1	HIGH-FLOW vs. CONVENTIONAL OXYGEN THERAPY IN
2	PATIENTS WITH ACUTE RESPIRATORY FAILURE DUE TO
3	SARS-CoV-2: The HiFLo-COVID RANDOMIZED CLINICAL
4	TRIAL
5	
6	
7	The HiFLo-COVID collaborative group
8	
9	
10	This document includes:
11	• HiFLo-COVID Protocol Version 3.0. Date: 02nd January 2.021.
12 13	Approved by: Ethical and Biomedical Research Committee (EBRC) from the Fundación Valle del Lili, Cali, Colombia
14	• Summary of Changes to the protocol (from VERSION 1.0 to VERSION 3.0)
15	
16	
17	
18	
19	
20	
21	
22	
23	

24	
25 26 27 28	HIGH-FLOW vs. CONVENTIONAL OXYGEN THERAPY IN PATIENTS WITH ACUTE RESPIRATORY FAILURE DUE TO SARS-CoV-2: The HiFLo-COVID RANDOMIZED CLINICAL TRIAL
29	
30	
31	The HiFLo-COVID collaborative group
32	
33	
34	Department of Intensive Care, Fundación Valle del Lili, Cali Colombia.
35	Department of Internal Medicine, Division of Infectology. Fundación Valle del Lili Cali Colombia.
36	Universidad Icesi. Cali Colombia.
37 38 39 40 41	
42	FUNDACION VALLE DEL LILI. CALI COLOMBIA
43	
44	
45	
46	
47	
48	VERSION 3.0
49	02 ND JANUARY 2021.

TABLE OF CONTENT

51		
52	TABLE OF CONTENT	3
53	SYNOPSIS	6
54	INTRODUCTION	11
55	3. BACKGROUND	12
56 57 58	3.1. Spectrum of disease 3.2 Acute respiratory failure 3.2.1. General line of management: invasive mechanical ventilation and other non-	13 15
59 60	INVASIVE MODALITIES 3.2.2 USE OF HFNC IN SARS-COV-2 INFECTION	15 16
61	4. JUSTIFICATION	20
62	5. RESEARCH QUESTION	21
63	6. OBJECTIVES	22
64 65	6.1. PRIMARY OBJECTIVE 6.2. Specific objectives	22 22
66	7. HYPOTHESIS	25
67 68	7.1. PRIMARY HYPOTHESIS 7.2. Secondary /terciary hypotheses	25 25
69	8. OUTCOMES	27
70 71	8.1. PRIMARY OUTCOMES 8.2. Secondary and tertiary outcomes / subgroup analysis	27 27
72	9. METHODS	29
73	9.1. DESIGN	29
74	9.2. STUDY POPULATION	29
75	9.3. GROUPS UNDER STUDY	29
76	9.4. INCLUSION CRITERIA	29
77 78	9.5. Exclusion Criteria 9.6. Sample size	30 31
79	9.0. SAMPLE SIZE 9.7. RECRUITMENT STRATEGY	31
80	9.7.1. SCREENING	31
81	9.7.2. RANDOMIZATION	32
82	9.7.3. MASKING AND CONCEALMENT	32
83	9.8. STATISTICAL ANALYSIS PLAN	33
84	9.8.1. Analysis Plan for Primary Outcomes	33
85	9.8.1. Analysis Plan for Secondary Outcomes	34
86	9.8.2. Interim analysis plan	34

87	10. GENERAL MANAGEMENT PROTOCOL	35
88	10.1. Initial approach	35
89	10.2. CRITERIA FOR IMMEDIATE INTUBATION (NOT RANDOMIZED PATIENTS)	36
90	10.3. INTERNAL OPERATIONAL CASE DEFINITIONS	37
91	10.3.1. SUSPECTED MODERATE CASE	37
92	10.3.2. SUSPECTED SEVERE CASE	37
93	10.2.3. CONFIRMED MODERATE CASE	38
94	10.3.4. CONFIRMED SEVERE CASE	39
95	10.4. GENERAL PROTOCOL FOR RESPIRATORY SUPPORT	39
96	10.4.1. HIGH-FLOW NASAL CANNULA (HFNC)	39
97	10.4.2. CONVENTIONAL OXYGEN THERAPY (OCT)	40
98	10.5. MONITORING OF RESPIRATORY SUPPORT THERAPY (HFNC vs. COT)	40
99	10.6. FAILURE TO RESPIRATORY SUPPORT THERAPY (HFNC OR COT)	40
100	10.6.1. INTUBATION CRITERIA (FOR PATIENTS INCLUDED IN THE STUDY)	41
101	10.7. Additional management	42
102	10.7.1. HEMODYNAMIC	42
103	10.7.2. RENAL	42
104	10.7.3. HEMATOLOGICAL	43
105	10.7.4. STEROID USE	43
106	10.7.5. USE OF SEDATION / NEUROMUSCULAR PARALYSIS	43
107	10.7.6. GLYCEMIC CONTROL	44
108	10.8 GENERAL STUDY FLOW	<u>45</u>
109	11. DATA COLLECTION, PATIENT FOLLOW-UP, STUDY MONITORING AND CLIN	ICAL
110	OUTCOMES.	<u>46</u>
111	11.1 COORDINATION, REGISTRATION AND DATA MANAGEMENT	46
112	11.2. PATIENT MONITORING / ELECTRONIC DATA CAPTURE	46
113	11.3 BLOOD SAMPLING AND CYTOKINE MEASUREMENT	47
114	11.4. STUDY COMPLETION	47
115	11.5. WITHDRAWAL OF INFORMED CONSENT	48
116	11.6 FOLLOW-UP SCHEDULE	49
117	12. ETHICAL CONSIDERATIONS	51
110		F 4
118	12.1. RISK LEVEL (ACCORDING TO RESOLUTION 8430, COLOMBIAN HEALTH MINISTRY)	51
119 120	12.2.1. INFORMED CONSENT	51
120	12.2.1. PROCEDURE FOR TAKING INFORMED CONSENT: LEGAL CONSIDERATIONS	51
121	13. ADVERSE EVENTS REPORTING	<u>58</u>
122	13.1. MONITORING OF ADVERSE EVENTS (AE)	58
123	13.3. DATA SAFETY MONITORING BOARD	59
124	ANNEX 1. INCLUSION / EXCLUSION FORMAT	<u>60</u>
125	ANNEX 2. SCREENING FORMAT	63
126	ANNEX 3. CASE REPORT FORMAT (CRF)	64
127	7-CATEGORY ORDINAL SCALE: (*)	72

128	ANNEX 4. ADVERSE EVENT REPORTING	73
129	ADVERSE EVENT REPORT	73
130	REFERENCES	77
131	SUMMARY OF CHANGES	81
132	VERSIONS AND DATES	82

164 SYNOPSIS

165

HIGH-FLOW vs. CONVENTIONAL OXYGEN THERAPY FOR PATIENTS WITH ACUTE RESPIRATORY FAILURE DUE TO SARS-CoV-2: The HiFLo-COVID RANDOMIZED CLINICAL TRIAL

Data category:	Information:
Registration - Study Identification Number:	Fundación Valle del Lili EBRC; protocol number: 1635; approval number: 259 - 2020
Date of Registration:	July 2020.
ClinicalTrials.gov Identifier:	NCT04609462
Main Sponsor:	Centro de Investigaciones Clínicas – Fundación Valle del Lili. Cali, Colombia.
Contact for public consultation:	+57 (2) 331 90 90 Ext. 4022.
Contact for scientific consultation:	gusospin@gmail.com
Public title:	HiFlo-COVID.
Scientific title:	HIGH-FLOW vs. CONVENTIONAL OXYGEN THERAPY FOR PATIENTS WITH ACUTE RESPIRATORY FAILURE DUE TO SARS- CoV-2: The HiFLo-COVID RANDOMIZED CLINICAL TRIAL
Coordinator Center:	Fundación Valle del Lili. Cali, Colombia .
Recruitment centers:	3 (Colombia)
Health Condition or Problem:	Severe SARS-CoV-2 infection.
Type of Study:	Open (non-blind), randomized, controlled, Phase II clinical trial.
Primary Objective:	To evaluate the impact of using high-flow oxygen through a nasal cannula vs. conventional oxygen therapy on the need for intubation/support with invasive mechanical ventilation and clinical status as assessed by a 7-category ordinal scale in patients with acute hypoxemic respiratory failure secondary to severe Covid-19
Specific Objectives:	 Secondary Objectives Efficiency To evaluate the impact of high-flow oxygen therapy through a nasal cannula (HFNC) vs. conventional oxygen therapy (COT) on the requirement of early intubation and invasive mechanical ventilation support. To assess the impact of HFNC vs. COT on mechanical ventilation-free days. Assess the impact of HFNC vs. COT on renal replacement therapy-free days. To assess differences in length of hospital/ICU stay between study groups. To assess differences in all-cause mortality at days 14 and

Data category:	Information:
	28 post-randomization, between study groups
	Safety
	 To assess the occurrence / proportion of patients with severe adverse events within 28 days from randomization. To assess the occurrence / proportion of bacterial / fungal infections within 28 days from randomization.
	<u>Tertiary Objectives</u>
	 To evaluate the differences in the evolvement of oxygen flow requirement and PaO₂/FiO₂ ratio between groups To evaluate the differences for the time elapsed from randomization to intubation / invasive mechanical ventilation support in patients failing to high-flow oxygen therapy and conventional oxygen therapy To evaluate the impact of HFNC vs. COT on the clinical condition at day 28 To evaluate the impact of HFNC vs. COT on the development and evolution of multiorgan dysfunction as assessed by the SOFA score. To evaluate the impact of HFNC vs. COT on the development and evolution of extra-pulmonary organ dysfunction as assessed by extra-pulmonary SOFA score To evaluate the differences in HACOR and ROX scores at 2 and 4 hours post-randomization between the groups and their relationship with requiring intubation and mechanical ventilation-free days To assess differences in IL-6 and IL-8 kinetics within 7 days from randomization, between study groups To assess differences in ferritin kinetics, LDH, leukocyte count, neutrophil/lymphocyte count relationship, platelet count and D-dimer during the 7 days following randomization, between study groups
	For Predefined Subgroups
	 To assess the impact of high-flow oxygen vs. conventional oxygen therapy on the need for intubation / invasive ventilation support and the time to clinical recovery (as assessed by a 7-category ordinal scale) in patients with initial PaO₂/FiO₂ ratio > and < 100 mmHg. To assess the impact of high-flow oxygen vs. conventional oxygen therapy on the need for intubation / invasive ventilation support and the time to clinical recovery (as assessed by a 7-category ordinal scale) in patients with baseline IL-6 levels > and < 100 pg/mL. To assess the impact of high-flow oxygen vs. conventional oxygen therapy on the need for intubation / invasive ventilation support and the time to clinical recovery (as assessed by a 7-category ordinal scale) in patients with baseline IL-6 levels > and < 100 pg/mL.

and < 60 years.	Data category: Information:					
Study design:high-flow oxygen therapy through a nasal cannula vs. conventional oxygen therapy in patients with moderate / severe hypoxemic respiratory failure due to SARS-CoV-2 infection.Intervention group:High-Flow oxygen therapy through a nasal cannula (HFNC).Control:Conventional oxygen therapy (COT).Co-Interventions:Usual care (hemodynamic / respiratory / metabolic / hematological / general).Population:Adult patients (>18 years) admitted to the emergency room or Intensive Care Unit (ICU) with moderate / severe acute hypoxemic respiratory failure secondary to SARS-CoV-2 infection.Inclusion Criteria:• Adults > 18 years old.Inclusion Criteria:• Moderate/severe acute respiratory failure: • Pa02/FiO2 - 200. • Use of accessory muscles. • Breathing rate > 25 per minute.Inclusion Criteria:• < 18 years.						
Intervention group:High-Flow oxygen therapy through a nasal cannula (HFNC).Control:Conventional oxygen therapy (COT).Co-Interventions:Usual care (hemodynamic / respiratory / metabolic / hematological / general).Adult patients (>18 years) admitted to the emergency room or Intensive Care Unit (ICU) with moderate / severe acute hypoxemic respiratory failure secondary to SARS-CoV-2 infection.Population:Adults > 18 years old.•Emergency or ICU admission under suspected / confirmed SARS-CoV-2 infection.•Moderate/severe acute respiratory failure: • Pa02/FIO2 < 200. • Use of accessory muscles. • Breathing rate > 25 per minute.Inclusion Criteria:•< 18 years. • Indication for immediate tracheal intubation. • Pregnant woman / positive pregnancy test at the time of potential inclusion.•< 18 years. • Indication for immediate tracheal intubation. • Pregnant woman / positive pregnancy test at the time of potential inclusion. • Oronic liver disease / liver cirrhosis Child-Pugh C. • Confirmation of active bacterial or fungal infection. • Uncontrolled HIV/AIDS disease (defined by presence of viral load > 200 copies/mL). • Previous history of COPD requiring hospitalization or ICU admission during the last year. • History or actual left ventricular ejection fraction < 45% • Highly suspected or confirmed cardiogenic pulmonary edema. • Hypercapnic respiratory failure (PaC02 > 55 mmHg). • History or high suspicion of central or portpheral demyleinating disorders at the time of potential inclusion. • Inminence of death within the next 24 hours (according to demyleinating disorders at the time of potential inclusion. • Indication or central or peripheral demyleinating disorders at the t	Study design:	high-flow oxygen therapy through a nasal cannula vs. conventional oxygen therapy in patients with moderate / severe hypoxemic				
Control: Conventional oxygen therapy (COT). Co-Interventions: Usual care (hemodynamic / respiratory / metabolic / hematological / general). Adult patients (>18 years) admitted to the emergency room or Intensive Care Unit (ICU) with moderate / severe acute hypoxemic respiratory failure secondary to SARS-CoV-2 infection. Population: • Adults > 18 years old. Inclusion Criteria: • Moderate/severe acute respiratory failure: • Pa02/Fi02 < 200.	Intervention group:					
Co-Interventions: Usual care (hemodynamic / respiratory / metabolic / hematological / general). Adult patients (>18 years) admitted to the emergency room or Intensive Care Unit (ICU) with moderate / severe acute hypoxemic respiratory failure secondary to SARS-CoV-2 infection. Population: • Adults > 18 years old. Inclusion Criteria: • Adults > 18 years old. Inclusion Criteria: • Adults > 18 years old. Inclusion Criteria: • Adults > 25 per minute. Inclusion Criteria: • Breathing rate > 25 per minute. • Having a progression < 6 hours since fulfilling definition of moderate or severe acute respiratory failure due to suspected or confirmed SARS-CoV-2 infection.	Control:	Conventional oxygen therapy (COT). Usual care (hemodynamic / respiratory / metabolic /				
Population: Intensive Care Unit (ICU) with moderate / severe acute hypoxemic respiratory failure secondary to SARS-CoV-2 infection. Adults > 18 years old. • Adults > 18 years old. • Emergency or ICU admission under suspected / confirmed SARS-CoV-2 infection. • Moderate/severe acute respiratory failure: • Pa02/Fi02 < 200.	Co-Interventions:	Usual care (hemodynamic / respiratory / metabolic /				
 Emergency or ICU admission under suspected / confirmed SARS-CoV-2 infection. Moderate/severe acute respiratory failure: Pa02/Fi02 < 200. Use of accessory muscles. Breathing rate > 25 per minute. Having a progression < 6 hours since fulfilling definition of moderate or severe acute respiratory failure due to suspected or confirmed SARS-CoV-2 infection. Yeaga and the severe acute respiratory failure due to suspected or confirmed SARS-CoV-2 infection. Yeaga and the severe acute respiratory failure due to suspected or confirmed SARS-CoV-2 infection. Yeaga and the severe acute respiratory failure due to suspected or confirmed SARS-CoV-2 infection. Yeaga and the severe acute respiratory failure due to suspected or confirmed SARS-CoV-2 infection. <u< td=""><td>Population:</td><td>Intensive Care Unit (ICU) with moderate / severe acute hypoxemic</td></u<>	Population:	Intensive Care Unit (ICU) with moderate / severe acute hypoxemic				
 Indication for immediate tracheal intubation. Pregnant woman / positive pregnancy test at the time of potential inclusion. Chronic liver disease / liver cirrhosis Child-Pugh C. Confirmation of active bacterial or fungal infection. Uncontrolled HIV/AIDS disease (defined by presence of viral load > 200 copies/mL). Previous history of COPD Gold C - D. History of COPD requiring hospitalization or ICU admission during the last year. History of congestive heart failure NYHA III - IV. History or actual left ventricular ejection fraction < 45% Highly suspected or confirmed cardiogenic pulmonary edema. Hypercapnic respiratory failure (PaCO₂ > 55 mmHg). History or high suspicion of central or peripheral demyelinating disorders at the time of potential inclusion. Imminence of death within the next 24 hours (according to 	Inclusion Criteria:	 Emergency or ICU admission under suspected / confirmed SARS-CoV-2 infection. Moderate/severe acute respiratory failure: Pa02/Fi02 < 200. Use of accessory muscles. Breathing rate > 25 per minute. Having a progression < 6 hours since fulfilling definition of moderate or severe acute respiratory failure due to 				
 Any serious medical condition or clinical laboratory test abnormality that, at the investigator's judgment, prevents safe patient participation and completion of the study. Participation in another clinical trial (except other related to SARS-CoV-2. These criteria will be always discussed among steering committee members 	Exclusion Criteria	 Indication for immediate tracheal intubation. Pregnant woman / positive pregnancy test at the time of potential inclusion. Chronic liver disease / liver cirrhosis Child-Pugh C. Confirmation of active bacterial or fungal infection. Uncontrolled HIV/AIDS disease (defined by presence of viral load > 200 copies/mL). Previous history of COPD Gold C - D. History of COPD requiring hospitalization or ICU admission during the last year. History of congestive heart failure NYHA III - IV. History or actual left ventricular ejection fraction < 45% Highly suspected or confirmed cardiogenic pulmonary edema. Hypercapnic respiratory failure (PaCO₂ > 55 mmHg). History or high suspicion of central or peripheral demyelinating disorders at the time of potential inclusion. Imminence of death within the next 24 hours (according to investigator's clinical judgment) Any serious medical condition or clinical laboratory test abnormality that, at the investigator's judgment, prevents safe patient participation and completion of the study. Participation in another clinical trial (except other related to SARS-CoV-2. These criteria will be always discussed 				
Sample Size 220 patients (110 by arm).	Sample Size	220 patients (110 by arm).				

Data category:	Information:
Randomization method	Permuted blocks of size 4 and 6, stratified by center.
Primary outcomes	 Need for intubation / invasive mechanical ventilation support (time frame: 28 days). Clinical recovery as assessed by a 7-category ordinal scale (time frame: 28 days).
	<u>Secondary Outcomes</u> Efficiency
	 Early requirement of intubation / invasive mechanical ventilation support (time frame: 7 days - 14 days). Mechanical ventilation-free days (time frame: 28 days). Renal replacement therapy-free days (time frame: 28 days) Length of ICU stay (time frame: 28 days) Length of hospital stay (time frame: 28 days) Hospital mortality - all causes (time frame: 14 and 28 days)
	 Safety Occurrence / proportion of patients with serious adverse events (time frame: 28 days) Occurrence / proportion of bacterial - fungal infections (time frame: 28 days).
Secondary – tertiary outcomes / subgroup analysis	 <i>Tertiary Outcomes</i> Evolvement of oxygen flow requirement and PaO₂/FiO₂ ratio (time frame: 7 days) Time elapsed from randomization to intubation / invasive mechanical ventilation support in patients failing to high-flow oxygen therapy and conventional oxygen therapy (time frame: 28 days). Clinical condition at day-28 (time frame: 28 days). Evolvement of multiorgan dysfunction as assessed by SOFA score (time frame: 14 days) Evolvement of extra-pulmonary organ dysfunction as assessed by extra-pulmonary SOFA score (time frame: 14 days). HACOR and ROX scores at 2- and 4-hours post-randomization and their relation with requirement of intubation (time frame: 28 days) Differences in time-course of IL-6 and IL-8 between study groups (time frame: 7 days) Differences in time-course of ferritin, LDH, leukocyte count, neutrophil to lymphocyte count relationship, platelet count, and D-dimer among the groups under study (time frame: 7 days)

Data category:	Information:
	Subgroup Analysis
	 Time to intubation / invasive mechanical ventilation and clinical recovery in subgroups with baseline PaO₂/FiO₂ > and < 100 mmHg (time frame: 28 days) Time to intubation / invasive mechanical ventilation and clinical recovery in subgroups with baseline IL-6 > and < 100 pg/mL (time frame: 28 days) Time to intubation / invasive mechanical ventilation and clinical recovery in subgroups aged > and < 60 years (time frame: 28 days)
Statistical analysis	The effect of the treatment on the primary outcome requirement of intubation / invasive mechanical ventilation support will be calculated by using a Cox proportional hazard model adjusted by age, initial PaO ₂ /FiO ₂ and comorbidities (diabetes, hypertension, obesity BMI \ge 30). The results will be reported as hazard ratios with 95% confidence intervals and represented in Kaplan-Meier curves. This same analysis will be performed separately on those individuals who meet the definition of moderate and severe confirmed cases. Time to clinical improvement was defined as time elapsed from randomization until the first day, during the 28 days after enrollment, on which a patient attained a reduction in two or more points in the modified ordinal 7-category scale. The effect size of the allocated therapy on the time to recovery was assessed by computing the hazard ratio with its 95% confidence interval (CI) as estimated from Cox proportional hazard model stratified by age, hypoxemia severity, and comorbidities. Such analysis will be constructed for the overall population and also stratified according to baseline 7-category ordinal scale at enrollment (i.e., scores of 4 or 5), and plotted in Kaplan-Meier curves. All the analysis will be performed on an intention-to-treat basis with no exclusion after randomization except exclusions for withdrawn consent, according to the local regulations. In addition, some predefined subgroups will be analyzed:
Keywords	High-flow nasal cannula, high-flow oxygen therapy, conventional oxygen therapy, oxygen therapy, acute hypoxemic respiratory failure, severe hypoxemia, SARS-CoV-2 infection, Covid-19.

INTRODUCTION

170 In early December 2010, a new coronavirus designated as SARS-CoV-2 caused a local 171 outbreak in Hubei Province (China) that ultimately spread to more than 190 countries 172 causing a new pandemic situation, officially designated as such by the World Health 173 Organization on 11 March 2020 (1). Although mortality associated with SAR-CoV-2 174 disease was initially estimated at 0.1% in mild cases and 8.1% in severe cases (2), this 175 number has been substantially variable among different regions and countries, being 176 unclear whether this represents the effect of insufficient sampling (unreliable 177 denominators) or clinical susceptibility inherent to some population groups (3). Factors 178 such as age (4) and the presence of co-morbidities (5) would appear to be determinants in 179 developing more severe forms of disease and unfavorable outcomes. Meanwhile, using 180 some cardiovascular drugs such as angiotensin converting enzyme inhibitors and 181 angiotensin receptor blockers would not appear to play a significant role in both the 182 severity and survival probabilities (6, 7). Other data suggest that severity of inflammation 183 determined by interleukin-6 (IL-6) levels and the activation of the coagulation system 184 reflected by elevated D-dimer levels appear to be determinants in developing more severe 185 forms of disease leading to worse clinical outcomes (8, 9).

186 Data from 72,314 cases of SARS-CoV-2 disease from China revealed that 14% of patients 187 were classified to have a severe disease (i.e., dyspnea, respiratory rate > 30/min, SpO_2 188 <93%, PaO_2/FiO_2 < 300 and/or pulmonary infiltrates >50% within 24-48 hours), while 189 5% were classified as critical (i.e., respiratory failure, septic shock and/or multiorgan 190 dysfunction) (10). In this series, mortality was 2.3% among all confirmed cases and 49% 191 among those classified as critical (10). Data from 12 hospitals in the New York area 192 showed that 14.2% of patients required intensive care unit management, while 12.2% 193 required invasive mechanical ventilation (11). Remarkably, 88.1% of patients subjected to 194 invasive ventilatory support had died at the time of the study report (11), which raised 195 serious concerns about the ventilation strategies in patients with severe SARS-CoV-2 196 infection.

197 Up to the time this research protocol was prepared, no therapeutic or supportive 198 intervention had demonstrated to modify clinical outcomes in severe SARS-CoV-2 199 infection. In fact, management of moderate and severe forms of SARS-CoV-2 infection 200 currently relies on expert recommendations, mostly without a high level of evidence

201 supporting them (12, 13). Until now, use of antiviral drug has led to disappointing results 202 in predominantly mild- and moderate forms of disease (14). A study on the use of 203 remdesivir in 1063 patients with SARS-CoV-2 infection led to a highly questionable 204 decrease in symptom duration, without impacting the recovery of those patients with a 205 higher requirement for oxygen support, non-invasive mechanical ventilation and invasive 206 mechanical ventilation (15). Finally, observational results about the use of 207 hydroxychloroquine alone or in combination with azithromycin suggested its lack of 208 efficacy to control SARS-CoV-2 infection (16, 17), while another observational study 209 suggested potential harm related to ST segment prolongation when high doses of 210 hydroxychloroquine are used (18). Importantly, chloroquine-related cardiovascular risk 211 would be confirmed in a randomized trial in hospitalized patients with SARS-CoV-2 212 infection when those receiving high doses of the drug showed an excess of major adverse 213 cardiovascular events (19).

214 Beyond general supportive measures, there are as yet no specific medications or 215 interventions able to modify the course of severe SARS-CoV-2 disease. However, given the 216 respiratory nature of the infection, respiratory support is a key component in its 217 management. Throughout the development of the pandemic, the need for invasive 218 mechanical ventilation has been emphasized and, in fact, government agencies around the 219 world have responded almost unanimously by trying to increase the capacity and number 220 of mechanical ventilation devices in their hospital networks. However, other non-invasive 221 respiratory support devices such as high-flow nasal cannula could be useful in the 222 management of hypoxemic respiratory failure secondary to SARS-CoV-2 infection. 223 Nevertheless, the role of high-flow oxygen therapy has not been widely studied in Covid-224 19. Thus, the present study aims to evaluate the role of high flow oxygen through a nasal 225 cannula vs. conventional oxygen therapy in patients with moderate and severe acute 226 hypoxemic respiratory failure in patients with severe Covid-19.

227

3. BACKGROUND

229

Coronaviruses (CoV) are a large family of respiratory viruses able to cause respiratorymanifestations in a wide range of severity: from a syndrome similar to the common cold

232 up to severe manifestations such as the Middle East Respiratory Syndrome (MERS) (20) 233 and Severe Acute Respiratory Syndrome (SARS) (21-23). These latter are considered as 234 zoonotic diseases able to induce fatal infections at the lower respiratory tract as well as 235 severe extra pulmonary manifestations. The new coronavirus, designated SARS-CoV-2, is a 236 member of the Beta-CoV line B that was identified in Hubei Province in China by local 237 health agencies (24). SARS-CoV-2 has a genome sequence 75-80% identical to its 238 predecessor, SARS-CoV (25). SARS-CoV was responsible for an outbreak of severe 239 respiratory infection that began in Guandong Province, China in 2002, causing more than 240 8,000 cases and about 774 deaths in 26 countries on 5 continents (21-23); meanwhile, 241 other outbreak of coronavirus caused the MERS epidemic (20), resulting in 1879 cases and 242 659 deaths in 27 countries. Although an apparent initial zoonotic contamination was 243 identified in the current SARS-CoV-2 outbreak, transmission among humans from the 244 same family, hospitals and special care environments have also been reported (26-28). 245 The virus spread globally during the following weeks after its first report in China and 246 subsequently, World Health Organization declared a pandemic alert by the 11 March 2020 247 (1). The number of cases of SARS-CoV-2 infection increased rapidly, reaching a total of 248 10,145,791 cases and 501,898 deaths worldwide by June 29, 2020.

249

250 3.1. Spectrum of disease

251 According to data from 72,314 cases of SARS-CoV-2 disease in China, 44,672 (62%) were 252 confirmed through genomic screening tests (10). Meanwhile, 16,186 (22%) were declared 253 as suspected cases based on the presence of symptoms and exposure (absence of genomic 254 detection due to logistical problems); other 10,567 (15%) were classified clinically (based 255 on symptoms, exposure and presence of images compatible with SARS-CoV-2 infection) 256 and 889 (1%) were considered as asymptomatic patients (positive genomic detection in 257 the absence of symptoms such as fever, dry cough and fatigue). SARS-CoV-2 induces a 258 wide range of severity, with mild disease representing most of the cases (81%). 259 Meanwhile, 14% induce a severe disease (i.e., dyspnea, respiratory rate > 30/min, Sp02 260 <93%, Pa02/Fi02 < 300 and/or pulmonary infiltrates >50% within 24-48 hours), while 261 5% led to critical disease (i.e., respiratory failure, septic shock and/or multiorgan 262 dysfunction) (10).

In general terms, disease induced by SARS-CoV-2 shows a time-course that could besummarized in three phases:

265

266 1. Phase 1 (or early phase): characterized by the immune response to the virus, usually 267 within the first 5 to 8 days. Typical symptoms include fever 80%, dry cough 50%, mild 268 dyspnea 60%, fatigue 60%, diarrhea and other gastrointestinal symptoms 50%. 269 Laboratory abnormalities include lymphopenia, increased D-dimer, LDH and ferritin 270 levels. Viral load increases during this phase in some individuals. Nevertheless, most 271 patients experience a significant drop in viral load at the end of this phase, although this 272 may vary among patients. Potential antiviral therapies (i.e., remdesivir, favipiravir), 273 hydroxychloroquine, azithromycin, and others, have been reported to be most useful in 274 this early phase (although with not successful clinical results).

2. Phase 2 (or pulmonary phase): characterized by moderate symptoms from day 10 to
day 14. Laboratory abnormalities include mild increase in aminotransferases and
procalcitonina levels. Lymphopenia may be pronounced. During this phase oxygen might
be needed and sometimes, clinical deterioration occurs. This phase represents a breaking
point for development of severe complications in some individuals. Most of them persist
with detectable viral loads during this phase.

281

282 3. Phase 3 (or hyper-inflammation phase): A minority of COVID-19 patients will
283 transition into the third and most severe stage of the illness, which manifests as an
284 extrapulmonary systemic hyperinflammation syndrome. Usually appearing after day 14.
285 Main feature is severe hypoxemia. Bacterial superinfections may occur in some cases.
286 Interleukin-6 (IL-6), ferritin and LDH can increase. Cardiac involvement and
287 prothrombotic phenomena may also occur. Mortality in patients attaining this phase is
288 high. Using immunomodulatory drugs could be promising.

289

Initial phases are characterized by large viral replication, presence of mild symptoms,
lymphopenia, increased inflammatory markers and activation of coagulation system (29).
Over time, the immune response of the host takes on progressive importance, since it is
actually the inflammatory response that determines the appearance of progressively more

severe manifestations of the disease. Thus, it seems logical that during phase 1 and initial
part of phase 2, therapies aimed to control viral replication could have a great impact;
meanwhile, in the transition from phase 2 to phase 3, and during this latter, therapy
should aim to modulate the immune response by the host.

- 298
- 299

300 3.2 Acute respiratory failure

301

Acute hypoxemic respiratory failure is a pathological condition characterized by altered oxygenation demonstrated by a decrease in oxygen blood pressure (PaO2) < 60 mmHg, oxygen saturation (SaO2) < 90% or PaO2/FiO2 index < 300. This syndrome has different etiologies and pathophysiological mechanisms; however, regardless of its origin, therapy of hypoxemia is primarily based on the administration of supplemental oxygen as supportive therapy while the triggering cause is resolved.

308

309 <u>3.2.1. General line of management: invasive mechanical ventilation and other non-</u> 310 <u>invasive modalities</u>

311

312 In most cases, initial oxygen therapy can be provided through devices delivering oxygen at 313 low flow rates (conventional nasal cannula, simple face mask, Venturi mask and reservoir 314 mask). Nevertheless, unresponsive cases to these initial support strategies will require 315 other support modalities as non-invasive and invasive mechanical ventilation. 316 Nonetheless, although invasive mechanical ventilation (IMV) provides oxygen and relieves 317 respiratory load, IMV may be associated with complications widely described in the 318 literature, including those related to intubation, immobility due to the use of sedatives and 319 neuromuscular blockers, and lung injury induced by mechanical ventilation itself (30). In 320 fact, other authors have recognized their effects on mortality (31). Accordingly, a 321 metanalysis including several studies investigating the role of non-invasive mechanical 322 ventilation (NIMV) in patients with acute hypoxemic respiratory failure suggested some 323 potential effect on decrease the need for intubation but not in other clinical outcomes (32, 324 33). Nevertheless, up to 50% of NIV treatment failure has been described in the subgroup 325 of hypoxemic respiratory failure (5) and high mortality associated with such treatment 326 failure (6).

328 High-Flow oxygen therapy through a Nasal Cannula (HFNC) is another therapeutic 329 modality to provide respiratory support. HFNC delivers a mixture of heated and 330 humidified air and oxygen at concentrations between 21 and 100%, and flows between 60 331 - 80 liters/minute. HFNC allows better coupling with inspiratory demands of patients in 332 respiratory failure by avoiding dilution of the delivered oxygen and ensuring a 333 programmed oxygen concentration. It has other physiological effects such as maintenance 334 of mucociliary function and clearance of secretions, decreases energy consumption due to 335 heat loss, and produces a CO2 washout at the level of the upper airway, which has the 336 effect of reducing dead space (34). Although it has historically been used in the pediatric 337 population, its use has increased in critically ill adults in the last decade.

338

339 HFNC is other non-invasive support strategy that can overcome limitations offer by 340 conventional oxygen therapy and NIMV. A meta-analysis on the use of HFNC during 341 hypoxemic respiratory failure included the 9 best quality clinical trials performed to date, 342 with a total of 2093 patients (35). Five of such studies were conducted in the ICU (36-40) 343 and four in the emergency department (41-44) (see Table 1). Criteria used to define 344 hypoxemia were different: some used a single parameter (SO2, PaO2, or PaO2/FiO2), 345 while others used a combination of these three parameters. Duration of intervention and 346 outcomes proposed were different in all of these studies, being the need for IMV or 347 escalation of therapy the most common. Comfort and relief of dyspnea were also 348 evaluated, and only five reported complications, which did not allow inferring data for 349 meta-analyses of this aspect. The sample size was also highly variable, ranging from 14 to 350 778 patients, and causes leading to hypoxemic respiratory failure were also diverse, being 351 chronic obstructive pulmonary disease (COPD), pneumonia and pulmonary edema, the 352 most common. As a result, this meta-analysis found that HFNC might decrease the need for 353 intubation with an absolute reduction of 4.4%, with no impact on mortality. Finally, 354 authors concluded that future research should be focused on special subgroups potentially 355 benefiting from using HFNC.

356

357 <u>3.2.2 Use of HFNC in SARS-CoV-2 infection</u> 358

359 Evidence on the use of HFNC in patients with acute hypoxemic respiratory failure due to360 SARS-CoV-2 infection is limited, as only some case reports have been reported suggesting

its potential benefit. Nevertheless, some scientific societies worldwide have recommended
using HFNC in patients not responding to conventional oxygen therapy based on evidence
from hypoxemic respiratory failure from other etiologies (12, 45, 46) and recognizing that
reducing the need for intubation could be an important objective during a pandemic
context (47).

A case series of 17 patients in Chongqing, China using HFNC in patients with hypoxemic respiratory failure due to SARS-CoV-2 infection (48) showed a failure rate of HFNC of 41% (0% in those with PaO2/FiO2 > 200 and 63% in those with PaO2/FiO2 < 200), thus suggesting that HFNC may be an alternative respiratory support in mild cases.

370

371 Despite of potential advantages provide by HFNC, serious concerns about aerosolization 372 and increased risk of infection for health care workers were raised because the possible 373 aerosol spreading generated by high-flow therapy. In this regard, a systematic review 374 including 7 studies assessing the risk of aerosolization, dispersion and infection (24) (six 375 of which were conducted in healthy volunteers or were electronic simulations and one 376 clinical study with crossover between conventional oxygen therapy and HFNC), found a 377 substantial risk of error in study designs, limitations regarding to small sample sizes and 378 lack of information about studies conducted in patients with SARS-CoV-2 infection or 379 similar germs that could be extrapolated to the Covid-19. That systematic review 380 suggested that increasing oxygen flow during HFNC therapy effectively increases the 381 distance at which aerosol particles are dispersed, but such dispersion occurs at lower 382 distances that those caused by application of nasal CPAP (49) or conventional oxygen 383 therapy devices (50). In addition, wearing a surgical mask on the patient's face during 384 HFNC application can effectively reduce the dispersion of aerosol particles [Leonard S. 385 Chest 2020; DOI: https://doi.org/10.1016/j.chest.2020.03.043.]. Similarly, in the case 386 series reported, no cases of infection occurred in health care personnel (48, 51, 52).

387

In conclusion, HFNC is a reliable modality to support acute hypoxemic respiratory failure.
Nevertheless, the effect of HFNC in patients with moderate and severe respiratory failure
due to COVID-19 has not been elucidated. Interestingly, clinical practice during early
Covid-19 pandemics reveals a quite similar number of patients under HFNC and NIMV
(22). Although high-quality evidence on the use of HFNC in Covid-19 is still lacking, results
from studies in hypoxemic failure signal that HFNC may reduce the need for intubation,

- 394 while the risk of aerosol spreading is probably not higher than that observed with other
- 395 non-invasive devices. Nevertheless, patient should be carefully selected for its use and
- 396 closely monitored to avoid delays in intubation.

Study	Number of randomized patients	Population	Intervention	Controls	Outcomes
Azoulay, 2018	778	Inclusion: ICU patients, PaO ₂ < 60mmHg or SpO ₂ <90% at FiO ₂ 0.21 (ambient air), immunosuppression Exclusion: increased CO ₂	Initial parameters: Flow 50 L/min FiO ₂ : 1.0 Duration: not specified.	Conventional Nasal Cannula or face mask Initial parameters: Flow: to reach SpO2 ≥ 95%	Mortality (Primary); Need for IMV, ICU-LOS, hospital-LOS, comfort and dyspnea.
Bell, 2015	100	Inclusion: Urgent patients, RR ≥ 25 breaths /min, SpO ₂ ≤ 93%. Exclusion: Patients requiring immediate NIMV or IMV	parameters: Flow rate: 50 L/min FiO ₂ : 0.3 Duration: 2 hours.	Conventional Nasal Cannula or face mask Initial parameters: O ₂ in both groups was titrated during a period of 2hours	Need for IMV, comfort.
Frat, 2015	313	Inclusion: ICU patients, acute respiratory failure with RR > 25 breaths / min, PaO ₂ /FiO ₂ \leq 300, at O2 \geq 10 L/min by \geq 15 min. Exclusion: asthma, chronic lung disease, increased CO ₂ , Cardiovascular instability, need for IMV.	Initial parameters Flow rate: 50 L/min FiO2: 1.0 Duration: not specified.	Non- Rebreathing Mask Initial parameters: Flow: ≥ 10 L/min	Mortality (primary), Need for IMV need, ICU- LOS, comfort.
Jones, 2016	322	Inclusion: Emergency patients, SpO ₂ ≤ 92% to ambient air, RR ≥ 22 breaths/min. Exclusion: urgent NIMV or IMV.	Initial parameters: Flow rate: 40 L/min FiO ₂ : 0.28 Duration: not specified.	Nasal mask or cannula Initial parameters: N/A.	Mortality need for IMV, escalation (primary). LOS hospitals.
Lemiale, 2015	102	Inclusion: ICU patients, immunocompromised, O_2 at > 6 L/min to maintain SpO ₂ > 95% or respiratory distress Exclusion: increased CO ₂ , IMV requirement or urgent intubation.	Initial parameters: Flow rate: 40- 50 L/min FiO ₂ : 1.0 Duration: 2 hours.	Venturi mask Initial parameters: Flow rate: 15 L/min FiO ₂ : 0.6.	IMV requirement (primary). Dyspnea, comfort.
Makdee, 2017	136	Inclusion: Emergency patients, Pulmonary	Initial parameters:	Nasal cannula or	Mortality, need for IMV,

397 Table 1. Clinical studies on the use of High-Flow Oxygen therapy in acute hypoxemic respiratory failure

		edema, SpO ₂ < 95% to ambient air, RR >24 breaths /min Exclusion: Urgent NIV or IMV requirement, CV instability, RR >35 breaths /min, SpO ₂ < 90%, End-stage renal disease.	Flow rate: 35 L/min FiO2: N/A Duration: 1 hour.	non- rebreathing mask Initial parameters: N/A.	escalation, LOS-hospital, dyspnea, comfort.
Parke, 2011	60	Inclusion: ICU patients, $O2 \ge 4$ L/min per CN for > 4 h or ≥ 6 L/min per face mask > 2 h and/or RR ≥ 25 breaths /min and/or WOB Exclusion: NIMV or IMV requirement urgent	Initial parameters: Flow rate: 35 L/min FiO2: N/A Duration: not specified.	Face mask Initial parameters: N/A.	Escalation in therapy
Rittayamai, 2015	40	Inclusion: Emergency patients, RR > 24 resp/min, SpO ₂ < 94% to ambient air Exclusion: Need for IMV, Cardiovascular instability, chronic respiratory failure.	Initial parameters: Flow rate: 35 L/min FiO ₂ : N/A Duration: 1 hour.	NC or non- rebreathing mask Initial parameters: N/A	Need for IMV scaling, dyspnea (primary), comfort.
Schwabbaue r, 2014 (Crossover)	14	Inclusion: ICU patients, PaO ₂ < 55mmHg on R/A Exclusion: CPE, CV instability.	Initial Settings: Flow rate: 55 L/min Duration: 30 min FiO ₂ : 0.6	Venturi Mask Initial parameters: Flow rate: 15 L/min FiO ₂ : 0.6	Dyspnea and Comfort.

398 4. JUSTIFICATION

399 Until the preparation of this protocol, there were no high quality studies testing specific 400 medications or interventions modifying the time course or clinical outcomes in severe 401 forms of SARS-CoV-2 infection. Nevertheless, it should be expected that advanced life 402 support measures and a high quality critical care should contribute to greater survival 403 probabilities and functional recovery in more severe cases.

404 Arterial hypoxemia is the leading feature of severe cases of Covid-19. In general, 405 management of hypoxemic respiratory failure relies on oxygen supplementation aiming to 406 improve oxygenation and to support respiratory effort. At the beginning of the SARS-CoV-407 2 pandemic, many patients were immediately intubated and placed on mechanical 408 ventilation perhaps due to the perception of severity in terms of hypoxemia, and also 409 because the concerns about the safety of non-invasive respiratory support systems for 410 health care professionals. Remarkably, some authors related the need of mechanical 411 ventilation with high mortality rates in general populations with acute hypoxemic 412 respiratory failure. Nevertheless, this contrasts with the view stating that spontaneously 413 breathing non-intubated patients may auto-injure lungs when breathing large tidal 414 volumes because high respiratory drive and potentially injurious transpulmonary 415 pressure swings.

416 High-flow oxygen therapy through a nasal cannula is a technique whereby a mixture of 417 heated and humidified oxygen and air are delivered to the nose at high flow rates. Data 418 suggest that high flow oxygen through a nasal cannula might decrease the need for 419 tracheal intubation and might reduce the risk of escalation of oxygen therapy in patients 420 with acute respiratory hypoxemic failure, with no apparent impact on mortality rates. 421 There is not clear if such data are applicable to Covid-19. Nonetheless, some international 422 guidelines proposed the use high-flow nasal cannula to initially treat patients with Covid-423 19-related acute respiratory hypoxemic failure and observational studies published after 424 the starting of the current trial suggested this respiratory modality as feasible and at least, 425 as safe as standard oxygen therapy. As evidence supporting the use of this respiratory 426 support modality is limited, we conducted a trial to assess the impact of high-flow oxygen 427 therapy through a nasal cannula vs. conventional oxygen therapy on the need for 428 intubation and the time to clinical recovery in patients with severe Covid-19.

5. RESEARCH QUESTION

433 Does the use of a high-flow oxygen therapy through a nasal cannula, compared with
434 conventional oxygen therapy, reduce requirement of intubation and time to clinical
435 improvement among patients with severe Covid-19?

6. OBJECTIVES

452 6.1. Primary objective

453	To evaluate the impact of the use of high-flow oxygen through a nasal cannula vs.
454	conventional oxygen therapy on the need for intubation/support with invasive mechanical
455	ventilation and clinical status as assessed by a 7-category ordinal scale in patients with
456	moderate/severe hypoxemic respiratory failure secondary to SARS-CoV-2 infection.

458	6.2. Specific objectives
-----	--------------------------

- *For secondary Outcomes*
- 462 Efficiency

463 464 465 466 467 468 469 470 471	 To evaluate the impact of high-flow oxygen therapy through a nasal cannula (HFNC) vs. conventional oxygen therapy (COT) on the requirement of early intubation and invasive mechanical ventilation support. To assess the impact of HFNC vs. COT on mechanical ventilation-free days. Assess the impact of HFNC vs. COT on renal replacement therapy-free days. To assess differences in length of hospital/ICU stay between study groups. To assess differences in all-cause mortality at days 14 and 28 post-randomization, between study groups
472	Safety
473 474 475 476 477	 To assess the occurrence / proportion of patients with severe adverse events within 28 days from randomization. To assess the occurrence / proportion of bacterial / fungal infections within 28 days from randomization.

478 *For Tertiary Outcomes*

479	• To evaluate the differences in the evolvement of oxygen flow requirement and
480	PaO_2/FiO_2 ratio between groups
481	• To evaluate the differences for the time elapsed from randomization to intubation
482	/ invasive mechanical ventilation support in patients failing to high-flow oxygen
483	therapy and conventional oxygen therapy
484	• To evaluate the impact of HFNC vs. COT on the clinical condition at day 28
485	• To evaluate the impact of HFNC vs. COT on the development and evolution of
486	multiorgan dysfunction as assessed by the SOFA score.
487	• To evaluate the impact of HFNC vs. COT on the development and evolution of
488	extra-pulmonary organ dysfunction as assessed by extra-pulmonary SOFA score
489	• To evaluate the differences in HACOR and ROX scores at 2 and 4 hours post-
490	randomization between the groups and their relationship with requiring
491	intubation and mechanical ventilation-free days
492	• To assess differences in IL-6 and IL-8 kinetics within 7 days from randomization,
493	between study groups
494	• To assess differences in ferritin kinetics, LDH, leukocyte count,
495	neutrophil/lymphocyte count relationship, platelet count and D-dimer during the
496	7 days following randomization, between study groups
497	
498	For Predefined Subgroups
499	• To assess the impact of high-flow oxygen vs. conventional oxygen therapy on the
500	need for intubation / invasive ventilation support and the time to clinical recovery
501	(as assessed by a 7-category ordinal scale) in patients with initial PaO_2/FiO_2 ratio >
502	and < 100 mmHg.
503	• To assess the impact of high-flow oxygen vs. conventional oxygen therapy on the
504	need for intubation / invasive ventilation support and the time to clinical recovery
505	(as assessed by a 7-category ordinal scale) in patients with baseline IL-6 levels $>$
506	and < 100 pg/mL.

507	٠	To assess the impact of high-flow oxygen vs. conventional oxygen therapy on the
508		need for intubation / invasive ventilation support and the time to clinical recovery
509		(as assessed by a 7-category ordinal scale) in patients aged > and < 60 years.
510		
511		
512		
513		
514		
515		
516		
517		
518		
519		
520		
521		
522 523		
524		
525		
526		
527		
547		

7. HYPOTHESIS

529	
530	7.1. Primary hypothesis
531 532 533 534 535 536	 The use of high-flow nasal cannula support will lead to lower intubation rates and lesser requirement for invasive mechanical ventilation within 28 days of randomization The use of high-flow nasal cannula support will decrease the time to clinical recovery as assessed by a 7-point ordinal scale.
537	7.2. Secondary /terciary hypotheses
538 539 540 541 542	 The use of high-flow oxygen through a nasal cannula will decrease early requirement of tracheal intubation The use of high-flow oxygen through a nasal cannula will increase the number of mechanical ventilation-free days. Patients undergoing support with HFNC will have more renal replacement
543	therapy-free days than those undergoing COT.
544 545 546	 Patients subjected to HFNC support will show shorter hospital/ICU lengths of stay The use of high-flow oxygen through a nasal cannula will lead to better clinical condition at day-28
547 548 549	• Patients subjected to HFNC support will show no difference in all-cause mortality at days 7, 14 and 28 post-randomization compared to those subjected to conventional oxygen therapy.
550	Proportion of serious adverse effects will be similar between groups
551 552	• Time elapsed from randomization to intubation / invasive mechanical ventilation support will be no different between groups
553	• The use of high-flow oxygen through a nasal cannula will show less severe
554 555	multiorgan dysfunctionHigh-flow oxygen therapy will be related with lesser extra-pulmonary organ
555	High-flow oxygen therapy will be related with lesser extra-pulmonary organ dysfunction

557	٠	HACOR and ROX scores will allow to early identify patients failing to high-flow
558		oxygen therapy
559	•	Patients successfully supported by HFNC will show similar kinetics of IL-6 and IL-
560		8, during the 7 days following randomization
561	•	Patients successfully supported by HFNC will show similar kinetics of ferritin, LDH,
562		leukocyte count, neutrophil/lymphocyte count ratio, platelet count, and D-dimer
563		during the 7 days after randomization
564	•	Benefit of high flow nasal cannula support on requirement for intubation /
565		invasive mechanical ventilation and time to clinical recovery will be greater in
566		patients with initial PaO2/FiO2 > 100 mmHg.
567	٠	Benefit of high flow nasal cannula support on requirement for intubation /
568		invasive mechanical ventilation and time to clinical recovery will be greater in
569		patients with initial IL-6 levels < 100 pg/mL.
570	٠	Benefit of high flow nasal cannula support on requirement for intubation /
571		invasive mechanical ventilation and time to clinical recovery will be greater in
572		patients < 60 years.
573		
574		
575		
576		
577		
0		
578		
579		
379		
580		
581		
582		

583	
584	
585	8. OUTCOMES
586	8.1. Primary outcomes
587	
588	• Need for intubation / invasive mechanical ventilation support (time frame: 28
589	days).
590	• Clinical recovery as assessed by a 7-category ordinal scale (time frame: 28 days).
591	
592	8.2. Secondary and tertiary outcomes / subgroup analysis
593	
594	<u>Secondary Outcomes</u>
595	Efficiency
596	• Early requirement of intubation / invasive mechanical ventilation support (time
597	frame: 7 days – 14 days).
598	• Mechanical ventilation-free days (time frame: 28 days).
599	Renal replacement therapy-free days (time frame: 28 days)
600	Length of ICU stay (time frame: 28 days)
601	Length of hospital stay (time frame: 28 days)
602	• Hospital mortality – all causes (time frame: 14 and 28 days)
603	Safety
604	• Occurrence / proportion of patients with serious adverse events (time frame: 28
605	days)
606	• Occurrence / proportion of bacterial - fungal infections (time frame: 28 days).
607	
608	

609 <u>Tertiary Outcomes</u>

610	•	Evolvement of oxygen flow requirement and PaO_2/FiO_2 ratio (time frame: 7 days)
611	•	Time elapsed from randomization to intubation / invasive mechanical ventilation
612		support in patients failing to high-flow oxygen therapy and conventional oxygen
613		therapy (time frame: 28 days).
614	•	Clinical condition at day 28 (time frame: 28 days)
615	•	Evolvement of multiorgan dysfunction as assessed by SOFA score (time frame: 14
616		days)
617	•	Evolvement of extra-pulmonary organ dysfunction as assessed by extra-
618		pulmonary SOFA score (time frame: 14 days).
619	•	HACOR and ROX scores at 2- and 4-hours post-randomization and their relation
620		with requirement of intubation (time frame: 28 days)
621	•	Differences in time-course of IL-6 and IL-8 between study groups (time frame: 7
622		days)
623	•	Differences in time-course of ferritin, LDH, leukocyte count, neutrophil to
624		lymphocyte count relationship, platelet count, and D-dimer among the groups
625		under study (time frame: 7 days)

626

627 <u>Subgroup Analysis</u>

628	٠	Time to intubation / invasive mechanical ventilation and clinical recovery in
629		subgroups with baseline $PaO_2/FiO_2 > and < 100 mmHg$ (time frame: 28 days)
630	•	Time to intubation / invasive mechanical ventilation and clinical recovery in
631		subgroups with baseline IL-6 > and < 100 pg/mL (time frame: 28 days)
632		Time to intubation / invasive mechanical ventilation and clinical recovery in
633		subgroups aged > and < 60 years (time frame: 28 days)
634		
635		
636		
637		
638		

640

641 9. METHODS

642

643 9.1. Design

644 Phase IIb, multicenter, randomized, open-label, controlled study of the use of high- flow
645 oxygen therapy through a nasal cannula vs. conventional oxygen therapy in patients with
646 severe Covid-19.

647

648	9.2. Study population
-----	-----------------------

Adult patients (>18 years) admitted to the emergency room or Intensive Care Unit withacute hypoxemic respiratory failure due to Covid-19

651

- High-Flow oxygen therapy through a Nasal Cannula (HFNC).
- Conventional oxygen therapy (COT).

All patients will receive standard care (hemodynamic / respiratory / metabolic / hematological / general).

657

658 9.4. Inclusion criteria

- Adults > 18 years old.
- Emergency or ICU admission under suspected / confirmed SARS-CoV-2 infection.
- Acute respiratory distress with:
- 662 $PaO_2/FiO_2 < 200$.

663		- Use of accessory muscles.
664		- Breathing rate > 25 per minute.
665	•	Having a progression < 6 hours since fulfilling definition of moderate or severe
666		acute respiratory failure due to suspected or confirmed SARS-CoV-2 infection.
667		
668		
669		9.5. Exclusion Criteria
670	•	< 18 years.
671	•	Indication for immediate tracheal intubation.
672	•	Pregnant woman / positive pregnancy test at the time of potential inclusion.
673	•	Chronic liver disease / liver cirrhosis Child-Pugh C.
674	•	Confirmation of active bacterial or fungal infection.
675	•	Uncontrolled HIV/AIDS disease (defined by presence of viral load > 200
676		copies/mL).
677	•	Previous history of COPD Gold C – D.
678	•	History of COPD requiring hospitalization or ICU admission during the last year.
679	•	History of congestive heart failure NYHA III – IV.
680	•	History or actual left ventricular ejection fraction < 45%
681	•	Highly suspected or confirmed cardiogenic pulmonary edema.
682	•	Hypercapnic respiratory failure (PaCO ₂ > 55 mmHg).
683	•	History or high suspicion of central or peripheral demyelinating disorders at the
684		time of potential inclusion.
685	•	Imminence of death within the next 24 hours (according to investigator's clinical
686		judgment)
687	•	Any serious medical condition or clinical laboratory test abnormality that, at the
688		investigator's judgment, prevents safe patient participation and completion of the
689		study.
690	•	Participation in another clinical trial (except other related to SARS-CoV-2. These
691		criteria will be always discussed among steering committee members
692		

693 9.6. Sample size

694 Sample size was calculated under the assumption of an intubation rate of 60%, according 695 to the data obtained from 75 patients with Covid-19-related moderate and severe 696 hypoxemic respiratory failure treated in the coordinating center between March and June 697 2020. Such proportion of intubation events was in agreement with previous data from a 698 randomized controlled trial testing high-flow oxygen through nasal cannula in mixed 699 populations of patients with acute hypoxemic respiratory failure.

700 Estimating an intubation rate around 60% in conventionally-treated patients, we 701 calculated that enrollment of 196 patients would be necessary to demonstrate an absolute 702 reduction of 20% in the proportion of intubation and requirement of invasive mechanical 703 ventilation with an 80% power and two-side alpha level of 0.05. In addition, it was 704 estimated that 160 patients (80 by arm) would be necessary to demonstrate a difference 705 in time to recovery from 14 (\pm 4.5) to 12 (\pm 4.0) days for the conventional oxygen and 706 high-flow oxygen therapy groups respectively, with an 80% power and two-side alpha 707 level of 0.05. Consequently, the sample size of 196 patients was retained as the sample size 708 target.

Nevertheless, due to the particular situation during pandemic, an important number of participants (n=18, representing the 9.2% of the total sample size) were transferred to other hospitals within 72 hours from randomization at the time in which the HiFLo-Covid protocol amendment 2.0 was constructed. After an extensive discussion with the Ethical Committee and trying to favor the possibility that results of this trial keep sufficient power and consequently, more reliable results, the number total of randomized patients is newly adjusted up to complete a total of 220 participants.

716

717 9.7. Recruitment strategy

718

719 <u>9.7.1. Screening</u>

All adult patients >18 years old admitted to the emergency department, or Intensive Care
 Unit with suspected SARS-CoV-2 infection will be considered as potential candidates for

722 the study. Due to the nature of the disease, it is expected that potential patients to be 723 placed on a conventional oxygen system previous to inclusion. Research teams at each 724 center will follow up patients fulfilling initial criteria for suspected or confirmed SARS-725 CoV-2 and acute respiratory failure. Arterial blood gas analysis will be essential for making 726 decisions on admission to the study. Those patients fulfilling all inclusion criteria and 727 discarding all exclusion will be selected for the study (See Annex 1: Inclusion / Exclusion 728 Forms) will be requested for informed consent and potential inclusion. Each center will be 729 responsible for completing information about all suspected and confirmed cases of acute 730 respiratory failure due to SARS-CoV-2 being selected or not for the study, recording 731 reasons for non-inclusion for these last (See Annex 2: Summary Screening).

732

733 <u>9.7.2. Randomization</u>

734 Randomization will be centrally performed by using an electronic case-report form system 735 (RedCap®) and stratified by study site in permuted block of 4 and 6, to ensure allocation 736 concealment. An independent statistician from the Clinical Research Center (Cento de 737 Investigaciones Clínicas, Fundación Valle del Lili, Cali - Colombia) will monitor this 738 process. He/she will use a public access package: Random Allocation Software 739 (http://www.msaghaei.com/Softwares/dnld/RA.zip) for this purpose. Randomization 740 sequence will rest in the REDCap® system and will be revealed once the screening process 741 and informed consent from each patient is completed.

742

743 9.7.3. Masking and concealment

Assignment to the therapeutic group will be disclosed only after confirmation of patient inclusion and informed consent has been obtained. Due to the characteristics of the interventions, masking will not be possible. Information from each patient will be recorded in an electronic format. Therapeutic modality will not be expressly identified, so that independent statistician will not know the allocated therapy that each patient was assigned.

751 <u>9.8. Statistical analysis plan</u>

All the analysis will be performed on an intention-to-treat basis with no exclusion after
randomization except exclusions for withdrawn consent, according to the local
regulations. In addition, the following predefined subgroups will be analyzed:

- Age group: <60 years and ≥ 60 years.
- IL-6 at randomization: <100 and ≥ 100 pg/mL.
- 757 PaO2/FiO2 initial <100 and \geq 100.

Data distribution will be evaluated by the Shapiro-Wilk test. Then, comparisons between
groups will be performed according to type of variable (continuous / discrete) and
whether or not assumptions of normality are met. The t of student or Wilcoxon Mann
Whitney will be used for continuous variables (according to the type of distribution),
while X² or Fisher's exact test will be used for discrete ones.

763 No participants will be excluded from analysis because of missing or incomplete data.

764

765 <u>9.8.1. Analysis Plan for Primary Outcomes</u>

766 Proportion of patients requiring intubation within 28 days of inclusion will be compared 767 using the X^2 test. The effect of treatment on the primary outcome (requirement for 768 intubation / invasive mechanical ventilation) will be calculated with a proportional Cox 769 model of risk adjusted according to 3 pre-specified variables: age (\geq or < 60 years old), 770 baseline PaO_2/FiO_2 and comorbidities (a composite of arterial hypertension, diabetes, 771 obesity [body mass index > 30], chronic obstructive pulmonary disease, end-stage renal 772 failure, heart failure, cirrhosis Child-Pugh A-B). The results will be reported as hazard 773 ratios with 95% confidence intervals and represented in Kaplan-Meier curves. Same 774 analysis will be performed separately according to initial 7-point category ordinal scale.

Time to clinical improvement will be defined as time elapsed from randomization until the first day, during the 28 days after enrollment, on which a patient attained a reduction in two or more points in the modified ordinal 7-category scale. Primary efficacy analysis of this objective will be evaluated during the first 28 days after randomization, taking into

779account failure to improve clinically (< 2 points on the scale) or death as "censures". Time</th>780to clinical improvement will be represented by a Kaplan-Meier curve and compared with a781log-rank test. Hazard ratios and 95% confidence intervals will be calculated using a782proportional model of Cox risk adjusted according to 3 pre-specified variables: age (> or <</td>78360 years old), baseline PaO_2/FiO_2 and comorbidities (diabetes, hypertension, obesity BMI784 \geq 30). Same analysis will be performed separately according to initial 7-point category785ordinal scale.

786

787 <u>9.8.1. Analysis Plan for Secondary Outcomes</u>

Evaluation of secondary outcomes will be performed by comparing proportions by the X²
test or the Fisher Exact test, as appropriate. Continuous variables will be compared with
the T-test or the Wilcoxon-Mann-Whitney test according to distribution depicted by the
variables. Categorical variables will be compared with the Wilcoxon-Mann-Whitney test.
Time to outcome variables will be analyzed as previously described. A p<0.05 will be
considered as significant.

A complete description for secondary and tertiary outcomes along with subgroup analysiscan be consulted in the Statistical Analysis Plan Supplement V2.0.

796

797 <u>9.8.2. Interim analysis plan</u>

798 A single interim analysis is planned when the 28-day follow-up had been completed for 799 the first 100 randomized patients. Database will be prepared and sent to the Members of 800 the Safety Monitoring Board (MSMB). An independent statistician will perform the 801 analysis and will discuss it with the MSMB, who later will communicate the results to the 802 Steering Committee. The Haybittle–Peto stopping boundaries ill be used, with a P-value 803 threshold of less than 0.001 to interrupt the trial for safety and a P-value thresh- old of 804 less than 0.0001 to interrupt the trial for efficacy. The data will be analyzed in a blind 805 manner but data about group allocation would be revealed in the event that security 806 issues or unexpected events are detected. Safety monitoring board will recommend to 807 continue or to stop with the enrollment accordingly.

809 **10. GENERAL MANAGEMENT PROTOCOL**

810 10.1. Initial approach

All adult patients >18 years old admitted to the emergency department or Intensive Care Unit under suspicion of SARS-CoV-2 infection will be considered as potential candidates for study (see 10.3: Operational case definitions). The attending physician will guide initial management according to SpO₂, respiratory rate, and the presence / absence of respiratory distress. Thus, three possible initial scenarios are proposed:

816	• Scenario 1: patient with SARS-CoV-2 disease compatible symptoms, but without
817	hypoxemia (SpO ₂ >95% at FiO ₂ 0.21).
818	- Action: not a candidate for study. Management according to individual
819	institutional protocol.
820	
821	• Scenario 2: patient with SARS-CoV-2 disease compatible symptoms, and initial
822	hypoxemia (SpO ₂ < 90% at FiO ₂ 0.21) and/or respiratory rate 25 - 40 /min, with
823	no signs of immediate indication for intubation.
824	- Action: potential candidate for admission. Start oxygen supply by using a
825	low flow system (conventional nasal cannula, venturi system, mask with
826	reservoir), arterial blood sampling for gas analysis, monitoring and general
827	management according to local protocol (monitoring, venous access,
828	paraclinical testing, etc.).
829	
830	• Scenario 3: patient with SARS-CoV-2 disease compatible symptoms, WITH signs of
831	immediate indication for intubation.
832	- Action: Immediate intubation. Not candidate for study. General
833	management according to local protocol
004	
834	
835	Patients in "scenario 1" will be follow-up ONLY if requiring hospitalization and might

become candidates for study admission if the event that their clinical condition vary to"scenario 2" at any time.

838 Patients in "scenario 2" will be considered potential study candidates. Arterial blood gas 839 analysis will be performed once a conventional oxygen system has been installed 840 according to decision of the attending physician. Patients with clinical symptoms and signs 841 compatible with SARS-CoV-2 infection and having a $PaO_2/FiO_2 < 200$ ratio will be 842 classified as moderate or severe hypoxemia $(100 < PaO_2/FiO_2 < 200 \text{ or } PaO_2/FiO_2 < 100)$ 843 respectively) and might be randomly allocated to receive either high-flow oxygen therapy 844 through a nasal cannula (HFNC) or conventional oxygen therapy (COT) once all inclusion 845 criteria are met and all exclusion criteria are discarded. "Suspect status" will change to 846 "confirmed case" once a positive genomic test for SARS-CoV-2 is obtained from a sample 847 from upper or lower airway.

Patients in "scenario 3" will undergo immediate tracheal intubation and will NOT beincluded in the study at any time but they will be recorded on the study screening form.

850

851 10.2. Criteria for IMMEDIATE INTUBATION (NOT Randomized patients)

These pre-determined criteria will be applied for patients with acute respiratory failure and need for immediate intubation (i.e., not candidate patients to study because need for immediate intubation before any attempt of randomization). These criteria are a guide aimed to avoid delayed intubation, and include:

Signs of respiratory failure despite initial oxygen supplementation.

- 857 Signs of respiratory muscle fatigue suggesting imminent cardio-respiratory
 858 arrest.
- Breathing rate > 40 / minute or < 8 / minute.
- Abundant bronchial secretions/mismanagement of secretions/mechanical
 airway obstruction.
- 862 Acidosis pH < 7.20.
- Sp02 < 90% for more than 5 minutes (ruling out signal problems in its
 measurement) having maximized conventional oxygen supply (mask with
 reservoir / FiO2 0.80).
- Hemodynamic signs.

867	- PAS < 90 mmHg or MAP < 60 mmHg persistent, with vasopressor support
868	requirement (Noradrenaline > $0.10 \ \mu gr/kg/min$) despite initial volume input
869	(at least 8 cc/kg).
870	 Deterioration of consciousness (Glasgow Coma Scale ≤ 12 points).
871	
872	
072	
873	10.3. Internal operational case definitions
874	
074	
875	<u>10.3.1. Suspected Moderate Case</u>
876	A patient will be considered in this category when meet ALL the following parameters:
070	
877	- Signs and symptoms consistent with SARS-CoV-2 infection not explained by
878	any other previously known or current clinical condition (bacterial or viral
879	infectious; autoimmune; neoplastic): fever, cough, odynophagia/anosmia and
880	dyspnea.
881	- Radiological signs compatible with pneumonia consisting of interstitial / alveolar
882	infiltrates in the chest X-ray and/or frosted glass infiltrates in chest CT scan
883	(suggestive of viral infection).
884	- Initial hypoxemia (SpO $_2$ < 90% at FiO $_2$ 0.21) and/or respiratory rate > 25/min,
885	requiring oxygen supplementation at $0.28 < FiO_2 < 0.60$ to achieve $SpO_2 > 92\%$ (at
886	least 5 minutes after SpO ₂ signal stabilization).
887	 Confirmed 100 < PaO₂/FiO₂ < 200 (according to arterial gas analysis), WITHOUT
888	evidence of extra-pulmonary organ dysfunction (extra-pulmonary SOFA score
889	> 2 points).
000	
890	

891 <u>10.3.2. Suspected Severe Case</u>

A patient will be considered in this category when meet ALL the following parameters:

893	-	Signs and symptoms consistent with SARS-CoV-2 infection not explained by
894		any other previously known or current clinical condition (bacterial or viral
895		infectious; autoimmune; neoplastic): fever, cough, odynophagia/anosmia and
896		dyspnea.
897	-	Radiological signs compatible with pneumonia consisting of interstitial / alveolar
898		infiltrates in the chest X-ray and/or frosted glass infiltrates in chest CT scan
899		(suggestive of viral infection).
900	-	Initial hypoxemia (SpO $_2$ < 90% at FiO $_2$ 0.21) and/or respiratory rate > 25/min,
901		requiring oxygen supplementation at 0.28 < FiO_2 < 0.60 to achieve SpO_2 > 92% (at
902		least 5 minutes after SpO ₂ signal stabilization).
903	-	Confirmed $PaO_2/FiO_2 < 100$ (according to arterial gas analysis), AND / OR
904		evidence of extra-pulmonary organ dysfunction (extra-pulmonary SOFA score
905		> 2 points).
906		
907	<u>10.2.3</u>	8. Confirmed Moderate Case
908	A pati	ent will be considered in this category when meet ALL the following parameters:
909	-	Confirmed SARS-CoV-2 infection by genomic detection from an upper or lower
910		airway sample in presence of compatible symptoms: fever, cough, odynophagia $/$
911		anosmia and dyspnea.
912	-	Radiological signs compatible with pneumonia consisting of interstitial / alveolar
913		infiltrates in the chest X-ray and/or frosted glass infiltrates in chest CT scan
914		(suggestive of viral infection).
915	-	Initial hypoxemia (SpO ₂ < 90% at FiO ₂ 0.21) and/or respiratory rate > 25/min.

- 915- Initial hypoxemia (SpO2 < 90% at FiO2 0.21) and/or respiratory rate > 25/min,916requiring oxygen supplementation at $0.28 < FiO_2 < 0.60$ to achieve SpO2 > 92% (at917least 5 minutes after SpO2 signal stabilization).
- 918 Confirmed 100 < PaO₂/FiO₂ < 200 (according to arterial gas analysis), WITHOUT
 919 evidence of extra-pulmonary organ dysfunction (extra-pulmonary SOFA score
 920 > 2 points).

922 <u>10.3.4. Confirmed Severe Case</u>

- 923 A patient will be considered in this category when they meet ALL of the following924 parameters:
- 925 **Confirmed SARS-CoV-2 infection by genomic detection** from an upper or lower 926 airway sample in presence of compatible symptoms: fever, cough, odynophagia / 927 anosmia and dyspnea. 928 Radiological signs compatible with pneumonia consisting of interstitial / alveolar 929 infiltrates in the chest X-ray and/or frosted glass infiltrates in chest CT scan 930 (suggestive of viral infection). 931 -Initial hypoxemia (SpO₂ < 90% at FiO₂ 0.21) and/or respiratory rate > 25/min, 932 requiring oxygen supplementation at $0.28 < FiO_2 < 0.60$ to achieve $SpO_2 > 92\%$ (at 933 least 5 minutes after SpO₂ signal stabilization). 934 Confirmation of PaO2/FiO2 < 100 (according to arterial gas analysis), AND / OR
- evidence of extra-pulmonary organ dysfunction (extra-pulmonary SOFA score
 > 2 points).
- 937
- 938 10.4. General protocol for respiratory support
- 939

940 <u>10.4.1. High-flow nasal cannula (HFNC)</u>

941 Starting parameters: flow between 60 liters – 80 / minute (according to available device). 942 FiO₂ 0.6 to 1.0 aiming SpO₂ \ge 92%. Adequate wetting of system should be ensured 943 according to recommendations from each HFNC device manufacturer. FiO₂ may be 944 decreased gradually according to individual condition, trying to maintain SpO₂ \ge 92%. 945 Flow gas will be adjusted according to the following parameters:

FiO ₂ %	.2130	.3040	.4060	.60 – 1.0
Flow rate	30	30-40	40 -50	50-70
L/minute				

947 <u>10.4.2. Conventional oxygen therapy (OCT)</u>

948 Oxygen by conventional nasal cannula / prongs, venturi mask, or mask with reservoir, at

- flows between 3 and 15 liters / minute, to attain $SpO_2 \ge 92\%$. The FiO₂ may be decreased
- 950 gradually according to individual conditions, trying to maintain $\text{SpO}_2 \ge 92\%$.
- 951

952 10.5. Monitoring of respiratory support therapy (HFNC vs. COT)

953 Once the participants have been randomly assigned to their respective respiratory 954 support therapy, clinical and paraclinical evaluations will be performed at 2- and 4-hours 955 from starting the respective respiratory support modality. Such evaluation will include 956 arterial gas analysis and clinical condition. Signs of failure to the allocated respiratory 957 support therapy will be looked for at these points and daily up to hospital discharge. If 958 failure to respiratory support therapy is declared, tracheal intubation and invasive 959 mechanical ventilation support will be performed.

961	10.6. Failure to respiratory support therapy (HFNC or COT)
962	
963	Failure to respiratory support (high-flow or conventional oxygen therapy) was considered
964	if at least one of the following was present:
965	- $PaO_2 < 55 \text{ mmHg}$
966	- Fail to improve signs of respiratory distress
967	- Development of copious bronchial secretions
968	- $SpO_2 < 92\%$ for more then five minutes (discarding signal problems or other
969	technical issues) while receiving the maximal support according to the group
970	allocation
971	 Acidosis (metabolic / respiratory): pH < 7.25
972	- Development of shock state (any type)
973	 PaCO₂ > 55 mmHg (accompanied by acidosis)
974	- Neurological deterioration
975	

977 978	<u>10.6.1. Intubation Criteria (for Patients included in the study)</u>
979	Predefined intubation criteria were followed in order to avoid delayed invasive
980	mechanical ventilation support. Such intubation criteria were applied under the
981	assumption that patient was under the maximum possible respiratory support provided
982	by the therapy assigned (high-flow oxygen or conventional oxygen therapy). Such criteria
983	were as follows:
984	
985	Signs of persistent respiratory distress
986	- Respiratory rate > 40 / min
987	- No improvement of laborious breathing - use of accessory muscles
988	- Development of copious bronchial secretions / impossibility to manage
989	bronchial secretions
990	 Acidosis (metabolic / respiratory): pH < 7.25
991	- $PaO_2 < 55 \text{ mmHg}$
992	 PaCO₂ > 55 mmHg (accompanied by acidosis)
993	- $SpO_2 < 92\%$ for more then five minutes (discarding signal problems or other
994	technical issues)
995	
996	
997	Signs of hemodynamic derangement
998	- Persistent systolic arterial pressure < 90 or mean arterial pressure < 60 mmHg,
999	with vasopressor support requirement (norepinephrine > 0.10 μ gr.kg.min ⁻¹) in
1000	presence of an adequate intravascular volume
1001	- Clinical signs of severe tissue hypoperfusion: capillary refill time > 10 seconds;
1002	Mottling score ≥ 4
1003	- Arterial lactate \geq 4.0 mmol/L in presence of any clinical sign of tissue
1004	hypoperfusion (capillary refill time > 3 seconds; Mottling score ≥ 2)
1005	
1006	
1007	Signs of neurological derangement
1008	 Neurological impairment (Glasgow coma scale ≤ 12)

1009	
1010	10.7. Additional management
1011	
1012	<u>10.7.1. Hemodynamic</u>
1013	Each center will adjust general management according to their local guidelines. However,
1014	we strongly recommend:
1015	- A resuscitation strategy with low fluid intake. For this, we recommend
1016	IMMEDIATE initiation of vasopressor in patients with a diastolic blood pressure <
1017	40 mmHg or a heart rate/diastolic blood pressure ratio > 2.30 (diastolic shock
1018	index – DSI > 2.30) (53).
1019	- Administration of fluid resuscitation boluses according to dynamic predictors of
1020	fluid responsiveness. Because some patients will be ventilated with tidal volumes
1021	< 8 ml/kg and/or FR > 25 / minute, we recommend the use of tests in which
1022	cardiac output variation is directly estimated (e.g.: VTI variation x
1023	echocardiography in response to passive leg raising; cardiac index variation by
1024	pulse contour analysis in response to end-expiratory occlusion maneuver for 20
1025	seconds).
1026	- A combined strategy of clinical signs resuscitation-guided / arterial lactate-guided
1027	resuscitation (54).
1028	- Use of norepinephrine as first vasopressor.
1029	- Use of vasopressin/epinephrine according to each institution's protocol.
1030	- Use of low-dose steroids in case of persistent hypotension/vasopressor
1031	requirement after adequate volumetric resuscitation.
1032	- Use of albumin/crystalloids according to local protocol.
1033	- NO use of gelatin / dextrose as resuscitation fluids
1034	

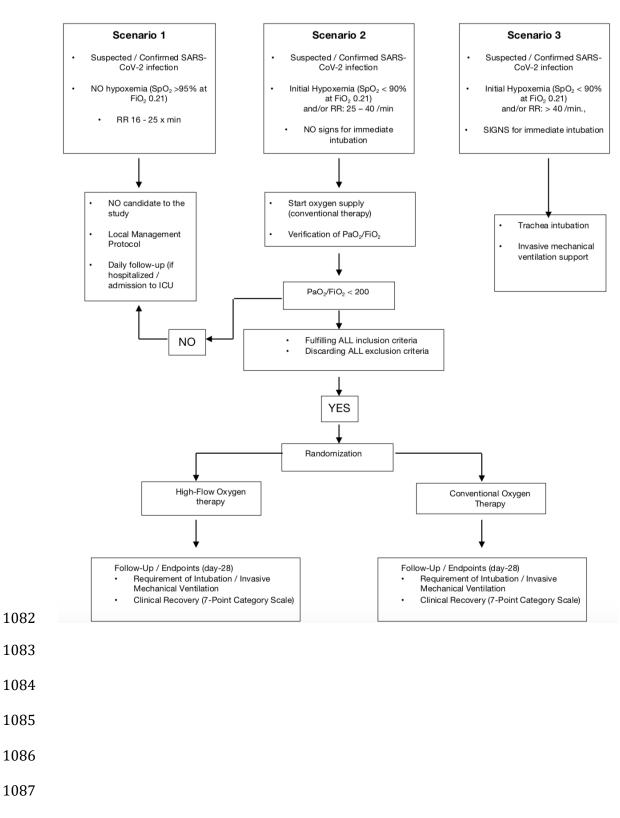
1035 <u>10.7.2. Renal</u>

1036 Each center will adjust local protocols for the use of renal replacement therapy. However,

1037 we strongly recommend:

1038	- Provide renal replacement therapy according to conventional parameters of pH,
1039	electrolytes, BUN / creatinine
1040	- Maintain neutral/negative fluid balance according to individual clinical condition.
1041	
1042	
1043	<u>10.7.3. Hematological</u>
1044	Each center will adjust management according to their local guidelines. However, we
1045	strongly recommend:
1046	- NOT using systematic anticoagulation in patients with SARS-CoV-2 infection,
1047	unless there is a clear indication to do so.
1048	- Note that elevated D-dimer does NOT represent a sufficient reason for formal
1049	anticoagulation.
1050	
1051	<u>10.7.4. Steroid use</u>
1052	Each center will adjust management according to their local guidelines. However, we
1053	strongly recommend:
1054	- Using low-dose steroids in patients with moderate/severe SARS-CoV-2 infection,
1055	unless there is a clear contraindication.
1056	
1057	<u>10.7.5. Use of sedation / neuromuscular paralysis</u>
1058	Each center will adjust management according to their local guidelines. However, we
1059	strongly recommend:
1060	- Use of adjusted doses of sedatives (benzodiazepines, opiates, propofol, central
1061	alpha-2 agonists) according to standard scales to guide depth of sedation.
1062	- Use of relaxation monitoring devices to guide neuromuscular blockade (and for the
1063	shortest time clinically possible).

1065 <u>10.7.6. Glycemic control</u>


Each center will adjust management according to their local guidelines. However, westrongly recommend:

Maintain glycemia < 180 mg / dL (use of infusion or mobile insulin plans, according to local protocol).

10.8 General Study Flow

108811.DATACOLLECTION,PATIENTFOLLOW-UP,STUDY1089MONITORING AND CLINICAL OUTCOMES.

1090

1091 11.1 Coordination, Registration and Data Management

1092The Centro de Investigaciones Clínicas (CIC) of the Fundación Valle del Lili (FVL) will be in1093charge of creating and safeguarding all the screening, inclusion and follow-up records of1094the study. Additionally, an independent statistician adscript to the CIC will be in charge to

monitor the random allocation of patients during the study. Screening, inclusion, record
files, CRF and follow-up formats will be managed by coordinators assigned by the CIC-FVL.

1097 The former research committee will be made up of the following participants:

1098 Intensive Care Unit: Dr. Gustavo A. Ospina-Tascón; Dr. Diego F. Bautista Rincón, Dr. Mónica

1099 P. Vargas Ordóñez, Dr. Alberto F. García (Fundación Valle del Lili Researchers) and at least

1100 one co-investigator/representative from each of the participating centers.

1101 Research Assistants: CIC-assigned Research Assistants (at the Fundación Valle del Lili, Cali

1102 - Colombia) and at least one research assistant from each participating center.

1103 Independent data quality surveillance committee (DQSC): CIC-assigned persons not linked1104 to the study.

1105 Methodology Committee: CIC Statistics Group – Fundación Valle del Lili, Cali. Colombia.

- 1106 Technical support: CIC-assigned engineer.
- 1107

1108 11.2. Patient monitoring / Electronic data capture

Electronic data collection format will be based on the CRF provided in this protocolversion (See Annex 3: Data Collection Format; Annex 4: Variable Description).

- 1111 Study coordinators at each site will be responsible for collecting all information required
- 1112 by the protocol. Each coordinator will have a digital user profile to upload all information.

1113 Coordinators at each center will also be in charge to evaluate possible serious and non-1114 serious adverse events together with the attending physician and the local main 1115 investigator designed (see Annex 5: Serious Adverse Event Reporting). Occurrence of 1116 major adverse events should be reported to the local Ethic Committee within 24 hours of 1117 its detection.

1118

1119 11.3 Blood Sampling and Cytokine Measurement

Blood samples will be collected and stored for later measurement of IL-6, IL-8, IL-10. These samples will be stored and secured by the Centro de Investigaciones Clínicas -Fundación Valle del Lili (Cali, Colombia) until completing the sample size of 220 patients. The Fundación Valle del Lili will maintain such blood samples under strict supervision in a restricted-access area to guarantee their security and integrity. Once the planned measurement of inflammation markers is completed, remaining aliquots will be destroyed according to the institutional procedure.

1127

1128 11.4. Study Completion

Study completion will be declared when the last subject completes 28 days of follow-up from randomization and investigators have completed the last visit evaluation, including the follow-up and closure of adverse events. Two additional points will be taken in account:

1133	- Withdraw from study due to voluntary or administrative reasons: under such
1134	circumstances, the participant will be excluded from analysis and his/her data
1135	will not be analyzed for primary and secondary outcomes, unless the participant
1136	had completed criteria to stop oxygen supply

Hospital discharge because satisfactory condition. In such case, a structured
telephone call will be performed at day 28 to confirm his/her clinical condition
between hospital discharge and day 28

1141 11.5. Withdrawal of Informed Consent

The participant or his/her legal representative may voluntarily withdraw consent to participate in the study for any reason at any time. In the event of withdrawal of consent, study procedures should be suspended, and every effort made to continue follow-up until the 28th day. If the participant or his legal representative does not wish to continue follow-up either, information from visits after the time of withdrawal of consent should be considered missing. If any important safety findings are identified for the subject who has withdrawn consent, every effort should be made to communicate this to the participant and inform him/her of the actions to be taken. Information collected from individuals withdrawing consent will NOT be used in the analyses.

비는 FUNDACIÓN 키루 VALLE DEL LILI Excelencia en Salud el servicio de la comunidad

11.6 Follow-Up Schedule

1160

1159

Visit name	Selection	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15	D16 - D27	D28	Discharge ICU	Discharge Hospital
Activity																				
Informed consent	Х																			
Randomization	Х																			
Demographic characteristics	Х																			
Inclusion and exclusion criteria	Х																			
Medical history chart	Х																			
Clinical Antecedents	Х																			
Verification of clinical status (follow-up)																				
Respiratory symptoms	Х																			
Vital signs	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Laboratory tests																				
Blood Count		Х	Х	Х	Х	Х	Х	Х			Х				Х					
Inflammatory markers (IL-6 - IL-8)		Х		Х				Х												
C-reactive Protein		Х		Х				Х			Х				Х					
D-Dimer		Х		Х				Х			Х				Х					
LDH		X		Х				Х			Х				Х					

HiFlo-COVID Version 3.0 – 02nd January, 2021

Excelencia	의 년 기 다
ia en Salud al servicio de la comunidad	FUNDACIÓN VALLE DEL LILI

Serious Adverse Events	Genomic test for SARS-CoV-2	Vital status	Renal replacement therapy	SOFA	Intubation (Y/N)	7-Category Ordinal Scale	Monitoring data	BE ecf	pCO ₂	pO ₂	рН	Liver function	Ferritin
X	×	X	Х	Х	Х	Х		Х	X	X	Х	Х	Х
Х		Х	Х	X	X	×		X	Х	X	Х		
Х		Х	X	X	X	×		X	X	X	X	Х	X
Х		X	X	Х	×	X		X	X	X	Х		
Х		Х	Х	Х	Х	Х		Х	Х	Х	Х		
Х		X	х	Х	Х	Х		Х	Х	Х	Х		
Х	×	X	X	Х	Х	Х		Х	Х	Х	Х	Х	Х
х	1	X	X		×	×							
Х		X	х		х	х							
Х		Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х
Х		×	×		×	×							
Х		Х	Х		Х	Х							
Х		Х	Х		Х	Х							
Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х
Х		Х	Х		Х	Х							
Х		Х	х		х	х							
Х	x	Х	Х	1	Х	Х		1				1	1
Х		Х	X		Х	Х							
Х		Х	X		Х	Х							

HiFlo-COVID Version 3.0 – 02nd January, 2021

1168 **12. ETHICAL CONSIDERATIONS**

1169

1167

1170 12.1. Risk Level (According to Resolution 8430, Colombian Health Ministry)

1171 The risk implicit in this study is considered to be "greater than the minimum" according to 1172 Res.008430 of 1993 of the Colombian Ministry of Health, since interventions received by the 1173 participants will be randomly assigned. However, such interventions are part of conventional 1174 and accepted therapeutic options for the management of acute hypoxemic respiratory failure: 1175 conventional oxygen therapy (COT) and high-flow oxygen through a nasal cannula (HFNC). It 1176 should be clarified and emphasized that requirement for tracheal intubation and invasive 1177 mechanical ventilation support will be standardized in order to avoid its delay.

This study is designed to adhere to Resolution 2378 of 2008 and the ethical principles of theDeclaration of Helsinki, highlighting that:

- Maintaining confidentiality of the participants included will protect life, health and privacy.
- 1181 An extensive review and discussion among local experts was conducted to support the need1182 for this study.

The results will allow determining if the use of high-flow oxygen therapy through a nasal
cannula (HFNC) might decrease the need for orotracheal intubation / support with invasive
mechanical ventilation and promote clinical improvement in patients with acute hypoxemic
respiratory failure secondary to SARS-CoV-2 infection (severe Covid-19).

1187

1188 12.2. Informed consent

1189

1190 12.2.1. Procedure for taking informed consent: legal considerations

1191 Justification of the modality of informed consent not initially given by the participant in

- 1192 written form, or given by a family member as legal representative in written or verbal
- 1193 form (or combination of the two options) and sometimes with the authorization of an

independent physician in the absence of the participant's family member and/or legalrepresentative.

Situations leading us to define an alternative procedure for obtaining informed consent different from the traditional form, in which speaking directly to the patient/legal representative signature of a document is obtained in physical form, along with two witnesses and the investigator, are the following:

1200 1. Critically ill patients (with variable degree of hypoxemia) with potential physical andmental incapacity to sign the informed consent.

1202 2. Current situation of SARS-CoV-2 pandemic where admission to hospital facilities is
1203 restricted to reduce risk of infection or virus spreading from symptomatic or asymptomatic
1204 infected persons, will limit an easy access to family members from potential study
1205 participants.

3. Contact among family members and health care workers / researchers would potentially
increase risk of SARS-CoV-2 infection in both ways. Close contact during explanation of the
study procedures and signing physical legal documents and custody in other places different
from hospitalization, emergency room, ICU or non-respiratory care areas might also increase
risk of infection transmission.

4. Severe infection due to SARS Cov-2 might lead to clinical conditions in which therapies
should be rapidly instituted. In such conditions, patient might not be able to consent and
contacting his/her legal representative can be complicated.

1214

1215 Once explained such situations, following normative precepts (according to Colombian law)1216 are observed:

According to resolution 8430 of 1993 in title II article 14, for research on human beings there will be written Informed Consent, by which the research subject or his/her legal representative understands and accepts his/her consent, with the exceptions set out in this resolution.

According to resolution 8430 of 1993 in Chapter II. On pharmacological research, Article 59, paragraph b) "Informed Consent will be obtained from the research subject, or in its absence, from the legal representative or the closest family member, except when: the subject's condition renders him/her incapable or prevents him/her from giving it, the legal representative or family member is unavailable or when discontinuing the use of the investigational drug represents an absolute risk of death".

- 1227 According to the WHO GCP informed consent guidelines, in emergency situations, if it is not 1228 possible to obtain the subject's informed consent, the consent of the legally acceptable 1229 representative, if any, should be sought shall. If prior consent of the individual or his/her 1230 representative is not possible, the inclusion of the individual will be carried out with the 1231 documented approval of the Ethics Committee to protect the rights, safety and well-being of 1232 the individual and in accordance with applicable regulatory requirements. The individual or 1233 his/her legally acceptable representative will be informed of the study as soon as possible and 1234 consent to continue or other consent as will be asked for appropriate. 1235 (https://apps.who.int/medicinedocs/documents/s18627es/s18627es.pdf)
- Guideline 16 of the "International Ethical Guidelines for Research Involving Human Subjects"
 developed by the Council for International Organizations of Medical Sciences (CIOMS) in
 collaboration with the World Health Organization (WHO) describes the following:
- 1239 "The researcher and the Research Ethics Committee should agree on a maximum time period 1240 for a person's participation without obtaining the person's informed consent or consent given 1241 by an authorized third party if the person is still unable to give consent. If individual or 1242 surrogate consent has not been obtained after this time, the participant should be withdrawn 1243 from the study provided that the withdrawal does not worsen the participant's situation. The 1244 participant or his/her representative should have the opportunity to object to the use of data 1245 derived from the patient's participation without his/her consent or permission. If there is no 1246 advance directive allowing participation in the research for the period of disability, 1247 permission must be sought from a legally authorized representative. This permission should 1248 take into account the participant's preferences and values expressed above, if any. In all cases 1249 in which research has been approved to begin without the prior consent of persons who are 1250 incapacitated due to sudden onset conditions, they should be given all relevant information as 1251 soon as they regain their capacity, and their consent to continue in the study should be

obtained as soon as reasonably possible. In addition, they must be given the opportunity toopt out of the study.

A therapeutic window is defined in which the investigator will make every effort to obtain consent rather than start without it. A summary of all efforts made will be documented and provided to the ethics committee during the continuing review of the study (by the IRB)

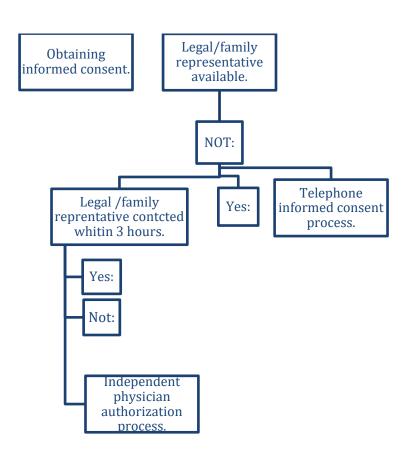
- 1257 (https://apps.who.int/medicinedocs/documents/s18627es/s18627es.pdf).
- 1258 According to Decree 1377 of 2013, Chapter II, Article 7, Ways to obtain authorization "those 1259 responsible for the processing of personal data shall establish mechanisms to obtain the 1260 authorization of the holders or of those who are entitled to it in accordance with the 1261 provisions of Article 20 of this decree, which guarantee its consultation. These mechanisms 1262 may be pre-determined through technical means that facilitate the Holder's automated 1263 manifestation. It shall be understood that the authorization complies with these requirements 1264 when it is manifested (I) in writing, (II) orally or (III) by means of unequivocal conduct on the 1265 part of the holder that allows a reasonable conclusion to be drawn that the authorization was 1266 granted. In no case may silence be assimilated to unequivocal conduct". http://www.suin-1267 juriscol.gov.co/viewDocument.asp?ruta=Decretos/1276081
- According to the guidance of the Council for International Organizations of Medical Sciences (CIOMS), it states in guideline 9 that consent can be indicated in several ways. The participant may express consent verbally or sign a consent form. When consent has been obtained verbally, researchers should provide documentation of consent to the Research Ethics committee certified by the person obtaining consent or by a witness present at the time of obtaining consent.

1274 According to the Council for International Organizations of Medical Sciences (CIOMS) 1275 guidelines, in Guideline 10, Modifications and Waivers of Informed Consent, "A Research 1276 Ethics Committee may approve a modification or waiver of informed consent for research if: it 1277 would not be feasible or practicable to conduct the research without such a waiver or 1278 modification; the research has significant social value; and the research involves only minimal 1279 risk to participants. Other provisions may come into play when waivers or modifications of 1280 informed consent are approved in specific research settings. This allows the Research Ethics 1281 Committee to even allow for a minor increase in risk above the minimum, and to approve

1282 informed consent (guideline 16). https://cioms.ch/wp-content/uploads/2017/12/CIOMS-1283 EthicalGuideline_SP_INTERIOR-FINAL.pdf

1284 And finally, according to the GUIDE FOR RESEARCH ETHICS COMMITTEES of the INVIMA, it is

1285 stipulated that the Committee of Ethics is the maximum authority within the Research Center


1286 in what concerns the maintenance of the integrity of the research participant.

- 1287 https://www.invima.gov.co/documents/20143/453029/ASS-RSA-GU040.pdf/96ea752d-
- 1288 2639-3024-4287-4527589fb26b

1289

- 1290 Under such national and international regulations, the following flow to obtain informed
- 1291 consent for the current study is considered:

1292

1293

1296 Therapeutic window considered to locate the legal representative in case he/she is not 1297 available at the time the patient is considered to meet the criteria to enter the study will be 3 1298 hours, after that time without locating him, the authorization will be used by an independent 1299 physician.

1300 The following information will be provided to the legal representative in order to obtain1301 consent:

- Purpose of the trial and procedures.
- Study inclusion criteria and duration of interventions and follow-up.
- Risks and benefits.
- Confidentiality of information.
- Payments and compensation.

1307

1295

1308 An electronic informed consent will be obtained by direct interview with the participant or 1309 legal representative. A phone call for a legal representative might be accepted (if no possible 1310 to have direct contact -according to the particular situation during pandemic). If consent 1311 would be obtained by a phone call, it will be recorded and then sent it to the local ethics 1312 committee as evidence of the process. In any case, a copy form of the consent will be given to 1313 the patient and to a family member/legal representative. Once the patient or representative 1314 agree with participate, their full identification data and acceptance should be recorded. The 1315 participant and/or representative should sign the document and an electronic copy should be 1316 sent back to his/her address if requested.

1317 If no legal representative is able to authorize participation in the trial, a meeting between two 1318 physicians (one of whom is an independent physician not participating in the trial) will be 1319 contemplated, considering all eligibility and exclusion criteria and also considering some 1320 known opinion about trial participation previously issued by the patient. After such meeting, 1321 the two physicians will decide about to enroll or not the patient into the trial. In all cases, this 1322 process SHOULD be followed by a representative authorization to participate within the next

- 1323 72 hours; otherwise, the patient would be removed from the trial. Document to be used for
- this process will have prior approval by the Biomedical Research Ethics Committee.
- 1325 In the event that participants regain physical and mental capacity to give consent, they will
- 1326 receive complete information about the study (informed consent form) and will be requested
- 1327 to continue the trial. Patients and representatives can withdraw consent at any time.

1345 **13.ADVERSE EVENTS REPORTING**

1346

1344

Serious adverse event reporting will encompass all possible events that might be related with the application of high-flow or conventional oxygen therapies and the potential effects of hypoxemia because possible delays in tracheal intubation or escalation to other advanced life support modalities. Principal investigator at each site will be committed to manage compliance and adherence to the protocol and also to identify adverse events potentially related or not with the study interventions.

1353 Adverse events should be recorded along with:

- 1354 Identification of the study participant.
- 1355 Time from randomization to occurrence of the event.
- 1356 Identification of possible causality between the event and the study intervention1357 (high-flow oxygen or conventional oxygen therapies)
- 1358 Resolution or improvement of such adverse event.

1359

1360 13.1. Monitoring of adverse events (AE)

All adverse events (AEs) occurring within 28 days from randomization should be reported to their respective ethics committee following the Serious Adverse Event (SAE) reporting guidelines, maintaining confidentiality principles. It is recommended performing such report within 24 hours from the event when SAE is death. In all cases, AEs will be reported to the study's coordinating center (CIC – Fundación Valle del Lili), which will collect data for analysis during programmed meetings of the Steering Committee and Safety Monitoring Board.

1368 13.3. Data Safety Monitoring Board

As previously mentioned, the Data Safety Monitoring Board (DSMB) will be made up of twohighly reputed international experts in critical care medicine and an international statistician,

all independent from the HiFLo-Covid Investigators. DSMB will be responsible to conduct the

- 1372 interim analysis when 50% of the sample has completed the 28-day follow-up. Such analysis
- 1373 will include the occurrence of serious adverse events recorded during this period (see 9.8.2.
- 1374 Interim analysis plan).

1393 ANNEX 1. INCLUSION / EXCLUSION FORMAT

- 1394 INCLUSION/EXCLUSION FORMAT:
- 1395 Institution: ______ Medical History # : _____

1396 First name: ______ Surname: _____

- 1397 Initials for registration: _____
- 1398 Inclusion / Exclusion Criteria:
- 1399

	INCLUSION CRITERIA		
1	Adult > 18 years old.	YES	NO
2	Suspected / confirmed case of SARS-CoV-2 infection (according to internal definitions).	YES	NO
3	Moderate / severe acute hypoxemic respiratory failure: PaO ₂ /FiO ₂ ratio < 200.	YES	NO
4	Signs of acute respiratory distress; at least 1 of the following: - Increased accessory muscle contraction. - Tonic contraction of the sternocleidomastoid muscle - Supra-sternal retraction. - Intercostal retraction. - Tracheal "tapping" to the neck. - Thoraco-abdominal imbalance.	YES	NO
5	Respiratory rate > 25 x minute.	YES	NO
6	Less than 6 hours since the definition of moderate/severe acute respiratory failure secondary to suspected/confirmed SARS-CoV-2 infection.	YES	NO
	EXCLUSION CRITERIA		
1	< 18 years.	YES	NO
2	Indication for immediate tracheal intubation.	YES	NO
3	Pregnant woman / positive pregnancy test at potential study entry.	YES	NO
4	Chronic liver disease / liver cirrhosis Child-Pugh C.	YES	NO
5	Confirmation of active bacterial or fungal infection.	YES	NO
5	Uncontrolled HIV/AIDS disease (defined by presence of viral load > 200 copies/mL).	YES	NO
6	Previous history of COPD Gold C – D.	YES	NO
7	History of COPD with hospitalization / ICU in the last year.	YES	NO
8	Known history of congestive heart failure NYHA III – IV.	YES	NO

9	Left ventricular ejection fraction < 45% previously known (or actual)	YES	NO
10	Clinically suspected or confirmed cardiogenic pulmonary edema.	YES	NO
11	Hypercapnic respiratory failure ($PaCO_2 > 55 \text{ mmHg}$).	YES	NO
12	Central/peripheral demyelinating disorders due to medical history or high suspicion of these at the time of eligibility for the study.	YES	NO
13	Dying / NO Resuscitation Order.	YES	NO
14	Any serious medical condition or clinical laboratory test abnormality that, in the investigator's judgment, prevents safe patient participation and completion of the study.	YES	NO
15	Participation in another clinical trial (except one related to SARS-CoV-2 - CRITERIA TO BE DISCUSSED BETWEEN MAIN GROUP OF RESEARCHERS).	YES	NO
	INCLUSION IN THE STUDY IF NOT	YES	NO
	Date:		

1401

1402Suspected Moderate Case

1403 A patient will be considered in this category when meet ALL the following parameters:

- Signs and symptoms consistent with SARS-CoV-2 infection not explained by any other
 previously known or current clinical condition (bacterial or viral infectious; autoimmune;
 neoplastic): fever, cough, odynophagia/anosmia and dyspnea.
- 1407-Radiological signs compatible with pneumonia consisting of interstitial / alveolar infiltrates in1408the chest X-ray and/or frosted glass infiltrates in chest CT scan (suggestive of viral infection).
- 1409-Initial hypoxemia (SpO2 < 90% at FiO2 0.21) and/or respiratory rate > 25/min, requiring1410oxygen supplementation at 0.28 < FiO2 < 0.60 to achieve SpO2 > 92% (at least 5 minutes after1411SpO2 signal stabilization).
- 1412 Confirmed 100 < PaO₂/FiO₂ < 200 (according to arterial gas analysis), WITHOUT evidence of extra-pulmonary organ dysfunction (extra-pulmonary SOFA score > 2 points).
- 1414

1415 Suspected Severe Case

- 1416 A patient will be considered in this category when meet ALL the following parameters:
- 1417 Signs and symptoms consistent with SARS-CoV-2 infection not explained by any other
 1418 previously known or current clinical condition (bacterial or viral infectious; autoimmune;
 1419 neoplastic): fever, cough, odynophagia/anosmia and dyspnea.

- 1420-Radiological signs compatible with pneumonia consisting of interstitial / alveolar infiltrates in1421the chest X-ray and/or frosted glass infiltrates in chest CT scan (suggestive of viral infection).1422-Initial hypoxemia (SpO2 < 90% at FiO2 0.21) and/or respiratory rate > 25/min, requiring1423oxygen supplementation at 0.28 < FiO2 < 0.60 to achieve SpO2 > 92% (at least 5 minutes after
- 1424 SpO_2 signal stabilization).
- 1425 Confirmed PaO₂/FiO₂ < 100 (according to arterial gas analysis), AND / OR evidence of extra-
 1426 pulmonary organ dysfunction (extra-pulmonary SOFA score > 2 points).
- 1427

1428Confirmed Moderate Case

- 1429 A patient will be considered in this category when meet ALL the following parameters:
- 1430 Confirmed SARS-CoV-2 infection by genomic detection from an upper or lower airway
 1431 sample in presence of compatible symptoms: fever, cough, odynophagia / anosmia and
 1432 dyspnea.
- Radiological signs compatible with pneumonia consisting of interstitial / alveolar infiltrates in
 the chest X-ray and/or frosted glass infiltrates in chest CT scan (suggestive of viral infection).
- 1435- Initial hypoxemia (SpO2 < 90% at FiO2 0.21) and/or respiratory rate > 25/min, requiring1436oxygen supplementation at 0.28 < FiO2 < 0.60 to achieve SpO2 > 92% (at least 5 minutes after1437SpO2 signal stabilization).
- Confirmed 100 < PaO₂/FiO₂ < 200 (according to arterial gas analysis), WITHOUT evidence of
 extra-pulmonary organ dysfunction (extra-pulmonary SOFA score > 2 points).
- 1440

- 1442 **Confirmed Severe Case**
- 1443 A patient will be considered in this category when they meet ALL of the following parameters:
- 1444 Confirmed SARS-CoV-2 infection by genomic detection from an upper or lower airway
 sample in presence of compatible symptoms: fever, cough, odynophagia / anosmia and
 dyspnea.
- 1447-Radiological signs compatible with pneumonia consisting of interstitial / alveolar infiltrates in1448the chest X-ray and/or frosted glass infiltrates in chest CT scan (suggestive of viral infection).
- 1449- Initial hypoxemia (SpO2 < 90% at FiO2 0.21) and/or respiratory rate > 25/min, requiring1450oxygen supplementation at 0.28 < FiO2 < 0.60 to achieve SpO2 > 92% (at least 5 minutes after1451SpO2 signal stabilization).
- 1452- Confirmation of PaO2/FiO2 < 100 (according to arterial gas analysis), AND / OR evidence of</th>1453extra-pulmonary organ dysfunction (extra-pulmonary SOFA score > 2 points).
- 1454
- 1455

- 14561457 ANNEX 2. SCREENING FORMAT
- 1458
- 1459 Screening summary
- 1460 Hospital: _____

		Randomization		
	ID	YES	NO	randomization (enter hit number to list)
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

- 1461 Causes of non-inclusion:
- 1462 1. Incomplete inclusion criteria
- 1463 2. Presence of some exclusion criteria.
- 1464 3. Immediate intubation criteria.
- 1465 4. NO high-flow nasal cannula available (at time of randomization).
- 1466 5. > 6 hours from compliance with moderate/severe hypoxemic respiratory failure criteria.
- 1467 6. 6.Refusal of Treating Physician to Participate or Use Assigned Device.
- 1468 7. 7.Denial of informed consent.

1469	ANNEX 3. CASE REPORT FORMAT (CRF)
1470 1471 1472	1. GENERAL DATA AND MEDICAL HISTORY
1473	Record ID:
1474	Hospital:
1475	
1476	Name: c.c. / ID:
1477	Age: yo Gender: M F Height: cm weight: kg BMI:

Clinical Antecedents								
Chronic heart failure	CKD stage III - IV	Hydroxychloroquine use	Atorvastatin use					
Coronary artery disease	CKD stage V	Azithromycin use	Antidepressants use					
Connective tissue disease	Cirrhosis Child A - B	Steroids use						
Diabetes	COPD Gold A - C	iECA use						
Arterial hypertension	History of AIS	Inh. ARA-II use						

2. SIGNS AND SYMPTOMS

1482 Symptoms onset date: DD / MM / YYYY

1483 Days after symptoms onset to randomization: _____ days

Symptoms							
Fever Dyspnea Cough							
Odynophagia		Anosmia and dysgeusia		Vomiting / Diarrhea			
Asthenia / Adynamia		Muscular pain					

3. HOSPITAL ADMISSION DATA

1490 Date of hospital admission : DD / MM / YYYY Hour:

	SAP		MAP		Temp		Capillary refill time (CRT)	
	DAP		HR		SpO ₂			
1493 1494 1495	4. RANDOMIZATION							
1496	Randomization date: DD / MM / YYYY Hour:							
1497	SOFA	(admissio	on):		APAC	CHE II:	NEWS II:	

BASELINE LABS

			1499
	STUDY ENTRY LABO	RATORIES	1500
рН	PTT	PCR	1501
pCO ₂	Fibrinogen	LDH	1502
pO ₂	Leucocyte	Ferritin	1503
HCO ₃	Neutrophils	D-dimer	1504
BE ecf/std	Lynphocytes	IL-6	<u> </u>
Lactate	Macrophage	IL-8	1500
Hemoglobin	NLR	Creat	1508
Hematocrit	Bilirrubin	BUN	1509
Platelet	AST	Troponin	1510
РТ	ALT		1511
I			1512

RESPIRATORY SUPPORT PRE AND POST IMMEDIATE RANDOMIZATION

PRE RANDOMIZATION									
Respiratory support	Respiratory support Arterial blood gas Clinical signs								
Conventional nasal cannula	рН	Respiratory rate							
Venturi mask	pO ₂	Heart rate							
Mask with reservoir	FiO ₂ (%)	SpO ₂							
L/min	PaO ₂ /FiO ₂	BORG Scale							
	SaO ₂	Glasgow Coma Score							

POST RANDOMIZATION (2 Hours)					
Respiratory support	Arterial blood gas	Clinical signs			
HFNC	рН	Respiratory rate			
Conventional nasal cannula	pO_2	Heart rate			
Venturi mask	FiO ₂ (%)	SpO ₂			
Mask with reservoir	PaO2/FiO2	Signs of acute respiratory distress (Yes/Not)			
L/min	SaO ₂	En. Intubation. (Yes/Not)			
		BORG Scale			
		Glasgow Coma Score			

POST RANDOMIZATION (4 Hours)							
Respiratory support Arterial blood gas Clinical signs							
HFNC	рН	Respiratory rate					
Conventional nasal cannula	pO ₂	Heart rate					
Venturi mask	FiO2 (%)	SpO ₂					
		Signs of acute respiratory distress					
Mask with reservoir	PaO ₂ /FiO ₂	(Yes/Not)					

L/min	SaO ₂	En. Intubation. (Yes/Not)	
		BORG Scale	
		Glasgow Coma Score	

5. FOLLOW-UP

RESPIRATORY								
Variable		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
HFNC Group								
HFNC start (date)	DD / MM / YYYY							
HFNC end (date)	DD / MM / YYYY							
Intubation (1. Yes / 0. No)								
FiO2 (higher)								
L/Min (higher)								
Awake Prone (1. Yes / 0. No)								
Hours on Awake Prone								
COT Group								
COT start (date)	DD / MM / YYYY							
COT end (date)	DD / MM / YYYY							
Intubation (1. Yes / 0. No)								
FiO2 (higher)								
L/Min (higher)								
Awake Prone (1. Yes / 0. No)								
Hours on Awake Prone								
Endotracheal Intubation Requirement	1. Yes / 0. No							
	Persistent signs of res	spiratory f	ailure des	pite oxyg	en supple	mentatior	1	
ERIA	• Respiratory rate > 40 / minute.							
CRIT	• Lack of improvement in signs of respiratory muscle fatigue.							
INTUBATION CRITERIA	Increased and	l mismanag	ed bronch	ial secretio	ons.			
'UBA	• Acidosis – pH	< 7.25						
LNI	• PaO ₂ < 55 mm	ıHg						
	• PaCO ₂ > 55 mmHg (accompanied by acidosis)							

Excelencia en sulta la servició de la comunida	COVID					
	• SpO2 < 92% for more than 5 minutes (ruling out signal problems in its measurement) receiving the maximum possible substitution with its respective respiratory support strategy (HFNC vs. COT).					
	Hemodynamic signs					
	 Persistent SBP < 90 mmHg or MAP < 60 mmHg, with requirement for vasopressor support (Noradrenaline > 0.10 μgr/kg/min) in the presence of adequate intravascular volume. 					
	 Progression of clinical signs of tissue hypoperfusion: capillary filling > 10 seconds; Mottling score ≥ 4. 					
 Arterial lactate ≥ 4 mmol/L in the presence of any clinical signs of hypoperfusion (capillary filling > 3 seconds; Mottling score ≥ 2). 						
	Neurological signs. • Deterioration of consciousness (Glasgow Coma Scale ≤ 12 points).					
	Other criteria					
Invasive mechanical ventilation	on					
Start (date)	DD / MM / YYYY					
End (date)	DD / MM / YYYY					
Mode						
Tidal volume						
Tidal volume (mL/Kg)						
RR						
PEEP						
Ppeak						

Pplat Cest

- Driving pressure
- 1521

1523	

	LABORATORIES										
Variable	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 10	Day 14		
рН											
PaCO ₂											
PaO ₂											
НСО3											

Excelencia en Salua al servicio de la	contantiduo				COVID
BE ecf / std					
Lactate					
Hemoglobin					
Hematocrit					
Leucocyte					
Neutrophils					
Lynphocytes					
Macrophage					
NLR					
Platelet					
PCR					
Bilirrubin					
AST					
ALT					
PCR					
Ferritin					
LDH					
D-dimer					
Interleukin 6					
Interleukin 8					
Interleukin 10					

HEMODYNAMICS / PERFUSION									
Variable	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 10	Day 14
SAP									
DAP									
РАМ									
Heart Rate									
Temperature									
SpO ₂									
Capillary Refill Time (sec.)									

	MULTIPLE ORGAN DYSFUNCTION - SOFA									
SOFA		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 10	Day 14
SOFA Respiratory	PaO ₂									
	FiO ₂									
	PaO ₂ / FiO ₂									
	Score									
SOFA Cardiovascular	МАР									

						CUVID
	Vasopressor					
	Inodilator					
	Score					
SOFA Renal	Creatinine					
	Urine output					
	Score					
SOFA Liver	Bilirubin					
	Score					
SOFA Coagulation	Platelet					
	Score					
SOFA CNS	Glasgow Coma Scale					
	Score					
SOFA (total score)						

7-point Clinical Scale										
	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	
	Day 10	Day 11	Day 12	Day 13	Day 14	Day 15	Day 16	Day 17	Day 18	
7-point Clinical Scale										
	Day 19	Day 20	Day 21	Day 22	Day 23	Day 24	Day 25	Day 26	Day 27	
	Day 28									

Adjuvant therapies									
Treatment	1. Yes / 0. Not	Start date	End date	Dose					
Hydroxychloroquine		DD / MM / YYYY	DD / MM / YYYY						
Azithromycin		DD / MM / YYYY	DD / MM / YYYY						
Ivermectin		DD / MM / YYYY	DD / MM / YYYY						
Dexamethasone		DD / MM / YYYY	DD / MM / YYYY						
Methylprednisolone		DD / MM / YYYY	DD / MM / YYYY						
Tocilizumab		DD / MM / YYYY	DD / MM / YYYY						

6. ADJUVANT THERAPIES

Total balance (24h)

7. RESUSCITATION FLUIDS

Resuscitation and fluid balance									
	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7		
Total resuscitation fluids (mL)									
Crystalloids (mL)									
Colloids (mL)									
Trasfusion (mL)									
							1		

8. ADJUNCTIVE HYPOXEMIA MANAGEMENT

	MANAGEM	ENT OF REFRA	CTORY HYPOXEMIA	L	
	(1. Yes / 0. Not)	Cycle #1		Time	hours
Prone position (IMV)		Cycle #2		Time	hours
		Cycle #3		Time	hours
		Cycle #4		Time	hours
				Total	hours
Neuromuscular blockers	(1. Yes / 0. Not)	Start date	DD / MM / YYYY	End date	DD / MM / YYYY
iven offusenin bioeners		Total Days			
Lung recruitment maneuvers	(1. Yes / 0. Not)				
ЕСМО	(1. Yes / 0. Not)	Start date	DD / MM / YYYY	End date	DD / MM / YYYY
		Total Days			

9. ADVERSE EVENTS

ADVERSE EVENTS

ADVERSE EVENTS			
Event	(1. Yes / 0. Not)		
Cardiac arrest (pre / Post EI)		Date	DD / MM / YYYY
Supra / ventricular Arrhythmia (pre /			
post EI)		Date	DD / MM / YYYY
Refractory shock (post EI)		Date	DD / MM / YYYY
Atelectasis		Date	DD / MM / YYYY
Death		Date	DD / MM / YYYY

10. OUTCOMES

0							
		OUTCOME	ES			1	
Mechanical ventila	tion (1. Yes / 0. Not)	RRT	(1. Yes / 0. , Not)		Tracheostomy	(1. Yes / 0. Not)	
Days free of MV		Days free of RRT					
ICU length of stay		Hospital length of stay					
Hospital survival	Hospital survival		28-Day survival			(1. Yes / 0. Not)	
Date of positive rt	Date of positive rtPCR SARS-CoV-2			DD / MM / YYYY			
	1. Refractory	1. Refractory hypoxemia		2. Sudden arrhythmia			
Probable mechanis of death	m 3. Shock	3. Shock		4. Multiple organ dysfunction			
1 2 3 4				1			
5							
6							
7							

7-CATEGORY ORDINAL SCALE: (*)

1571	1. Discharged from the hospital, resuming complete day-life activities
1572	2. Discharged from the hospital, but limitation of activities, home oxygen requirement, or both
1573	3. Hospitalized in general ward (not intensive care unit), not requiring supplemental oxygen
1574	and no longer requiring ongoing medical care (used if hospitalization was extended for
1575	infection-control reasons)
1576	4. Hospitalized in general ward (not intensive care unit), requiring supplemental oxygen /
1577	requiring ongoing medical care (Covid-19–related or other medical conditions);
1578	5. Hospitalized in the intensive care unit, requiring any supplemental oxygen;
1579	6. Hospitalized in the intensive care unit, requiring invasive mechanical ventilation or
1580	extracorporeal membrane oxygenation (ECMO);
1581	7. Death
1582	
1583	
1583	* Wang Y, Fan G, Horby P, et al.
1585	Comparative Outcomes of Adults Hospitalized With Seasonal Influenza A or B Virus
1586	Infection: Application of the 7-Category Ordinal Scale.
1587	
1307	Open Forum Infect Dis. 2019 Feb 15;6(3):ofz053. doi: 10.1093/ofid/ofz053.
1588	
1589	
1500	
1590	
1591	
1592	
1593	

1594	
1595	ANNEX 4. ADVERSE EVENT REPORTING
1596	
1597	ADVERSE EVENT REPORT
1598	
1599	1. Adverse Event definition (AE)
1600	Adverse event will be defined as an untoward medical occurrence in a patient or clinical
1601	investigation subject who received a drug or clinical intervention that does not necessarily
1602	translates in a causal relationship between such drug or intervention and the outcome. It
1603	can be either an unfavorable non-intentional sign (including abnormal laboratory results),
1604	a symptom or a disease presented at the same time the drug o investigation intervention
1605	is administered.
1606	
1607	Events fulfilling AE definition
1608	• Laboratory test results: Hematology, biochemistry, urine analysis, EKG, radiological
1609	images, vital signs (including deterioration since admission) among others considered
1610	of clinical and investigatory relevance by the investigator.
1611	• Exacerbation of a pre-existent chronic or intermittent disease. Either increases in
1612	frequency or increases in affection.
1613	• Detection or diagnosis of new medical conditions present prior or subsequent to
1614	investigation intervention.
1615	• Signs, symptoms or clinical sequels, which may be due to drug interaction.
1616	• Signs, symptoms or clinical sequels, which may be due to intervention drug overdose,
1617	or the patient's medication.
1618	• In case of AE related drug overdose, both clinical symptoms and abnormal laboratory
1619	test results must be present. When one of the above is not present, the event is defined
1620	as "accidental overdose or intentional overdose without adverse event".
1621	• Newly diagnosed cancer or a progression in pre-existent cancer.
1622	Events do not fulfilling AE definition
1623	• Medical or surgical procedure: the event that leads to the procedure is the AE.

1624		• Situations where no medical condition is present. Such as hospital admissions for
1625		social reasons or comfort.
1626		• Pre-existent medical conditions detected at admission that do not deteriorate. Or
1627		expected daily fluctuations in specific diseases.
1628		• Ambulatory surgery before the patient's admission to the study, to treat a pre-existent
1629		medical condition.
1630		
1631	2.	Serious Adverse Event Definition (SAE)
1632		A Serious Adverse Event (SAE) is defined as any unfavorable occurrence independent to
1633		dosage and leading / related with one of the following:
1634		a. Death
1635		b. Risk for life
1636		c. Requiring either hospital admission or enlarging hospital stay.
1637		d. Causing persistent or significant disability or inability. Events of minor clinical
1638		relevance such as headache, nausea, vomiting, diarrhea, common cold or
1639		accidental traumatism are not included.
1640		e. Congenital abnormalities or birth defects in the patient's offspring
1641		f. Significant life threatening or endangering medical events defined by the principal
1642		investigator
1643		
1644	3.	SAE and AE registry
1645		• The investigator must review all documentation related to the adverse event and
1646		information must be recorded in data collection format.
1647		• The investigator must define the diagnosis according to signs, symptoms and
1648		clinical information. The diagnosis is the adverse event.
1649		
1650	4.	SAE and AE intensity evaluation
1651		• Grade 1, mild event: mild symptoms that cause minimal or no interference in
1652		social and functional activities, with no intervention needed
1653		• Grade 2, moderate event: moderate symptoms causing more than a minimal
1654		interference in social and functional activities with intervention requirement.
1655		• Grade 3, severe event: severe event causing inability to perform social and
1656		functional activities with intervention or hospital admission requirement.

1657	• Grade 4, Possible life threatening event: clinical manifestations that can be life
1658	threatening or that can cause inability to perform basic functional activities. With
1659	requirement of intervention to prevent permanent failure, disability or death.
1660	Grade 5, adverse event-related death
1661	
1662	5. Causality evaluation:
1663	• The investigator must determine the probability of causality between AE and the
1664	product. Nevertheless, during AE follow-up the investigator can re-evaluate the
1665	causality.
1666	• The criterion above describes a guideline for causality evaluation:
1667	i. Exposition: a confirmation of exposure of the patient to the product
1668	ii. Temporal evaluation: An existent relation between the AE onset, product
1669	administration and the effect.
1670	iii. Reasonable and probable. Cause
1671	iv. Withdrawal effect: a resolution or improvement of the AE manifestation
1672	when withdrawing o reducing dose, exposition or frequency of the
1673	product.
1674	
1675	
1676	
1677	
1678	
1679	
1680	
1681	
1682	
1683	
1684	
1685	
1686	
1687	
1688	
1689	

1691 Non-Serious Adverse Events / Serious Adverse Events (NSAE / SAE)

1694				
Adverse Event	Description	NSAE*	SAE**	Security Objective
Cardiorespiratory arrest	Cardiorespiratory arrest previous or subsequent to intubation. Involving ventricular fibrillation, pulseless ventricular tachycardia, pulseless electrical activity and asystole.		Х	Х
Severe supra o ventricular arrythmias	Supra or ventricular arrythmia with pulse. Defined as severe by the induction of deterioration or acute hemodynamic or respiratory decompensation		X	
Non severe supra ventricular arrythmias	Defined as non-severe if supraventricular arrythmia is present with no deterioration or acute or respiratory decompensation	x		x
Refractory Shock	Vasodilatory or cardiogenic shock onset or both, with vasopressor requirement (norepinephrine >0.2 mgr/kg/min and/or vasopressin and/or methylene blue		×	x
Atelectasis	Atelectasis confirmed by X-ray.	X		

HiFlo-COVID Version 3.0 – 02nd January, 2021

1696 **REFERENCES**

1697

1698 1. Organization WH. Coronavirus disease 2019 (COVID-19): situation report, 51. 2020.

16992.Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus1700Disease 2019 in China. N Engl J Med. 2020;382(18):1708-20.

17013.Team CC-R. Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) -1702United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(12):343-6.

4. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline
Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the
Lombardy Region, Italy. JAMA. 2020.

17065.Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al. Comorbidity and its impact on17071590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5).

1708 6. Reynolds HR, Adhikari S, Pulgarin C, Troxel AB, Iturrate E, Johnson SB, et al. Renin1709 Angiotensin-Aldosterone System Inhibitors and Risk of Covid-19. N Engl J Med.
1710 2020;382(25):2441-8.

1711 7. Mancia G, Rea F, Ludergnani M, Apolone G, Corrao G. Renin-Angiotensin-Aldosterone
1712 System Blockers and the Risk of Covid-19. N Engl J Med. 2020;382(25):2431-40.

1713 8. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of
1714 adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet.
1715 2020;395(10229):1054-62.

1716 9. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk Factors Associated With Acute
1717 Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in
1718 Wuhan, China. JAMA Intern Med. 2020.

1719 10. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus
1720 Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the
1721 Chinese Center for Disease Control and Prevention. JAMA. 2020.

1722 11. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al.
1723 Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With
1724 COVID-19 in the New York City Area. JAMA. 2020.

1725 12. Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis
1726 Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019
1727 (COVID-19). Intensive Care Med. 2020.

1728 13. Poston JT, Patel BK, Davis AM. Management of Critically Ill Adults With COVID-19. JAMA.1729 2020.

1730 14. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A Trial of Lopinavir-Ritonavir in Adults
1731 Hospitalized with Severe Covid-19. N Engl J Med. 2020.

1732 15. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the
1733 Treatment of Covid-19 - Preliminary Report. N Engl J Med. 2020.

1734 16. Geleris J, Sun Y, Platt J, Zucker J, Baldwin M, Hripcsak G, et al. Observational Study of 1735 Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med. 2020;382(25):2411-8.

1736 17. Rosenberg ES, Dufort EM, Udo T, Wilberschied LA, Kumar J, Tesoriero J, et al. Association of
1737 Treatment With Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With
1738 COVID-19 in New York State. JAMA. 2020.

1739 18. Mercuro NJ, Yen CF, Shim DJ, Maher TR, McCoy CM, Zimetbaum PJ, et al. Risk of QT Interval
1740 Prolongation Associated With Use of Hydroxychloroquine With or Without Concomitant
1741 Azithromycin Among Hospitalized Patients Testing Positive for Coronavirus Disease 2019 (COVID1742 19). JAMA Cardiol. 2020.

1743 19. Borba MGS, Val FFA, Sampaio VS, Alexandre MAA, Melo GC, Brito M, et al. Effect of High vs
1744 Low Doses of Chloroquine Diphosphate as Adjunctive Therapy for Patients Hospitalized With
1745 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: A Randomized Clinical
1746 Trial. JAMA Netw Open. 2020;3(4):e208857.

1747 20. Arabi YM, Balkhy HH, Hayden FG, Bouchama A, Luke T, Baillie JK, et al. Middle East
1748 Respiratory Syndrome. N Engl J Med. 2017;376(6):584-94.

Peiris JS, Yuen KY, Osterhaus AD, Stöhr K. The severe acute respiratory syndrome. N Engl J
Med. 2003;349(25):2431-41.

1751 22. Zhao Z, Zhang F, Xu M, Huang K, Zhong W, Cai W, et al. Description and clinical treatment of
1752 an early outbreak of severe acute respiratory syndrome (SARS) in Guangzhou, PR China. J Med
1753 Microbiol. 2003;52(Pt 8):715-20.

1754 23. Zhong NS, Zheng BJ, Li YM, Poon, Xie ZH, Chan KH, et al. Epidemiology and cause of severe
1755 acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003.
1756 Lancet. 2003;362(9393):1353-8.

1757 24. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with
1758 Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33.

1759 25. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated
1760 with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3.

176126.Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan,1762China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020;382(13):1199-207.

1763 27. Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, et al. A familial cluster of pneumonia
1764 associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a
1765 family cluster. Lancet. 2020;395(10223):514-23.

1766 28. Arons MM, Hatfield KM, Reddy SC, Kimball A, James A, Jacobs JR, et al. Presymptomatic
1767 SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility. N Engl J Med.
1768 2020;382(22):2081-90.

1769 29. Siddiqi HK, Mehra MR. COVID-19 Illness in Native and Immunosuppressed States: A1770 Clinical-Therapeutic Staging Proposal. The Journal of Heart and Lung Transplantation.

1771 30. Pham T, Brochard LJ, Slutsky AS. Mechanical Ventilation: State of the Art. Mayo Clin Proc.1772 2017;92(9):1382-400.

1773 31. Esteban A, Frutos-Vivar F, Muriel A, Ferguson ND, Peñuelas O, Abraira V, et al. Evolution of
1774 mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med.
1775 2013;188(2):220-30.

1776 32. Zhang Y, Fang C, Dong BR, Wu T, Deng JL. Oxygen therapy for pneumonia in adults.
1777 Cochrane Database Syst Rev. 2012(3):CD006607.

1778 33. Xu XP, Zhang XC, Hu SL, Xu JY, Xie JF, Liu SQ, et al. Noninvasive Ventilation in Acute
1779 Hypoxemic Nonhypercapnic Respiratory Failure: A Systematic Review and Meta-Analysis. Crit Care
1780 Med. 2017;45(7):e727-e33.

1781 34. Nishimura M. High-Flow Nasal Cannula Oxygen Therapy in Adults: Physiological Benefits,
1782 Indication, Clinical Benefits, and Adverse Effects. Respir Care. 2016;61(4):529-41.

1783 35. Rochwerg B, Granton D, Wang DX, Helviz Y, Einav S, Frat JP, et al. High flow nasal cannula
1784 compared with conventional oxygen therapy for acute hypoxemic respiratory failure: a systematic
1785 review and meta-analysis. Intensive Care Med. 2019;45(5):563-72.

Azoulay E, Lemiale V, Mokart D, Nseir S, Argaud L, Pène F, et al. Effect of High-Flow Nasal
Oxygen vs Standard Oxygen on 28-Day Mortality in Immunocompromised Patients With Acute
Respiratory Failure: The HIGH Randomized Clinical Trial. JAMA. 2018;320(20):2099-107.

178937.Frat JP, Thille AW, Mercat A, Girault C, Ragot S, Perbet S, et al. High-flow oxygen through1790nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185-96.

1791 38. Lemiale V, Mokart D, Mayaux J, Lambert J, Rabbat A, Demoule A, et al. The effects of a 2-h trial of high-flow oxygen by nasal cannula versus Venturi mask in immunocompromised patients with hypoxemic acute respiratory failure: a multicenter randomized trial. Crit Care. 2015;19:380.

1794 39. Parke RL, McGuinness SP, Eccleston ML. A preliminary randomized controlled trial to
1795 assess effectiveness of nasal high-flow oxygen in intensive care patients. Respir Care.
1796 2011;56(3):265-70.

1797 40. Schwabbauer N, Berg B, Blumenstock G, Haap M, Hetzel J, Riessen R. Nasal high-flow oxygen therapy in patients with hypoxic respiratory failure: effect on functional and subjective respiratory parameters compared to conventional oxygen therapy and non-invasive ventilation (NIV). BMC Anesthesiol. 2014;14:66.

1801 41. Bell N, Hutchinson CL, Green TC, Rogan E, Bein KJ, Dinh MM. Randomised control trial of
1802 humidified high flow nasal cannulae versus standard oxygen in the emergency department. Emerg
1803 Med Australas. 2015;27(6):537-41.

1804 42. Jones PG, Kamona S, Doran O, Sawtell F, Wilsher M. Randomized Controlled Trial of
1805 Humidified High-Flow Nasal Oxygen for Acute Respiratory Distress in the Emergency Department:
1806 The HOT-ER Study. Respir Care. 2016;61(3):291-9.

1807 43. Makdee O, Monsomboon A, Surabenjawong U, Praphruetkit N, Chaisirin W, Chakorn T, et al.
1808 High-Flow Nasal Cannula Versus Conventional Oxygen Therapy in Emergency Department Patients
1809 With Cardiogenic Pulmonary Edema: A Randomized Controlled Trial. Ann Emerg Med.
1810 2017;70(4):465-72.e2.

1811 44. Rittayamai N, Tscheikuna J, Praphruetkit N, Kijpinyochai S. Use of High-Flow Nasal Cannula
1812 for Acute Dyspnea and Hypoxemia in the Emergency Department. Respir Care. 2015;60(10):13771813 82.

1814
1815
1815
1816
1816
45. Society RccoCT. [Expert consensus on preventing nosocomial transmission during respiratory care for critically ill patients infected by 2019 novel coronavirus pneumonia]. Zhonghua Jie He Hu Xi Za Zhi. 2020;17(0):E020.

46. Warrillow S, Austin D, Cheung W, Close E, Holley A, Horgan B, et al. ANZICS guidingprinciples for complex decision making during the COVID-19 pandemic. Crit Care Resusc. 2020.

1819 47. Winck JC, Ambrosino N. COVID-19 pandemic and non invasive respiratory management:
1820 Every Goliath needs a David. An evidence based evaluation of problems. Pulmonology. 2020.

1821 48. Wang K, Zhao W, Li J, Shu W, Duan J. The experience of high-flow nasal cannula in hospitalized patients with 2019 novel coronavirus-infected pneumonia in two hospitals of Chongqing, China. Ann Intensive Care. 2020;10(1):37.

Hui DS, Chow BK, Lo T, Tsang OTY, Ko FW, Ng SS, et al. Exhaled air dispersion during highflow nasal cannula therapy. Eur Respir J. 2019;53(4).

1826 50. Leung CCH, Joynt GM, Gomersall CD, Wong WT, Lee A, Ling L, et al. Comparison of high-flow
1827 nasal cannula versus oxygen face mask for environmental bacterial contamination in critically ill
1828 pneumonia patients: a randomized controlled crossover trial. J Hosp Infect. 2019;101(1):84-7.

182951.Lu X, Xu S. Therapeutic effect of high-flow nasal cannula on severe COVID-19 patients in a1830makeshift intensive-care unit: A case report. Medicine (Baltimore). 2020;99(21):e20393.

183152.Karamouzos V, Fligou F, Gogos C, Velissaris D. High flow nasal cannula oxygen therapy in1832adults with COVID-19 respiratory failure. A case report. Monaldi Arch Chest Dis. 2020;90(2).

1833 53. Ospina-Tascón GA, Teboul JL, Hernandez G, Alvarez I, Sánchez-Ortiz AI, Calderón-Tapia LE,
1834 et al. Diastolic shock index and clinical outcomes in patients with septic shock. Ann Intensive Care.
1835 2020;10(1):41.

1836 54. Hernández G, Ospina-Tascón GA, Damiani LP, Estenssoro E, Dubin A, Hurtado J, et al. Effect
of a Resuscitation Strategy Targeting Peripheral Perfusion Status vs Serum Lactate Levels on 28Day Mortality Among Patients With Septic Shock: The ANDROMEDA-SHOCK Randomized Clinical
Trial. JAMA. 2019;321(7):654-64.

HÍ F (o covid

1856

1857

1858	HIGH-FLOW vs. CONVENTIONAL OXYGEN THERAPY IN
1859	PATIENTS WITH ACUTE RESPIRATORY FAILURE DUE TO
1860	SARS-CoV-2: The HiFLo-COVID RANDOMIZED CLINICAL
1861	TRIAL
1862	
1863	
1864	The HiFLo-COVID collaborative group
1865	
1866	
1867	
1868	
1869	SUMMARY OF CHANGES
1870	
1871	
1872	
1873	
1874	
1875	
1876	
1877	
1878	
1879	

1887

1882 Versions and dates

- 1883 _____
- 1884 Protocol version 1.0
- 1885 Version date: 16th July, 2020
- 1886 Refers to Statistical Analysis Plan (SAP) Version 1.0
- 1888 Protocol version 2.0 (amendment 2.0)
- 1889 Version date: 16th September, 2020
- 1890 _____
- 1891 Protocol version 3.0 (amendment 2.0)
- 1892 Version date: 02nd January, 2021
- 1893 Refers to Statistical Analysis Plan (SAP) Version 3.0
- 1894
- 1895

Amendment 1.0	Version 2.0; 16 th September, 2.020
9.6 Sample Size	Actual sample size has been estimated in 196 participants (98 by
	arm) aiming to demonstrate a reduction in the need for intubation
	from 60 to 40%, assuming an alpha error of 0.05 and power of
	0.80. Nevertheless, anticipating some follow-up losses, the new
	proposed sample size will be 200 patients (i.e., 2 more by arm).
11.3 Blood Sampling and	Blood sampling will be performed in selected centers until the final
Cytokine Measurement	sample size is completed. Each center will be committed to storage
	and safeguard such blood samples. Once the size sample is
	completed, blood samples will be sent to the Fundación Valle del
	Lili, Cali - Colombia in order to proceed to the prespecified

	cytokine measurement.
11.4. Study Completion	Some clarifying paragraphs on the follow-up until day-28:
	 Withdraw from study due to voluntary or administrative reasons. Under such circumstances, the participant will be excluded from analysis and his/her data will not be analyzed for primary and secondary outcomes, unless the participant had completed criteria to stop oxygen supply Hospital discharge because satisfactory condition. In such case, a structured telephone call will be performed at day 28 to confirm his/her clinical condition between hospital discharge and day 28
11.6 Follow-Up Schedule	A structured telephone call performed at day 28 is added
Serious and Non-Serious Adverse Events	 The adverse events: bacterial pneumonia, bacteremia and fungal bloodstream dissemination, primarily defined as security outcomes, will be henceforth reported to the Ethical Committee as serious adverse events All serious and non-serious adverse events related with intubation (pre and post procedure) will be henceforth reported to the Ethical Committee as serious adverse events

Amendment 2.0	Version 3.0; 02 nd January, 2.021
9.6 Sample Size	In the amendment 1.0, sample size had been increased to 200
	patients (i.e., 2 more by arm) aiming to compensate a potential 2%
	of losses. Nevertheless, due to the particular situation during
	pandemic, an important number of participants (n=18,
	representing the 9.2% of the total sample size) had been
	transferred to other hospitals within 72 hours from randomization
	at the time in which this amendment was constructed. After an
	extensive discussion with the Ethical Committee and trying to
	favor the possibility that results of this trial keep sufficient power
	and consequently, more reliable results, the number total of
	randomized patients is newly adjusted up to complete a total of

	220 participants.
6. Objectives	Primary and secondary objectives were preserved as initially conceived. Nevertheless, for a better understanding, objectives for secondary and tertiary outcomes, and for predefined subgroup analysis were listed separately
7. Hypotheses	Hypotheses for primary and secondary outcomes and for subgroups analysis were listed accordingly
8. Outcomes	Primary and secondary outcomes were preserved as initially conceived. Nevertheless, for a better understanding, secondary and tertiary outcomes were listed separately as well as the predefined subgroup analysis.