

Supporting Information

for Adv. Healthcare Mater., DOI: 10.1002/adhm.202101370

A modular biomaterial scaffold-based vaccine elicits durable adaptive immunity to subunit SARS-CoV-2 antigens

Fernanda Langellotto¹, Maxence O. Dellacherie^{1,2}, Chyenne Yeager¹, Hamza Ijaz¹, Jingyou Yu³, Chi-An Cheng^{1,6,7}, Nikolaos Dimitrakakis¹, Benjamin T. Seiler¹, Makda S. Gebre³, Tal Gilboa^{1,6,7}, Rebecca Johnson⁸, Nadia Storm⁸, Sarai Bardales¹, Amanda Graveline¹, Des White¹, Christina M. Tringides^{1,9,10}, Mark J. Cartwright¹, Edward J. Doherty¹, Anna Honko⁸, Anthony Griffiths⁸, Dan H. Barouch^{3,4,5}, David R. Walt^{1, 6,7}, David J. Mooney^{1,2,*}

Supporting Information

A rapidly adaptable biomaterial vaccine for SARS-CoV-2

<u>Fernanda Langellotto^{1†}</u>, <u>Maxence O. Dellacherie^{1,2†}</u>, <u>Chyenne Yeager^{1†}</u>, Hamza Ijaz¹, Jingyou Yu³, Chi-An Cheng^{1,6,7}, Nikolaos Dimitrakakis¹, Benjamin T. Seiler¹, Makda S. Gebre³, Tal Gilboa^{1,6,7}, Rebecca Johnson⁸, Nadia Storm⁸, Sarai Bardales¹, Amanda Graveline¹, Des White¹, Christina M. Tringides^{1,9,10}, Mark J. Cartwright¹, Edward J. Doherty¹, Anna Honko⁸, Anthony Griffiths⁸, Dan H. Barouch^{3,4,5}, David R. Walt^{1,6,7}, David J. Mooney^{1,2,*}

† These authors contributed equally to this work

List of supplementary figures and tables

Figure S1: photographs of explanted scaffolds

Figure S2: anti-N, S1, S2 protein IgG, IgG1 and IgG2a antibodies measured by Simoa

technology

Figure S3: anti-N, S1, and S2 protein IgG2b, IgM and IgA antibodies measured by Simoa

technology

Figure S4: Schematics for "add-in-time" vaccine

Figure S5: Results from SARS-CoV2 plaque reduction assay

Figure S6: Primary Flow Cytometry gating for specific T cell restimulation assay

 Table S1: Physical characteristics of MSR particles used for vaccination obtained by SEM image analysis.

MSR

Figure S1: photographs of explanted scaffolds containing only MSR (MSR) or the full SARS-COV-2 MSR vaccine formulated with $1\mu g$ of each antigen (N, S1 and S2), $25\mu g$ MPLA and $1\mu g$ GM-CSF

Figure S2: anti - N, S1, S2 protein IgG, IgG1 and IgG2a antibodies measured by Simoa technology. Normalized average number of enzyme labels per bead (AEB) of – from left to right – N, S1, S2-specific antibodies of the – from top to bottom – IgG, IgG1 and IgG2a isotypes.

N/S1/S2 MSR

Figure S3: anti - N, S1, and S2 protein IgG2b, IgM and IgA antibodies measured by Simoa technology. Normalized average number of enzyme labels per bead (AEB) of – from left to right – N, S1, S2-specific antibodies of the – from top to bottom – IgG2b, IgM and IgA isotypes.

Figure S4: Schematics for "add-in-time" vaccine. Alternatively, an MSR vaccine "Shell" vaccine can be manufactured by solely loading a recruiting factor and adjuvant before lyophilization and storage. Antigen is added "in-time" by resuspending the powder-form MSR vaccine with an antigen solution minutes before injection.

Figure S5: Results from SARS-CoV-2 plaque reduction assay. Plaque reduction (% neutralization) vs serum dilution and its non-linear-fit (full line) used to calculate IC50 is shown for a representative Sham (a) and N/S1/S2 MSR vaccine samples (b). The average of two replicates was used for each sample to determine the IC50 dilution. (c) IC50 from serum of Sham or N/S1/S2 MSR vaccine – immunized mice.

Figure S6: Primary Flow Cytometry gating for specific T cell restimulation assay. Representative flow data gating CD8+ T-cell in splenocytes 28 days after immunization with the MSR vaccine loaded with N/S1/S2 proteins. Gated on live cells.

Number of particles measured	Particle size range (μm)	Average particle length (μm)	Median particle length (μm)	Surface area (m²/g)	Average pore diameter (nm)	Pore volume (cm³/g)
907	20-403	65	56	361.9	6.51	0.589

Table S1: Physical characteristics of MSR particles used for vaccination obtained by SEMimage analysis and nitrogen sorption analysis