

Figure S1 The Human Extraembryonic Compartment, Related to Figures 3 and 5. A, A human placenta with portions of the fetal membranes. Chorionic villi are the functional units of the placenta. The histology of the boxed areas is shown in the panels with the corresponding letters. B, View of the fetal membranes at the cellular level. The amnion is composed of a single epithelial layer, which lines the amniotic cavity, and an underlying stroma. The smooth chorion, which shares the stromal compartment, contains multiple layers of cytotrophoblasts. The outer rank of cells lies adjacent to the uterus. The scissors depict where the membranes were bisected, producing the amnion and smooth chorion samples. C, View of the maternal-fetal interface at the cellular level. The mononuclear cytotrophoblast layer of the (early gestation) chorionic villi fuses to become multinuclear syncytiotrophoblasts, which form the surface of the placenta. Floating villi are perfused by maternal blood that fills the intervillous space. Anchoring villi give rise to invasive extravillous cytotrophoblasts that emigrate from the chorionic villi via cell columns that attach the placenta to the uterus and infiltrate most of its wall. Maternal cells in this region include the decidua, remodeled uterine blood vessels, which are lined by cytotrophoblasts, and immune cells. During vascular invasion, the cells breach both veins and arteries, but they have much more extensive interactions with the arterial portion of the uterine vasculature. Here, they replace the endothelial lining and intercalate within the smooth muscle walls of the spiral arteries, producing hybrid vessels that are composed of both embryonic/fetal and maternal cells. Vascular invasion connects the uterine circulation to the intervillous space where maternal blood perfuses the chorionic villi.



**Figure S2 DNA Methylation patterns of Extraembryonic Tissues and Cytotrophoblasts, Related to Figure 1. A-C,** The principal component analyses depicting the whole genome bisulfite-seq data. **D,** DNA methylation array data confirmed the whole-genome bisulfite-seq data. Samples clustered according to their type and gestational age. The only exceptions were basal plate and chorionic villi, which contained many of the same cell types. **E,** Chromosome-level view of DNA methylation across the genome of the extraembryonic compartments. The height of the colored bars corresponds to the number of different samples of each type that are shown. The white empty strips are heterochromatin/centromeric regions with poorly aligned, repetitive sequences, thus they were left blank. **F,** DNA methylation in imprinting control regions. Imprinting control regions of the extraembryonic genomes had methylation levels centered near 50% as the other samples. The colored bodies of the box plots represent the first and third quartiles of loci, the middle line represents the

median, and the whiskers extend to the minimum and maximum data points. **G**, Cytotrophoblast mRNA levels of DNA methylating and demethylating enzymes. Note the expression of *DNMT1* and *DNMT3A*, DNA methyltransferases, was higher at term. Whereas, *TET1* and *TET3*, DNA demethylating proteins, were expressed less at term. **H**, TET2 was expressed more at term; however, the potential CXXC-containing TET2 co-factors were either not expressed (*CXXC4*) or downregulated (*CXXC5*) in 3<sup>rd</sup> trimester cytotrophoblasts. **I**, A chromosome-level (Chr2) view showed that deeply hypomethylated domains of the 2<sup>nd</sup> and 3<sup>rd</sup> trimester samples from extraembryonic compartment were occupied by H3K9me3. **J-K**, Scatter plots of DNA methylation levels vs. H3K9me3 occupancy in 2<sup>nd</sup> and 3<sup>rd</sup> trimester; Chr, chromosome.



**Figure S3 Characteristics of the Unmethylated Regions of the Cytotrophoblast Genome as Compared to Human Embryonic Stem Cells, Related to Figure 2. A,** Differentially methylated regions (DMRs) were categorized according to whether they were methylated (M) or unmethylated (U) in human embryonic stem cells (hESCs) relative to 2<sup>nd</sup> or 3<sup>rd</sup> trimester cytotrophoblasts (CTBs). **B,** GO analyses of the sites that were uniquely hypomethylated in hESCs (UMM) revealed biological processes that are associated with embryonic morphogenesis. In contrast, GO analyses of the sites that were uniquely hypomethylated in CTBs (MUU) yielded terms related to cell adhesion or migration, immune processes

and signal transduction. GO analyses of sites that were uniquely hypomethylated in 2<sup>nd</sup> trimester CTBs (MUM), revealed cardiovascular development and cell adhesion or locomotion. C, In contrast to global methylation, hESCs and CTBs had relatively equivalent numbers of hypomethylated DMRs in the CpG islands of gene promoters. **D**, GO analyses of these sites highlighted embryonic and reproductive processes, respectively. E-F, As compared to hESCs, a larger percentage of CTB DMRs (MUU, MUM, MMU) were distant from E) the transcription start sites (TSS) and F) contained transcription factor binding sites (TFBS). G, Enhancer DMRs with H3K27ac and/or H3K4me1. H, Expression levels of genes that interact with enhancer DMRs predicted by EnhancerAtlas. Unless marked, the values were not significantly different from one another (ANOVA). I, In the MUU dataset, genes near enhancer-DMRs (eDMRs; DMR, differentially methylated region) containing transcription factor binding motifs were enriched for functions related to the cell cycle, regulation of cytokine production, endocytosis, apoptosis, in utero embryonic development, RAS signaling, cellular stress, migration, hypoxia/oxygen responses, and adhesion, among others. J, The heatmap of predicted transcription factor binding motifs and putative target gene pathways in the MUM dataset, which included many of the same pathways shown in A, but fewer transcription factor motifs, suggesting down-regulation at term. K, Network of AP-1 and SMAD in hypoxia response. Independent experimental data was used to assemble a network of validated genetic and physical interactions between the candidate transcription factor regulators and hypoxia response target genes (Chatr-Aryamontri et al., 2013; Rankin and Giaccia, 2016). Hypoxia inducible factor motifs were not associated with hypoxia response in MUM eDMRs, perhaps due to the fact that HIF regulation occurs at the protein level (Rankin and Giaccia, 2016). Predicted transcription factor regulators—particularly SMAD3, SMAD4, and the AP-1 complex—had more interactions in the hypoxia response network than expected by chance. Six of the 11 most significantly connected genes in the network were Transcription factors predicted by motifs in MUM eDMRs (P < 0.01, hypergeometric; yellow lettering). Thus, in addition to the hypoxia response regulators associated with MUU eDMRs, AP-1, SMAD3, and SMAD4 binding at MUM eDMRs may be of particular importance for cytotrophoblast (CTB) hypoxia responses. Potential interactors in this network included VHL. which, under normoxic conditions, targets HIFs for ubiquitinylation and proteasomal degradation. VHL mutations are associated with renal cell carcinomas (Gossage et al., 2015). CTBs express this molecule, which is regulated by  $O_2$  levels and as a function of differentiation (Genbacev et al., 2001).



Figure S4 Immunoblots and Immunolocalizations of Modified Histones in Cytotrophoblasts, Related to Figures 3 and 5. A-B, A) CTB H3K4me1 expression across gestation and B) quantification of the immunoblot signals. C-G, Samples with nearly identical morphology were 5 µm serial sections. In other cases, the immediately adjacent sections were lost, which resulted in greater morphological differences among the tissue sections. C) (upper panels) In floating villi (FV), the nuclei of cytokeratin-positive villous cytotrophoblasts (CTBs) and syncytiotrophoblasts (STBs) reacted with anti-H3K9me3 in the 1<sup>st</sup> and the 2<sup>nd</sup> trimester samples. Much of the immunoreactivity was lost at term. (lower panels) In anchoring villi (AV) and within the basal plate (BP), invasive CTBs showed a similar pattern of down-regulated H3K9me3 at term. D-E) In FV and BP ± AV, CTB (and STB) signals for H3K27me3 and H3K4me3 were also diminished at term. F) Compared to the immunoblot (Figure 3E), relatively strong H3K27ac signals were observed in association with trophoblasts in floating and anchoring villi and the staining was again reduced at term. G) Immunolocalization of total histone H3 confirmed the patterns shown in panels (C-F) as indicative of the relative abundance of the histone modifications that were analyzed rather than altered levels of the protein. H-I, Cytotrophoblasts from normal births at term (III-CTB), similar to those from pregnancies that ended in a (non-infected) preterm birth, had low-to-no bands that reacted with anti-H3K27ac as compared to the CTB lysates from placentas of patients with severe preeclampsia (sPE). J-M, Immunoblotting with H3K9ac or H3K4me1 revealed bands of variable intensities that were not specific to nPTB or sPE. The error bars represent the standard deviations. Unless marked with asterisks (Welch's t-test; \*, P < 0.05), the values were not significantly different from one another. GA, gestational age; wks, weeks; I, first trimester; II, second trimester; III, third trimester.



Figure S5 Characterization of H3K27ac in Cytotrophoblasts and Other Regions of the Extraembryonic Compartment, Related to Figure 4. A. Number of H3K27ac peaks that were unique to each cell type/region or cooccurred in more than one dataset. **B**, Principal component analysis of 10 kb windows separated the samples according to type except for the basal plate and villi, which contained many of the same cell types. C, As to individual sample types, PCA of 10 kb windows separated CTBs and chorionic villi by gestational age. **D**, GO terms associated with human embryonic stem cell (hESC)-specific H3K27ac peaks. E-F, Gene lists were obtained from epifactor: http://epifactors.autosome.ru/; n=6, 2nd trimester; n=5, 3rd trimester. E) Enzymes associated with histone demethylation. KDM5D and HR data were shown separately due to their higher expression levels. F) Enzymes associated with histone methylation. G-H, Ranking the H3K27ac signal density, 216 and 306 super-enhancers were identified in 2<sup>nd</sup> trimester cytotrophoblasts (CTBs) and villi, respectively. I, A large set of 2<sup>nd</sup> trimester CTB super-enhancers lost H3K27ac at term; gestational age-related shifts were not observed in villi. J, Many super-enhancers were shared between the two sample types (148; gold); others were unique to villi (158; blue) or CTBs (68; red). K, Genes near CTB-specific super-enhancers were highly enriched in functions related to oxidative stress and placental development. Genes near villispecific enhancers were unique in terms of TGF-beta-related functions, and roles in wound healing, coagulation and hemostasis. L, Scatter plots of 10 kb windows confirmed the preferential loss of H3K27ac in CTBs vs. villi in the additional samples (new H3K27ac datasets). Linear regression lines and Pearson's p shows the correlation between 2<sup>nd</sup> and 3<sup>rd</sup> trimester H3K27ac levels. tri, trimester.



**Figure S6 Transcriptomes of cytotrophoblasts and various extraembryonic compartments during the 2<sup>nd</sup> and 3<sup>rd</sup> trimesters, Related to Figure 4.** A, Principal component analysis depicting the mRNA transcriptomes of the five sample types analyzed at two gestational ages. **B**, Correlation heatmap of the transcriptomes shown in A. C, GO enrichment and KEGG pathway analyses revealed potential functional enrichments by cell type/compartment. **D**, Cytotrophoblasts (CTBs) had significantly different miRNA expression patterns as compared to the other samples. **E**, Differentially expressed cytotrophoblast genes between 2<sup>nd</sup> and 3<sup>rd</sup> trimester CTBs. tri, trimester.

# Table S1 Number of DMRs, eDMRs, and genes associated with eDMRs. Related to Figures 2 and S3.A. DMRs and eDMRs identified

| Methylated (M)<br>or<br>unmethylated<br>(U) in hESCs vs<br>2nd trimester<br>CTBs vs 3rd<br>trimester CTBs | Total DMRs | DMRs with<br>H3K27ac<br>and/or<br>H3K4me1<br>(eDMRs) | eDMRs in 10<br>kb of genes | Genes<br>associated<br>with eDMRs | Genes<br>associated<br>with multiple<br>eDMRs | Expressed<br>genes<br>associated<br>with eDMRs |
|-----------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------|----------------------------|-----------------------------------|-----------------------------------------------|------------------------------------------------|
| UMM                                                                                                       | 5249       | 4416                                                 | 1590                       | 1143                              | 283                                           | 389                                            |
| MUU                                                                                                       | 175582     | 38887                                                | 12139                      | 6891                              | 2751                                          | 2521                                           |
| MUM                                                                                                       | 6059       | 2040                                                 | 651                        | 581                               | 64                                            | 208                                            |
| MMU                                                                                                       | 1166       | 294                                                  | 82                         | 79                                | 3                                             | 31                                             |

## B. eDMRs and their associated genes identified using EnhancerAtlas

| Methylated (M)<br>or<br>unmethylated<br>(U) in hESCs vs<br>2nd trimester<br>CTBs vs 3rd<br>trimester CTBs | Total DMRs | DMRs with<br>H3K27ac<br>and/or<br>H3K4me1<br>(eDMRs) | eDMRs<br>filtered with<br>EnhancerAtl<br>as and<br>within 50kb<br>of TSSs | # of<br>expressed<br>genes<br>associated<br>with eDMRs | Average #<br>eDMRs<br>associated<br>with a gene |  |
|-----------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|--|
| UMM                                                                                                       | 5249       | 4416                                                 | 1067                                                                      | 478                                                    | 2.2                                             |  |
| MUU                                                                                                       | 175582     | 38887                                                | 9212                                                                      | 2929                                                   | 3.1                                             |  |
| MUM                                                                                                       | 6059       | 2040                                                 | 484                                                                       | 280                                                    | 1.7                                             |  |
| MMU                                                                                                       | 1166       | 294                                                  | 60                                                                        | 36                                                     | 1.7                                             |  |

Table S2A. Maternal and neonatal clinical characteristics (immunoblotting and immunolocalization), related to Figure 5

| Summary of clinical information    |               |                |         |  |  |  |  |  |  |  |
|------------------------------------|---------------|----------------|---------|--|--|--|--|--|--|--|
| -                                  | PTB (n=6) **  | sPE (n=6)      | P-value |  |  |  |  |  |  |  |
| Ethnicity                          | 6O            | 4H, 2O         | n/a     |  |  |  |  |  |  |  |
| Maternal age, yr                   | 30.67±7.34    | 28.83±6.43     | 0.6552  |  |  |  |  |  |  |  |
| BMI, kg/m2                         | 25.8±3.81     | 35.17±5.25     | 0.0159  |  |  |  |  |  |  |  |
| Systolic blood pressure, mmHg      | 115.6±12.09   | 163.5±9.77     | <0.0001 |  |  |  |  |  |  |  |
| Diastolic blood pressure, mmHg     | 68.2±7.79     | 95.67±8.2      | 0.0003  |  |  |  |  |  |  |  |
| Proteinuria (mg/dL)                | n/a or 0      | 81.67±61.88    | <0.0001 |  |  |  |  |  |  |  |
| Gestational age at delivery (days) | 232.33±17.92  | 225.83±7.81    | 0.4212  |  |  |  |  |  |  |  |
| Birth weight, g                    | 2220.2±582.27 | 1740.67±174.72 | 0.0851  |  |  |  |  |  |  |  |
| Birth (C/S: SVD)                   | 1C/S : 4SVD   | 2C/S : 4SVD    | 0.6618  |  |  |  |  |  |  |  |

O = other and H = Hispanic/Latino; Mean  $\pm$  SD; C/S: cesarean section, SVD: spontaneous vaginal delivery \*\* including one infected PTB

#### Case-by-case clinical information

|              |                     |              |      | Systolic | Diastolic |             | Gestationa | Birth  | Delivery |           | Growth |                   |
|--------------|---------------------|--------------|------|----------|-----------|-------------|------------|--------|----------|-----------|--------|-------------------|
| Diagnosis    | Race/Ethnicity      | Maternal Age | BMI  | BP       | BP        | Proteinuria | lage       | weight | method   | Fetal sex | %ile   | Notes             |
| PTB          | na                  | 30           | na   | na       | na        | na          | 30         | na     | na       | na        | na     |                   |
| PTB          | Not Hispanic or Lat | 23           | na   | 117      | 67        | na          | 30         | 1181   | C/S      | female    | 3%     | growth restricted |
| PTB          | Not Hispanic or Lat | 36           | 29.5 | 110      | 60        | na          | 34         | 2440   | NSVD     | male      | 58%    |                   |
| PTB          | Not Hispanic or Lat | 39           | 21.2 | 101      | 68        | na          | 34.5       | 2445   | NSVD     | female    | 39%    |                   |
| PTB          | Not Hispanic or Lat | 21           | 24.2 | 116      | 65        | na          | 34.3       | 2500   | NSVD     | male      | 54%    |                   |
| infected PTB | Not Hispanic or Lat | 35           | 28.3 | 134      | 81        | na          | 36         | 2535   | NSVD     | female    | 22%    |                   |
| sPE          | Hispanic or Latino  | 30           | 29   | 156      | 82        | 54          | 30.2       | 1400   | C/S      | female    | 15%    |                   |
| sPE          | Not Hispanic or Lat | 40           | 39.5 | 177      | 104       | 62          | 33         | 1850   | NSVD     | male      | 13%    |                   |
| sPE          | Not Hispanic or Lat | 25           | 40.2 | 171      | 101       | 173         | 32.5       | 1765   | C/S      | female    | 11%    |                   |
| sPE          | Hispanic or Latino  | 21           | 33.7 | 150      | 90        | 21          | 31.4       | 1850   | NSVD     | female    | 48%    |                   |
| sPE          | Hispanic or Latino  | 30           | 39.4 | 164      | 100       | 36          | 33         | 1850   | NSVD     | male      | 13%    |                   |
| sPE          | Hispanic or Latino  | 27           | 29.2 | 163      | 97        | 144         | 33         | 1729   | NSVD     | female    | 6%     | growth restricted |

na = not available

PTB = Preterm birth

sPE = Severe preeclampsia

#### Table S2B. Maternal and neonatal clinical characteristics (cytotrophoblast ChIP-seq), related to Figure 6

#### Summary of clinical information

|                                | PE (n=6)         |
|--------------------------------|------------------|
| Ethnicity                      | 1AA, 3H, 2O      |
| Maternal age, yr               | 33.33 ± 6.89*    |
| BMI, kg/m2                     | 35.96 ± 4.27     |
| Systolic blood pressure, mmHg  | 167.33 ± 19.7    |
| Diastolic blood pressure, mmHg | 94.5 ± 10.33     |
| Proteinuria (mg/dL)            | 84.17 ± 117.07   |
| Gestational age at delivery    | 31.23 ± 1.91     |
| Birth weight, g                | 1544.16 ± 410.93 |
| Birth (C/S: SVD)               | 3 C/S: 3 SVD     |

O = other, AA = African-American, and H = Hispanic/Latino; Mean ± SD; C/S: cesarean section, SVD: spontaneous vaginal delivery

### Case-by-case clinical information

|        |           |                           | Maternal |       | Systolic | Diastolic |             | Gestational Age | Birth  | Delivery |           | Growth |                   |
|--------|-----------|---------------------------|----------|-------|----------|-----------|-------------|-----------------|--------|----------|-----------|--------|-------------------|
|        | Sample ID | Race/Ethnicity            | Age      | BMI   | BP       | BP        | Proteinuria | at Delivery     | weight | method   | fetal sex | %ile   | Notes             |
| CTL-10 |           | Hispanic or Latino        | 21       | 33.7  | 150      | 90        | 21          | 31.4            | 1850   | NSVD     | male      | 48%    |                   |
| CTL-11 |           | Black or African American | 40       | 39.5  | 177      | 104       | 62          | 33              | 1850   | NSVD     | male      | 13%    |                   |
| CTL-13 |           | Hispanic or Latino        | 30       | 29    | 156      | 82        | 54          | 30.2            | 1400   | C/S      | male      | 15%    |                   |
| CTL-14 |           | Not Hispanic or Latino    | 37       | 40.4  | 165      | 85        | 12          | 31.4            | 1265   | C/S      | female    | <1%    | growth restricted |
| CTL-15 |           | Hispanic or Latino        | 35       | 33.4  | 163      | 107       | 36          | 28.1            | 930    | NSVD     | female    | 3%     | growth restricted |
| CTL-16 |           | Not Hispanic or Latino    | 37       | 33.76 | 205      | 99        | 320         | 33.3            | 1970   | C/S      | male      | 17%    | -                 |

#### Table S2C. Antibodies employed in this study, related to Figures 3, 5 and S4

| Antibody | Cat#        | Source                  | Dilution   | Figure   |
|----------|-------------|-------------------------|------------|----------|
| CK7      | 7D3         | Damsky et al., 1992     | 1:200      | 3, 5, S4 |
| H3K4me1  | 07-431      | Millipore               | 1:500-1000 | S4       |
| H3K4me3  | C4208       | Cell Signaling          | 1:500-1000 | 3, 5, S4 |
| H3K9ac   | Ab10812     | Abcam                   | 1:500-1000 | S4       |
| H3K9me3  | Ab8898      | Abcam                   | 1:500-1000 | 3, 5, S4 |
| H3K27me3 | CS200603    | Millipore               | 1:500-1000 | 3, 5, S4 |
| H3K27ac  | Ab4729      | Abcam                   | 1:500-1000 | 3, 5, S4 |
| Pan-H3   | Ab1791      | Abcam                   | 1:500-1000 | 3, 5, S4 |
| TRITC    | 712-025-153 | Jackson Immuno Research | 1:100      | 3, 5, S4 |
| FITC     | 711-095-152 | Jackson Immuno Research | 1:100      | 3, 5, S4 |
| HRP      | 711-035-152 | Jackson Immuno Research | 1:5000     | 3, 5, S4 |