
1 
 

SUPPLEMENTARY MATERIAL 

Prospective PBPK modeling  

The described PBPK model was used to predict plasma and lung ISF concentrations during the evaluation 

of the candidate mAbs. Physiological parameters, including organ volumes/weights, plasma volume, 

cellular volumes, and plasma flow rates, were taken from the International Commission on Radiological 

Protection (ICRP) database.1 Subcellular volumes, i.e. the interstitial volume and vascular volume, were 

derived using the fractions provided in the Shah and Betts model, and lymphatic flow rate was assumed to 

be 0·2% of the plasma flow rate.2 Jones et al. estimated parameters describing the neonatal Fc receptor 

(FcRn)3, namely: (i) FcRn concentration in the endosomal space, (ii) the rate of pinocytosis and 

exocytosis per unit endosomal space of vascular endothelial, (iii) the rate at which FcRn unbound 

antibody molecules are degraded in the endosomal space, and (iv) the proportionality constant between 

the rate at which antibody transfers from the lymph node compartment to the plasma/blood compartment. 

The following parameters were fixed as per Shah and Betts: (i) the pinocytotic uptake rate of endothelial 

cells, (ii) the probability of mAb degradation in the absence of FcRn binding, (iii) endosomal transit time, 

(iv) volume of endosome, (v) equilibrium constant for mAb-FcRn binding (pH 6·0), (vi) dissociation rate 

constant for mAb-FcRn binding (pH 6·0) and (vii) degradation rate of FcRn-mAb complex at (pH 7·4).2 

All mAbs were assumed to have a molecular weight (MW) of 150 kDa, which is consistent with the 

known MW of IgG.4 

AC-SIN scores for each mAb determine a correlation that calculates the dissociation rate between the 

mAb and the interstitial and vascular cellular membranes. AC-SINS, via the vascular and interstitial 

cellular membrane dissociation rates, affect the rate and fraction of mAbs recycled during intracellular 

transportation through the FcRn pathway (figure 1).  

A typical patient was simulated using organ blood flow rates and organ volumes consistent with a 71 kg 

male. Patient-to-patient (interindividual) variability in mAb exposure was simulated with the PBPK 

model by introducing physiologic variability to relevant parameters (organ volumes, blood flows, 

endothelial cell number) for each “virtual” individual.5,6 A representative patient population (n=1000, 

500:500 male:female) was generated through an algorithmic sampling of the National Health and 

Nutrition Examination Survey (NHANES) database NCHS7 (age: 25-65, weight: 45-120 kg, 50% 

male/female) with corresponding individualized physiologic values matched from the ICRP database.1 

Individual demographic characteristics (i.e. covariates), including age, sex, height, and weight, were 

randomly sampled from the NHANES database while preserving the boundaries mentioned above.7 These 

virtual patient demographics were used to scale the physiological parameters (e.g., volumes and flow 
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rates), as described previously.2,5 The interindividual variability in the number of endothelial cells was 

also accounted for using allometric scaling of individuals body weight, as described by Ucciferri et al.6 

The efficacy metric for projecting dose ranges was to maintain lung ISF concentrations at or above the 

calculated IC90 (conservatively determined as nine times the reported IC50 values) for 14, 21, and 28 days 

post-administration. This assumed that maintaining lung ISF concentrations would also at least maintain 

target concentrations in plasma. A simulated IV infusion of a candidate mAb was administered over two 

hours to the central plasma compartment. Candidate mAbs were first characterized within the PBPK 

model, using only the AC-SINS scores for the typical patient. The dosing projections in this typical 

patient were simulated, and the dose (mg) expected to maintain a concentration above the IC90 over 14, 

21, and 28 days in both the plasma and lung ISF was determined.  

The virtual population of subjects described above were then simulated and rank ordered based on 

individual plasma mAb concentrations on day 21. The individual ranked above 10% of all individuals in 

the virtual population was taken to represent the 10th percentile of PK response. This individual was then 

used to optimize the mAb dose, using the same methods as the typical patient, to determine the dose 

predicted to meet or exceed the calculated IC90 in 90% of patients over 14, 21, and 28 days.  

The dose was optimized using a nonlinear least square method which minimized the quadratic error 

between the model predicted concentrations and the IC90 value on a given day. This optimization was 

performed, independently, for plasma and lung ISF mAb concentrations at days 14, 21, and 28. Dose 

predictions were evaluated for each of the target IC90 values (i.e. one per assay laboratory) and for the 

geometric mean of the three values. Importantly, the derivation of IC90 assumed a Hill coefficient of one 

and so the results may represent a more conservative projection of possible doses. 

With regards to the use of the PBPK model along with the mAb-specific AC-SINS values, there are 

several characteristics that determine the PK properties of mAbs. The physicochemical properties known 

to be associated with mAb in vivo clearance (CL), for example, include: non-specific charge-based 

interactions (e.g., isoelectric point), self‐association, and human neonatal Fc receptor (hFcRn) binding 

affinity. Chung et al.8 reported no apparent association between CL and either combined antibody 

variable region (Fv) charge or isoelectric point (pI) (R2 < 0·25). However, one particular in vitro assay, 

the AC‐SINS assay, was shown to be well-correlated with in vivo mAb clearance (Spearman correlation 

coefficient of 0·7 between AC‐SINS and CL)9 and appears to offer a practical solution for screening mAb 

candidates during early-stage antibody discovery. The PBPK model used here specifically included the 

association of AC-SINS with clearance. The training and test data used to develop that published, open 

access model included 31 IgG mAbs, representing a wide range of AC-SINS scores (0-25). The resulting 

model was well in agreement between the observed and fitted data, suggesting that the model accounted 
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for the correct whole-body catabolic capacity in human. Thus, model validation demonstrated that this 

PBPK accurately predict in vivo PK for antibodies a priori using in vitro data.4 

Verification of the PBPK model translation from Berkeley Madonna to R/mrgsolve9,10 was completed by 

resimulating and matching the scenarios reported by Jones et al.,3 (results not shown). 

 

Viral dynamic model equations 

  conc=centr/vc;  # drug concentration in nM 

  lungconc=delay*0.15;  # lung concentration is 15% that of serum for mAbs   

 fb = lungconc/(lungconc+IC50) ; # fraction virus bound, IC50 = 1.1 nM 

 virusfree=VL*(1-fb);  # virus not bound to drug, available for infecting target cells 

   d/dt(centr) = -K10*centr - K12*centr + K21*peri;  # mAb PK central compt 

   d/dt(delay) = keo*(conc-delay);  # Assume 2 hour delay for mAb steady state in lung relative to serum 

   d/dt(peri) =  K12*centr - K21*peri;  # mAb PK peripheral cmpt 

   d/dt(dft) = - beta*dft*virusfree;  # dft is fraction of uninfected target cells. dft0=1 

   d/dt(VL)=gamma*dft*virusfree - delta*VL;  # total virus VL0=21.8 
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Table S1 PKPD parameters used in the viral dynamic modela

Parameter Typical value 

(% CV) 

Clearance (L/day) 0·137 (30) 

Central volume (L) 3·30 (30) 

Peripheral volume (L) 2·71 (30) 

Intercompartmental clearance (L/day) 0·429 (30) 

Viral load at onset of symptoms (copies/mL) 22 (200) 

Rate constant for viral infection (([copies/ml]-1day-1) 1·35 x 10-5 (175) 

Rate constant for viral replication (day-1) 3·8 (8) 

Death rate of infected cells (day-1) 0·7 (5) 

Bamlanivimab IC50 (nM) 1.1 

aPK parameters are taken from Chakraborty et al, 2012, variability of 30% was assumed for the unstudied 

monoclonal antibody.11 Viral dynamic parameters adapted from Kim et al, 2020. Viral load at symptom onset from 

throat swabs.12 CV, coefficient of variation; IC50, half maximal inhibitory concentration; L, liter; mL milliliter; nM, 

nanomolar.  
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# Script name: COVID_viral_load_patients.R 
# Analyst name: Emmanuel Chigutsa 
# Date created: April 2020 
# Software version: R version 3.5.0 for Windows 
 
library(RxODE) 
library(scales) 
library(ggplot2) 
require(gridExtra) 
library(truncnorm) 
library(dplyr) 
library(gridExtra) 
rm(list=ls()) 
 
####### define model ###### 
ode<-" 
  KD=ec50; 
  conc=centr/vc;  # drug concentration in nM 
  lungconc=delay*scalar;  # lung concentration is x% that of serum for mAbs   
 fb = lungconc/(lungconc+KD) ; # fraction virus bound, KD in nM 
 
 virusfree=VL*(1-fb);  # virus not bound to LY, available for infecting target cells 
 
   d/dt(centr) = -K10*centr - K12*centr + K21*peri;  # mAb central compt 
   d/dt(delay) = keo*(conc-delay); 
   d/dt(peri) =  K12*centr - K21*peri;  # mAb peripheral cmpt 
   d/dt(dft) = - beta*dft*virusfree;  # VL is viral load, target is number of uninfected target cells, beta is 
rate constant of infection 
  # d/dt(infected) =  beta*target*virusfree- delta*infected;  # number of productively infected cells. 
Delta is death rate of infected cells 
   d/dt(VL)=gamma*dft*virusfree - delta*VL;  # total virus. p is shedding rate (release) of virions per cell. 
c is elimination rate of free and bound virus 
   d/dt(vauc) = VL;  # viral load auc 
" 
##### end of model #### 
 
mod4<-RxODE(model = ode, modName = "mod4") 
 
# list model parameters 
npat=12000 
 
# need function to chop off 5th and 95th tails # 
chop<-function(x){ 
   x<-x[x>(quantile(x,0.05))&x<(quantile(x,0.95))]  
} 
 
##### viral kinetics 
# VL0 = 21.8*exp(rnorm(n=npat, mean=0, sd=3.65)) 



VL0 = 21.8*exp(rnorm(n=npat, mean=0, sd=2)) 
VL0 = chop(VL0) 
beta=(6.77e-5)*exp(rnorm(n=npat, mean=0, sd=1.75))/5  # infection rate constant ((copies/mL)-1)/day). 
Divide by 5 to prolong profile 
beta=chop(beta) 
gamma=3.8*exp(rnorm(n=npat, mean=0, sd=0.0787))  # maximum rate constant for virus infection 
gamma=chop(gamma) 
delta=0.7*exp(rnorm(n=npat, mean=0, sd=0.0464))  # (/day)  # death rate of infected cells. Paper has 
value of 1.59, but slowed it down to be conservative 
delta=chop(delta) 
####### 
 
ec50=1.1  #  
 
## PK ### sourced from canakinumab paper, IgG1 antibody. Chakraborty et al. 2012. 
cl = 0.137*exp(rnorm(n=npat, mean=0, sd=0.3))  # (L/d/70 kg) 
cl=chop(cl) 
vc = 3.3*exp(rnorm(n=npat, mean=0, sd=0.3))  # L/70 kg 
vc=chop(vc) 
vp = 2.71*exp(rnorm(n=npat, mean=0, sd=0.3)) # L/70 kg 
vp=chop(vp) 
q = 0.429 # L/day/70 kg 
K10 = cl/vc 
K12 = q/vc 
K21 = q/vp 
scalar = 0.15 
keo=41 # Assume 2 hour for SS lung distribution from serum. 2 h is thalf*5. keo=0.693/thalf, convert to 
days 
dstart=runif(npat,0.5,3) 
dstart=chop(dstart) 
 
 
params.all<-cbind.data.frame(VL0=VL0,beta=beta,gamma=gamma,delta=delta, 
                         vc=vc, cl=cl, vp=vp, q=q, K10=K10, K12=K12, 
K21=K21,ec50=ec50,scalar=scalar,keo=keo,dstart=dstart) 
params.all$ID<-1:length(params.all$dstart) 
doses=c(0,700/70,1400/70)  # mg/kg 
wt=70   # typical weight 
dft0=1 
params.all<-params.all[1:10000,] 
 
### day 0 ################ 
res <- NULL #Create an empty matrix for storing results 
df.full<-NULL 
 
for(jj in unique(doses)){ 
   amt=jj 
df_jj <- do.call(rbind, lapply(1:nrow(params.all), FUN = function(uu) { 



   ev <- eventTable()  # put it in loop to empty it for each simulation. Otherwise RxODE stores the values 
and they pile up. Stupid 
  # Specify sampling 
   ev$add.sampling(c(seq(0,7,0.5),seq(8,28,1))) 
   params <- params.all[uu,] 
    inits<-c(centr=0,delay=0,peri=0,dft=dft0,infected=0,VL=params.all[uu,"VL0"],AUCV=0)  # define initial 
conditions 
    
ev$add.dosing(dose=1000000*amt*wt/150000,nbr.doses=1,dosing.to=1,start.time=params.all[uu,"dsta
rt"])  # dose in mg, times 1 million = ng, divide by 150 kDa to get nanomoles 
    x <- mod4$run(params, ev, inits = inits) 
    x<-cbind(x,"ID"=params.all[uu,"ID"],"ARM"=jj,"START"=params.all[uu,"dstart"])    # append results 
    res <- rbind.data.frame(res,x)  # append results into dataframe 
}) 
) 
  df.full<-rbind(df.full,df_jj) 
} 
res<-df.full 
 
data<-data.frame(res) 
data$VL <- data$VL*(1 + rnorm(length(data$VL),mean=0,sd=0.2))  # add 20% residual error 
names(data) 
 
data.out<-cbind.data.frame(ID=data$ID,ARM=ifelse(data$ARM==0,"Control", 
        ifelse(data$ARM==20,"LY dose 1","LY dose 2")), 
                            TIME=data$time,VL=data$VL,VAUC=data$vauc,RAND_START=data$START) 
 
# write.csv(data.out,"mild_moderate_patients_standard_variability_2.csv",quote=F, 
na=".",row.names=F) 
 
 
data.plot<-data%>% 
  group_by(time,ARM)%>% 
  summarise( 
    lowpi=quantile(VL,0.025), 
    med=quantile(VL,0.5), 
    highpi=quantile(VL,0.975) 
  ) 
 
d.p<-cbind.data.frame(xx=c(0.5,3),ymin=10e-6,ymax=10e6) 
 
pdf("virtual_patients_plots_700_1400.pdf",width=7,height=6) 
ggplot(data.plot,aes(x=time, y=med,fill=as.factor(ARM))) + 
 geom_ribbon(data=d.p,aes(x=xx,ymin=ymin,ymax=ymax),alpha=0.3,inherit.aes = FALSE,fill='grey4')+ 
  geom_ribbon(aes(x=time,ymin=lowpi,ymax=highpi),alpha=0.3)+ 
geom_line(cex=1.2,aes(color=factor(ARM)))+ 
geom_hline(yintercept = 1,col="black",cex=1.2,lty="dashed")+ 
  theme_bw()+ 



  theme(plot.title = element_text(hjust = 
0.5),legend.position=c(0.8,0.8),legend.text=element_text(size=12),legend.title=element_text(size=12))+ 
  scale_x_continuous(breaks=seq(0,28,7),limits=c(0,28),labels=seq(0,28,7))+ 
  scale_y_log10(breaks = trans_breaks("log10", function(x) 10^x), 
              labels = trans_format("log10", math_format(10^.x)),limits=c(0.00001,10000000)) + 
 # ggtitle("Viral load over time - 95% prediction interval \nMild-moderate patients (standard 
variability)") + 
  xlab("Time since onset of symptoms (days)") +  
  ylab("Viral load (copies/mL)")+ 
  theme(axis.text=element_text(size=15), 
        axis.title=element_text(size=15), 
        plot.title=element_text(size=17))+ 
scale_fill_discrete(name="Study arms", 
                        labels=c("Control", "700 mg","1400 mg"))+ 
scale_color_discrete(name="Study arms", 
                        labels=c("Control", "700 mg","1400 mg")) 
dev.off() 
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