SUPPLEMENTAL MATERIAL Figures

Higher expression of the strawberry xyloglucan endotransglucosylase/hydrolase genes *FvXTH9* and *FvXTH6* accelerates fruit ripening

Lucia D. Witasari^{1,2}, Fong-Chin Huang¹, Thomas Hoffmann¹, Wilfried Rozhon³, Stephen C. Fry⁴, Wilfried Schwab¹

- ¹ Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
- ² Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1 – Bulaksumur Yogyakarta, Indonesia
- ³ Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
- ⁴ Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Edinburgh EH9 3BF, UK

Figure S1. Expression levels of putative XTHs in Fragaria vesca varieties.

- Figure S2. Phylogenetic tree of XTH candidate genes from *F. vesca.*
- Figure S3. qPCR analysis of FvXTH9 and FvXTH6.
- Figure S4. Amino acid sequence alignment of group I/II XTHs.
- Figure S5. Purification of FvXTH9-His and FvXTH6-His.
- Figure S6. pH optimum of FvXTH9 and FvXTH6.
- Figure S7. Metabolite analysis of F. × ananassa fruit after agroinfiltration.
- Figure S8. Amino acid sequence alignment.

Figure S1. Expression levels of putative XTHs in *Fragaria vesca* varieties Reine de Vallées, Hawaii 4 and Yellow Wonder.

Figure S2. Phylogenetic tree of *XTH* candidate genes from *F. vesca*. The tree was constructed using Genious v5.6 software with the Neighbor-Joining method with 5000 bootstrap replications. Amino acid sequences were retrieved from the *F. vesca* Genome Browser database and their accession numbers are as follows: gene00216, gene00661, gene00663, gene01781, gene01986, gene05197, gene05204, gene05205, gene05220, gene05221, gene05591, gene09279, gene09672, gene12291, gene13718, gene17597, gene17598, gene18893, gene19553, gene19781, gene19782, gene19783, gene24600, gene24869, gene24871, gene28698, gene28699, and gene28700.

Figure S3. qPCR analysis of *FvXTH9* (a) and *FvXTH6* (b) at different fruit maturation stages (small green, large green, white and ripe fruit) as well as other tissues (young leaf, old leaf and flower) of *F. vesca.* Hawaii 4. Relative expression levels are normalized to the reference gene (interspacer gene).

											— Section 1
	(1)	1	,10		20		30		40		55
At-XTH10	(1)	M	FLINR	SKPFVL	LVGFS	IISSL	LLWVS	QASVV	SSGDFN	IKDFFVI	WSPTHVN
At-XTH6	(1)	1	MAKIY	SP-SFP	GTLCL	CIFTL	LTLMF	IRVSA	RPATF	/EDFKAA	WSESHIF
At-XTH7	(1)	M	VVSLF	SRNVF	YTLSL	CLFAA	L Y	QPVMSI	RPAKFE	EDDFRIA	WSDTHII
FvXTH6	(1)	M	YPSLR	SG-SVI	ASISL	CFLSL	FS	LSAFAI	RPATFI	QDFQVI	WSDSHIF
SI-XTH7	(1)	MATLTO	CCSLKI	NS-AFV	LILVY	ALTFS	FS	LVS-AL	RPATFI	QDFKIA	WSDSHIK
At-XTH9	(1)		MV	/GMDLF	KCVMM	IIMV	-LVVS	CGEAV	SGAKFI	DELYRSS	WAMDHCV
FvXTH9	(1)		M2	ASASLF	LSVIL	GLS	-LFLG	3PV8	SSAKFI	DELFQPY	WASDHFI
At-XTH8	(1)	METI	ERRII	rscsam	TALFL	FMTAL	MASSS	SIAATP	rqs-fe	EDNFNIM	IWSENHFI
SI-XTH1	(1)		MG	LIKGVL	FSIVL	INLSL	VVFCG	YPRRP	JDVPFV	VKNYEPS	WASHHIK
SI-XTH4	(1)			-MKGVL	VAFVL	INLSI	LASCO	APRKV	L DVPFV	VNNYEPS	SWSSHHIK
At-XTH4	(1)		-MTVS	SSPWAL	MALFL	MVSST	MVMAI	PPRKA	DVPF	GRNYVPI	WAFDHQK
At-XTH5	(1)		-MG-RI	SSTLC	LTFLI	LAT	VAFGV	PPKKS	INVPFO	GRNYFPI	WAFDHIK
Fc-XTH1	(1)		MASS	OCTLL	LSIML	MGS	VTMAA	PPKRP	JSVPFO	GRNYMPI	WAFDHIK
Md-XTH1	(1)		-MASCI	XOWTVF	LSLLC	LVS	ΑΤΊΛΑΑ	PPKKP	JAVPEC	RNYMPT	WAFDHIK
PHTXET16A	(1)		-MAAA'	ZPWTLF	LGMLV	MVS	GTMGA	ALRKPY	IDVAFC	RNYVPT	WAFDHIK
Consensus	(1)			SVL	LSLLL	TLS	L	in Dicici	F	NY PT	WA HTK
conscribus	(1)			511		1110	5		-		— Section 2
	(56)	56		,70		,80		90		100	110
At-XTH10	(52)	TSNDG	RSRTLI	KLDQES	GASFS	SIQTE	LFGQI	DMKIKI	LIRGSS	SQGTVVA	YYMSSDC
At-XTH6	(50)	QMEDGI	KAIQLY	/LDQST	GCGFA	SKRKY	LFGRV	SMKIKI	IPGDS	SAGTVTA	FYMNSDI
At-XTH7	(49)	QIDGGI	RAIQLI	KLDPSS	GCGFA	SKKQY	LFGRV	SMKIKI	LIPGDS	SAGTVTA	FYMNSDI
FvXTH6	(48)	OTDGGI	RATOL	/LDONS	GCGFS	sкнку	LEGRV	SMKTKI	TPGDS	SAGTVTA	FYMNSDT
SI-XTH7	(51)	OLDGGI	RGTOL	LDONS	GCGFA	SRSKY	LEGRV	SMKTKI	VPGDS	SAGTVTA	FYMNSDT
	(44)	NEGI	EVTKLI	LDNYS	GAGEE	SRSKY	LEGKV	STOTKI	VEGDS	SAGTVTZ	FYMSSDC
F _V XTH9	(41)	YEGI	ELTHM	LDNYS	GAGES	SKNKY	MEGKV	νπνοτκι	VEGDS	SAGTVTZ	FYMSSDC
	(53)	TSDDGI	ETWNT		GCGEO	ткних	REGWE	SWKIKI	VGGDS	SAGUVTZ	VVMCSEN
	(49)	FINCC	י דמששם	TIDDCC	CACEO	QVVQV	TROUT	CMVMDI	VCCD		EVI COM
	(45)	VINCC	נודים ביים. השאימים	TDKGG	CTCEO	GKDGA	TECHE	CMKMKI			EVI COM
	(50)	OFNCC			CIGICIC	OKCON	TROUT	CMUTU			
	(30)	VINCO	апалатт.		GIGPQ	ardan Serger	TEQUE	OMUTRI			TLIPSIN
	(47)	VENCO			CIGEQ	I GRUGAL	TROUT	UMOTVI			T I LOOV
	(40)	TENGGI	истоти		GIGPQ	SKGSI	LIGHT	' TMQIKI	JPPGDS	AGIVIA	AFILSSIN
	(48)	YFNGGI	KEIQLI	ILDKYT	GTGFQ	SKGNY	LFGHF	THMQIKI	IVPGDS	SAGTVTA	IYYLSSQN
PTTXETI6A	(48)	YFNGGI	NEIQLI	ILDKYT	GTGFQ	SKGSY	LFGHF	SMQMKI	- V PGDS	SAGTVTA	FYLSSQN
Consensus	(56)	NGG	ΤQΓ	LD S	G GFQ	ISK Y	LFG F	SMKIKI	JV GDS	SAGTVTA	AFYMSSDN Coction 2
	/111)	444	10	0	1 1 1 20	`	1.4	0	150		- Section 3
	(111) (107)	DNI		V X	VNCOD	VILOT	NUVAE		UCL THTQTS		
	(107) (10E)			PEFLON	DRCOD	I T T O T	NTEAU		PODVNI	WFDDGN	
	(104)		ים זפת ב	EFELON	DGCOP		NVENE	ICKCDDI		WEDDOL	
	(107)	ייזגם		N DL 1G N	DUGOD		NTVPAD	IGAGDE		MEDESE MEDESE	
	(105)	DAVI	ים ים חר	EFLGN	DUCOD	I T V Q T	NUVVV			WEDDCZ	
	(07)	UIU		PEFLGN	RTGQP	TTVQT	NTYTE	IGKGDKI	I O D T NT	WEDPSA	OF HTYTT
	(97)	PNI		PEFLGN	TTGEF	T T V Q T	NIXIN	GVGNR	JONT DI	WFDP1''I	DBUQYCT
	(94)	PLI		PEPLON	TTGEP	I SVQT	NUVVVV		INDUCT SORLDI	MEDPRI'I	
At-XTH8	(108)	GAGPEI		BFLGN	RTGQF	TTTD.	NVYKN	GTGNR	IODIU	MLDDJ.R	UTHTYS1
SI-XTH1	(103)	AEI	DETDI	FEFLGN	KTGQP	тгдт	N V F'T'C	GKGNR	SQRIYI	"MED B.L.R	GYHSYSV
SI-XTH4	(100)	AEI	DETDI	TEFLGN	RTGQP	тгот	NVF'I'G	GKGDR	SQRIYI	WFDPTF	DFHSYSV
At-XTH4	(105)	NEI	DEID	FEFLGN	RTGQP	AILQT	NVFTG	GKGNRI	SQRIYI	WFDPSK	AYHTYSI
At-XTH5	(102)	SEI	DEIDI	FEFLGN	RTGQP	YILQT	NVFTG	GAGNRI	EQRINI	WFDPSK	CDYHSYSV
Fc-XTH1	(103)	AEI	DEIDI	FEFLCN	RTGQP	FILQT	NVFTO	GKGDRI	EQRIFI	WFDPTK	CEYHSYSV
Md-XTH1	(103)	NEI		FEFLGN	RTGQP	YILQT	NVFTG	GKGDRI	EQRIFI	WFDPTA	AYHSYAV
PttXET16A	(103)	SEI	DEIDI	FEFLCN	RTGQP	YILQT	NVFTC	GKGDRI	EQRIYI	WFDPTK	CEFHYYSV
Consensus	(111)	EI	DEIDI	FEFLGN	RTGQP	YILQT	NVF	GKGNRI	EQRI I	JWFDPTK	OFHTYSI
			L								

(166)	166	180	190	200	210	220
Δt-XTH10 (159)	LWNTHOTVEMVD	TPTRLVRNF	IGEKGVA-	-VPRLOPM	SVOASLWNG	ESWATRGGH
At-YTH6 (159)	TWCHKHINEANDI	VDIBEVKNN	IGUKGVA	-VPTSOPM	GVVSTIMENI GVVSTIMENI	DDWATRGGI
At-XTH7 (157)	GWNHI DIVEVVDA		IFADKUD-	-VDPFODM		DWATROOL
	TWNUUUTVEVVDI		EARCED	VDKLODM	GVISILWEAI GVEGUIWEAI	DWAIRGGI
	EWNNHILVFIVDI	TDTDUVVNN	EARGIP-	FDKEODM	GVESILWEAD	DWAIRGGL
SI-XTH7 (159)	FWNHHQAVFSVDO	- I P I R V I KNI	EAKGIP-	-FPKFQPM	GVISTLWEAD	DDWATRGGL
At-XTH9 (149)	EWSKRSVVFMVD	T. PIRVQKNI	EEKGIP-	-FAKDQAM	GVISSIWNAI	DDWATQGGL
FVX1H9 (146)	FWNQRQVVFLVDF	STPIRVHTNE	IESKGLP-	- F PKDQAM	GVYSSIWNAI	DDWA'TQGGR
At-XTH8 (163)	LWNNHQLVFFVDF	RVPIRVYKNS	3DKVPNND	FFPNQKPM	YLFSSIWNAI	DDWATRGGL
SI-XTH1 (155)	LWNTYLIVIFVDI	OVPIRAFKNS	SKDLGVK-	- FPFNQPM	KIYSSLWDAI	DDWATRGGL
SI-XTH4 (152)	LWNTYQIAIFVDI	DADIBALKUS	SKDIGVK-	- F'PF'NQPM	KIYSSLWNAI	DDWATRGGL
At-XTH4 (157)	LWNMYQIVFFVDN	JIPIRTFKNA	AKDLGVR-	- FPFNQPM	KLYSSLWNAI	DDWATRGGL
At-XTH5 (154)	LWNMYQIVFFVDI	DVPIRVFKNS	SKDVGVK-	-FPFNQPM	KIYSSLWNAI	DDWATRGGL
Fc-XTH1 (155)	LWNLYQIVFFVDI	DIPIRVFKNS	SKDLGVK-	-FPFNQPM	KLYSSLWNAI	DDWATRGGL
Md-XTH1 (155)	LWNLYQIVFLVDI	DIPIRVFKNS	SKDLGVK-	-FPFNQPM	KLYSSL <mark>W</mark> NAI	DDWATRGGL
PttXET16A (155)	LWNMYMIVFLVDI	OVPIRVFK <mark>N</mark> C	CKDLGVK-	-FPFNQPM	KIYSSL <mark>W</mark> NAI	DDWATRGGL
Consensus (166)	LWN YQIVFFVDI	OVPIRVFKN	DLGV	FP NQPM	VYSSLWNAI	DDWATRGGL
						— Section 5
(221)	221 230	240	į	250	260	275
At-XTH10 (212)	DKIDWSKGPFVAS	SFGDYKIDAC	IWIGNTS	FCN	GESTEN	WWNKNEFSS
At-XTH6 (211)	EKIDWSKAPFYAY	YKDFDIEG	PVPGPTF		CPSNPHN	WWEGYAYQS
At-XTH7 (210)	EKINWSRAPFYAY	YKDFDIEG	PVPGPAD		CPANSKN	WWEGSAYHO
FvXTH6 (209)	EKINWSKAPFYAY	YKDFDIEG	SVPGPAN		CASSAON	WWEGTAYOA
SI-XTH7 (212)	EKINWSKSPFFAY	YKDFDIEGO	AMPGPAN		CASNPSN	WWEGPAYOO
At-XTH9 (202)	VKTDWSHAPFVAS	SYKEFOTDAC	ETPTTD	T.	SKCNGDOKFU	WWDEPTVSE
EvXTH9 (199)	VKTDWSHGPFVAS	SYKGEDINAC	ECPASVA	GAENAKKC	SSSNGDKKY	WWDEPVLSE
$\Delta t_{XTH8} (218)$	EKTDWKKAPEVSS	SYKDFAVEG	RWKDDED	ACV	STTTEN-I	WWDOYDAWH
SLYTH1 (208)	FKTNWANADETA	SVTSFHVDC	FAATDOF	VOV	CNTKCMKI	
SI-XTH4 (200)	EKTNWANAFFIA		EAATFQE	VQV VOV	CNTNCMKI	
3FXTH4 (203)	EKINWSGAPPIAC	VVCENTDC	LAVIPUL	VQV	CAROCRM	W DQKAFQD
AL-XIN4 (210)	EKINWANAPPVAS	VDCFHVDC	VASVE	ALI	CETOCKDI	WUQKEFRD
AL-XTH5 (207)	EKTNWEKAPFVAS	VDGFHVDGC	EASVN	ARF	CETQGKRI	WUDOKEFOD
FC-XTH1 (208)	EKTDWSKAPFVAI	TIRGFHIDGC	EASVQ	ARF	CATQGKR	WWDQKEFQD
Md-XTH1 (208)	EKTDWSKAPFIAS	SYRGFHIDGC	EASVE	AKY	CATQGKR	NWDQKEFQD
PTTXE116A (208)	EKTDWSKAPFIAS	SYRSFHIDGO	EASVE	AKF'	CATQGAR	NWDQKEFQD
Consensus (221)	EKTDWSKAPFVAS	SYK F IDGO	E		C TQG V	WWDQ FQD
						—— Section 6
(276)	276	290	300		317	
At-XTH10 (259)	LTRVQKRWFKWVF	RKAHTIADAC	QDYGRFN	NKLPKECS	LPKY-	
At-XTH6 (256)	LNAVEARRYRWVF	RVNHMVYDYC	TDRSRFP	-VPPPECR.	A	
At-XTH7 (255)	LSPVEARSYRWVF	RVNHMVYDYC	TDKSRFP	-VPPPECS.	AGI	
FvXTH6 (254)	LNALEYRRYKWVF	RMNHMIYDYC	SDRSRYP	-KPPPECV	AGL	
SI-XTH7 (257)	LSPVQARQYRWVF	RMNHMIYDYC	TDKSRNP	-VPPPECR.	AGI	
At-XTH9 (250)	LSLHQNHQLIWVF	RANHMIYDYC	FDATRFP	-VTPLECQ	HHRHL	
FvXTH9 (254)	LNVHQNHQLVWVH	KNHHMVYDYC	TDSARFP	-VTPVECV	HHRH-	
At-XTH8 (265)	LSKTOKMDYAWVO	RNLVVYDYC	KDSERFP	-TLPWECS	ISPWA	
SI-XTH1 (256)	LDALQYRRLRWV	RQKYTVYNYC	TDKARYP	-VPPPECT	KDRDI	
SI-XTH4 (253)	LDGPEYRKLHRVF	RONFXIYNYC	TURKRYP	-TLPLECT	RDRDL	
At-XTH4 (256)	LDAEOWRRLKWVF	MKWTIYNYC	TDRTRFP	-VMPAECK	RDRDA	
At-XTH5 (253)	LDANQYKRLKWVF	RKRYTIYNYC	TDRVRFP	-VPPPECR	RDRDI	
Fc-XTH1 (254)	LDAYOWRRLRWVF	ORFTTYNYC	TDRTRYP	-TLPAEVO	RDRDI	
Md-XTH1 (254)	LDAOOWRRLRWVF	RKFTTYNYC	TDRVRYP	-SMPPECK	RDRDT	
PHXFT164 (254)	LDAFOYRRI.SWUL	OKYTTVNVC	TDRSRVD	-SMPPECK	RDRDT	
Consensus (276)	L A OYRRI.RWVF	S HWIADAU		V PPEC	R	
	- T T ATTUTUTUNI	·		× I I I C	±1	

Figure S4. Amino acid sequence alignment of group I/II XTHs using AlignX Vector NTI Advance V.11.5. software. Sequences correspond to the following GenBank accession numbers: *A. thaliana* (At-XTH4 (NP 178708), At-XTH5 (NP 196891), At-XTH6 (NP 569019), At-XTH7 (NP 195494), At-XTH8 (NP 563892), At-XTH9 (NP 192230), At-XTH10 (NP 179069), *S. lycopersicum* (SI-XTH1, BAA03923), SI-XTH4 (AAG43444), SI-XTH7 (AAS46243), *M. × domestica* (Md-XTH1, AAN07897), *F. chiloensis* (Fc-XTH1, ADE42488) and *Populus tremula × Populus tremuloides* (PttXET16A, AAN87142). Identical amino acids in the sequences are shaded in black. The red box indicates the conserved motif and asteriks (***) mark the N-linked glycosylation motif.

Figure S5. Purification of FvXTH9-His and FvXTH6-His. M, protein marker; CE, crude extract; FT, flow through; A4-, A5-, and A6-fractions were eluted with 250 mM imidazole. Target protein (33 kDa) is shown by arrow.

Figure S6. pH optimum of FvXTH9 (a) and FvXTH6 (b). No XET activity was present in control PYES2. Different buffers were used as follows: sodium acetate buffer (pH 3.6, pH 4.0, pH 4.6, and pH 5.2), sodium succinate buffer (pH 5.0, pH 5.5, pH 6.0, and pH 6.5) and sodium phosphate buffer (pH 6.2, pH 7.0, pH 7.4, and pH 8.0). Each assay was performed as 4 replicates; error bars are standard deviation

j.

i.

Figure S7. Metabolite analysis of *F.* × *ananassa* fruit after agroinfiltration. Relative concentration (% equivalent of internal standard of the dry weight) of (a) pelargonidin rutinoside, (b) epiafzelechin pelargonidin glucoside, (c) ellagic acid, (d) kaempferol glucoside, (e) kaempferol glucuronide, (f) kaempferol malonyl glucoside, (g) quercetin glucoside, (h) quercetin glucuronide, (i) catechin, (j) epicatechin dimer, (k) epiafzelechin-epicatechin, (l) p-coumaryl glc ester, (m) ferulic acid glc ester, and (n) caffeic acid glc ester. The data were obtained by analysing 4-6 fruits (10 DPI) for each sample. Control fruit was infiltrated with *A. tumefaciens* AgL0 contained pBI121 empty plasmid. The asterisk indicates statistically significant differences (p < 0.05) between agroinfiltrated fruits with *XTHs* and the empty plasmid.

190 Westone	95 11 FSDE 98 98 98 98 89 89 89 89 89 89 89 89 89	WATEG	MATQG 310 과 운동 	-AGL 293 1HRH	
IVT & FY	TVTSFY TVTTFY TVTAFY TVTAFY 200	LWRADD 193 LWDGSY LWDGSY LWNGET LWEADD LWEADD	PreEC	P P E C V H	
90 GRSAG	85 G NS A G 77 G NS A G 88 G D S A G 79 G D S A G G D S A G	QVEST TVHAT NVHLS GVFST	FPKGF 293 FPKGF YPNGF 284	YPKP-1284 284 FPVT-1	
SAK LAR	DARLVD MKLIS MKLIS XIKLIP ZIKLVE 2 IKLVE	KSQRM 183 183 176 176 176 178 178 178	kdqam ~D eeR adgwr ydtki	CSDRSR	
Ge €≈01	G E F S V (67 G Y E NMH G R V S MH G R V S MH G K V T V (ADLPYI ADLPYI IGVPYI KGIPYI	КGLРF 290 М≪ҮрҮ(LSYNY(LSYNY(260 LKYDY(260 274	М I Y D Y C 274 МV Y D Y C	
<u>skyk</u> F	(AKYLF (SNYLF (HKYLF (NKYMF 180	FKNAFA FK KY 173 FK KY 166 FP NNEA KKNNEA 178 KKNEA	1 T NMES 30 VX&NU 73 VAERNC 50 VVRENY 34	VVRMNH 84 VVKNHH	
20 CESS	SGFKSK GSVVSK GSVVSK 68 868 AGFSSK AGFSSK	VPVRTI VPVRTI RAVRSI VPIRLY	LKTVAV 28 SESSE SESSE 27 LKTVAV 27 ASSIQV 28 ASSIQV 20 20 20 20 20 20 20 20 20 20 20 20 20	YRRYKV 26 NHQLVV	
DevSG	DKVSG DKNSG DQNSG DQNSG DVYSG	FLVDR	ЕТ V D E 270 Е LN SEP 263 263 21 D E E D 240 240 254 254 254 254	LLNALE 254 3LNVHQ	
60 Kt.S.L.e.L	2 FA L E1 47 LL 2 L T 47 Δ L 2 L T 47 A I 2 L V I 58 A I 2 L V I 49 LL H MK I 60	NEASU 55 NPKNII 46 NPCOII 58 NHHHIV 148	nukuv asoyse amdre qayds	G TA YQA EPVLSE	
e EBIE	5 EGENQ 39 39 39 49 - 0 5 DS 49 - 1 DGGR. - 2 5 DS - 42 - 2 5 DS - 42 - 2 5 DS - 42 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		260 260 250 253 253 253 253 253 230 230 230 230 244	с <mark>N</mark> WWE 244 сКҮWWD	
HUX	Н ІК ҮК ⁴ Н	хАDFH2 145 145 136 136 тар ен 1 148 аар ен 1 38	TTDFH3 SSSSS	NCASS ^P SSNGD <mark>R</mark>	
40 /*****D	35 7 IGERD 30 7 EPVPD 40 7 TWSDS 33 33	LWFDP ZLWFDP ZLWFDP MLWFDP	250 250 √▲►K≪A √▲►K≪A 1≤7KVE 2235 DSA	PA 234 VAKKCS	
or Hara	DDQFDV YGDFQV LQDFQV DELFQ1	REAR 135 KEHOF 126 RE00F REERV REERV	PPSSS1	- <mark>P</mark> G 227 - ÅGAEI	
³⁰ ≫≏⊷∆⊭F	25 AAEYNF 20 MAGF 30 ARPATF 23 VSSAKF	A S G D G K A S G D G K A S G V G N A H G Q G N	L NG VG N 240 10550-1- 233 H P K A P P	P A S V	
Levas	LAAAA L-A SLSAF LGP TGP130	RINE 125 INTNVWI HTNIFI QTNIYI	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 NACECI	
rv <mark>⊱S</mark> *f	LAVLAV 15 MLASPK CFLSLF CFLSLF LGLSLF	GPY SE	gerisv 27 23 23 23 15 23 24 25 25 22 22 22 22 22	YKDFDI 21 YKGFDI	
TXTIC	PLLAA FGMLVI IASISL FLSVI 120	HGNS MGNKS TGNKS TGNKS TGNKS	PFVAS PFVAS 273 273 273 273 273 273 275 205 205 277 277 277 277 277 277 277 277 277 27	207 207 5 P F V A S	
10 10 10	-AAK01 -LGLV1 RSGSV1 -ASA51	HEDEH 195 195 105 105 108 108 108 108 108 108	EFDFE RWR Se HWRGDI DW-NSZ	NW - SK / DW - SH 0	
1-1 M	Т Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г	GA⇒HD GSTHD -ANHD DAVRD	210 210 203 203 203 196 512RI 208 208	GLEKI 198 GRVKT	
Sequen ⁸⁴	BdXTH8 - EfHTG FvXTH6 FvXTH9	Sequen	FFVX1H9 Sequen	FvXTH6	
	BdXTH8	EfHTG	FvXTH6	FvXTH9	
BdXTH8	100	38.2	35.5	35.6	
EfHTG	38.2	100	44.6	39.1	
FvXTH6	35.5 35.6	44.6 20 1	100 45 7	45.7 100	
1 1 1 1 1 2	55.0	JJ.1	40.7	100	

Figure S8. Amino acid sequence alignment of BdXTH8 (XP_003573584.1), EfHTG (CEH24720.1), FvXTH6 (gene05591), and FvXTH9 (gene01986) as well as pairwise sequence identities using Geneious software with default values.