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1 Identifiability Assumptions for Causal Mediation Analysis

We use the same counterfactual notation as in the main manuscript. To connect poten-

tial variables to observed data, we make the Stable Unit Treatment Value Assumption

(SUTVA) [1, 2]. Specifically, the SUTVA assumes there is no interference between sub-

jects and the consistency assumption, which states that the observed variables are the

same as the potential variables corresponding to the actually observed treatment level, i.e.,

Mi = ∑
aMi(a)I(Ai = a), and Yi = ∑

a

∑
m Yi(a,m)I(Ai = a,Mi = m), where I(·) is the

indicator function.

Causal effects are formally defined in terms of potential variables which are not necessarily

observed, but the identification of causal effects must be based on observed data. Therefore

further assumptions regarding the confounders are required for the identification of causal

effects in mediation analysis [3]. We will use A |= B|C to denote that A is independent of B

conditional on C. To estimate the average NDE and NIE from observed data, the following

assumptions are needed: (1) Yi(a,m) |= Ai|Ci, no unmeasured confounding for exposure-

outcome relationship; (2) Yi(a,m) |=M i|{Ci, Ai}, no unmeasured confounding for any of

mediator-outcome relationship after controlling for the exposure; (3)M i(a) |= Ai|Ci, no un-
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measured confounding for the exposure effect on all the mediators; (4) Yi(a,m) |=M i(a?)|Ci,

no downstream effect of the exposure that confounds any mediator-outcome relationship.

The four assumptions are required to hold with respect to the whole set of mediators. Finally,

as in all mediation analysis, the temporal ordering assumption also needs to be satisfied,

i.e., the exposure precedes the mediators, and the mediators precede the outcome.

2 Posterior Sampling Algorithm Details for Gaussian Mixture Model (GMM)

Let ΘGMM = (βm,αa,Vk, βa,βc,αc, {γj}
p
j=1, πk, k = 1, 2, 3, 4, σ2

e ,Σ, σ2
a) denote all the un-

known parameters in our Gaussian mixture model. The joint likelihood of {Yi,Mi}ni=1 given

ΘGMM is,

logP ({Yi,Mi}ni=1|ΘGMM , {Ai,Ci}ni=1) =
n∑
i=1

logP (Yi,Mi|ΘGMM , Ai,Ci)

=
n∑
i=1

logP (Yi|Mi,βm, σ
2
e , βa,βc, Ai,Ci)

+logP (Mi|αa,αc,Σ, Ai,Ci)

=
n∑
i=1
−1

2logσ
2
e −

1
2σ2

e

(Yi −Mi
Tβm − Aiβa −CiTβc)2

− 1
2log|Σ| −

1
2(Mi − Aiαa −αcCi)TΣ−1(Mi − Aiαa −αcCi)

The joint log posterior distribution is,
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logP (ΘGMM |{Yi,Mi, Ai,Ci}ni=1) ∝
n∑
i=1

logP (Yi|Mi,βm, σ
2
e , βa,βc, Ai,Ci) + logP (Mi|αa,αc,Σ, Ai,Ci)

+logP (ΘGMM)

=
n∑
i=1
−1

2logσ
2
e −

1
2σ2

e

(Yi −Mi
Tβm − Aiβa −CiTβc)2

− 1
2log|Σ| −

1
2(Mi − Aiαa −αcCi)TΣ−1(Mi − Aiαa −αcCi)

+
p∑
j=1

4∑
k=1

γjk(−
d

2log2π − 1
2log|Vk| −

1
2

(βm)j

(αa)j


T

Vk
−1

(βm)j

(αa)j

)

− q

2log2πσ2
c −

βc
Tβc

2σ2
c

− pq

2 log2πσ2
c −

p∑
j=1

αcj
Tαcj

2σ2
c

+
p∑
j=1

4∑
k=1

γjklog(πk)

+
4∑

k=1
aklog(πk) +

4∑
k=1

(−ν + d+ 1
2 log|Vk|+

1
2tr(Ψ0Vk

−1)))

Sampling

(βm)j

(αa)j

 and γjk

logp(

(βm)j

(αa)j

 |γjk = 1, .) ∝ −1
2

(βm)j

(αa)j


T

(Wj + Vk−1)

(βm)j

(αa)j

+wj
T

(βm)j

(αa)j



where Wj =


∑n
i=1(σ2

e)−1M2
ij 0

0 ∑n
i=1 Σ−1A2

i

 (Σ is diagonal, and can be replaced as σ2
g),

and wj = (∑n
i=1(σ2

e)−1(Yi − Aiβa −
∑
j′ 6=jMij′ (βm)j′ )Mij,

∑n
i=1 Σ−1MijAi)T

p(

(βm)j

(αa)j

 |γjk = 1, .) ∼MVN2((Wj + Vk−1)−1wj , (Wj + Vk−1)−1)

logp(γjk = 1|.) ∝ −1
2log|WjVk + I2|+

1
2wj

T (Wj + Vk−1)−1wj + log(πk)

Sampling πk
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{π1, π2, π3, π4} ∝ Dirichlet(a1 +
p∑
j=1

γj1, a2 +
p∑
j=1

γj2, a3 +
p∑
j=1

γj3, a4 +
p∑
j=1

γj4)

Sampling Vk

logp(Vk|.) ∝ −
1
2(

p∑
j=1

γjk+ν+d+1)log|Vk|−
1
2tr(Ψ0Vk

−1)+
p∑
j=1

γjk(−
1
2

(βm)j

(αa)j


T

Vk
−1

(βm)j

(αa)j

)

p(Vk|.) ∼ Inv-Wishart(Ψ0 +
p∑
j=1

γjk

(βm)j

(αa)j


(βm)j

(αa)j


T

,
p∑
j=1

γjk + ν)

Sampling βa

logp(βa|.) ∝ −
β2
a

2σ2
a

−
n∑
i=1
{(Aiβa)2

2σ2
e

− σ−2
1 Ai(Yi −Mi

Tβm −CiTβc)βa}

p(βa|.) ∼ N(
∑n
i=1 Ai(Yi −Mi

Tβm −CiTβc)
σ2
e/σ

2
a +∑n

i=1 A
2
i

,
1

1/σ2
a +∑n

i=1 A
2
i /σ

2
e

)

Sampling σ2
a

logp(σ2
a|.) ∝ −(1

2 + ha + 1)log(σ2
a)− (β

2
a

2 + la)σ−2
a

p(σ2
a|.) ∼ inverse-gamma(1

2 + ha,
β2
a

2 + la)

Sampling σ2
e

logp(σ2
e |.) = −(n2 + h1 + 1)log(σ2

e)− (
∑n
i=1(Yi −Mi

Tβm − Aiβa −CiTβc)2

2 + l1)σ−2
1

p(σ2
e |.) ∼ inverse-gamma(n2 + h1,

∑n
i=1(Yi −Mi

Tβm − Aiβa −CiTβc)2

2 + l1)

Sampling σ2
g

logp(σ2
g |.) = −(pn2 +h2+1)log(σ2

g)−(
∑n
i=1(Mi

T − Aiαa −CiTαc)(Mi
T − Aiαa −CiTαc)T

2 +l2)σ−2
2
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p(σ2
g |.) ∼ inverse-gamma(pn2 +h2,

∑n
i=1(Mi

T − Aiαa −CiTαc)(Mi
T − Aiαa −CiTαc)T

2 +l2)

Sampling βcw

logp(βcw|.) = −
n∑
i=1
{(Ciwβcw)2

2σ2
e

+ σ−2
e Ciw(Yi −Mi

Tβm − Aiβa −
∑
s 6=w

Ciwβcw)βcw}

p(βcw|.) = N(
∑n
i=1 Ciw(Yi − Aiβa −Mi

Tβm −
∑
s6=w Ciwβcw)∑n

i=1 C
2
iw

,
σ2
e∑n

i=1 C
2
iw

)

Sampling (αcw)j

logp((αcw)j|.) = −
n∑
i=1
{(Ciw(αcw)j)2

2σ2
g

+ σ−2
g Ciw(M (j)

i − Aiαaj −
∑
s 6=w

Cis(αcs)j)(αcw)j}

p((αcw)j|.) = N(
∑n
i=1 Ciw(M (j)

i − Aiαaj −
∑
s 6=w Cis(αcs)j)∑n

i=1 C
2
iw

,
σ2
g∑n

i=1 C
2
iw

)

3 Posterior Sampling Algorithm Details for Product Threshold Gaussian (PTG)

Prior

Let ΘPTG = (βm,αa, β̃m, α̃a, τ 2
β , τ

2
α, βa,βc,αc, σ

2
e ,Σ) denote all the unknown parameters

in the model. Under the PTG prior, the joint log posterior distribution is,

logP (ΘPTG|{Yi,Mi, Ai,Ci}ni=1) ∝
n∑
i=1

logP (Yi|Mi,βm, σ
2
e , βa,βc, Ai,Ci) + logP (Mi|αa,αc,Σ, Ai,Ci)

+ logP (ΘPTG)

=
n∑
i=1
−1

2 log σ2
e −

1
2σ2

e

(Yi −Mi
Tβm − Aiβa −CiTβc)2

− 1
2 log |Σ| − 1

2(Mi − Aiαa −αcCi)TΣ−1(Mi − Aiαa −αcCi)

+
p∑
i=1
−1

2 log τ 2
β −

(β̃m)2
j

2τ 2
β

+
p∑
i=1
−1

2 log τ 2
α −

(α̃a)2
j

2τ 2
α

− q

2 log 2πσ2
c −

βc
Tβc

2σ2
c

− pq

2 log 2πσ2
c −

p∑
j=1

αcj
Tαcj

2σ2
c

Sampling (βm)j
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For (β̃m)j, we denote its threshold conditional on the other parameters as

u(β̃m)j =
{ min(λ1, λ0/|(α̃a)j|), for (α̃a)j 6= 0

λ1, for (α̃a)j = 0

logp((β̃m)j||(β̃m)j| < u(β̃m)j) ∝ −(β̃m)2
j/(2τ 2

β)

(β̃m)j||(β̃m)j| < u(β̃m)j ∼ TN(0, τ 2
β ,−u(β̃m)j , u(β̃m)j)

where TN(µ, σ2, a, b) denotes a truncated normal distribution with mean µ, variance σ2

truncated between [a, b].

logp((β̃m)j||(β̃m)j| >= u(β̃m)j)

∝ −
(β̃m)2

j

2τ 2
β

−
n∑
i=1
{(M (j)

i (β̃m)j)2

2σ2
e

+ σ−2
e M

(j)
i (Yi − Aiβa −

∑
s 6=j

M
(s)
i (β̃m)s −CiTβc)(β̃m)j}

(β̃m)j|(β̃m)j >= u(β̃m)j ∼ TN(µmj, s2
mj, u(β̃m)j ,∞)

(β̃m)j|(β̃m)j <= −u(β̃m)j ∼ TN(µmj, s2
mj,−∞,−u(β̃m)j)

µmj =
∑n
i=1 M

(j)
i (Yi − Aiβa −

∑
s 6=jM

(s)
i (β̃m)s −CiTβc)

σ2
e/τ

2
β +∑n

i=1(M (j)
i )2

, s2
mj = 1

1/τ 2
β +∑n

i=1(M (j)
i )2/σ2

e

And,

p(|(β̃m)j| < u(β̃m)j) = B1

B1 +B2 +B3

p((β̃m)j >= u(β̃m)j) = B2

B1 +B2 +B3

p((β̃m)j <= −u(β̃m)j) = B3

B1 +B2 +B3

where B1 =
∫ u(β̃m)j
−u(β̃m)j

1√
2πτ2

β

exp(− (β̃m)2
j

2τ2
β

) = 1 − 2Φ(−
u(β̃m)j
τ2
β

), Φ(x) is the CDF for stan-

dard normal distribution, B2 = exp(µ2
mj/2s2

mj + log(smj) − log(τβ))(1 − Φ(
u(β̃m)j
τ2
β

)), B3 =
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exp(µ2
mj/2s2

mj + log(smj)− log(τβ))Φ(−
u(β̃m)j
τ2
β

).

(βm)j =
{ (β̃m)j, for |(β̃m)j| >= u(β̃m)j

0, for |(β̃m)j| < u(β̃m)j

Sampling (αa)j

For (α̃a)j, we denote its threshold conditional on the other parameters as

u(α̃a)j =
{ min(λ2, λ0/|(β̃m)j|), for (β̃m)j 6= 0

λ2, for (β̃m)j = 0

logp((α̃a)j||(α̃a)j| < u(α̃a)j) ∝ −(α̃a)2
j/(2τ 2

α)

(α̃a)j||(α̃a)j| < u(α̃a)j ∼ TN(0, τ 2
α,−u(α̃a)j , u(α̃a)j)

logp((α̃a)j||(α̃a)j| >= u(α̃a)j) ∝ −
(α̃a)2

j

2τ 2
α

−
n∑
i=1
{(Ai(α̃a)j)2

2σ2
g

+ σ−2
g Ai(M (j)

i − (αcCi)j)(α̃a)j}

(α̃a)j|(α̃a)j >= u(α̃a)j ∼ TN(µaj, s2
aj, u(α̃a)j ,∞)

(α̃a)j|(α̃a)j <= −u(α̃a)j ∼ TN(µaj, s2
aj,−∞,−u(α̃a)j)

µaj =
∑n
i=1 Ai(M

(j)
i − (αcCi)j)

σ2
g/τ

2
α +∑n

i=1 A
2
i

, s2
aj = 1

1/τ 2
α +∑n

i=1 A
2
i /σ

2
g

And,

p(|(α̃a)j| < u(α̃a)j) = A1

A1 + A2 + A3

p((α̃a)j >= u(α̃a)j) = A2

A1 + A2 + A3

p((α̃a)j <= −u(α̃a)j) = A3

A1 + A2 + A3

where A1 =
∫ u(α̃a)j
−u(α̃a)j

1√
2πτ2

α

exp(− (α̃a)2
j

2τ2
α

) = 1 − 2Φ(−
u(α̃a)j
τ2
α

), Φ(x) is the CDF for stan-

dard normal distribution, A2 = exp(µ2
aj/2s2

aj + log(saj) − log(τα))(1 − Φ(
u(α̃a)j
τ2
α

)), A3 =

7



exp(µ2
aj/2s2

aj + log(saj)− log(τα))Φ(−
u(α̃a)j
τ2
α

).

(αa)j =
{ (α̃a)j, for |(α̃a)j| >= u(α̃a)j

0, for |(α̃a)j| < u(α̃a)j

Sampling βa

logp(βa|.) ∝ −
β2
a

2σ2
a

−
n∑
i=1
{(Aiβa)2

2σ2
1
− σ−2

1 Ai(Yi −Mi
Tβm −CiTβc)βa}

p(βa|.) ∼ N(
∑n
i=1 Ai(Yi −Mi

Tβm −CiTβc)
σ2

1/σ
2
a +∑n

i=1 A
2
i

,
1

1/σ2
a +∑n

i=1 A
2
i /σ

2
1
)

Sampling σ2
a

logp(σ2
a|.) ∝ −(1

2 + ha + 1)log(σ2
a)− (β

2
a

2 + la)σ−2
a

p(σ2
a|.) ∼ inverse-gamma(1

2 + ha,
β2
a

2 + la)

Sampling σ2
e

logp(σ2
e |.) = −(n2 + h1 + 1)log(σ2

e)− (
∑n
i=1(Yi −Mi

Tβm − Aiβa −CiTβc)2

2 + l1)σ−2
e

p(σ2
e |.) ∼ inverse-gamma(n2 + h1,

∑n
i=1(Yi −Mi

Tβm − Aiβa −CiTβc)2

2 + l1)

Sampling σ2
g

logp(σ2
g |.) = −(pn2 +h2+1)log(σ2

g)−(
∑n
i=1(Mi

T − Aiαa −CiTαc)(Mi
T − Aiαa −CiTαc)T

2 +l2)σ−2
g

p(σ2
g |.) ∼ inverse-gamma(pn2 +h2,

∑n
i=1(Mi

T − Aiαa −CiTαc)(Mi
T − Aiαa −CiTαc)T

2 +l2)

Sampling τ 2
β

logp(τ 2
β |.) = −(q2 + km + 1)log(τ 2

β)− (
∑q
j=1(β̃m)2

j

2 + lm)τ−2
β
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p(τ 2
β |.) ∼ inverse-gamma(q2 + km,

∑q
j=1(β̃m)2

j

2 + lm)

Sampling τ 2
α

logp(τ 2
α|.) = −(q2 + kma + 1)log(τ 2

α)− (
∑q
j=1(α̃a)2

j

2 + lma)τ−2
α

p(τ 2
α|.) ∼ inverse-gamma(q2 + kma,

∑q
j=1(α̃a)2

j

2 + lma)

Sampling βcw

logp(βcw|.) = −
n∑
i=1
{(Ciwβcw)2

2σ2
e

+ σ−2
e Ciw(Yi −Mi

Tβm − Aiβa −
∑
s 6=w

Ciwβcw)βcw}

p(βcw|.) = N(
∑n
i=1 Ciw(Yi − Aiβa −Mi

Tβm −
∑
s6=w Ciwβcw)∑n

i=1 C
2
iw

,
σ2
e∑n

i=1 C
2
iw

)

Sampling (αcw)j

logp((αcw)j|.) = −
n∑
i=1
{(Ciw(αcw)j)2

2σ2
g

+ σ−2
g Ciw(M (j)

i − Aiαaj −
∑
s 6=w

Cis(αcs)j)(αcw)j}

p((αcw)j|.) = N(
∑n
i=1 Ciw(M (j)

i − Aiαaj −
∑
s 6=w Cis(αcs)j)∑n

i=1 C
2
iw

,
σ2
g∑n

i=1 C
2
iw

)

4 Effects Distribution and Additional Results in Simulations

Effects Distribution

To better understand the generated effects under the three different data generating mech-

anism in the simulation Setting (A)-(C), we examine the corresponding distributions of the

simulated non-zero marginal effects, (βm)j (or (αa)j) and indirect effects, (βm)j(αa)j in

Figure S1.

The PTG prior model essentially produces effects truncated away from zero (Setting (A)),

where the thresholding parameter λ = (λ0, λ1, λ2) is determined by the proportion of non-

zero effects. For example, choosing λ0 = |α̃aβ̃m|(95), λ1 = |β̃m|(85), λ2 = |α̃a|(93) approx-

imately makes π1 = 0.05, π2 = 0.10, π3 = 0.05, π4 = 0.80. The relatively small non-zero

9



Figure S1: The distributions of the simulated non-zero marginal effects, (βm)j (or (αa)j) and
indirect effects, (βm)j(αa)j under the three simulation settings when n = 100, p = 200. Each row
represents one scenario, i.e. effects under prior model PTG, GMM and Mixture of Horseshoe. We
include marginal effects from normals with the same variances as the simulation distributions and
the corresponding indirect effects as a comparison.
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marginal effects are picked up by its indirect effects exceeding the product threshold. The

Setting (B) with four components of bivariate Gaussian mixture is straightforward, and the

resulting indirect effects distribute as a product of two normal distributions. Under the

Setting (C), we can see that the horseshoe distribution has a tall spike near zero and heavy

tails on large effects, and this generates uneven effects different from either PTG or GMM

prior model. The distribution of the corresponding indirect effects show a stronger contrast

between small and large effects.

Empirical FDR Results

As a practical procedure, we suggest a cutoff on the posterior inclusion probabilities (PIP) to

identify a significance threshold for declaring active mediators. To evaluate the performance

of this significance rule, we report the empirical FDR and TPR in Table S7 and S2 under

all the simulation scenarios. We find that at PIP = 0.5 cutoff, the two proposed methods,

PTG and GMM, exhibit good selection performance while maintaining a reasonable FDR in

most scenarios. At PIP = 0.9 cutoff, the two methods provide over conservative estimates of

FDR, leading to reduced power in mediator selection. Therefore, we will use the 0.5 cutoff

on the PIPs as a selection criterion in the following applications.

Computing Time

We performed simulations on a single core of Intel(R) Xeon(R) Platinum 8176 CPU @

2.10GHz, and the runtime comparison of the proposed methods is shown in Table S3. For

both the small sample scenario with n = 100, p = 200, and the large sample scenario with

n = 1000, p = 2000, the proposed algorithms can be finished in a reasonable amount of

time. We still acknowledge that future development of new algorithms and/or new methods

will likely be required to scale our method to handle thousands of individuals and millions

of mediators.

Estimation Bias

Besides MSE, bias is another important metric for effect estimation. We included here

separate result tables for the bias metric on joint NIE, NDE and TE for all the simulation

11



Method TPR(FDR=0.1) TPR(PIP>0.9) FDR(PIP>0.9) TPR(PIP>0.5) FDR(PIP>0.5)
n = 100, p = 200, p11 = 10, fixed effects (I)

PTG 0.54(0.025) 0.27(0.017) 0.03(0.014) 0.55(0.017) 0.13(0.016)
GMM 0.42(0.023) 0.17(0.022) 0.03(0.021) 0.44(0.023) 0.16(0.017)

n = 100, p = 200, p11 = 10, fixed effects (II)
PTG 0.34(0.017) 0.27(0.008) 0.04(0.019) 0.37(0.013) 0.14(0.019)
GMM 0.39(0.020) 0.21(0.010) 0.03(0.016) 0.39(0.013) 0.11(0.017)

n = 100, p = 200, p11 = 10, PTG
PTG 0.45(0.020) 0.19(0.014) 0.01(0.007) 0.49(0.018) 0.18(0.015)
GMM 0.43(0.015) 0.26(0.011) 0.03(0.012) 0.45(0.014) 0.11(0.012)

n = 100, p = 200, p11 = 10, Gaussian
PTG 0.38(0.008) 0.26(0.008) 0.01(0.006) 0.56(0.010) 0.39(0.011)
GMM 0.41(0.006) 0.27(0.005) 0.01(0.002) 0.35(0.006) 0.06(0.008)

n = 100, p = 200, p11 = 10, Horseshoe
PTG 0.30(0.015) 0.24(0.014) 0.08(0.016) 0.37(0.016) 0.38(0.019)
GMM 0.33(0.011) 0.26(0.011) 0.03(0.008) 0.35(0.012) 0.16(0.014)

Table S1: Empirical estimates of TPR and FDR in simulations under n = 100, p = 200, p11 is the
number of true active mediators. The results are based on 200 replicates for each setting, and the
standard errors are shown within parentheses. TPR(FDR=0.1) is the true positive rate controlled
at a fixed FDR of 10%; TPR(PIP>0.9) and FDR(PIP>0.9) are the empirical estimates when the
PIP threshold for declaring active mediators is 0.9; TPR(PIP>0.5) and FDR(PIP>0.5) are the
empirical estimates when the PIP threshold for declaring active mediators is 0.5.

Method TPR(FDR=0.1) TPR(PIP>0.9) FDR(PIP>0.9) TPR(PIP>0.5) FDR(PIP>0.5)
n = 1000, p = 2000, p11 = 100, fixed effects (I)

PTG 0.64(0.008) 0.49(0.017) 0.01(0.002) 0.55(0.017) 0.06(0.016)
GMM 0.61(0.009) 0.40(0.004) 0.01(0.003) 0.55(0.005) 0.07(0.010)

n = 1000, p = 2000, p11 = 100, fixed effects (II)
PTG 0.40(0.008) 0.20(0.004) 0.01(0.003) 0.37(0.012) 0.07(0.010)
GMM 0.48(0.006) 0.29(0.003) 0.01(0.002) 0.43(0.004) 0.06(0.007)

n = 1000, p = 2000, p11 = 100, PTG
PTG 0.40(0.008) 0.19(0.004) 0.01(0.011) 0.44(0.007) 0.13(0.006)
GMM 0.37(0.010) 0.10(0.004) 0.05(0.008) 0.47(0.006) 0.17(0.007)

n = 1000, p = 2000, p11 = 100, Gaussian
PTG 0.42(0.006) 0.20(0.005) 0.03(0.002) 0.51(0.005) 0.17(0.004)
GMM 0.51(0.007) 0.36(0.005) 0.01(0.002) 0.49(0.006) 0.10(0.004)

n = 1000, p = 2000, p11 = 100, Horseshoe
PTG 0.29(0.008) 0.30(0.004) 0.05(0.006) 0.39(0.008) 0.24(0.004)
GMM 0.38(0.007) 0.35(0.004) 0.03(0.003) 0.45(0.004) 0.18(0.015)

Table S2: Empirical estimates of TPR and FDR in simulations under n = 1000, p = 2000, p11
is the number of true active mediators. The results are based on 200 replicates for each setting,
and the standard errors are shown within parentheses. TPR(FDR=0.1) is the true positive rate
controlled at a fixed FDR of 10%; TPR(PIP>0.9) and FDR(PIP>0.9) are the empirical estimates
when the PIP threshold for declaring active mediators is 0.9; TPR(PIP>0.5) and FDR(PIP>0.5)
are the empirical estimates when the PIP threshold for declaring active mediators is 0.5.

settings discussed in the main paper (see Table S4, S5), and summarized the results in the

simulation results section of the main paper.
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Method n = 100, p = 200 n = 1000, p = 2000
PTG 30.5sec 23.0min
GMM 88.8sec 29.8min

Table S3: The average runtime of the proposed methods for n = 100, p = 200 and n = 1000,
p = 2000 in the simulations. Comparison was carried out on a single core of Intel(R) Xeon(R)
Platinum 8176 CPU @ 2.10GHz. For the proposed methods, we in total ran 150,000 iterations.

Table S4: Estimation bias for fixed effect simulations under n = 100, p = 200 and n = 1000, p =
2000, p11 is the number of truly active mediators. The results are based on 200 replicates for each
setting.

n = 100, p = 200, p11 = 10, fixed effects (I) fixed effects (II)
Method NIE NDE TE NIE NDE TE

PTG (0.15,0.4,0.4) -0.33 0.21 -0.12 1.34 -1.15 0.19
GMM 0.15 -0.19 -0.04 0.92 -0.84 0.08
BAMA -0.17 0.10 -0.07 1.12 -1.01 0.11

Bi-BLasso -0.41 0.39 -0.02 0.94 -0.83 0.11
PathLasso -0.34 0.23 -0.11 1.61 -1.34 0.27
Bi-Lasso -0.35 0.25 -0.10 1.41 -1.17 0.24
HIMA -0.20 -0.01 -0.21 1.24 -0.92 0.32

Univariate -12.01 11.52 -0.49 -10.23 9.82 -0.41
n = 1000, p = 2000, p11 = 100, fixed effects (I) fixed effects (II)

Method NIE NDE TE NIE NDE TE
PTG (0.15,0.4,0.4) -0.19 0.15 -0.04 0.10 -0.05 0.05

GMM 0.06 -0.08 -0.02 0.01 0.03 0.04
BAMA -1.15 1.14 -0.01 0.09 -0.03 0.06

Bi-BLasso 0.77 -0.74 0.03 0.31 -0.34 -0.03
PathLasso -2.40 2.47 0.07 0.42 -0.46 -0.04
Bi-Lasso -2.23 2.27 0.04 0.23 -0.27 -0.04
HIMA -3.27 2.52 -0.75 0.54 0.58 1.12

Univariate -16.21 18.73 2.52 -7.21 6.93 -0.28
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Table S5: Estimation bias for random effect simulations under n = 100, p = 200 and n =
1000, p = 2000, p11 is the number of truly active mediators. The results are based on 200 replicates
for each setting.

n = 100, p = 200, p11 = 10, PTG, σ2
u = 0.3 Gaussian, σ2 = 0.3 Horseshoe, σ2 = 0.5, b = 3

Method NIE NDE TE NIE NDE TE NIE NDE TE
PTG -0.086 0.079 -0.007 -0.403 0.355 -0.048 -0.190 0.103 -0.087
GMM 0.287 -0.292 -0.005 0.319 -0.322 -0.003 0.188 -0.203 -0.015
BAMA 0.187 -0.194 -0.007 -0.194 0.120 -0.074 0.114 -0.147 -0.033

Bi-BLasso -0.233 0.261 0.028 -0.255 0.215 -0.040 -0.540 0.512 -0.028
PathLasso -0.284 0.252 -0.032 -0.230 0.154 -0.076 -0.692 0.619 -0.073
Bi-Lasso -0.298 0.307 0.009 -0.076 0.042 -0.034 -0.999 0.953 -0.046
HIMA -0.129 0.282 0.153 -0.168 -0.169 -0.337 -0.741 -0.902 -1.643

Univariate -12.029 11.824 -0.205 -7.940 7.794 -0.146 -14.108 13.872 -0.236
n = 1000, p = 2000, p11 = 100, PTG, σ2

u = 0.1 Gaussian, σ2 = 0.1 Horseshoe, σ2 = 0.3, b = 3
Method NIE NDE TE NIE NDE TE NIE NDE TE
PTG 0.026 -0.009 0.017 -0.780 0.708 -0.072 -0.163 0.195 0.032
GMM 0.020 -0.013 0.007 0.049 -0.047 0.002 0.088 -0.117 -0.029
BAMA 0.046 -0.057 -0.011 -0.287 0.263 -0.024 -0.204 0.139 -0.065

Bi-BLasso -0.067 -0.027 -0.094 -0.656 0.614 -0.042 -0.277 0.098 -0.179
PathLasso 0.390 -0.428 -0.038 0.410 -0.383 0.027 -7.091 7.049 -0.042
Bi-Lasso 0.004 0.009 0.013 -0.763 0.795 0.032 4.650 -4.693 -0.043
HIMA 0.033 0.281 0.314 -1.438 -0.300 -1.738 -46.334 76.720 30.386

Univariate -6.240 6.179 -0.061 -11.124 11.099 -0.025 -17.095 17.046 -0.049

Data-Adaptive Uniform Priors on λ’s

Alternative to fixing the threshold parameter λ, we also consider a data-adaptive uniform

prior that favors large positive value on λ’s. From our experience, the lower bound of such

informative prior should be far away from zero, otherwise the method tends to include many

false positives. Therefore, we first fit the Lasso method and then use the posterior quantiles

(e.g. 95% to 99%) of the estimated |βm|, |αa| to determine the range of corresponding

λ’s. To be specific, a priori, λ1 ∼ U[|β̂m|(95%), |β̂m|(99%)], λ2 ∼ U[|α̂a|(95%), |α̂a|(99%)], and

we always set the value of λ0 as λ1λ2. In Figure S2, we visualize the joint distribution of

βmj and αaj under three different prior choices for λ1 and λ2: (1) λ1, λ2 are fixed to be a

priori determined values; (2) λ1, λ2 are specified to follow uniform distributions, with the

lower thresholds set to be zero and the upper thresholds set to values corresponding to 0.1

prior inclusion probability; or (3) λ1, λ2 are specified to follow uniform distributions, with

both the lower and upper thresholds determined in a data-driven fashion as explained in

the paragraph. We refer to the first option as the fixed value option, the second option as

uniform prior option, and the third option as uniform prior with data-adaptive thresholds
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option. There is heavy density on the (0,0) in all the plots.

Figure S2: Visualizations of the joint distribution (βmj , αaj) under fixed value option, uniform
prior options after integrating out the λ’s. A: under fixed thresholds with λ0 = 0.15, λ1 = λ2 = 0.4;
B: the λ’s are assigned uniform priors with lower bounds being zero, and upper bounds tuned for
0.1 prior inclusion probability; C: the λ’s are assigned uniform priors with the range determined
by the posterior quantiles (95% to 99%) of the estimated |βm|, |αa| from Lasso.

We examine the performance of using these three prior choices for λ1 and λ2 in the fixed

effect simulations. The comparison among the three prior choices is shown in Table S6. The

results indicate that uniform priors adequately large lower bounds (e.g. 95% quantiles) on

λ1 (and λ2) can boost the selection power and estimation accuracy. The two thresholds

specified this way also cover a reasonably wide range, e.g. 0.2 ∼ 0.6 when the non-zero true

effect is 0.5 in our simulation. With the empirical FDR results shown in Table S7, we find

that uniform priors with range of 95% to 99% quantiles tend to produce more conservative

results than fixed thresholds.
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Table S6: Simulation results for fixed effects under n = 100, p = 200 and n = 1000, p = 2000, p11
is the number of truly active mediators. TPR: true positive rate at false discovery rate (FDR) =
0.10. MSEnon-null: mean squared error for the indirect effects of truly active mediators. MSEnull:
mean squared error for the indirect effects of truly inactive mediators. The results are based on
200 replicates for each setting, and the standard errors are shown within parentheses.

n = 100, p = 200, p11 = 10, fixed effects (I)
Method AUC TPR MSEnon-null MSEnull × 10−4

PTG (fixed values, 0.15,0.4,0.4) 0.99(0.001) 0.52(0.026) 0.043 0.395
PTG (uniform, 90% to 99%) 0.98(0.001) 0.45(0.025) 0.046 0.390
PTG (uniform, 95% to 99%) 0.99(0.001) 0.54(0.027) 0.048 0.246

GMM 0.98(0.001) 0.44(0.022) 0.047 1.409
BAMA 0.97(0.002) 0.38(0.021) 0.063 2.471

n = 100, p = 200, p11 = 10, fixed effects (II)
Method AUC TPR MSEnon-null MSEnull × 10−4

PTG (fixed values, 0.15,0.4,0.4) 0.96(0.003) 0.35(0.016) 0.073 0.309
PTG (uniform, 90% to 99%) 0.96(0.003) 0.35(0.018) 0.077 0.342
PTG (uniform, 95% to 99%) 0.94(0.005) 0.35(0.016) 0.079 0.153

GMM 0.96(0.003) 0.37(0.017) 0.062 0.940
BAMA 0.95(0.003) 0.31(0.015) 0.075 2.389

n = 1000, p = 2000, p11 = 100, fixed effects (I)
Method AUC TPR MSEnon-null MSEnull × 10−4

PTG (fixed values, 0.15,0.4,0.4) 0.98(0.001) 0.64(0.008) 0.028 0.070
PTG (uniform, 90% to 99%) 0.96(0.001) 0.45(0.010) 0.051 1.206
PTG (uniform, 95% to 99%) 0.98(0.005) 0.65(0.011) 0.044 0.050

GMM 0.99(0.001) 0.61(0.009) 0.023 0.134
BAMA 0.98(0.001) 0.54(0.007) 0.040 0.150

n = 1000, p = 2000, p11 = 100, fixed effects (II)
Method AUC TPR MSEnon-null MSEnull × 10−6

PTG (fixed values, 0.15,0.4,0.4) 0.96(0.002) 0.40(0.008) 0.008 0.164
PTG (uniform, 90% to 99%) 0.96(0.001) 0.31(0.006) 0.008 0.249
PTG (uniform, 95% to 99%) 0.96(0.001) 0.37(0.007) 0.008 0.239

GMM 0.97(0.001) 0.48(0.006) 0.003 3.437
BAMA 0.95(0.001) 0.35(0.005) 0.005 7.485
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Table S7: Empirical estimates of TPR and FDR in simulations under n = 100, p = 200, p11
is the number of true active mediators. The results are based on 200 replicates for each setting,
and the standard errors are shown within parentheses. TPR(FDR=0.1) is the true positive rate
controlled at a fixed FDR of 10%; TPR(PIP>0.9) and FDR(PIP>0.9) are the empirical estimates
when the PIP threshold for declaring active mediators is 0.9; TPR(PIP>0.5) and FDR(PIP>0.5)
are the empirical estimates when the PIP threshold for declaring active mediators is 0.5.

Method TPR(FDR=0.1) TPR(PIP>0.9) FDR(PIP>0.9) TPR(PIP>0.5) FDR(PIP>0.5)
n = 100, p = 200, p11 = 10, fixed effects (I)

PTG (0.15,0.4,0.4) 0.52(0.026) 0.26(0.017) 0.03(0.015) 0.51(0.017) 0.13(0.014)
PTG (uniform, 0.90) 0.45(0.025) 0.17(0.015) 0.04(0.024) 0.48(0.017) 0.16(0.016)
PTG (uniform, 0.95) 0.54(0.027) 0.19(0.018) 0.02(0.012) 0.44(0.021) 0.10(0.015)

n = 100, p = 200, p11 = 10, fixed effects (II)
PTG (0.15,0.4,0.4) 0.35(0.016) 0.27(0.009) 0.04(0.017) 0.37(0.014) 0.15(0.016)
PTG (uniform, 0.90) 0.35(0.018) 0.19(0.007) 0.03(0.001) 0.38(0.017) 0.20(0.021)
PTG (uniform, 0.95) 0.35(0.016) 0.16(0.006) 0.01(0.001) 0.30(0.013) 0.11(0.018)

n = 1000, p = 2000, p11 = 100, fixed effects (I)
PTG (0.15,0.4,0.4) 0.64(0.008) 0.49(0.017) 0.01(0.002) 0.55(0.017) 0.06(0.016)
PTG (uniform, 0.90) 0.45(0.010) 0.38(0.020) 0.08(0.007) 0.32(0.005) 0.05(0.006)
PTG (uniform, 0.95) 0.65(0.011) 0.41(0.004) 0.02(0.002) 0.42(0.004) 0.02(0.002)

n = 1000, p = 2000, p11 = 100, fixed effects (II)
PTG (0.15,0.4,0.4) 0.40(0.008) 0.20(0.004) 0.01(0.003) 0.37(0.012) 0.07(0.010)
PTG (uniform, 0.90) 0.31(0.006) 0.17(0.005) 0.03(0.003) 0.35(0.009) 0.15(0.005)
PTG (uniform, 0.95) 0.37(0.007) 0.19(0.003) 0.05(0.007) 0.55(0.009) 0.27(0.008)

Sensitivity Analysis

We perform sensitivity analysis to examine how robust the posterior inference is regarding

mild changes in terms of the prior choices for λ1 and λ2: (1) λ1, λ2 are fixed to be a

priori determined values; (2) λ1, λ2 are specified to follow uniform distributions, with both

the lower and upper thresholds determined in a data-driven fashion as explained in the

paragraph. We refer to the first option as the fixed value option, and the second option as

uniform prior option with data-adaptive thresholds option.

We summarize the results in Table S8. In general, the lambda parameters, especially the

lower bounds for βmj and αaj, play an important role in PTG’s performance. As the lambda

parameters vary, the TPR varies in a reasonable range, and is mostly higher than the other

methods, while the MSEs are relatively more robust.

5 Detailed Description of MESA Data

MESA is a population-based longitudinal study designed to identify risk factors for the

progression of subclinical cardiovascular disease (CVD) [4]. A total of 6,814 non-Hispanic
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Table S8: Sensitivity analysis under n = 100, p = 200 with fixed effects, p11 is the number of
truly active mediators. We include the pre-defined fixed thresholds (λ0, λ1, λ2), or the range of
uniform priors under each setting. The results are based on 200 replicates for each setting, and
the standard errors are shown within parentheses.

n = 100, p = 200, p11 = 10, fixed effects (I)
Method AUC TPR MSEnon-null MSEnull × 10−4

PTG (fixed values, 0.15,0.4,0.4) 0.99(0.001) 0.52(0.026) 0.043 0.395
PTG (fixed values, 0.2,0.4,0.2) 0.96(0.006) 0.47(0.023) 0.048 0.521

PTG (fixed values, 0.25,0.25,0.25) 0.98(0.001) 0.44(0.024) 0.049 0.243
PTG (fixed values, 0.5,0.1,0.5) 0.97(0.002) 0.35(0.019) 0.042 0.863
PTG (uniform, 90% to 99%) 0.98(0.001) 0.45(0.025) 0.046 0.390
PTG (uniform, 95% to 99%) 0.99(0.001) 0.54(0.027) 0.048 0.246

n = 100, p = 200, p11 = 10, fixed effects (II)
Method AUC TPR MSEnon-null MSEnull × 10−4

PTG (fixed values, 0.15,0.4,0.4) 0.96(0.003) 0.35(0.016) 0.073 0.309
PTG (fixed values, 0.2,0.4,0.2) 0.92(0.005) 0.32(0.016) 0.081 0.223

PTG (fixed values, 0.25,0.25,0.25) 0.96(0.003) 0.31(0.015) 0.085 0.187
PTG (fixed values, 0.5,0.1,0.5) 0.93(0.004) 0.27(0.013) 0.082 0.469
PTG (uniform, 90% to 99%) 0.96(0.003) 0.35(0.018) 0.077 0.342
PTG (uniform, 95% to 99%) 0.94(0.005) 0.35(0.016) 0.079 0.153

white, African-American, Hispanic, and Chinese-American women and men aged 45−84

without clinically apparent CVD were recruited between July 2000 and August 2002 from

the following 6 regions in the US: Forsyth County, NC; Northern Manhattan and the Bronx,

NY; Baltimore City and Baltimore County, MD; St. Paul, MN; Chicago, IL; and Los An-

geles County, CA. Each field center recruited from locally available sources, which included

lists of residents, lists of dwellings, and telephone exchanges. Neighborhood socioeconomic

disadvantage scores for each neighborhood were created based on a principal components

analysis of 16 census-tract level variables from the 2000 US Census. These variables reflect

dimensions of education, occupation, income and wealth, poverty, employment, and hous-

ing. For the neighborhood measures, we use the cumulative average of the measure across

all available MESA examinations. The descriptive statistics for the exposure and outcome

can be found in Table S9.

In the MESA data, between April 2010 and February 2012 (corresponding to MESA Exam

5), DNAm were assessed on a random subsample of 1,264 non-Hispanic white, African-

American, and Hispanic MESA participants aged 55−94 from the Baltimore, Forsyth County,

New York, and St. Paul field centers. After excluding respondents with missing data on

one or more variables, we had phenotype and DNAm data from purified monocytes on a
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total of 1,225 individuals and we focused on this set of individuals for analysis. The de-

tailed description of DNAm data collection, quantitation and data processing procedures

can be found in Liu et al [5]. Briefly, the Illumina HumanMethylation450 BeadChip was

used to measure DNAm, and bead-level data were summarized in GenomeStudio. Quan-

tile normalization was performed using the lumi package with default settings [6]. Quality

control (QC) measures included checks for sex and race/ethnicity mismatches and outlier

identification by multidimensional scaling plots. Further probe filtering criteria included:

“detected” DNAm levels in <90% of MESA samples (detection p-value cut-off = 0.05), ex-

istence of a SNP within 10 base pairs of the target CpG site, overlap with a non-unique

region, and suggestions by DMRcate [7] (mostly cross-reactive probes). Those procedures

leave us 403,713 autosomal probes for analysis.

For computational reasons, we first selected a subset of CpG sites to be used in the final

multivariate mediation analysis model. In particular, for each single CpG site in turn, we

fit the following linear mixed model to test the marginal association between the CpG site

and the exposure variable:

Mi = Aiψa +C1i
Tψc +ZiTψu + εi, i = 1, ..., n (1)

where Ai represents neighborhood SES value for the i’th individual and ψa is its coefficient;

C1i is a vector of covariates that include age, gender, race/ethnicity, childhood socioeco-

nomic status, adult socioeconomic status and enrichment scores for each of 4 major blood cell

types (neutrophils, B cells, T cells and natural killer cells) to account for potential contami-

nation by non-monocyte cell types; ZiTψu represent methylation chip and position random

effects and are used to control for possible batch effects. The error term εi ∼MVN(0, σ2In)

and is independent of the random effects. We obtained p-values for testing the null hy-

pothesis ψa = 0 from the above model. We further applied the R/Bioconductor package

BACON [8] to these p-values to further adjust for possible inflation using an empirical null

distribution. Based on these marginal p-values, we selected top 2,000 CpG sites with the

smallest p-values for our Bayesian multivariate analysis.

19



Besides the proposed methods, we also implement the other competing methods on the

MESA data. HIMA identifies one CpG site in the gene region of PCID2 as active mediator

through the joint significance test with adjusted p-value = 6.3e-5, and this single site has also

been detected by PTG and GMM methods. We apply the Pathway Lasso and bi-Lasso on

multiple permuted data, and notice that same active mediators with non-zero indirect effects

have been picked out in both original and permuted data. Thus, the signals identified by

Pathway Lasso and bi-Lasso are very probably false discoveries. For BAMA, the estimated

PIPs over the 2,000 CpG sites are no more than 0.1, which does not provide strong evidence

on the finding of active mediators.

Full
Sample
(n, %)

Neighborhood
Socioeconomic
Disadvantage
Mean (SD)

Body Mass Index (BMI)
Mean (SD)

Full sample 1225 (100) -0.32 (1.11) 29.5 (5.49)
Age

55−65 years 462 (38) -0.18 (0.96) 30.3 (6.02)
66−75 years 397 (32) -0.30 (1.16) 30.1 (5.21)
76−85 years 300 (24) -0.47 (1.15) 28.2 (4.65)
86−95 years 66 (5) -0.67 (1.46) 26.6 (4.66)

Race/ethnic group
Non-Hispanic white 580 (47) -0.56 (1.18) 28.7 (5.40)
African-American 263 (22) -0.16 (0.98) 30.5 (5.69)

Hispanic 382 (31) -0.05 (1.00) 30.0 (5.32)
Gender

Female 633 (52) -0.24 (1.09) 30.1 (6.20)
Male 592 (48) -0.40 (1.12) 28.9 (4.54)

Table S9: Characteristics of 1225 participants from MESA. %: proportion in the corresponding
category. SD: standard deviation.

6 Detailed Description of LIFECODES Data

The LIFECODES prospective birth cohort enrolled approximately 1,600 pregnant women

between 2006 and 2008 at the Brigham and Women’s Hospital in Boston, MA. Participants

between 20 and 46 years of age were all at less than 15 weeks gestation at the initial study

visit, and followed up to four visits (targeted at median 10, 18, 26, and 35 weeks gestation).

At the initial study visit, questionnaires were administered to collect demographic and

health-related information. Subjects’ urine and plasma samples were collected at each study

visit. Among participants recruited in the LIFECODES cohort, 1,181 participants were
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followed until delivery and had live singleton infants. The birth outcome, gestational age,

was also recorded at delivery, and preterm birth was defined as delivery prior to 37 weeks

gestation. This study received institutional review board (IRB) approval from the Brigham

and Women’s Hospital and all participants provided written informed consent. All of the

methods within this study were performed in accordance with the relevant guidelines and

regulations approved by the IRB. Additional details regarding recruitment and study design

can be found in [9, 10].

In this study, we focused on a subset of n = 161 individuals with their urine and plasma

samples collected at one study visit occurring between 23.1 and 28.9 weeks gestation (median

= 26 weeks). Characteristics of the subset sample is described in Table S10. Subjects’ urine

samples were refrigerated (4◦C) for a maximum of 2 hours before being processed and stored

at −80◦C. Approximately 10mL of blood was collected using ethylenediaminetetraacetic

acid plasma tubes and temporarily stored at 4◦C for less than 4 hours. Afterwards, blood

was centrifuged for 20 minutes and stored at −80◦C. Environmental exposure analytes were

measured from urine samples by NSF International in Ann Arbor, MI, following the methods

developed by the Centers for Disease Control (CDC) [11]. Those exposure analytes include

phthalates, phenols and parabens, trace metals and polycyclic aromatic hydrocarbons. To

adjust for urinary dilution, specific gravity (SG) levels were measured in each urine sample

using a digital handheld refractometer (ATAGO Company Ltd., Tokyo, Japan), and was

included as a covariate in regression models. Urine and plasma were subsequently analyzed

for endogenous biomarkers, including 51 eicosanoids, five oxidative stress biomarkers and five

immunological biomarkers in the present study. For a detailed description of the biomarkers

that we analyzed and the media (urine or plasma) in which they were measured, please refer

to [12].
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Full
Sample

(n = 161)

Preterm
(<37 weeks gestation,

n = 52)

Control
(n = 109)

Agea 32.7 (4.4) 32.1 (5.0) 33.0 (4.2)
BMI at Initial Visita 26.7 (6.4) 28.5 (7.6) 25.8 (5.6)
Race/ethnic groupb

White 102 (63%) 29 (56%) 73 (67%)
African-American 18 (11%) 7 (13%) 11 (10%)

Other 41 (26%) 16 (31%) 25 (23%)
Gestational weeksa 37.5 (3.1) 34.1 (3.2) 39.1 (1.1)

Table S10: Characteristics of all participants in the subset sample from the LIFECODES prospec-
tive birth cohort (n = 161). aContinuous variables presented as: mean (standard deviation).
bCategorical variables presented as: count (proportion).
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