.26 
< 0.1 0.0281 0.2076 0.125 0.105 0.122 

Beta    
0.27 ± 

0.08 

2.34 ± 

0.71 

0.56 

± 0.16 
0.0001 0.1516 -0.0132 0.151 0.191 0.155 

High-beta    
0.31 ± 

0.19 

0.15 ± 

0.94 

0.03 

± 0.22 
ns 0.0003 0.1563 0.000 0.010 0.062 

Gamma    
0.36 ± 

0.14 

2.70 ± 

1.11 

0.55 

± 0.21 
0.0001 0.1574 0.0580 0.157 0.233 0.199 



Table S2 (continued). Summary statistics of multiple regression models for FLNe.  

Mean over all trials ± 99.9% CI estimated from bootstrap over trials.  

 

Granger Causality 

 

 

Predictors R2 Radj
2 NRMSE rs

2 
Beta 

values 

Beta 

weights 
sig. Direct Shared GenDom. 

Effect 

size 
RIW 

 
0.485 

± 0.02 

0.458 

± 0.02 

0.23 

± 0.02 
         

Theta    
0.61 ± 

0.07 

0.24 ± 

0.27 

0.07 ± 

0.07 
ns 0.0009 0.2963 0.079 0.037 0.073 

Beta    
0.29 ± 

0.03 

-0.09 ± 

0.17 

-0.04 ± 

0.07 
ns 0.0002 0.1412 0.039 -0.014 0.039 

High-beta    
0.68 ± 

0.03 

0.78 ± 

0.20 

0.36 ± 

0.08 
< 0.1 0.0162 0.3162 0.100 0.191 0.090 

Gamma    
0.87 ± 

0.03 

1.17 ± 

0.17 

0.53 ± 

0.06 
0.0004 0.0751 0.3465 0.183 0.316 0.199 

Surface 

dist. 
   

0.67 ± 

0.02 

-0.01 ± 

0.003 

0.09 ± 

0.05 
ns 0.0016 0.3220 0.085 -0.045 0.084 

 
0.492 

± 0.01 

0.465 

± 0.01 

0.23 

± 0.001 
         

Theta    
0.60 ± 

0.07 

0.19 ± 

0.29 

0.06 ± 

0.08 
ns 0.0005 0.2967 0.074 0.030 0.069 

Beta    
0.29 ± 

0.02 

-0.08 ± 

0.17 

-0.03 ± 

0.07 
ns 0.0002 0.1414 0.037 -0.012 0.036 

High-beta    
0.67 ± 

0.03 

0.44 ± 

0.16 

0.20 ± 

0.06 
ns 0.0052 0.3324 0.092 0.108 0.083 

Gamma    
0.86 ± 

0.03 

0.89 ± 

0.17 

0.40 ± 

0.06 
0.007 0.0414 0.4216 0.160 0.240 0.178 

WM dist.    
0.85 ± 

0.02 

-0.02 ± 

0.004 

-0.21 ± 

0.04 
ns 0.0086 0.4202 0.130 0.127 0.126 

 
0.484 

± 0.02 

0.462 

± 0.02 

0.23 

± 0.002 
         

Theta    
0.61 ± 

0.07 

0.24 ± 

0.27 

0.07 ± 

0.07 
ns 0.0009 0.2963 0.097 0.038 0.087 

Beta    
0.29 ± 

0.03 

-0.09 ± 

0.17 

-0.04 ± 

0.07 
ns 0.0002 0.1412 0.048 -0.014 0.045 

High-beta    
0.69 ± 

0.03 

0.68 ± 

0.19 

0.31 ± 

0.07 
ns 0.0148 0.3176 0.125 0.165 0.111 

Gamma    
0.87 ± 

0.03 

1.09 ± 

0.15 

0.49 ± 

0.05 
0.0002 0.0831 0.3385 0.214 0.295 0.240 
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