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Fig. S1 Schematic illustration of a constrained thin hydrogel layer, related to STAR Methods. The initial state is 

assumed to be isotropically swollen from the dry state with the relevant geometrical parameters: displacement (δ), material 

thickness (H). 

 

Fig. S2 FE methodology flowchart, related to STAR Methods. For every t, the maximum height displacement 𝛿 is 

calculated. Convergence of the finite element method program for each case is guaranteed by comparing the effective pressure 

rate and the maximum displacement (𝛿∞ ) error in their independent loops. 

 

Table S1. Poroelastic properties applied in FE model(Moeendarbary et al., 2013), related to Fig. 3 

Geometry 
Shear modulus, 

𝐺 (kPa) 

Diffusivity, 

 𝐷 (µm2 s⁄ ) 

Poisson's ratio, 

𝜐  

Fluid viscosity, 

𝜂(N. s/m2) 

Rectangular 0.19 30 0.3 1.0 × 10−3 

 

Table S2. Porohyperelastic properties of neo-Hookean model in FE model(Moeendarbary et al., 2013; Valero et al., 

2016), related to Fig.4 

Geometry 
Material constant, 

𝐶10  (kPa) 

Material constant, 

𝐷1 (kPa)−1 

Diffusivity, 

 𝐷 (µm2 s⁄ ) 

Fluid viscosity, 

𝜂(N. s/m2) 

Rectangular 0.096 4.8 30 1.0 × 10−3 

Cell 0.19 2.4 10 1.0 × 10−3 
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Fig. S3 FE Normalized displacement curves, related to Figs. 2b,c. (a,b) Normalization of swelling (Fig. 2b) and 

deswelling (Fig. 2c) curves considering 
𝛿 

𝛿∞ 
 for y-axis. 

 

 

Fig. S4 Effects of spatial location, rise time, effective pressure for constrained deswelling of a simple geometry 

investigated by FE linear poroelastic simulations, related to Fig. 3. (a) Linear increase of effective pressure from 0 to 

P𝑒𝑓𝑓. =-0.05 kPa over rise time  𝑡𝑟 = 0.1 s. (b) The deswelling type deformation of the hydrogel due to application of 

pressure difference and outflowing of water P𝑒𝑓𝑓. < 0 → P𝑖𝑛> P𝑜𝑢𝑡 . Vertical displacements of specific nodes located at 

different positions P1, P2 and P3 were studied. Dash and solid lines indicate non-deformed and deformed shapes respectively. 

Fluid velocity field distributed non-uniformly at boundaries and within the domain induce a non-uniform deswelling behavior 

across the geometry. (c) Plot of vertical 𝛿 over time considering ramp in pressure indicated in (a). (d) Normalization of (c) 

considering 
𝛿 

𝛿∞ 
 for y-axis and plots of 1D finite thickness and self-similar solutions. (e) Normalization of (c) considering 

𝜏 =
4𝐷𝑡

𝜋𝐻2 for x-axis and 
𝛿 

𝛿∞ 
 for y-axis. (f) Application of ramp with two different P𝑒𝑓𝑓. and two different 𝑡𝑟. (g) Considering 

conditions in (f), the plots of vertical displacement 𝛿 vs time were extracted for position P1. (h) Normalization of (g) 

considering 
𝛿 

𝛿∞ 
 for y-axis and plots of 1D finite thickness and self-similar solutions. (i) Normalization of both x and y axis 

led to the overlaying of the curves when  (
𝑃𝑒𝑓𝑓.

𝛿∞  

)
1

=(
𝑃𝑒𝑓𝑓.

𝛿∞ 
)

2
. The analytical solutions cannot fit any of the normalized curves. 
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Fig. S5 Effects of spatial location, rise time, effective pressure for constrained swelling of a simple geometry 

investigated by FE porohyperelastic simulations, related to Fig. 3. (a) Linear increase of effective pressure from 0 to 

P𝑒𝑓𝑓. =0.05 kPa over rise time  𝑡𝑟 = 0.1 s. (b) Plot of vertical 𝛿 over time considering ramp in pressure indicated in (a) at 

different positions P1, P2 and P3. (c) Normalization of (b) considering 
𝛿 

𝛿∞ 
 for y-axis and plots of 1D finite thickness and self-

similar solutions. (d) Normalization of (c) considering 𝜏 =
4𝐷𝑡

𝜋𝐻2 for x-axis and 
𝛿 

𝛿∞ 
 for y-axis. (e) Application of ramp with 

two different P𝑒𝑓𝑓. and two different 𝑡𝑟. (f) Considering conditions in (e), the plots of vertical displacement 𝛿 vs time were 

extracted for position P1. (g) Normalization of (f) considering 
𝛿 

𝛿∞ 
 for y-axis and plots of 1D finite thickness and self-similar 

solutions. (h) Normalization of both x and y axis led to the overlaying of the curves when  (
𝑃𝑒𝑓𝑓.

𝛿∞  

)
1

= (
𝑃𝑒𝑓𝑓.

𝛿∞ 
)

2
. The analytical 

solutions cannot fit any of the normalized curves. 
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Fig. S6 Effects of spatial location, rise time, effective pressure for free swelling of a simple geometry investigated by 

FE linear poroelastic simulations, related to Fig. 3. (a) Linear increase of effective pressure from 0 to P𝑒𝑓𝑓. =0.05 kPa 

over rise time  𝑡𝑟 = 0.1 s. (b) The swelling type deformation of the hydrogel due to application of pressure difference and 

inflowing of water Peff. > 0 → P𝑖𝑛< P𝑜𝑢𝑡 . Vertical displacements of specific nodes located at different positions P1, P2 and 

P3 were studied. Dash and solid lines indicate non-deformed and deformed shapes respectively. Fluid velocity field 

distributed non-uniformly at boundaries and within the domain induce a non-uniform swelling behavior across the geometry. 

(c) Plot of vertical 𝛿 over time considering ramp in pressure indicated in (a). (d) Normalization of (c) considering 
𝛿 

𝛿∞ 
 for y-

axis. (e) Normalization of (c) considering 𝜏 =
4𝐷𝑡

𝜋𝐻2 for x-axis and 
𝛿 

𝛿∞ 
 for y-axis. (f) Application of ramp with two different 

P𝑒𝑓𝑓. and two different 𝑡𝑟. (g) Considering conditions in (f), the plots of vertical displacement 𝛿 vs time were extracted for 

position P1. (h) Normalization of (g) considering 
𝛿 

𝛿∞ 
 for y-axis and plots. (i) Normalization of (g) considering 𝜏 =

4𝐷𝑡

𝜋𝐻2 for 

x-axis and 
𝛿 

𝛿∞ 
 for y-axis did not lead to the overlaying of the curves when  (

𝑃𝑒𝑓𝑓.

𝛿∞  

)
1

=(
𝑃𝑒𝑓𝑓.

𝛿∞ 
)

2
.  
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Fig. S7 Effects of spatial location for constrained swelling of a realistic cellular geometry investigated by FE 

porohyperelastic simulations, related to Fig. 4. 1D finite thickness and self-similar solutions comparing with normalized 

displacement curves of FEM (Fig. 4d) for (a) H=5 µm, (b) H=4 µm, (c) H=2.5 µm. different swelling behavior in different 

P1, P2 and P3 positions because of the cell geometry and boundary conditions.  

 

 

Fig S8. Simulated deformation and fluid velocity (mm.s-1) field of the poroelastic hydrogel, related to Fig. 3. (a,b) 

Constrained swelling/deswelling and (c,d ) free swelling/deswelling of  the poroelastic FE model Under effective pressure 

of 0.05 kPa (swelling) and -0.05 kPa (deswelling) at t=0.1 s. The deformation of the hydrogel (solid line) due to positive 

effective pressure increases which cause to inflow and swelling (a,c) and the deformation of the hydrogel due to negative 

effective pressure decreases which cause to outflow of the fluid and deswelling (b,d). Dash lines indicate the non-deformaed 

hydrogel with thin disc geometry. Fluid velocity field distributed non-uniformly at boundaries and within the domain induce 

a non-uniform swelling/deswelling behavior across the geometry. 
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Fig S9. Effects of nonlinear pressure change for constrained swelling of a simple geometry investigated by FE linear 

poroelastic simulations, related to Fig. 3. (a) Linear and nonlinear increase of effective pressure from 0 to Peff. =0.05 kPa 

over a rise time tr=0.1s. (b) Plot of vertical 𝛿 over time considering linear and nonlinear of the ramp in pressure indicated in 

(a). 

 

 

Fig S10. Effects of membrane consideration for constrained swelling of a simple geometry investigated by FE linear 

poroelastic simulations, related to Fig. 3. (a) Axisymmetric FE model of a double layer thin disk with thickness H and 

length L (b,d) Linear increase of effective pressure from 0 to Peff. =0.05 kPa over a rise time tr=0.1s for different diffusion 

coefficients of base layer. (c) Plot of vertical 𝛿 over time considering the ramp in pressure indicated in (b) with D1=10µm2.s-

1 for base layer and different diffusion coefficients of the membrane. (e) Plot of vertical 𝛿 over time considering the ramp in 

pressure indicated in (d) with D1=1µm2.s-1 for base layer and different diffusion coefficients of the membrane. 
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Fig S11. Simulated deformation and fluid velocity (mm.s-1) field of the porohyperelastic cell, related to Fig. 4. (a) 

Constrained cell swelling and (b) deswelling of the porohyperelastic FE model. Under effective pressure of 0.5 kPa (swelling) 

and -0.5 kPa (deswelling) at t=0.1 s. The cell swells due to application of pressure changes across cell membrane and entering 

of water into cell interior. Dash and solid lines indicate non-deformed and deformed shapes respectively. Fluid velocity field 

is also show with color arrows. 

 

Fig S12. Simulated deformation of the porohyperelastic hydrogel within indentation test, related to STAR Methods. 

Porohyperelastic indentation tests were simulated on (a) swelled, (b) control and (c) shrunk cases. (a,c) Constrained 

swelling/deswelling under effective pressure of 0.05 kPa (swelling) and -0.05 kPa (deswelling) and (b) the porohyperelastic 

FE model of indentation on the non-swelling/deswelling surface by methodology has been detailed in (Esteki et al., 2020). 

The deformation of the hydrogel (solid line) due to (a) positive effective pressure increases which cause to inflow and 

swelling and the deformation of the hydrogel due to (c) negative effective pressure decreases which cause to outflow of the 

fluid and deswelling. Dash lines indicate the non-deformed state. 
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Fig S13. Effect of swelling and deswelling on the poroelastic parameters, related to STAR Methods. Porohyperelastic 

indentation tests were simulated on controlled, swelled and deswelled cases. Force-indentation (a) and force-relaxation (b) 

curves generated from FEM considering fast indentation velocity and a maximum indentation depth of δM=1µm. The 

maximum displacement  δM achieved at infinitely fast indentation velocity (V~∞ or tr~0) (Esteki et al., 2020) (c) The diffusion 

coefficient and (d) elastic modulus obtained from indentation simulations on swelled, control and shrank cell states as in 

Fig.S12 and using the methodology as described in (Hu et al., 2010).  


