Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Chiral, Sequence-Definable Foldamer-Derived Macrocycles

Toyah M. C. Warnock,¹ Sundaram Rajkumar,² Matthew P. Fitzpatrick,¹ Christopher J. Serpell,³ Paul Dingwall¹ and Peter C. Knipe^{1*}

- 1. School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast, BT9 5AG, UK
- 2. Almac Group Ltd., 20 Seagoe Industrial Estate, Craigavon, BT63 5QD, UK
- 3. School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK

Contents

1	Gen	eral Experimental	3
	1.1	Naming and Numbering of Compounds	3
	1.2	Solvents and Reagents	3
	1.3	Chromatography	3
	1.4	Spectroscopy	3
	1.5	Crystallography	4
2	Exp	erimental Procedures and Characterization Data	5
	2.1	General Experimental Procedures	5
	2.2	Overall Synthetic Scheme towards Dimers 1a-1e	6
	2.3	Synthesis of Monomers	7
	2.3.	1 Isoleucine Series	7
	2.3.2	2 Valine Series	9
	2.3.3	3 Leucine Series	12
	2.3.4	4 Alanine Series	14
	2.4	Synthesis of Acyclic Dimers and Trimers	16
	2.5	Synthesis of Macrocycles	30
3	Amr	nonium Salt NMR Titration	37
	3.1	Host and Guest Solution Preparation	37
	3.2	NMR Titrations	37
	3.3	Fitting	38
4	X-R	ay Crystallography	42

2	4.1 <i>t</i>	-Bu Protected Dimer 1a (CCDC #2057484)	42
	4.1.1	Crystal Data	42
	4.1.2	Data Collection	43
	4.1.3	Refinement	43
2	4.2 [Dimer 2a (CCDC #2057483)	43
	4.2.1	Crystal Data	44
	4.2.2	Data Collection	44
	4.2.3	Refinement	45
2	4.3 [Dimer 2d (CCDC #2057482)	45
	4.3.1	Crystal Data	45
	4.3.2	Data Collection	46
	4.3.3	Refinement	46
4	4.4 N	Macrocyclic Tetramer 3a (CCDC #2057486)	47
	4.4.1	Crystal Data	47
	4.4.2	Data Collection	48
	4.4.3	Refinement	48
5	Densi	ty Functional Theory Calculations	49
Į	5.1 -	Frimer Summary (See Figure 3B)	49
ţ	5.2	Fetramer Summary (See Figure 3a)	50
6	Suppl	ementary References	51
7	NMR	Spectra	52
8	Appe	rdinates for DFT-Optimized Geometries162	
8	3.1	Frimer Coordinates (Figure 3B)	. 162
8	3.2	Fetramer Coordinates (Figure 3A)	. 166

1 General Experimental

1.1 Naming and Numbering of Compounds

Systematic compound names are those generated by ChemBioDraw[™] Ultra version 15.1.0.144 (Perkin Elmer) following IUPAC nomenclature.

1.2 Solvents and Reagents

Reactions were carried out under a nitrogen atmosphere in oven-dried glassware unless otherwise stated. Standard inert atmosphere techniques were used in handling all air- and moisture-sensitive reagents. Where necessary toluene and DMF (from commercial sources) were degassed prior to use by sparging with argon or nitrogen (15 min). Other solvents and reagents were used directly as received from commercial suppliers.

1.3 Chromatography

Flash column chromatography was carried out using Fluorochem 60 40-63 micron silica gel. Thin-layer chromatography was carried out using Merck Kieselgel 60 F254 (230-400 mesh) fluorescent treated silica, visualized under UV light (254 nm) or by staining with aqueous potassium permanganate solution, ninhydrin or ceric ammonium molybdate solutions.

1.4 Spectroscopy

¹H and ¹³C NMR spectra were recorded using a Bruker 600, 400 or 300 MHz spectrometer running TopSpinTM software and are quoted in ppm for measurement against tetramethylsilane. Where no tetramethylsilane was present, spectra are referenced relative to the residual non-deuterated solvent peaks. Unless otherwise stated spectra were acquired at 298 K. TopspinTM was used for processing and viewing NMR data. Chemical shifts (δ) are given in parts per million (ppm), and coupling constants (*J*) are given in Hertz (Hz). The ¹H NMR spectra are reported as follows: δ / ppm (number of protons, multiplicity, coupling constant *J* / Hz (where appropriate), assignment (where known)). Multiplicity is abbreviated as follows: s = singlet, br = broad, d = doublet, t = triplet, q = quartet, m = multiplet, app = apparent. The numbering scheme used for NMR assignment is arbitrary and does not follow any particular convention. The ¹³C NMR spectra are reported in δ / ppm. Where necessary or appropriate, two-dimensional (COSY, HSQC, HMBC, NOESY or ROESY) NMR experiments were used to assist the assignment of signals in the ¹H and ¹³C NMR spectra. In some cases, complete assignment of spectra was not possible (in particular, aromatic CHs corresponding to multiple phenyl groups overlapped significantly); in these cases only a partial assignment is reported.

Infra-red (IR) spectra were recorded on a Perkin-Elmer Spectrum 100 FT-IR spectrometer equipped with a Perkin-Elmer Universal ATR Sampling Accessory. Samples were deposited on the ATR accessory as a thin film. Only selected maximum absorbances (v_{max}) of the most intense peaks are reported (cm⁻¹).

High resolution mass spectra (HRMS) were recorded by Analytical Services and Environmental Projects (ASEP) at Queen's University Belfast on a Waters LCT Premier ToF mass spectrometer using the electrospray ionisation (ESI) technique.

Optical rotations were recorded at the sodium D-line (589 nm) using a Perkin Elmer 341 polarimeter at a temperature of 20 °C and are reported in degrees using concentrations (*c*) in g-100 mL⁻¹. Reported values are the average of eight readings.

1.5 Crystallography

Low temperature^[1] single crystal X-ray diffraction studies for **1a**, **1d** and **2a** were carried out using CuK_{α} radiation on an Agilent Supernova diffractometer equipped with an area detector and graphite monochromator. X-ray diffraction studies for **3a** were conducted using CuK_{α} on a Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector, at the National Crystallography Service in the University of Southampton. Raw frame data were reduced using CrysAlisPRO^[2] solved using Superflip.^[3] Full-matrix least-squares refinement of the structures were carried out using CRYSTALS.^[4,5] Full refinement details are given in the supplementary material (CIF). CCDC 2057484 (**1a**), 2057483 (**2a**), 2057482 (**2d**), and 2057486 (**3a**) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre and copies can be obtained free of charge *via* www.ccdc.cam.ac.uk/data_request/cif.

2 **Experimental Procedures and Characterization Data**

2.1 General Experimental Procedures

General Procedure A (N-Nosyl Deprotection)

To a stirred, room-temperature suspension of *N*-nosyl urea (1.0 eq.) and K_2CO_3 (3.0 eq.) in anhydrous *N*,*N*-DMF (*ca.* 0.1 M) was added thiophenol (1.5 eq.). The rapid development of a deep orange colour was invariably observed upon the addition of thiophenol. After complete consumption of the *N*-nosyl-protected starting material by TLC analysis, the reaction mixture was diluted with ethyl acetate and washed with NaHCO₃ (sat. aq., *ca.* 10 mL/mmol urea). The aqueous layer was extracted with ethyl acetate (*ca.* 2 x 10 mL/mmol urea). The combined organic extracts were washed well with water (*ca.* 4 x 10 mL/mmol urea) to remove any remaining *N*,*N*-DMF. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. The crude product was then purified by flash column chromatography.

General Procedure B (Palladium-Catalysed Coupling of Deprotected Ureas with Aryl Halides)

This reaction was carried out by analogy to a literature procedure.^[6] To a sealed tube equipped with a magnetic stir bar was added deprotected urea (1.0 eq.), aryl halide (5.0-9.0 eq.), freshly recrystallized $Pd_2(dba)_3$ (5-10 mol%), and Xantphos (15-30 mol%). Anhydrous toluene (*ca.* 0.1 M) was added to the flask, and the resulting suspension was degassed by sparging with nitrogen gas for 15-30 min. Cs_2CO_3 or K_2CO_3 (2.5 eq.) was then added in one portion to the flask, and the reaction mixture was heated to reflux under a nitrogen atmosphere. If after 16 h the reaction had not reached completion, a second portion of $Pd_2(dba)_3$ (5.0 mol%) and Xantphos (15 mol%) were added. After complete consumption of the urea starting material by TLC analysis, the reaction was cooled to room temperature, diluted with dichloromethane (*ca.* 20 mL/mmol deprotected urea) and filtered over Celite®. The crude product was then purified by flash column chromatography.

2.2 Overall Synthetic Scheme towards Dimers 1a-1e

Scheme S1. General synthetic scheme towards dimers 1a-e.

2.3 Synthesis of Monomers

2.3.1 Isoleucine Series

(S)-2-((S)-sec-butyl)-1-((2-nitrophenyl)sulfonyl)aziridine (S1)

2-Nitrobenzenesulfonyl chloride (12.67 g, 57.18 mmol) was added in five portions to a stirred 0 °C solution of L-isoleucinol (3.00 g, 22.87 mmol) and pyridine (9.4 mL) in dichloromethane (23 mL). The reaction was stirred vigorously and then allowed to warm to room temperature. After 24 h, the volatiles were removed *in vacuo*. The concentrated reaction mixture was then taken up in diethyl ether (80 mL), and the organic layer was washed with HCl (1 M aq.) until the aqueous washings were acidic (approximately 6 x 40 mL). KOH (2 M aq., 160 mL) was added to the organic layer, and the resulting biphasic mixture was stirred vigorously for 6 h. The layers were separated, and the organic layer washed with KOH (2 M aq., 2 x 40 mL). The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. Purification by flash column chromatography (silica gel, petrol:ethyl acetate, 5:1 \rightarrow 2:1) afforded the aziridine **S1** (5.04 g, 78%) as a pale yellow oil.* δ_H (400 MHz, CDCl₃): 8.20 (1H, app. dd, *J* 7.0, 1.6), 7.78-7.70 (3H, m), 2.89-2.81 (2H, m), 2.30 (1H, d, *J* 4.7), 1.55-1.47 (1H, m), 1.40-1.31 (1H, m), 1.29-1.21 (1H, m), 0.93-0.87 (6H, m); δ_C (101 MHz, CDCl₃): 148.8, 134.5, 132.1, 132.0, 131.3, 124.3, 46.4, 36.8, 35.2, 27.2, 15.4, 11.0; HRMS (ESI+): found 323.0466; C₁₂H₁₆N₂O₄SK, [M+K]⁺ requires 323.0468; *v_{max}* (thin film): 3093.7, 2963.2, 2929.7, 2877.5, 1591.6, 1543.1, 1461.1, 1405.2, 1367.9, 1330.7, 1237.5, 1162.9, 1058.6, 995.2, 931.8, 868.5, 779.0, 752.9, 693.3 cm⁻¹; [*a*]_D²⁰ +105.2 (*c* = 1.1, CHCl₃).

N-((2S,3S)-1-(*tert*-butylamino)-3-methylpentan-2-yl)-2-nitrobenzenesulfonamide (S2)

To a stirred, room temperature solution of *N*-nosyl-protected aziridine **S1** (5.04 g, 17.74 mmol) in acetonitrile (43 mL) was added *tert*-butylamine (7.5 mL, 70.96 mmol) in one portion. After 2 h the reaction was complete (TLC: petrol:ethyl acetate 1:1), and the volatiles were removed *in vacuo*. The crude residue was purified by flash column chromatography (silica gel, petrol:ethyl acetate $3:1 \rightarrow 1:1 \rightarrow$ pure ethyl acetate) to afforded the product **S2** (5.97 g, 94%) as a yellow oil crystalline oil. δ_H (400 MHz, CDCl₃): 8.14-8.12 (1H, m), 7.86-7.84 (1H, m), 7.74-7.68 (2H, m), 3.29-3.25 (1H, m), 2.55 (1H, dd, *J* 12.0, 6.8), 2.47 (1H, dd, *J* 12.0, 4.1), 1.70-1.60 (1H, m), 1.58-1.48 (1H, m), 1.18-1.07 (1H, m), 0.89-0.85 (15H, m); δ_C (101 MHz, CDCl₃): 149.0, 135.4, 133.2, 132.8, 130.7, 125.3, 60.2, 50.0, 42.5, 37.6, 29.0, 25.7, 15.0, 11.8; HRMS (ESI+): found 358.1786; C₁₆H₂₈N₃O₄S, [M+H]⁺ requires 358.1801; v_{max} (thin film): 3306.1, 3101.1, 2959.5, 2870.1, 1595.3, 1543.1, 1461.1, 1364.2, 1297.1, 1215.1, 1170.4, 1073.5, 1021.3, 985.4, 853.6, 779.0, 738.0, 704.5 cm⁻¹; [α]_D²⁰ -107.8 (*c* = 1.0, CHCl₃).

^{*} It has been previously reported that *N*-nosyl-protected aziridines are prone to polymerisation upon standing.^[22] Aziridine **S1**, however, was indefinitely stable when stored as a dilute solution in DCM.

(S)-4-((S)-sec-butyl)-1-(tert-butyl)-3-((2-nitrophenyl)sulfonyl)imidazolidin-2-one (S3)

A solution of triphosgene (1.95 g, 6.56 mmol) in acetonitrile (50 mL) was added over 2 h *via* syringe pump to a stirred, room temperature solution of the diamine **S2** (5.97 g, 16.41 mmol) and Hünig's base (8.4 mL, 49.22 mmol) in acetonitrile (100 mL). After a further 30 min, the reaction mixture was concentrated *in vacuo*. The crude residue was taken up in dichloromethane (70 mL), and washed with HCl (30 mL, 1 M aq.). The layers were separated, and the aqueous phase was further extracted with dichloromethane (2 x 50 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. The crude residue was purified by trituration from hot hexane to afforded di-protected urea **S3** (5.55 g, 88%) as a brown crystalline solid. δ_H (400 MHz, CDCl₃): 8.43-8.41 (1H, m), 7.74-7.71 (3H, m), 4.28-4.26 (1H, m), 3.61 (1H, app. t, *J* 9.2), 3.27 (1H, app. dd, *J* 9.2, 1.7), 2.13-2.03 (1H, m), 1.48-1.38 (1H, m), 1.27 (9H, s), 1.23-1.16 (1H, m), 1.01 (3H, d, *J* 6.5), 0.98 (3H, d, *J* 7.3); δ_C (101 MHz, CDCl₃): 153.0, 147.9, 134.8, 134.2, 132.9, 132.0, 124.1, 57.8, 54.4, 42.1, 39.5, 27.4, 25.5, 12.2, 11.9; HRMS (ESI+): found 422.1159; $C_{17}H_{25}N_3O_5SK$, [M+K]⁺ requires 422.1152; v_{max} (thin film): 3093.7, 2963.2, 2933.4, 2877.5, 1718.3, 1587.8, 1539.4, 1461.1, 1408.9, 1364.2, 1274.7, 1248.7, 1162.9, 1125.7, 1025.0, 998.9, 902.0, 756.6, 726.8 cm⁻¹; [α]_D²⁰ +361.0 (c = 1.0, CHCl₃).

(S)-4-((S)-sec-butyl)-1-(tert-butyl)imidazolidin-2-one (S4)

Prepared according to **General Procedure A** using di-protected urea **S3** (3.50 g, 9.13 mmol), thiophenol (1.29 mL, 13.69 mmol), K₂CO₃ (3.79 g, 27.39 mmol) and *N*,*N*-DMF (46 mL). Reaction time = 2 h. Purification by flash column chromatography (silica gel, petrol:ethyl acetate $10:1 \rightarrow 5:1 \rightarrow 2:1$ (product)) afforded **S4** (1.61 g, 89%) as an off-white crystalline solid. Product **S4** is not visible under UV light and must be stained with ceric ammonium molybdate. δ_H (600 MHz, CDCl₃): 4.44 (1H, br. s, N-H), 3.46 (1H, app. t, *J* 8.6), 3.34-3.30 (1H, m), 3.08 (1H, app. t, *J* 8.3), 1.47-1.42 (2H, m), 1.35 (9H, s), 1.15-1.07 (1H, m), 0.90 (3H, t, *J* 7.1), 0.84 (3H, d, *J* 6.4); δ_C (151 MHz, CDCl₃): 162.3, 54.1, 52.9, 47.4, 39.4, 27.7, 25.6, 14.2, 11.0; HRMS (ESI+): found 199.1087; $C_{11}H_{23}N_2O$, [M+H]⁺ requires 199.1810; v_{max} (thin film): 3209.2, 3086.2, 2959.5, 2870.1, 1684.8, 1483.5, 1416.4, 1360.5, 1293.4, 1259.8, 1230.0, 1148.0, 991.5, 928.1, 834.9, 767.8, 685.8 cm⁻¹; [α]_D²⁰ +4.6 (c = 1.3, CHCl₃).

(S)-5-((S)-sec-butyl)-1-((2-nitrophenyl)sulfonyl)imidazolidin-2-one (S5)

At room temperature, trifluoroacetic acid (30 mL) was added to di-protected urea **S3** (3.00 g, 7.82 mmol). The reaction mixture was stirred and then heated to reflux at 82°C for 16 h. When TLC analysis showed all starting material had been consumed, the reaction mixture was cooled to room temperature, and excess trifluoroacetic acid was removed by running a compressed air line over the solution for 1 h. The resulting crude brown residue was taken up in dichloromethane (60 mL) and washed with NaHCO₃ (sat. aq. 30 mL) The layers were separated, and the aqueous layer was further extracted with dichloromethane (2 x 40 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. The crude solid was purified by trituration from hot hexane to

afforded the *tert*-butyl deprotected product **S5** (2.31 g, 90%) as an orange-brown crystalline solid. δ_H (400 MHz, CDCl₃): 8.43 (1H, d, *J* 4.1), 7.75-7.73 (3H, m), 5.03 (1H, br. s, N-H), 4.57-4.55 (1H, m), 3.65 (1H, app. t, *J* 9.3), 3.30 (1H, dd, *J* 9.4, 2.2), 2.19-2.08 (1H, m), 1.47-1.38 (1H, m), 1.27-1.14 (1H, m), 1.06-0.97 (6H, m); δ_C (151 MHz, CDCl₃): 155.5, 148.0, 135.0, 134.6, 132.3, 131.9, 124.3, 61.8, 39.4, 39.2, 25.4, 12.2, 11.9; HRMS (ESI+): found 366.0506; C₁₃H₁₇N₃O₅SK, [M+K]⁺ requires 366.0526; v_{max} (thin film): 3369.5, 3063.9, 2963.2, 2929.7, 1751.8, 1714.6, 1587.8, 1550.6, 1453.7, 1420.1, 1356.8, 1300.8, 1259.8, 1211.4, 1162.9, 1125.7, 1073.5, 849.8, 793.9, 730.6 cm⁻¹; [α]_D²⁰ +418.2 (*c* = 0.2, CHCl₃).

(S)-4-((S)-sec-butyl)-1-(6-chloropyrimidin-4-yl)-3-((2-nitrophenyl)sulfonyl)imidazolidin-2-one (S6)

Prepared according to **General Procedure B** using deprotected urea **S5** (1.00 g, 3.05 mmol), 4,6-dichloropyrimidine (2.27 g, 15.25 mmol), Pd₂(dba)₃ (0.14 g, 0.15 mmol), Xantphos (0.26 g, 0.46 mmol), toluene (31 mL), and K₂CO₃ (1.05 g, 7.63 mmol). Reaction time = 16 h. Purification by flash column chromatography (silica gel, petrol:ethyl acetate, 10:1 \rightarrow 8:1 \rightarrow 1:1) afforded the chloropyrimidine **S6** (1.25 g, 93%) as a pale yellow solid. δ_H (600 MHz, CDCl₃): 8.66 (1H, s), 8.49-8.48 (1H, m), 8.09 (1H, s), 7.83-7.78 (3H, m), 4.61-4.60 (1H, m), 4.12-4.05 (2H, m), 2.22-2.18 (1H, m), 1.54-1.48 (1H, m), 1.35-1.29 (1H, m), 1.03 (3H, t, *J* 7.4), 0.99 (3H, d, *J* 6.9); δ_C (151 MHz, CDCl₃): 161.6, 158.1, 157.6, 151.3, 148.2, 135.4, 135.3, 132.3, 131.5, 124.8, 109.3, 58.8, 42.9, 39.3, 25.4, 11.9, 11.9; HRMS (ESI+): found 478.0355; C₁₇H₁₈N₅O₅CISK, [M+K]⁺ requires 478.0354; v_{max} (thin film): 3108.6, 3145.9, 3049.0, 2963.2, 2873.8, 1736.9, 1565.5, 1535.7, 1487.2, 1457.4, 1397.8, 1356.8, 1289.7, 1230.0, 1166.7, 1107.0, 1069.7, 984.0, 902.0, 782.7, 734.3 cm⁻¹; [α]_D²⁰ +157.0 (c = 1.2, CHCl₃).

2.3.2 Valine Series

(S)-2-IsopropyI-1-((2-nitrophenyI)sulfonyI)aziridine (S7)

2-Nitrobenzenesulfonyl chloride (16.15 g, 72.9 mmol) was added in five portions to a stirred 0 °C solution of L-valinol (3.00 g, 29.1 mmol) and pyridine (12 mL) in dichloromethane (30 mL). The reaction was stirred vigorously and then allowed to warm to room temperature. After 24 h, the volatiles were removed *in vacuo*. The concentrated reaction mixture was then taken up in diethyl ether (80 mL), and the organic layer was washed with HCl (1 M aq.) until the aqueous washings were acidic (approximately 6 x 40 mL). KOH (2 M aq., 160 mL) was added to the organic layer, and the resulting biphasic mixture was stirred vigorously for 6 h. The layers were separated, and the organic layer washed with KOH (2 M aq., 2 x 40 mL). The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. The crude residue was passed over a plug of silica (eluent: dichloromethane) and concentrated *in vacuo* to afford **S7** (4.93 g, 63%) as a pale yellow oil.^{*} δ_H (400 MHz, CDCl₃): 8.24-8.15 (1H, m, H9), 7.82-7.67 (3H, m,

^{*} It has been previously reported that *N*-nosyl-protected aziridines are prone to polymerisation upon standing.^[22] Aziridine **S7**, however, was indefinitely stable when stored as a dilute solution in DCM.

H6, H7 & H8), 2.87-2.79 (2H, m, H1 & H2), 2.37-2.29 (1H, m, H1'), 1.66-1.51 (1H, m, H3), 0.96 (3H, d, *J* 3.8, H4), 0.95 (3H, d, *J* 3.7, H4'); δ_C (75 MHz, CDCl₃): 148.6 (C10), 134.6 (C6/C7/C8), 132.0 (C6/C7/C8), 131.5 (C5), 131.1 (C9), 124.2 (C6/C7/C8), 47.1 (C2), 35.0 (C1), 30.0 (C3), 19.4 & 18.8 (C4 & C4'); HRMS (ESI+): found 271.0784; C₁₁H₁₅N₂O₄S, [M+H]⁺ requires 271.0753; v_{max} (thin film): 1542, 1331, 1163, 751, 605, 596 cm⁻¹; $[\alpha]_D^{20}$ +85.6 (*c* = 1.17, CHCl₃). These data are in agreement with previously reported values.^[6]

(S)-N-(1-(tert-butylamino)-3-methylbutan-2-yl)-2-nitrobenzenesulfonamide (S8)

To a stirred, room temperature solution of *N*-nosyl-protected aziridine **S7** (8.01 g, 29.63 mmol) in acetonitrile (74 mL) was added *tert*-butylamine (12.24 mL, 118.52 mmol) in one portion. After 2 h the reaction was complete (TLC: petrol:ethyl acetate, 2:1), and the volatiles were removed *in vacuo*. The crude residue was purified by flash column chromatography (silica gel, petrol:ethyl acetate 2:1) to afforded the product **S8** (9.20 g, 90%) as a colourless solid. δ_H (600 MHz, CDCl₃): 8.14-8.12 (1H, m), 7.85-7.84 (1H, m), 7.73-7.68 (2H, m), 3.24-3.21 (1H, m), 2.56 (1H, dd, *J* 11.8, 6), 2.48 (1H, dd, *J* 11.9, 4.0), 1.91-1.85 (1H, m), 0.93 (3H, d, *J* 6.8), 0.90-0.85 (12H, m); δ_C (151 MHz, CDCl₃): 148.0, 135.6, 133.2, 132.9, 130.7, 61.4, 50.1, 43.3, 30.7, 29.0, 18.9, 18.7; HRMS (ESI+): found 344.1664; $C_{15}H_{26}N_3O_4S$, [M+H]⁺ requires 344.1664; v_{max} (thin film): 2959.5, 2870.1, 1539.4, 1364.2, 1218.8, 779.0, 730.6, 685.8 cm⁻¹; $[\alpha]_D^{20}$ –116.5 (*c* = 1.0, CHCl₃).

(S)-1-(tert-butyl)-4-isopropyl-3-((2-nitrophenyl)sulfonyl)imidazolidin-2-one (S9)

A solution of triphosgene (3.18 g, 10.72 mmol) in acetonitrile (80 mL) was added over 1 h *via* syringe pump to a stirred, room temperature solution of the diamine **S8** (9.20 g, 26.79 mmol) and Hünig's base (10.39 mL, 80.40 mmol) in acetonitrile (160 mL). After a further 30 min, the reaction mixture was concentrated *in vacuo*. The crude residue was taken up in dichloromethane (100 mL), and washed with HCl (40 mL, 1 M aq.). The layers were separated, and the aqueous phase was further extracted with dichloromethane (2 x 60 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. The crude residue was purified by flash column chromatography (silica gel, petrol:ethyl acetate 2:1) to afforded di-protected urea **S9** (8.85 g, 89%) as a pale yellow oil that solidified upon standing. δ_H (400 MHz, CDCl₃): 8.43-8.41 (1H, m), 7.76-7.69 (3H, m), 4.18-4.14 (1H, m), 3.65 (1H, app. t, *J* 9.1), 3.27 (1H, dd, *J* 9.3, 1.6), 2.34-2.22 (1H, m), 1.27 (9H, s), 1.03 (3H, d, *J* 6.8) 1.00 (3H, d, *J* 6.8); δ_C (101 MHz, CDCl₃): 152.9, 147.7, 134.8, 134.1, 132.7, 131.9, 124.0, 58.7, 54.3, 42.4, 32.7, 27.3, 17.9, 15.5; HRMS (ESI+): found 370.1424; C₁₆H₂₄N₃O₅S, [M+H]⁺ requires 370.1437; v_{max} (thin film): 2967.0, 1718.3, 1543.1, 1408.9, 1364.2, 1248.7, 1166.7, 1121.9, 1095.8, 1028.7, 853.6, 752.9, 704.5 cm⁻¹; [α]_D²⁰ +321.5 (c = 1.43, CHCl₃).

(S)-1-(tert-butyl)-4-isopropylimidazolidin-2-one (S10)

Prepared according to **General Procedure A** using di-protected urea **S9** (3.41 g, 9.23 mmol), thiophenol (1.3 mL, 13.85 mmol), K_2CO_3 (3.83 g, 27.69 mmol) and *N*,*N*-DMF (92 mL). Reaction time = 4 h. Purification by flash

column chromatography (silica gel, petrol:ethyl acetate $10:1 \rightarrow 5:1 \rightarrow 1:1$ (product)) afforded **S10** (1.52 g, 90%) as an off-white crystalline solid. Product **S10** is not visible under UV light and must be stained with ceric ammonium molybdate. δ_H (400 MHz, CDCl₃): 4.50 (1H, br s), 3.48 (1H, app. t, *J* 8.7), 3.22 (1H, app q, *J* 15.6, 7.5), 3.08 (1H, app. t, *J* 8.2), 1.62 (1H, m), 1.34 (9H, s), 0.91 (3H, d, *J* 6.8), 0.87 (3H, d, *J* 6.8); δ_C (101 MHz, CDCl₃): 162.3, 55.5, 52.9, 47.6, 33.1, 27.7, 18.6, 18.1; HRMS (ESI+): found 185.1636; C₁₀H₂₁N₂O, [M+H]⁺ requires 185.1654; v_{max} (thin film): 3227.9, 3086.2, 2959.5, 2877.5, 1681.0, 1479.8, 1412.7, 1360.5, 1237.5, 1148.0, 1092.1, 682.1 cm⁻¹; [α]_D²⁰ +180.9 (*c* = 1.0, CHCl₃).

(S)-5-isopropyl-1-((2-nitrophenyl)sulfonyl)imidazolidin-2-one (S11)

At room temperature, trifluoroacetic acid (52 mL) was added to di-protected urea **S9** (5.0 g, 13.53 mmol). The reaction mixture was stirred and then heated to reflux at 82°C for 16 h. When TLC analysis showed all starting material had been consumed, the reaction mixture was cooled to room temperature, and excess trifluoroacetic acid was removed by running a compressed air line over the solution for 1 h. The resulting crude brown residue was taken up in dichloromethane (60 mL) and washed with NaHCO₃ (sat. aq. 30 mL) The layers were separated, and the aqueous layer was further extracted with dichloromethane (2 x 40 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. The crude solid was purified by trituration in hot hexane to afford the *tert*-butyl deprotected product **S11** (3.72 g, 88 %) as an off-white crystalline solid. δ_H (400 MHz, CDCl₃): 8.43-8.41 (1H, m), 7.75-7.70 (3H, m), 4.95 (1H, br. s), 4.44-4.42 (1H, m), 3.67 (1H, app. t, *J* 9.2), 3.30 (1H, app. d, *J* 9.1), 2.38-2.30 (1H, m), 1.06 (3H, d, *J* 6.8), 1.00 (3H, d, *J* 6.8); δ_C (101 MHz, CDCl₃): 155.1, 147.9, 135.0, 134.5, 132.2, 131.8, 124.1, 62.7, 39.5, 32.5, 17.9, 15.3; HRMS (ESI+): found 314.0810; C₁₂H₁₆N₃O₅S, [M+H]⁺ requires 314.0811; v_{max} (thin film): 3365.8, 3063.9, 2955.8, 2926.0, 2870.1, 1751.8, 1707.1, 1535.7, 1490.9, 1356.8, 1252.4, 1125.7, 1073.5, 957.9, 853.6, 797.7, 723.1 cm⁻¹; [α]_D²⁰ +408.5 (c = 1.0, CHCl₃). These data are in agreement with previously reported values.^[6]

(S)-1-(6-chloropyrimidin-4-yl)-4-isopropyl-3-((2-nitrophenyl)sulfonyl)imidazolidin-2-one (S12)

Prepared according to **General Procedure B** using deprotected urea **S11** (0.62 g, 1.99 mmol), 4,6-dichloropyrimidine (1.48 g, 9.93 mmol), Pd₂(dba)₃ (0.09 g, 0.10 mmol), Xantphos (0.17 g, 0.30 mmol), toluene (10 mL), and Cs₂CO₃ (1.62 g, 4.98 mmol). Reaction time = 16 h. Purification by flash column chromatography (silica gel, petrol:ethyl acetate, 7:1 \rightarrow 5:1) afforded the chloropyrimidine **S12** (0.64 g, 75%) as a pale yellow solid. δ_H (600 MHz, CDCl₃): 8.67 (1H, s), 8.49-8.48 (1H, m), 8.08 (1H, s), 7.83-7.82 (2H, m), 7.79-7.77 (1H, m), 4.50-4.48 (1H, m), 4.13-4.07 (2H, m), 2.44-2.39 (1H, m), 1.07 (3H, d, *J* 6.8), 1.02 (3H, d, *J* 6.8); δ_C (151 MHz, CDCl₃): 161.4, 158.0, 157.5, 151.1, 148.0, 135.3, 135.2, 132.1, 131.3, 124.6, 109.2, 59.6, 43.0, 32.5, 17.8, 14.9; HRMS (ESI+): found 426.0644; C₁₆H₁₇ClN₅O₅S, [M+H]⁺ requires 426.0639; v_{max} (thin film): 3142.1, 3101.1, 3026.6, 2933.4, 2967.0, 1736.9, 1535.7, 1453.7, 1394.0, 1360.5, 1226.3, 1170.4, 1110.7, 980.3 cm⁻¹; [α]_D²⁰ +186.1 (c = 1.68, CHCl₃). These data are in agreement with previously reported values.^[6]

(S)-2-isobutyl-1-((2-nitrophenyl)sulfonyl)aziridine (S13)

2-Nitrobenzenesulfonyl chloride (14.18 g, 64.00 mmol) was added in five portions to a stirred 0 °C solution of L-leucinol (3.00 g, 25.60 mmol) and pyridine (10.5 mL) in dichloromethane (30 mL). The reaction was stirred vigorously and then allowed to warm to room temperature. After 24 h, the volatiles were removed *in vacuo*. The concentrated reaction mixture was then taken up in diethyl ether (80 mL), and the organic layer was washed with HCl (1 M aq.) until the aqueous washings were acidic (approximately 6 x 40 mL). KOH (2 M aq., 160 mL) was added to the organic layer, and the resulting biphasic mixture was stirred vigorously for 6 h. The layers were separated, and the organic layer washed with KOH (2 M aq., 2 x 40 mL). The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. Purification by flash column chromatography (silica gel, petrol:ethyl acetate, 10:1 \rightarrow 5:1) afforded the aziridine **S13** (6.92 g, 95%) as a pale yellow oil.* δ_H (400 MHz, CDCl₃): 8.21-8.19 (1H, m), 7.78-7.71 (1H, m), 3.08-3.02 (1H, m), 2.90 (1H, app. d, *J* 7.1), 2.26 (1H, app. d, *J* 4.9), 1.83-1.72 (1H, m), 1.59-1.53 (1H, m), 1.37-1.30 (1H, m), 0.96 (3H, d, *J* 2.0), 0.94 (3H, d, *J* 2.1); δ_C (101 MHz, CDCl₃): 148.7, 134.4, 132.3, 132.2, 131.2, 124.4, 41.0, 40.7, 36.7, 26.8, 22.8, 22.2; HRMS (ESI+): found 285.0901; $C_{12}H_{17}N_2O_4$ S, $[M+H]^+$ requires 285.0909; v_{max} (thin film): 2959.5, 2870.1, 1543.1, 1468.6, 1367.9, 1330.7, 1230.0, 1162.9, 1058.6, 931.8, 849.8, 775.3, 749.2, 678.4 cm⁻¹; $[\alpha]_D^{20}$ +61.0 (c = 1.4, CHCl₃).

(S)-*N*-(1-(*tert*-butylamino)-4-methylpentan-2-yl)-2-nitrobenzenesulfonamide (S14)

To a stirred, room temperature solution of *N*-nosyl-protected aziridine **S13** (1.0 g, 3.52 mmol) in acetonitrile (9 mL) was added *tert*-butylamine (1.5 mL, 14.08 mmol) in one portion. After 2 h the reaction was complete (TLC: dichloromethane), and the volatiles were removed *in vacuo*. The crude residue was purified by flash column chromatography (silica gel, dichloromethane:ethyl acetate 4:1) to afforded the product **S14** (1.13 g, 90%) as a yellow oil that solidifies upon standing. δ_H (400 MHz, CDCl₃): 8.16-8.14 (1H, m), 7.86-7.83 (1H, m), 7.74-7.67 (2H, m), 3.56-3.50 (1H, m), 2.54-2.46 (2H, m), 1.70-1.58 (1H, m), 1.48-1.41 (1H, m), 1.30-1.23 (1H, m), 0.89 (9H, s), 0.87 (3H, d, *J* 6.6), 0.84 (3H, d, *J* 6.6); δ_C (101 MHz, CDCl₃): 148.0, 135.7, 133.2, 132.8, 130.7, 125.3, 54.0, 40.1, 46.2, 43.1, 29.0, 24.6, 23.0, 22.3; HRMS (ESI+): found 715.3514; $C_{32}H_{55}N_6O_8S_2$, [2M+H]⁺ requires 715.3523; v_{max} (thin film): 3317.3, 2952.1, 2866.3, 1595.3, 1535.7, 1412.7, 1353.0 1233.7, 1170.4, 985.4, 853.6, 782.7, 734.3, 700.7 cm⁻¹; [α]_D²⁰ -90.3 (*c* = 1.05, CHCl₃).

^{*} It has been previously reported that *N*-nosyl-protected aziridines are prone to polymerisation upon standing.^[22] Aziridine **S13**, however, was indefinitely stable when stored as a dilute solution in DCM.

(S)-1-(tert-butyl)-4-isobutyl-3-((2-nitrophenyl)sulfonyl)imidazolidin-2-one (S15)

A solution of triphosgene (0.33 g, 1.12 mmol) in acetonitrile (8 mL) was added over 1 h *via* syringe pump to a stirred, room temperature solution of the diamine **S14** (1.00 g, 2.80 mmol) and Hünig's base (1.44 mL, 8.4 mmol) in acetonitrile (16 mL). After a further 30 min, the reaction mixture was concentrated *in vacuo*. The crude residue was taken up in dichloromethane (20 mL), and washed with HCl (10 mL, 1 M aq.). The layers were separated, and the aqueous phase was further extracted with dichloromethane (2 x 30 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. The crude residue was purified by flash column chromatography (silica gel, 1% triethylamine:dichloromethane) to afforded di-protected urea **S15** (1.04 g, 97%) as a pale yellow oil. δ_H (400 MHz, CDCl₃): 8.42-8.39 (1H, m), 7.76-7.69 (3H, m), 4.32-4.27 (1H, m), 3.72 (1H, app. t, *J* 8.7), 3.17 (1H, app. t, *J* 8.9, 2.2), 1.90-1.83 (1H, m), 1.76-1.65 (2H, m), 1.27 (9H, s), 1.00 (6H, d, *J* 6.3); δ_C (101 MHz, CDCl₃): 152.8, 147.9, 134.6, 134.3, 132.8, 132.0, 124.2, 54.3, 53.2, 46.9, 44.9, 27.4, 24.9, 23.5, 22.0; HRMS (ESI+): found 384.1588; $C_{17}H_{26}N_3O_5S$, [M+H]⁺ requires 384.1593; v_{max} (thin film): 2959.5, 2870.1, 1741.6, 1539.4, 1468.6, 1408.9, 1349.3, 1274.7, 1166.7, 1110.7, 969.1, 853.6, 782.7, 745.5 cm⁻¹; [α]_D²⁰ –331.7 (c = 1.1, CHCl₃).

(S)-1-(tert-butyl)-4-isobutylimidazolidin-2-one (S16)

Prepared according to **General Procedure A** using di-protected urea **S15** (4.86 g, 12.66 mmol), thiophenol (1.79 mL, 18.99 mmol), K₂CO₃ (5.25 g, 37.99 mmol) and *N*,*N*-DMF (120 mL). Reaction time = 4 h. Purification by flash column chromatography (silica gel, petrol:ethyl acetate $10:1 \rightarrow 5:1 \rightarrow 2:1$ (product)) afforded **S16** (2.31 g, 92%) as an off-white crystalline solid. Product **S16** is not visible under UV light and must be stained with ceric ammonium molybdate. δ_H (400 MHz, CDCl₃): 4.37 (1H, br. s, N-H), 3.63-3.55 (1H, m), 3.52 (1H, app. t, *J* 8.1), 2.99 (1H, app. t, *J* 7.6), 1.66-1.55 (1H, m), 1.49 (1H, m), 1.34 (9H, s), 1.32-1.28 (1H, m), 0.91 (6 H, app. t, *J* 6.7); δ_C (101 MHz, CDCl₃): 162.3, 52.9, 49.8, 47.8, 44.7, 27.7, 25.3, 23.1, 22.4; HRMS (ESI+): found 397.3532; C₂₂H₄₅N₄O₂, [2M+H]⁺ requires 397.3543; *v_{max}* (thin film): 3213.0, 3086.2, 2952.1, 2907.3, 2870.1, 1681.0, 1442.6, 1364.2, 1259.8, 1226.3, 1095.8, 1032.5, 931.8, 834.9, 767.8, 693.3 cm⁻¹; [α]_D²⁰ -7.2 (*c* = 1.2, CHCl₃).

(S)-5-isobutyl-1-((2-nitrophenyl)sulfonyl)imidazolidin-2-one (6)

At room temperature, trifluoroacetic acid (10 mL) was added to di-protected urea **S15** (1.0 g, 2.61 mmol). The reaction mixture was stirred and then heated to reflux at 82°C for 16 h. When TLC analysis showed all starting material had been consumed, the reaction mixture was cooled to room temperature, and excess trifluoroacetic acid was removed by running a compressed air line over the solution for 1 h. The resulting crude brown residue was taken up in dichloromethane (60 mL) and washed with NaHCO₃ (sat. aq. 30 mL) The layers were separated, and the aqueous layer

was further extracted with dichloromethane (2 x 40 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. The crude solid was purified by trituration in hot hexane to afford the *tert*-butyl deprotected product **6** (0.85 g, 99%) as an off-white crystalline solid. δ_H (400 MHz, CDCl₃): 8.40-8.38 (1H, m), 7.75-7.69 (3H, m), 5.27 (1H, br. s, N-H), 4.56-4.50 (1H, m), 3.75 (1H, app. t, *J* 8.8), 3.20 (1H, app. dd, *J* 8.8,1.5), 1.92-1.86 (1H, m), 1.81-1.77 (1H, m), 1.73-1.66 (1H, m), 1.00 (6H, d, *J* 6.6); δ_C (101 MHz, CDCl₃): 155.1, 148.0, 134.7, 134.6, 132.3, 131.9, 124.3, 57.2, 44.9, 44.1, 24.9, 23.5, 21.; HRMS (ESI+): found 328.0948; C₁₃H₁₇N₃O₅S, [M+H]⁺ requires 328.0967; v_{max} (thin film): 3101.1, 2959.5, 2873.8, 1740.7, 1539.4, 1457.4, 1395.8, 1364.2 1334.4, 1271.0, 1174.4, 1107.0, 984.0, 853.6, 741.7, 767.8, 700.7 cm⁻¹; $[\alpha]_D^{20} + 477.5$ (c = 1.2, CHCl₃).

(S)-1-(6-chloropyrimidin-4-yl)-4-isobutyl-3-((2-nitrophenyl)sulfonyl)imidazolidin-2-one (S17)

Prepared according to **General Procedure B** using deprotected urea **6** (0.73 g, 2.23 mmol), 4,6-dichloropyrimidine (1.66 g, 11.15 mmol), Pd₂(dba)₃ (0.10 g, 0.11 mmol), Xantphos (0.19 g, 0.33 mmol), toluene (11 mL), and Cs₂CO₃ (1.82 g, 5.58 mmol). Reaction time = 16 h. Purification by flash column chromatography (silica gel, petrol:ethyl acetate, 7:1 \rightarrow 1:1) afforded the chloropyrimidine **S17** (0.84 g, 86%) as a pale yellow solid. δ_H (400 MHz, CDCl₃): 8.66 (1H, d, *J* 0.7), 8.50-8.46 (1H, m), 8.10 (1H, d, *J* 0.7), 7.84-7.77 (3H, m), 4.62.4.58 (1H, m), 4.22 (1H, app dd, *J* 10.9, 8.7), 4.01 (1H, app. dd, *J* 11.0, 1.9), 1.99-1.93 (1H, m), 1.83-1.74 (2H, m), 1.04 (6H, app. t, *J* 6.9); δ_C (101 MHz, CDCl₃): 161.6, 158.1, 157.9, 150.9, 148.1, 135.4, 135.0, 132.3, 131.5, 124.8, 109.5, 54.1, 47.5, 45.1, 24.9, 23.4, 21.7; HRMS (ESI+): found 440.0781; C₁₇H₁₉N₅O₅SCI, [M+H]⁺ requires 440.0795; v_{max} (thin film): 3365.8, 3.71.3, 2959.5, 2922.2, 2870.1, 1751.8, 1714.6, 159.1, 1550.6, 1464.8, 1420.1 1356.8, 1267.1, 1248.7, 1162.9, 1121.9, 1066.0, 849.8, 797.7, 726.8 cm⁻¹; [α]_D²⁰ +166.1 (c = 1.1, CHCl₃).

2.3.4 Alanine Series

(S)-2-methyl-1-((2-nitrophenyl)sulfonyl)aziridine (S18)

2-Nitrobenzenesulfonyl chloride (21.16 g, 100.0 mmol) was added in five portions to a stirred 0 °C solution of L-alaninol (3.00 g, 40.0 mmol) and pyridine (16 mL) in dichloromethane (40 mL). The reaction was stirred vigorously and then allowed to warm to room temperature. After 24 h, the volatiles were removed *in vacuo*. The concentrated reaction mixture was then taken up in diethyl ether (80 mL), and the organic layer was washed with HCl (1 M aq.) until the aqueous washings were acidic (approximately 6 x 40 mL). KOH (2 M aq., 160 mL) was added to the organic layer, and the resulting biphasic mixture was stirred vigorously for 6 h. The layers were separated, and the organic layer washed with KOH (2 M aq., 2 x 40 mL). The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. Purification by flash column chromatography (silica gel, dichloromethane) afforded the aziridine **S18** (6.22 g, 64%) as a pale yellow oil.* δ_H (400 MHz, CDCl₃): 8.31-8.14 (1H, m), 7.86-7.62 (3H, m), 3.19-3.03 (1H, m), 2.90 (1H, d, *J* 7.0), 2.27 (1H, d, *J* 4.9), 1.37 (3H, d, *J* 5.6); δ_C (101 MHz, CDCl₃): 148.5, 134.3, 132.4, 132.2, 131.1,

^{*} It has been previously reported that *N*-nosyl-protected aziridines are prone to polymerisation upon standing.^[22] Aziridine **S18**, however, was indefinitely stable when stored as a dilute solution in DCM.

124.3, 38.6, 36.8, 16.9; HRMS (ESI+): found 243.0443; $C_9H_{11}N_2O_4S$, $[M+H]^+$ requires 242.0440; v_{max} (thin film): 3097.4, 2981.9, 1543.1, 1364.2, 1330.7, 1162.9, 1032.5, 849.8, 734.3 cm⁻¹; $[\alpha]_D^{20}$ -0.55 (*c* = 1.1, CHCl₃). This compound has previously been reported but only LCMS data were made available.^[7]

(S)-N-(1-(tert-butylamino)propan-2-yl)-2-nitrobenzenesulfonamide (S19)

To a stirred, room temperature solution of *N*-nosyl-protected aziridine **S18** (4.15 g, 17.13 mmol) in acetonitrile (43 mL) was added *tert*-butylamine (7.2 mL, 68.52 mmol) in one portion. After 2 h the reaction was complete (TLC: 5% methanol/dichloromethane), and the volatiles were removed *in vacuo*. The crude residue was purified by recrystallisation from petrol and dichloromethane to afford the product **S19** (5.03 g, 93%) as a yellow solid. δ_H (400 MHz, CDCl₃): 8.21-8.07 (1H, m), 7.88-7.85 (1H, m), 7.73-7.71(2H, m), 3.57-3.20 (1H, m), 2.60 (1H, dd, *J* 12.1, 4.0), 2.45 (1H, dd, *J* 11.9, 7.4), 1.18 (3H, d, *J* 6.5), 0.97 (9H, s); δ_C (101 MHz, CDCl₃): 148.0, 134.7, 133.6, 132.6, 130.9, 125.2, 51.2, 50.1, 47.5, 29.0, 19.7; HRMS (ESI+): found 316.1305; $C_{13}H_{22}N_3O_4S$, [M+H]⁺ requires 316.1331; v_{max} (thin film): 3321.1, 2967.0, 1539.4, 1364.2, 1170.4, 1125.7, 782.7, 741.7 cm⁻¹; $[\alpha]_D^{20}$ -74.1 (*c* = 1.4, CHCl₃).

(S)-1-(tert-butyl)-4-methyl-3-((2-nitrophenyl)sulfonyl)imidazolidin-2-one (S20)

A solution of triphosgene (1.71 g, 14.43 mmol) in acetonitrile (30 mL) was added over 1 h *via* syringe pump to a stirred, room temperature solution of the diamine **S19** (4.55 g, 14.4 mmol) and Hünig's base (7.5 mL, 43.28 mmol) in acetonitrile (42 mL). After a further 30 min, the reaction mixture was concentrated *in vacuo*. The crude residue was taken up in dichloromethane (50 mL), and washed with HCl (20 mL, 1 M aq.). The layers were separated, and the aqueous phase was further extracted with dichloromethane (2 x 50 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. The crude residue was purified by flash column chromatography (silica gel, 1% triethylamine:dichloromethane) to afforded di-protected urea **S20** (4.93 g, 96%) as a pale yellow solid. δ_H (400 MHz, CDCl₃): 8.44-8.36 (1H, m), 7.78-7.65 (3H, m), 4.47-4.30 (1H, m), 3.74 (1H, t, *J* 8.7), 3.08 (1H, dd, *J* 8.9, 2.7), 1.54 (3H, d, *J* 6.3), 1.30 (9H, s); δ_C (101 MHz, CDCl₃): 152.4, 147.8, 134.2, 134.1, 132.5, 131.9, 124.0, 54.2, 50.4, 48.5, 27.3, 22.2; HRMS (ESI+): found 342.1121; C₁₄H₂₀N₃O₅S, [M+H]⁺ requires 342.1124; v_{max} (thin film): 2978.1, 2933.4, 1718.3, 1539.4, 1405.2, 1360.5, 1274.7, 1162.9, 1125.7, 779.0, 738.0 cm⁻¹; [*a*]_D²⁰ +317.9 (*c* = 1.4, CHCl₃).

(S)-5-methyl-1-((2-nitrophenyl)sulfonyl)imidazolidin-2-one (7)

At room temperature, trifluoroacetic acid (29 mL) was added to di-protected urea **S20** (2.53 g, 7.41 mmol). The reaction mixture was stirred and then heated to reflux at 82°C for 16 h. When TLC analysis showed all starting material had been consumed, the reaction mixture was cooled to room temperature, and excess trifluoroacetic acid was removed by running a compressed air line over the solution for 1 h. The resulting crude brown residue was taken up in dichloromethane (60 mL) and washed with NaHCO₃ (sat. aq. 30 mL) The layers were separated, and the aqueous layer was further extracted with dichloromethane (2 x 40 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. The crude solid was purified by trituration in hot hexane to afford

the *tert*-butyl deprotected product **7** (2.11 g, >99.9%) as gray crystalline solid. δ_H (400 MHz, CDCl₃): 8.45-8.35 (1H, m), 7.79-7.65 (3H, m), 5.27 (1H, s), 4.67-4.56 (1H, m), 3.79 (1H, td, *J* 8.8), 3.10 (1H, ddd, *J* 8.8, 2.8, 0.9), 1.60 (3H, d, *J* 6.4); δ_C (101 MHz, CDCl₃): 154.7, 147.9, 134.6, 134.3, 132.1, 131.8, 124.1, 54.3, 45.8, 22.4; HRMS (ESI+): found 324.0047; C₁₀H₁₁N₃O₅SK, [M+K]⁺ requires 324.0057; v_{max} (thin film): 3384.4, 1736.9, 1543.1, 1364.2, 1170.4, 1252.4, 1170.4, 1092.1, 853.6 cm⁻¹; [α]_D²⁰ +484.5 (*c* = 0.4, CHCl₃).

2.4 Synthesis of Acyclic Dimers and Trimers

(*S*)-1-(*tert*-butyl)-3-(6-((*S*)-4-((*S*)-*sec*-butyl)-3-((2-nitrophenyl)sulfonyl)-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)-4-isopropylimidazolidin-2-one (S21)

Prepared according to **General Procedure B** using chloropyrimidine **S6** (0.36 g, 0.81 mmol), imidazolidin-2-one **S10** (0.10 g, 0.54 mmol) [added in one portion at reaction time = 0], $Pd_2(dba)_3$ (25 mg, 27 µmol), Xantphos (50 mg, 81 µmol), toluene (5 mL), and Cs_2CO_3 (0.44 g, 1.35 mmol). Reaction time = 16 h. Purification by flash column chromatography (silica gel, firstly 10% ethyl acetate:dichloromethane to remove xantphos and xantphos oxide that co-elutes with the product in petrol:ethyl acetate. The column fractions containing the product were concentrated *in vacuo* and subjected to a second column, silica gel, petrol:ethyl acetate $10:1 \rightarrow 3:1$) afforded the di-protected dimer **S21** (0.16 g, 51%) as a pale yellow solid. δ_H (400 MHz, CDCl₃): 8.79 (1H, d, *J* 0.9), 8.56-8.56 (1H, dd, *J* 8.0, 1.1), 8.51 (1H, d, *J* 0.8), 7.79 (1H, app. td, *J* 7.1, 2.1), 7.75-7.71 (2H, m), 4.54 (1H, dt, *J* 8.6, 3.0), 4.47 (1H, dt, *J* 9.3, 3.1), 4.10-4.01 (2H, m), 3.40 (1H, app. t, *J* 9.4), 3.29 (1H, dd, *J* 9.3, 3.0), 2.50-2.42 (1H, m), 2.23-2.13 (1H, m), 1.55-1.44 (1H, m), 1.40 (9H, s), 1.35-1.28 (1H, m), 1.03-0.98 (6H, m), 0.92 (3H, d, *J* 7.1), 0.79 (3H, d, *J* 6.9); δ_C (101 MHz, CDCl₃): 158.8, 157.0, 156.8, 155.9, 150.9, 148.2, 135.6, 134.9, 132.4, 131.9, 124.4, 96.6, 58.4, 54.9, 54.0, 42.8, 40.4, 39.3, 28.4, 27.7, 25.4, 18.4, 14.5, 12.0, 11.9; HRMS (ESI+): found 626.2181; $C_{27}H_{37}N_7O_6SK$, [M+K]⁺ requires 626.2163; v_{max} (thin film): 3093.7, 2963.2, 2922.2, 1736.9, 1572.9, 1539.4, 1435.0, 1390.3, 1360.5, 1274.7, 1215.1, 1162.9, 1110.7, 1069.7, 984.0, 916.9, 887.1, 808.8, 738.0, 678.4 cm⁻¹; $[\alpha]_D^{20} + 109.0$ (c = 1.1, CHCl₃).

(S)-1-(*tert*-butyl)-3-(6-((S)-4-((S)-sec-butyl)-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)-4-isopropylimidazolidin-2-one (S22)

Prepared according to **General Procedure A** using di-protected dimer **S21** (0.48 g, 0.82 mmol), thiophenol (0.12 mL, 1.23 mmol), K₂CO₃ (0.34 g, 2.46 mmol) and *N*,*N*-DMF (10 mL). Reaction time = 3 h. Purification by flash column chromatography (silica gel, petrol:ethyl acetate $10:1 \rightarrow 5:1 \rightarrow 1:1$ (product)) afforded **S22** (0.31 g, 94%) as a pale yellow crystalline solid. δ_H (600 MHz, CDCl₃): 9.00 (1H, s), 8.50 (1H, s), 5.70 (1H, br. s, N-H), 4.50 (1H, dt, *J* 9.2, 2.8), 4.11 (1H, app. t, *J* 10.0), 3.76 (1H, dd, *J* 10.5, 7.1), 3.61 (1H, app. q, *J* 14.9, 7.1), 3.43 (1H, app. t, *J* 9.1), 3.29 (1H, dd, *J* 8.9, 2.3), 2.50-2.45 (1H, m), 1.55-1.51 (1H, m), 1.41 (10H, app. s), 0.95-0.92 (9H, m), 0.81 (3H, d, *J* 6.8); δ_C (151 MHz, CDCl₃): 158.4, 158.2, 157.7, 156.9, 156.0, 96.0, 54.8, 53.9, 53.4, 47.3, 40.5, 39.6, 28.6, 27.7, 25.2, 18.4, 14.6, 13.9, 11.2; HRMS (ESI+): found 403.2825; C₂₁H₃₅N₆O₂, [M+H]⁺ requires 403.2821; v_{max} (thin film): 3186.9, 3123.5, 2963.2, 2929.7, 2877.5, 1714.6, 1580.4, 1461.1, 1397.8, 1367.9, 1267.3, 1244.9, 1162.9, 1114.5, 1073.5, 984.0, 928.1, 883.4, 823.7, 756.6, 693.3 cm⁻¹; [α]_D²⁰ +45.5 (*c* = 0.8, CHCl₃).

(S)-1-(*tert*-butyl)-3-(6-((S)-4-((S)-sec-butyl)-3-(6-chloropyrimidin-4-yl)-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)-4- isopropylimidazolidin-2-one (1a)

Prepared according to **General Procedure B** using *N*-nosyl deprotected dimer **S22** (0.26 g, 0.63 mmol), 4,6-dichloropyrimidine (0.65 g, 4.44 mmol), $Pd_2(dba)_3$ (29 mg, 32 µmol), Xantphos (54 mg, 95 µmol), toluene (10 mL), and Cs_2CO_3 (0.51 g, 1.50 mmol). Reaction time = 16 h. Then a second portion of $Pd_2(dba)_3$ (29 mg, 32 µmol) and Xantphos (72 mg, 95 µmol) was added. The reaction was heated at reflux for a further 5 h. Purification by flash column chromatography (silica gel, petrol:ethyl acetate, 7:1) afforded the chloropyrimidine **1a** (0.23 g, 71%) as a yellow crystalline solid. δ_H (600 MHz, CDCl₃): 9.17 (1H, d, *J* 1.0), 8.66 (1H, d, *J*, 0.9), 8.57 (1H, d, *J* 0.9), 8.56 (1H, d, *J* 1.0), 4.86-4.84 (1H, m), 4.54-4.52 (1H, m), 4.08 (1H, dd, *J* 11.2, 2.4), 3.96 (1H, app. t, *J* 10.2), 3.47 (1H, app. t, *J* 9.3), 3.33 (1H, dd, *J* 9.1, 2.5), 2.54-2.51 (1H, m), 2.32-2.31 (1H, m), 1.54 (10H, app. s), 1.34-1.28 (1H, m), 1.01 (3H, app. t, *J* 7.3), 0.96 (3H, app. t, *J* 7.3), 0.96 (3H, d, *J* 7.0), 0.83 (3H, d, *J* 6.9), 0.76 (3H, d, *J* 6.9); δ_C (151 MHz, CDCl₃): 161.5, 158.8, 158.3, 157.9, 157.1, 157.1, 156.0, 153.4, 109.9, 69.5, 54.9, 54.5, 54.1, 41.5, 40.5, 34.9, 28.5, 27.8, 25.6, 18.4, 14.6, 12.0, 11.6; HRMS (ESI+): found 1067.4789; $C_{50}H_{70}N_{16}O_4Cl_2K$, [2M+K]* requires 1067.4780; v_{max} (thin film): 3138.4, 2952.1, 2870.1, 1714.6, 1561.8, 1528.2, 1490.9, 1435.0, 1382.8, 1274.7, 1241.2, 1200.2, 1110.7, 980.3, 931.8, 745.5, 678.4 cm⁻¹; [α]_D²⁰ +24.8 (c = 1.3, CHCl₃).

(S)-4-((S)-sec-butyl)-3-(6-chloropyrimidin-4-yl)-1-(6-((S)-5-isopropyl-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)imidazolidin-2-one (2a)

At room temperature, trifluoroacetic acid (5 mL) was added to the chloropyrimidine **1a** (0.18 g, 0.34 mmol). The reaction mixture was stirred and trifluoromethanesulfonic acid (0.6 mL) was subsequently added. When TLC analysis showed all starting material had been consumed, excess trifluoroacetic acid and trifluoromethanesulfonic acid was removed by running a compressed air line over the solution for 1 h. The resulting crude brown residue was taken up in dichloromethane and washed with NaHCO₃. The layers were separated, and the aqueous layer was further extracted with dichloromethane (2 x 10 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. The crude solid was purified by trituration from hot hexane to afford the *tert*-butyl deprotected dimer **2a** (85 mg, 0.19 mmol, 81%)^{*} as an off-white crystalline solid. δ_H (600 MHz, CDCl₃): 9.1 (1H, s), 8.67 (1H, s), 8.59 (1H, s), 8.53 (1H, s), 4.93 (1H, br. s, N-H), 4.86-4.84 (1H, m), 4.77-4.75 (1H, m), 4.08 (1H, dd, *J* 11.1, 2.5), 3.97 (1H, app. t, *J* 10.0), 3.55 (1H, app. t, *J* 9.2), 3.36 (1H, dd, *J* 8.7, 2.0), 2.60 (1H, app. oct, *J* 20.3, 17.1, 13.5, 10.7, 6.8), 2.34-2.33 (1H, m), 1.48-1.44 (1H, m), 1.34-1.28 (1H, m), 1.02 (3H, app. t, *J* 7.24), 0.96 (3H, d, *J* 6.9), 0.88 (3H, d, *J* 6.9), 0.77 (3H, d, *J* 6.7); δ_C (151 MHz, CDCl₃): 161.5, 158.6, 158.3, 158.2, 157.9, 157.3, 157.2, 153.5, 109.9, 96.8, 59.0, 54.6, 41.4, 37.7, 34.9, 28.5, 25.6, 18.3, 14.5, 12.0, 11.6; HRMS (ESI+): found 511.1736; C₂₂H₂₉N₈O₂ClK, [M+K]⁺ requires 511.1739; v_{max} (thin film): 3242.8, 3164.5, 2959.5, 2870.1, 1722.0, 1565.5, 1528.2, 1483.5, 1427.6, 1285.9, 1252.4, 1155.5, 1114.5, 984.0, 924.4, 887.1, 745.5, 674.0 cm⁻¹; [α]_D²⁰ +12.9 (c = 0.4, CHCl₃).

^{*} Based on recovered starting material. The starting material was soluble in hot hexane.

(S)-4-((S)-sec-butyl)-1-(*tert*-butyl)-3-(6-((S)-4-((S)-sec-butyl)-3-((2-nitrophenyl)sulfonyl)-2-oxoimidazolidin-1yl)pyrimidin-4-yl)imidazolidin-2-one (S23)

Prepared according to **General Procedure B** using chloropyrimidine **S6** (0.92 g, 2.10 mmol), imidazolidin-2-one **S4** (0.32 g, 1.61 mmol) [added in 2 portions at reaction time = 0 h and at 3 h], Pd(dba)₂ (46 mg, 80 µmol), Xantphos (0.14 g, 0.24 mmol), toluene (8 mL), and K₂CO₃ (0.56 g, 4.03 mmol). Reaction time = 16 h. Purification by flash column chromatography (silica gel, firstly 10% ethyl acetate:dichloromethane to remove xantphos and xantphos oxide that coelutes with the product in petrol:ethyl acetate. The column fractions containing the product were concentrated *in vacuo* and subjected to a second column, silica gel, petrol:ethyl acetate 7:1 \rightarrow 3:1) afforded the di-protected dimer **S23** (0.73 g, 75%) as a pale yellow solid. δ_H (600 MHz, CDCl₃):* 8.79 (1H, s), 8.55 (1H, d, *J* 7.7), 8.51 (1H, s), 7.79 (1H, t, *J* 7.0), 7.76-7.72 (2H, m), 4.55 (2H, dd, *J* 20.0, 9.1), 4.09-4.02 (1H, m), 3.40 (1H, t, *J* 9.6), 3.27 (1H, dd, *J* 9.1, 2.1), 2.21-2.18 (2H, m), 1.56-1.52 (1H, m), 1.39 (9H, s), 1.33-1.27 (2H, m), 1.23-1.18 (1H, m), 1.02-0.95 (6H, m), 0.85-0.81 (3H, m), 0.77 (3H, d, *J* 6.8); δ_C (151 MHz, CDCl₃): 158.5, 156.9, 156.6, 155.8, 150.8, 148.0, 135.4, 134.7, 132.2, 131.7, 124.2, 96.5, 58.2, 53.8, 53.7, 42.6, 41.3, 39.1, 34.9, 27.5, 25.6, 25.3, 11.82, 11.80, 11.7, 11.6; HRMS (ESI+): found 602.2754; C₂₈H₄₀N₇O₆S, [M+H]⁺ requires 602.2761; *v_{max}* (thin film): 2959.5, 2873.8, 1736.9, 1707.1, 1580.4, 1539.4, 1435.0, 1360.5, 1274.7, 1218.8, 1166.7, 1114.5, 1069.7, 984.0, 875.9, 730.6 cm⁻¹; [*a*]_D²⁰ +76.2 (*c* = 0.7, CHCl₃).

(S)-4-((S)-sec-butyl)-1-(*tert*-butyl)-3-(6-((S)-4-((S)-sec-butyl)-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)imidazolidin-2-one (S24)

Prepared according to **General Procedure A** using di-protected dimer **S23** (0.41 g, 0.68 mmol), thiophenol (0.1 mL, 1.02 mmol), K₂CO₃ (0.23 g, 1.69 mmol) and *N*,*N*-DMF (7 mL). Reaction time = 8 h. Purification by flash column chromatography (silica gel, petrol:ethyl acetate 10:1 \rightarrow 2:1(product)) afforded **S24** (0.24 g, 85%) as a pale yellow crystalline solid. δ_H (400 MHz, CDCl₃): 8.90 (1H, d, *J* 1.2), 8.50 (1H, d, *J* 1.1), 5.44 (1H, br. s, N-H), 4.59 (1H, dt, *J* 9.3, 3.3), 4.11 (1H, dd, *J* 10.7, 9.2), 3.76 (1H, dd, *J* 10.9, 6.9), 3.61 (1H, app. q, *J* 15.5, 6.6), 3.42 (1H, app. t, *J* 9.3), 3.30 (1H, dd, *J* 9.2, 3.4), 2.35-2.18 (1H, m), 1.57-1.48 (3H, m), 1.40 (10H, s), 1.25-1.23 (1H, m), 0.98-0.89 (9H, m), 0.78 (3H, d, *J* 6.9); δ_C (151 MHz, CDCl₃): 158.3, 158.1, 157.7, 156.9, 156.0, 96.2, 53.8, 53.4, 47.3, 40.5, 39.6, 35.3, 27.7, 25.8, 25.2, 17.4, 13.9, 12.0, 11.8, 11.2; HRMS (ESI+): found 455.2520; C₂₂H₃₆N₆O₂K, [M+K]⁺ requires 455.2537; v_{max} (thin film): 3235.3, 2959.5, 2873.8, 1714.6, 1580.4, 1438.8, 1394.0, 1237.5, 1166.7, 1077.2, 1028.7, 984.0, 883.4, 820.0, 752.9, 670.9 cm⁻¹; [α]_D²⁰ +54.3 (c = 0.7, CHCl₃).

^{*} The product was isolated along with a hydrocarbon grease-type contaminant. This led to measured ¹H integrals in the ~0.5-1.5 ppm region being greater than expected, and some additional ¹³C peaks in the low ppm range. The reported peaks are those assigned to the product structure on the basis of 2D COSY, HSQC and HMBC experiments.

(S)-4-((S)-sec-butyl)-1-(*tert*-butyl)-3-(6-((S)-4-((S)-sec-butyl)-3-(6-chloropyrimidin-4-yl)-2-oxoimidazolidin-1yl)pyrimidin-4-yl)imidazolidin-2-one (1b)

Prepared according to **General Procedure B** using *N*-nosyl deprotected dimer **S24** (0.11 g, 0.25 mmol), 4,6dichloropyrimidine (0.27 g, 1.78 mmol), $Pd_2(dba)_2$ (12 mg, 13 µmol), Xantphos (22 mg, 38 µmol), toluene (3 mL), and K_2CO_3 (90 mg, 0.64 mmol). Reaction time = 16 h. Purification by flash column chromatography (silica gel, dichloromethane \rightarrow (impurity) \rightarrow 10% ethyl acetate:dichloromethane (product) afforded the chloropyrimidine **1b** (0.11 g, 82%) as a yellow crystalline solid. δ_H (600 MHz, CDCl₃): 9.16 (1H, s), 8.66 (1H, s), 8.56 (2H, app. d, *J* 3.47), 4.85 (1H, dt, *J* 9.3, 2.8), 4.63 (1H, dt, *J* 9.5, 2.8), 4.07 (1H, dd, *J* 11.0, 2.1), 3.96 (1H, app. t, *J* 10.3), 3.46 (1H, app. t, *J* 9.4), 3.31 (1H, dd, *J* 9.1, 2.3), 2.34-2.26 (2H, m), 1.44 (11H, app. s), 1.33-1.28 (1H, m), 1.23-1.19 (1H, m), 1.00 (6H, app. dt, *J* 14.6, 7.4), 0.81 (3H, d, *J* 6.8), 0.76 (3H, d, *J* 6.8); δ_C (151 MHz, CDCl₃): 161.5, 158.7, 158.3, 157.8, 157.1, 157.1, 156.1, 153.4, 109.9, 96.5, 54.5, 53.9, 41.5, 40.5, 35.2, 34.9, 27.8, 25.8, 25.3, 12.1, 12.0, 11.8, 11.5; HRMS (ESI+): found 529.2803; $C_{26}H_{38}N_8O_2$ Cl, [M+H]⁺ requires 529.2806; v_{max} (thin film): 2955.8, 2922.2, 2855.1, 1714.6, 1565.5, 1531.9, 1435.0, 1386.6, 1274.7, 1241.2, 1162.9, 1114.5, 980.3, 928.1, 875.9, 745.5, 678.4 cm⁻¹; [α]_D²⁰ +9.1 (c = 1.3, CHCl₃).

(S)-4-((S)-sec-butyl)-1-(6-((S)-5-((S)-sec-butyl)-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)-3-(6-chloropyrimidin-4-yl)imidazolidin-2-one (2b)

At room temperature, trifluoroacetic acid (mL) was added to the chloropyrimidine **1b** (1.1 g, 0.20 mmol). The reaction mixture was stirred and trifluoromethanesulfonic acid (0.5 mL) was subsequently added. When TLC analysis showed all starting material had been consumed, excess trifluoroacetic acid and trifluoromethanesulfonic acid was removed by running a compressed air line over the solution for 1 h. The resulting crude brown residue was taken up in dichloromethane and washed with NaHCO₃. The layers were separated, and the aqueous layer was further extracted with dichloromethane (2 x 10 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. The crude solid was purified by trituration from hot hexane to afford the *tert*-butyl deprotected dimer **2b** (76 mg, 80%) as a yellow powder. δ_{H} (600 MHz, CDCl₃): 9.14 (1H, s), 8.67 (1H, s), 8.59 (1H, s), 8.53 (1H, s), 5.03 (1H, br. s, N-H), 4.87-4.85 (2H, m), 4.08 (1H, dd, J 11.3, 2.3), 3.97 (1H, app.t, J 10.1), 3.54 (1H, app. t, J 9.1), 3.35 (1H, dd, J 8.7, 2.0), 2.39-2.31 (2H, m), 1.46 (1H, app. oct, 27.8, 20.8, 13.8, 7.5), 1.39 (1H, app. oct, J 24.8, 18.1, 11.3, 4.0), 1.32 (1H, app. oct, J 26.2, 19.8, 16.3, 4.7), 1.22 (1H, app. oct, J 29.8, 23.2, 15.3, 7.7), 1.03-0.98 (6H, m), 0.86 (3H, d, J 6.8), 0.77 (3H, d, J 6.8); δ_{C} (151 MHz, CDCl₃): 161.5, 158.5, 158.3, 158.3, 157.9, 157.3, 157.2, 153.5, 109.9, 96.9, 58.0, 54.6, 41.4, 37.8, 35.2, 34.9, 25.7, 25.6, 12.0, 12.0, 11.8, 11.6; HRMS (ESI+): found 511.1736; $C_{22}H_{29}N_8O_2$ ClK, [M+K]⁺ requires 511.1739; v_{max} (thin film): 3235.3, 3149.6, 2967.0, 2933.4, 2877.5, 1729.5, 1561.8, 1479.8, 1431.3, 1382.8, 1252.4, 1155.5, 1118.2, 1088.4, 984.0, 879.7, 752.6, 674.6 cm⁻¹; $[\alpha]_n^{20} + 6.4$ (c = 1.1, CHCl₃).

(S)-1-(*tert*-butyl)-4-isobutyl-3-(6-((S)-4-isobutyl-3-((2-nitrophenyl)sulfonyl)-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)imidazolidin-2-one (S25)

Prepared according to **General Procedure B** using chloropyrimidine **S17** (0.49 g, 1.11 mmol), imidazolidin-2-one **6** (0.20 g, 1.01 mmol), $Pd_2(dba)_3$ (50 mg, 55 µmol), Xantphos (0.09 g, 0.15 mmol), toluene (10 mL), and Cs_2CO_3 (0.81 g, 2.5 mmol). Reaction time = 16 h. Purification by flash column chromatography (silica gel, petrol:ethyl acetate 5:1 \rightarrow 3:1) afforded the di-protected dimer **S25** (0.55 g, 91%) as a white solid. δ_H (600 MHz, CDCl₃): 8.73 (1H, d, *J* 1.0), 8.54 (1H, app. d, *J* 7.9), 8.51 (1H, app. s), 7.78-7.71 (3H, m), 4.55-4.51 (2H, m), 4.20 (1H, app. t, *J* 9.9), 3.96 (1H, app. d, *J* 10.7), 3.51 (1H, app. t, *J* 8.7), 3.18 (1H, app. dd, *J* 8.8, 2.0), 1.92-1.89 (1H, m), 1.79-1.73 (2H, m), 1.71-1.69 (1H, m), 1.40 (10H, s), 1.03-0.98 (9H, m), 0.93 (3H, d, *J* 6.2); δ_C (151 MHz, CDCl₃): 158.6, 157.1, 155.7, 150.6, 148.1, 135.4, 134.9, 132.4, 131.9, 124.4, 96.8, 53.8, 53.8, 49.9, 47.5, 45.7, 45.0, 41.6, 29.9, 27.7, 25.1, 24.9, 23.9, 23.6, 21.9, 21.7; HRMS (ESI+): found 602.2771; $C_{28}H_{40}N_7O_6S$, [M+H]⁺ requires 602.2761; v_{max} (thin film): 2959.5, 2870.1, 1744.4, 1699.7, 1580.4, 1550.6, 1468.6, 1435.0, 1364.2, 1278.5, 1222.6, 1170.4, 1118.2, 868.5, 782.7, 745.5, 670.9 cm⁻¹; $[\alpha]_D^{20}$ +94.1 (c = 1.1, CHCl₃).

(S)-1-(tert-butyl)-4-isobutyl-3-(6-((S)-4-isobutyl-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)imidazolidin-2-one (S26)

Prepared according to **General Procedure A** using di-protected dimer **S25** (1.52 g, 2.53 mmol), thiophenol (0.36 mL, 3.79 mmol), K₂CO₃ (1.05 g, 7.59 mmol) and *N*,*N*-DMF (30 mL). Reaction time = 2 h. Purification by flash column chromatography (silica gel, petrol:ethyl acetate 7:1 \rightarrow 4:1(product)) afforded **S26** (1.03 g, 98 %) as a pale yellow crystalline solid. δ_H (400 MHz, CDCl₃): 8.90 (1H, d, *J* 0.8), 8.50 (1H, d, *J* 0.8), 5.37 (1H, br. s, N-H), 4.59-4.54 (1H, m), 4.19 (1H, app. t, *J* 9.6), 3.83 (1H, app. quint, *J* 21.6, 13.8, 6.8), 3.70-3.65 (1H, m), 3.54 (1H, t, *J* 8.6), 3.18 (1H, dd, *J* 8.8, 2.7), 1.77-1.69 (2H, m), 1.67-1.60 (1H, m), 1.58-1.51 (1H, m), 1.47-1.41 (1H, m), 1.41 (10H, app. s), 1.01-0.93 (12H, m); δ_C (101 MHz, CDCl₃): 158.2, 158.2, 157.6, 157.0, 155.9, 96.1, 53.7, 50.0, 49.7, 47.4, 45.7, 45.4, 41.8, 27.7, 25.1, 23.9, 23.0, 22.5, 21.9; HRMS (ESI+): found 417.2984; C₂₂H₃₇N₆O₂, [M+H]⁺ requires 417.2978; v_{max} (thin film): 3235.3, 3123.5, 2955.8, 2929.7, 2870.1, 1718.3, 1572.9, 1535.7, 1438.8, 1390.3, 1364.2, 1259.8, 1230.0, 1162.9, 1073.5, 980.3, 752.9, 670.9 cm⁻¹; [α]_D²⁰ +56.0 (c = 1.1, CHCl₃).

(S)-1-(*tert*-butyl)-3-(6-((S)-3-(6-chloropyrimidin-4-yl)-4-isobutyl-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)-4-isobutylimidazolidin-2-one (1c)

Prepared according to **General Procedure B** using *N*-nosyl deprotected dimer **S26** (0.13 g, 0.31 mmol), 4,6dichloropyrimidine (0.32 g, 2.15 mmol), Pd₂(dba)₃ (14 mg, 15 µmol), Xantphos (27 mg, 0.05 mmol), toluene (3 mL), and Cs₂CO₃ (0.25 g, 0.77 mmol). Reaction time = 16 h. Purification by flash column chromatography (silica gel, petrol:ethyl acetate, 10:1 \rightarrow 5:1) afforded the chloropyrimidine **1c** (0.14 g, 86%) as a yellow crystalline solid. δ_H (600 MHz, CDCl₃): 9.09 (1H, d, J 0.9), 8.67 (1H, s), 8.56 (1H, d, J 0.8), 8.51 (1H, s), 4.81-4.78 (1H, m) 4.62-4.59 (1H, m), 4.08 (1H, app. t, J 10.1), 4.03 (1H, app. dd, J 10.7, 1.7), 3.58 (1H, app. t, J 8.7), 3.23 (1H, app. dd, J 8.6, 1.7), 1.84-1.80 (1H, m), 1.76-1.72 (2H, m), 1.70-1.65 (1H), 1.45 (12H, app. s), 1.05 (3H, d, J 6.3), 1.02 (3H, d, J 6.3), 0.96 (6H, app. d, J 6.4); δ_C (151 MHz, CDCl₃): 161.4, 158.5, 158.2, 157.9, 157.4, 157.2, 155.8, 152.9, 109.8, 96.6, 53.9, 50.5, 49.9, 46.4, 45.7, 41.9, 41.6, 27.7, 25.2, 25.0, 24.0, 23.9, 21.9, 21.6; HRMS (ESI+): found 529.2795; C₂₆H₃₈N₈O₂Cl, [M+H]⁺ requires 529.2806; v_{max} (thin film): 2955.8, 2870.1, 1736.9, 1707.1, 1561.8, 1431.3, 1386.6, 1274.7, 1222.6, 1162.9, 1110.7, 984.0, 864.7, 745.5, 670.9 cm⁻¹; [α]_D²⁰ +18.1 (c = 0.9, CHCl₃).

(S)-3-(6-chloropyrimidin-4-yl)-4-isobutyl-1-(6-((S)-5-isobutyl-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)imidazolidin-2-one (2c)

At room temperature, trifluoroacetic acid (27 mL) was added to the chloropyrimidine **1c** (1.43 g, 2.70 mmol). The reaction mixture was stirred and trifluoromethanesulfonic acid (4.3 mL) was subsequently added. When TLC analysis showed all starting material had been consumed, excess trifluoroacetic acid and trifluoromethanesulfonic acid was removed by running a compressed air line over the solution for 1 h. The resulting crude brown residue was taken up in dichloromethane and washed with NaHCO₃. The layers were separated, and the aqueous layer was further extracted with dichloromethane (2 x 10 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. The crude solid was purified by flash column chromatography (silica gel, petrol:ethyl acetate, $5:1 \rightarrow 2:1$) afforded the *tert*-butyl deprotected dimer **2c** (0.76 g, 60%) as an off-white crystalline solid. δ_H (600 MHz, CDCl₃): 9.06 (1H, d, J 0.8), 8.67 (1H, d, J 0.8), 8.58 (1H, d, J 0.8), 8.46 (1H, d, J 0.8), 5.47 (1H, br. s, N-H), 4.82-4.78 (2H, m), 4.10 (1H, app. t, J 9.9), 4.02 (1H, app. dd, J 10.7, 1.8), 3.68 (1H, app. t, J 8.7), 3.28 (1H, app. d, J 8.4), 1.85-1.73 (3H, m), 1.72-1.69 (1H, m), 1.58-1.54 (1H, m), 1.49-1.45 (1H, m), 1.03 (6H, app. t, J 7.1), 0.96 (6H, app. d, J 6.2); δ_C (151 MHz, CDCl₃): 161.4, 158.4, 158.2, 158.0, 157.0, 157.3, 153.0, 109.7, 96.7, 53.8, 50.5, 46.4, 43.0, 41.9, 41.6, 25.0, 25.0, 23.9, 23.9, 21.8, 21.6; HRMS (ESI+): found 473.2195; C₂₂H₃₀N₈O₂Cl, [M+H]⁺ requires 473.2180; v_{max} (thin film): 3250.2, 3138.4, 2870.1, 2955.8, 2626.0, 2870.1, 1722.0, 1561.8, 1531.9, 1431.3, 1364.2, 1282.2, 1244.9, 1222.6, 1114.5, 984.0, 864.7, 745.5, 667.2 cm⁻¹; [*a*]_D²⁰ +5.9 (*c* = 1.1, CHCl₃).

(S)-1-(*tert*-butyl)-4-isopropyl-3-(6-((S)-4-isopropyl-3-((2-nitrophenyl)sulfonyl)-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)imidazolidin-2-one (S27)

Prepared according to **General Procedure B** using chloropyrimidine **S12** (0.86 g, 2.02 mmol), imidazolidin-2-one **S10** (0.27 g, 1.47 mmol) [added in 2 portions at reaction time = 0 h and at 3 h], $Pd_2(dba)_3$ (70 mg, 80 µmol), Xantphos (0.13 g, 0.23 mmol), toluene (8 mL), and K_2CO_3 (0.54 g, 3.88 mmol). Reaction time = 16 h. Purification by flash column chromatography (silica gel, firstly 10% ethyl acetate:dichloromethane to remove xantphos and xantphos oxide that coelutes with the product in petrol:ethyl acetate. The column fractions containing the product were concentrated *in vacuo* and subjected to a second column, silica gel, petrol:ethyl acetate 7:1 \rightarrow 1:1) afforded the di-protected dimer **S27** (0.70 g, 83%) as a pale yellow solid. δ_H (600 MHz, CDCl₃): 8.79 (1H, s), 8.55-8.34 (1H, m), 8.51 (1H, s), 7.80-7.71 (3H, m), 4.47-4.46 (1H, m), 4.43-4.41 (1H, m), 4.12-4.03 (2H, m), 3.40 (1H, app. t, *J* 9.4), 3.29 (1H, dd, *J* 9.1, 2.4), 2.47-2.45 (1H, m), 2.41-2.38 (1H, m), 1.39 (9H, s), 1.02 (3H, d, *J* 6.8), 0.95 (3H, d, *J* 6.8), 0.83 (3H, d, *J* 6.8), 0.78 (3H, d, *J* 6.8); δ_C (151 MHz, CDCl₃): 158.8, 157.1, 156.8, 155.9, 150.9, 148.2, 135.7, 134.9, 132.4, 131.9, 124.4, 96.6, 59.4, 54.9, 54.0, 43.1, 40.4, 32.6, 28.5, 27.7, 18.4, 18.0, 15.0, 14.5; HRMS (ESI+): found 574.2438; $C_{26}H_{36}N_7O_6S$, [M+H]⁺ requires 574.2448; v_{max} (thin film): 2959.5, 1736.9, 1707.1, 1580.4, 1546.8, 1371.7, 1207.7, 1174.1, 1066.0, 872.2, 775.3, 715.6 cm⁻¹; [α]_D²⁰ +88.7 (c = 1.0, CHCl₃).

(S)-1-(*tert*-butyl)-4-isopropyl-3-(6-((S)-4-isopropyl-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)imidazolidin-2-one (S28)

Prepared according to General Procedure A using di-protected dimer **S27** (0.69 g, 1.21 mmol), thiophenol (0.17 mL,1.82 mmol), K₂CO₃ (0.50 g, 3.63 mmol) and *N*,*N*-DMF (12 mL). Reaction time = 2 h. Purification by flash column chromatography (silica gel, petrol:ethyl acetate 7:1 \rightarrow 3:1 \rightarrow 1:1 (product)) afforded **S28** (0.32 g, 69 %) as a yellow crystalline solid. δ_H (400 MHz, CDCl₃): 9.01 (1H, s), 8.50 (1H, s), 5.71 (1H, br. s), 4.51-4.47 (1H, s), 4.13 (1H, app. t, *J* 10.2), 3.76 (1H, app. dd, *J* 10.65, 6.7), 3.51 (1H, app. q, *J* 15.5, 7.3), 3.43 (1H, app. t, *J* 9.2), 3.29 (1H, app. dd, *J* 9.1, 2.7), 2.52-2.44 (1H, m), 1.78-1.70 (1H, m), 1.41 (9H, s), 0.99 (3H, d, *J* 6.8), 0.94 (6H, app. dd, *J* 10.2, 6.8), 0.80 (3H, d, *J* 6.8); δ_C (101 MHz, CDCl₃): 158.5, 158.3, 157.9, 157.0, 156.0, 96.2, 54.9, 53.9, 47.8, 40.6, 33.4, 28.7, 27.8, 18.5, 18.3, 17.9, 14.7; HRMS (ESI+): found 389.2660; C₂₀H₃₃N₆O₂, [M+H]⁺ requires 389.2665; v_{max} (thin film): 3213.0, 3112.3, 2959.5, 2873.8, 1707.1, 1569.2, 1461.1, 1438.8, 1386.6, 1244.9, 1162.9, 980.3, 883.4, 756.6, 670.9 cm⁻¹; [α]_D²⁰ +54.7 (*c* = 1.0, CHCl₃).

(S)-1-(*tert*-butyl)-3-(6-((S)-3-(6-chloropyrimidin-4-yl)-4-isopropyl-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)-4-isopropylimidazolidin-2-one (1d)

Prepared according to **General Procedure B** using *N*-nosyl deprotected dimer **S28** (0.32 g, 0.82 mmol), 4,6dichloropyrimidine (0.87 g, 5.82 mmol), Pd₂(dba)₃ (38 mg, 42 µmol), Xantphos (72 mg, 0.12 mmol), toluene (5 mL), and K₂CO₃ (0.29 g, 2.08 mmol). Reaction time = 16 h. Then a second portion of Pd₂(dba)₃ (38 mg, 42 µmol) and Xantphos (72 mg, 0.12 mmol) was added. The reaction was heated at reflux for a further 5 h. Purification by flash column chromatography (silica gel, petrol:ethyl acetate, 7:1 \rightarrow 2:1) afforded the chloropyrimidine **1d** (0.19 g, 46%) as an offwhite foam. δ_H (400 MHz, CDCl₃): 9.17 (1H, s), 8.65 (1H, s), 8.56 (1H, s), 4.76-4.73 (1H, m), 4.54-4.52 (1H, m), 4.10 (1H, dd, *J* 11.2, 2.4), 3.95 (1H, app. t, *J* 10.3), 3.47 (1H, app. t, *J* 9.3), 3.33 (1H, dd, *J* 9.3, 2.4), 2.60-2.49 (2H, m), 1.45 (9H, s), 1.02 (3H, d, *J* 7.0), 0.96 (3H, d, *J* 7.0), 0.83 (3H, d, *J* 7.0), 0.78 (3H, d, *J* 7.0); δ_C (101 MHz, CDCl₃):161.5, 158.8, 158.4, 157.8, 157.1, 157.1, 156.0, 153.3, 109.9, 96.5, 55.6, 54.9, 54.0, 41.4, 40.5, 28.5, 28.3, 27.8, 18.4, 18.2, 14.6, 14.1; HRMS (ESI+): found 501.2498; C₂₄H₃₄N₈O₂SCI, [M+H]⁺ requires 501.2493; v_{max} (thin film): 3145.9, 2959.5, 2873.8, 1710.8, 1561.8, 1531.9, 1431.3, 1386.6, 1237.5, 1207.7, 1114.5, 984.0, 864.7, 678.4 cm⁻¹; [α]_D²⁰ +19 (c = 1.0, CHCl₃).

(S)-3-(6-chloropyrimidin-4-yl)-4-isopropyl-1-(6-((S)-5-isopropyl-2-oxoimidazolidin-1-yl)pyrimidin-4yl)imidazolidin-2-one (2d)

At room temperature, trifluoroacetic acid (21 mL) was added to the chloropyrimidine **1d** (0.76 g, 1.51 mmol). The reaction mixture was stirred and trifluoromethanesulfonic acid (2 mL) was subsequently added. When TLC analysis showed all starting material had been consumed, excess trifluoroacetic acid and trifluoromethanesulfonic acid was removed by running a compressed air line over the solution for 1 h. The resulting crude brown residue was taken up in dichloromethane and washed with NaHCO₃. The layers were separated, and the aqueous layer was further extracted with dichloromethane (2 x 10 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. The crude solid was purified by trituration in hot hexane to afford the *tert*-butyl deprotected dimer **2d** (0.54 g, 80 %) as an off-white crystalline solid. δ_H (400 MHz, CDCl₃): 9.13 (1H, s), 8.66 (1H, s), 8.60 (1H, s), 8.52 (1H, s), 5.17 (1H, br. s), 4.77-4.74 (2H, m), 4.11 (1H, dd, *J* 11.4, 2.4), 3.97 (1H, app. t, *J* 10.1), 3.56 (1H, app. t, *J* 9.3), 3.37 (1H, dd, *J* 9.0, 2.2), 2.63-2.54 (2H, m), 1.06 (3H, d, *J* 6.9), 0.96 (3H, d, *J* 6.9), 0.88 (3H, d, *J* 6.8), 0.79 (3H, d, *J* 6.8); δ_C (101 MHz, CDCl₃): 161.4, 158.4, 158.2, 158.1, 157.7, 157.2, 157.0, 153.2, 109.7, 96.6, 58.9, 55.5, 41.2, 37.6, 28.4, 28.2, 18.1, 18.0, 14.4, 14.0; HRMS (ESI+): found 445.1857; C₂₀H₂₆N₈O₂Cl, [M+H]⁺ requires 445.1867; v_{max} (thin film): 3231.6, 3142.1, 2959.5, 1729.5, 1561.8, 1427.6, 1382.8, 1252.4, 1114.5, 984.0, 872.2, 764.1, 674.6 cm⁻¹; [α]_D²⁰ +9.13 (*c* = 1.0, CHCl₃).

(*S*)-1-(*tert*-butyl)-4-isobutyl-3-(6-((*S*)-4-isobutyl-3-(6-((*S*)-4-isobutyl-3-((2-nitrophenyl)sulfonyl)-2oxoimidazolidin-1-yl)pyrimidin-4-yl)-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)imidazolidin-2-one (S29)

Prepared according to **General Procedure B** using chloropyrimidine **1c** (0.12 g, 0.22 mmol), imidazolidin-2-one **6** (93 mg, 0.28 mmol) [added in one portion at reaction time = 0], $Pd_2(dba)_3$ (10 mg, 11 µmol), Xantphos (19 mg, 33 µmol), toluene (2 mL), and K_2CO_3 (80 mg, 0.55 mmol). Reaction time = 16 h. Purification by flash column chromatography (silica gel, petrol:ethyl acetate $5:1 \rightarrow 2:1$) afforded the di-protected trimer **S29** (98 mg, 73%) as a pale yellow solid. δ_{H} (400 MHz, CDCl₃):* 8.95 (1H, d, *J* 1.2), 8.81 (1H, d, *J* 1.2), 8.58 (1H, d, *J* 0.9), 8.54 (1H, d, *J* 0.9), 8.53-8.50 (1H, m), 7.82-7.71 (3H, m), 4.78-4.71 (1H, m), 4.63-4.52 (2H, m), 4.22 (1H, dd, *J* 10.6, 8.5), 4.03 (1H, dd, *J* 10.6, 8.4), 3.99-3.91 (2H, m), 3.57 (1H, t, *J* 8.6), 3.23 (1H, dd, *J* 8.8, 2.5), 1.97-1.91 (1H, m), 1.85-1.64 (6H, m), 1.47 (9H, s), 1.45-1.39 (2H, m), 1.06-1.00 (12H, m), 0.96 (3H, d, *J* 6.4), 0.93 (3H, d, *J* 6.4); δ_C (151 MHz, CDCl₃): 158.3, 157.8, 157.6, 157.5, 157.0, 156.9, 155.6, 152.7, 150.4, 147.9, 135.5, 134.8, 132.3, 131.5, 124.3, 98.0, 97.0, 53.72, 53.68, 50.4, 49.8, 47.5, 46.3, 45.6, 45.0, 41.8, 41.5, 27.6, 25.0, 24.9, 24.8, 23.83, 23.76, 23.4, 21.8, 21.7, 21.6; HRMS (ESI+): found 858.3474; $C_{39}H_{53}N_{11}O_7K$, [M+K]⁺ requires 858.3487; v_{max} (thin film): 2955.8, 2922.2, 2855.1, 1714.6, 1576.7, 1543.1, 1427.6, 1364.2, 1215.1, 1170.4, 1110.7, 875.9, 745.5, 670.9 cm⁻¹; [α]_D²⁰ +1.8 (c = 1.1, CHCl₃).

(*S*)-1-(*tert*-butyl)-4-isobutyl-3-(6-((*S*)-4-isobutyl-3-(6-((*S*)-4-isobutyl-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)imidazolidin-2-one (S30)

Prepared according to **General Procedure A** using di-protected trimer **S29** (0.50 g, 0.61 mmol), thiophenol (90 µL, 0.91 mmol), K₂CO₃ (0.25 g, 1.83 mmol) and *N*,*N*-DMF (6 mL). Reaction time = 5 h. Purification by flash column chromatography (silica gel, petrol:ethyl acetate 7:1 \rightarrow 5:1 \rightarrow 3:1 \rightarrow 1:1 (product)) afforded **S30** (0.35 g, 90 %) as a pale yellow crystalline solid. δ_H (400 MHz, CDCl₃): 9.00 (1H, d, *J* 1.2), 8.94 (1H, d, *J* 1.1), 8.58 (1H, d, *J* 1.2), 8.54 (1H, d, *J* 1.2), 5.01 (1H, br s), 4.85-4.77 (1H, m), 4.60-4.53 (1H, m), 4.21 (1H, dd, *J* 10.5, 8.5), 4.08 (1H, dd, *J* 10.5, 8.7), 3.94 (1H, dd, *J* 10.7, 3.1), 3.86 (1H, quintet, *J* 7.2), 3.70 (1H, dd, *J* 10.5, 6.7), 3.55 (1H, t, *J* 8.6), 3.19 (1H, dd, *J* 8.8, 2.6), 1.86-1.62 (5H, m), 1.59-1.43 (5H, m), 1.41 (9H, s), 1.02 (6H, app. t, *J* 6.1), 0.98-0.92 (12H, m); δ_C (101 MHz, CDCl₃):

^{*} A trace impurity was observed in the aromatic region with an integration of 0.08 relative to the title compound, e.g. δ = 9.08 (0.08H, d, *J* 1.2).

158.5, 158.3, 157.7, 157.3, 157.2, 156.9, 156.8, 152.9, 97.3, 96.9, 53.7, 50.1, 49.9, 49.8, 47.3, 46.3, 45.6, 45.2, 42.1, 41.5, 27.6, 25.0,^{*} 24.8, 23.81, 23.77, 22.8, 22.4, 21.8, 21.6; HRMS (ESI+): found 673.3727; $C_{33}H_{50}N_{10}O_{3}K$, [M+K]⁺ requires 673.3704; v_{max} (thin film): 2922.2, 2955.8 1718.3, 1580.4, 1423.8, 1356.8, 1215.1, 984.0, 752.9, 670.9 cm⁻¹; $[\alpha]_{D}^{20}$ +40.4 (*c* = 1.4, CHCl₃).

(S)-1-(*tert*-butyl)-3-(6-((S)-3-(6-((S)-3-(6-chloropyrimidin-4-yl)-4-isobutyl-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)-4-isobutyl-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)-4-isobutylimidazolidin-2-one (S31)

Prepared according to **General Procedure B** using *N*-nosyl deprotected trimer **S30** (72 mg, 0.11 mmol), 4,6dichloropyrimidine (0.15 g, 1.02 mmol), Pd₂(dba)₃ (5 mg, 6 µmol), Xantphos (12 mg, 20 µmol), toluene (2 mL), and K₂CO₃ (39 mg, 0.28 mmol). Reaction time = 16 h. Purification by flash column chromatography (silica gel, petrol:ethyl acetate, 7:1 \rightarrow 3:1) afforded the chloropyrimidine **S31** (51 mg, 62%) as a yellow crystalline solid. δ_H (400 MHz, CDCl₃): 9.12 (1H, d, *J* 1.0), 8.99 (1H, d, *J* 1.0), 8.67 (1H, d, *J* 0.8), 8.63 (1H, d, *J* 1.0), 8.55 (1H, d, *J* 1.0), 8.49 (1H, d, *J* 0.8), 4.85-4.76 (2H, m), 4.60-4.52 (1H, m), 4.16-4.07 (2H, m), 4.03 (1H, dd, *J* 10.7, 2.4), 3.98 (1H, dd, *J* 10.7, 2.5), 3.56 (1H, t, *J* 8.5), 3.21 (1H, dd, *J*, 8.7, 2.3), 1.88-1.63 (6H, m), 1.56-1.46 (3H, m), 1.43 (9H, s), 1.08-1.00 (9H, m), 0.99-0.92 (9H, m); δ_C (101 MHz, CDCl₃): 161.3, 158.4, 158.0, 157.82, 157.79, 157.7, 157.6, 157.1, 156.9, 155.6, 152.9, 152.7, 109.7, 97.9, 97.2, 53.7, 50.42, 50.37, 50.0, 46.38, 46.36, 45.6, 41.9, 41.7, 41.4, 27.6, 25.0, 24.9,[†] 23.83, 23.79, 23.7, 21.8, 21.6, 21.5; HRMS (ESI+): found 785.3542; C₃₇H₅₁N₁₂O₃ClK, [M+K]⁺ requires 785.3533; *v_{max}* (thin film): 2955.8, 2870.1, 1722.0, 1565.5, 1438.8, 1360.5, 1218.8, 984.0, 875.9, 745.5, 670.9 cm⁻¹; [*a*]_D²⁰ -5.5 (*c* = 3.1, CHCl₃).

^{*} HMBC experiment indicated this peak corresponds to two carbon atoms.

[†] An HSQC experiment indicates that this peak corresponds to two separate ¹³C positions.

(S)-3-(6-chloropyrimidin-4-yl)-4-isobutyl-1-(6-((S)-5-isobutyl-3-(6-((S)-5-isobutyl-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)imidazolidin-2-one (4a)

At room temperature, trifluoroacetic acid (2 mL) was added to the chloropyrimidine S31 (47 mg, 63 µmol). The reaction mixture was stirred and trifluoromethanesulfonic acid (0.5 mL) was subsequently added. When TLC analysis showed all starting material had been consumed, excess trifluoroacetic acid and trifluoromethanesulfonic acid was removed by running a compressed air line over the solution for 1 h. The resulting crude brown residue was taken up in dichloromethane and washed with NaHCO₃. The layers were separated, and the aqueous layer was further extracted with dichloromethane (2 x 10 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo. The crude solid was used without any further purification. The tert-butyl deprotected trimer **4a** (0.44 g, >99%) was obtained as a pale yellow crystalline solid. δ_H (600 MHz, CDCl₃): 9.11 (1H, s), 8.99 (1H, s), 8.66 (1H, s), 8.62 (1H, s), 8.56 (1H, s), 8.44 (1H, s), 5.42 (1H, br. s, N-H), 4.82-4.77 (3H, m), 4.11 (1H, app. t, J 9.3), 4.03 (1H, d, J 10.2), 3.99 (1H, d, J 10.2), 3.70 (1H, app. t, J 8.1), 3.27 (1H, d, J 8.1), 1.85-1.80 (3H, m), 1.80-1.77 (3H, m), 1.56-1.52 (1H, m), 1.48-1.46 (2H, m), 1.04 (6H, app. br. s), 1.00 (3H, d, J 6.9), 0.95 (9H, dd, J 14.0, 6.0); $\delta_{\rm C}$ (151 MHz, CDCl₃): 161.5, 158.3, 158.1, 158.0, 157.9, 157.9, 157.8, 157.8, 157.2, 157.1, 153.0, 152.8, 109.7, 109.7, 97.7, 97.0, 53.9, 50.5, 46.5, 46.5, 43.1, 42.1, 41.9, 41.5, 25.1, 25.0, 25.0, 23.9, 23.9, 22.7, 21.8, 21.7, 21.6, 19.6; HRMS (ESI+): found 729.2920; C₃₃H₄₃N₁₂O₃ClK, [M+K]⁺ requires 729.2907; v_{max} (thin film): 3138.4, 2952.1, 2866.3, 2363.1, 1722.0, 1561.8, 1531.9, 1420.1, 1356.8, 1203.9, 1110.7, 1058.6, 984.0, 864.7, 745.5, 663.5 cm⁻¹; [*α*]_D²⁰ -42.4 (*c* = 1.8, CHCl₃).

(S)-4-((S)-sec-butyl)-1-(*tert*-butyl)-3-(6-((S)-4-isopropyl-3-((2-nitrophenyl)sulfonyl)-2-oxoimidazolidin-1yl)pyrimidin-4-yl)imidazolidin-2-one (S32)

Prepared according to **General Procedure B** using chloropyrimidine **S12** (0.50 g, 1.17 mmol), *N*-nosyl deprotected imidazolidin-2-one **S4** (0.19 g, 0.96 mmol) [added in 2 portions at reaction time = 0 h and at 3 h], Pd(dba)₂ (44 mg, 49 µmol), Xantphos (84 mg, 0.15 mmol), toluene (9.7 mL), and Cs₂CO₃ (0.79 g, 2.43 mmol). Reaction time = 16 h. Then a second portion of Pd₂(dba)₃ (44 mg, 49 µmol) and Xantphos (84 mg, 0.15 mmol) was added. The reaction was heated at reflux for a further 5 h. Purification by flash column chromatography (silica gel, firstly 10% ethyl acetate:dichloromethane to remove xantphos and xantphos oxide that co-elutes with the product in petrol:ethyl acetate. The column fractions containing the product were concentrated *in vacuo* and subjected to a second column, silica gel, petrol:ethyl acetate 7:1 \rightarrow 3:1) afforded the di-protected dimer **S32** (0.37 g, 65%) as a pale yellow solid. δ_H (600 MHz, CDCl₃): 8.78 (1H, s), 8.55 (1H, d, J 8.1), 8.52 (1H, s), 7.81-7.78 (1H, m), 7.76-7.72 (2H, m), 4.58-4.56 (1H, m), 4.42 (1H, m), 4.09 (1H, app. t, J 10.5), 4.05 (1H, app. dd, J 10.7, 1.7), 3.40 (1H, app. t, J 8.9), 3.27 (1H, dd, J 9.2, 2.7), 2.39 (1H, app. oct, J 20.3, 17.1, 13.6, 10.8, 7.0), 2.24-2.19 (1H, m), 1.39 (10H, app. s), 1.21-1.16 (1H, m), 1.05 (3H, d, J 7.0), 1.01

(3H, d, *J* 6.8), 0.96 (3H, t, *J* 7.1), 0.77 (3H, d, *J* 6.8); δ_c (151 MHz, CDCl₃): 158.6, 157.0, 156.7, 155.9, 150.8, 148.0, 135.5, 134.8, 132.3, 131.8, 124.3, 96.6, 59.3, 53.8, 53.7, 42.9, 40.3, 35.0, 32.4, 27.6, 25.7, 17.9, 14.9, 11.9, 11.6; HRMS (ESI+): found 626.2164; $C_{27}H_{37}N_7O_6SK$, [M+K]⁺ requires 626.2163; v_{max} (thin film): 2959.5, 2877.5, 1710.8, 1580.4, 1543.1, 1464.8, 1435.0, 1360.5, 1274.7, 1215.1, 1170.4, 1114.5, 1073.0, 984.0, 875.9, 760.4, 730.6 cm⁻¹; $[\alpha]_D^{20}$ +110.0 (c = 0.7, CHCl₃).

(S)-4-((S)-sec-butyl)-1-(*tert*-butyl)-3-(6-((S)-4-isopropyl-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)imidazolidin-2-one (S33)

Prepared according to **General Procedure A** using di-protected dimer **S32** (0.58 g, 0.99 mmol), thiophenol (140 µL, 1.48 mmol), K₂CO₃ (0.41 g, 2.97 mmol) and *N*,*N*-DMF (10 mL). Reaction time = 4 h. Purification by flash column chromatography (silica gel, petrol:ethyl acetate 7:1 \rightarrow 4:1 \rightarrow 2:1 (product)) afforded **S33** (0.32 g, 80%) as a pale yellow crystalline solid. δ_H (600 MHz, CDCl₃): 8.98 (1H, s), 8.50 (1H, s), 5.31 (1H, br. s, N-H), 4.60-4.58 (1H, m), 4.13 (1H, app. t, *J* 10.0), 3.77 (1H, dd, *J* 10.5, 6.8), 3.50 (1H, app. q, *J* 14.7, 7.2), 3.43 (1H, app. t, *J* 9.3), 3.27 (1H, dd, *J* 8.5, 2.3), 2.27-2.21 (1H, m), 1.73 (1H, app. oct, *J* 33.0, 27.1, 20.0, 13.6, 6.8), 1.41 (9H, s), 1.40-1.35 (1H, m), 1.21-1.16 (1H, m), 0.98 (6H, d, *J* 7.4), 0.95 (3H, d, *J* 7.0), 0.79 (3H, d, *J* 6.8); δ_C (151 MHz, CDCl₃): 158.3, 158.1, 157.6, 156.9, 156.1, 96.2, 54.8, 53.9, 47.6, 40.5, 35.3, 33.3, 27.7, 25.8, 18.2, 17.8, 12.0, 11.8; HRMS (ESI+): found 403.2805; C₂₁H₃₅N₆O₂, [M+H]⁺ requires 403.2821; v_{max} (thin film): 3339.7, 2963.2, 2929.7, 2873.8, 1729.5, 1576.7, 1535.7, 1442.5, 139.4, 1364.2, 1323.2, 1237.5, 1077.2, 1047.4, 972.8, 875.9, 846.1, 805.1, 756.6 cm⁻¹; [α]_D²⁰ +49.8 (*c* = 1.5, CHCl₃).

(S)-4-((S)-sec-butyl)-1-(*tert*-butyl)-3-(6-((S)-3-(6-chloropyrimidin-4-yl)-4-isopropyl-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)imidazolidin-2-one (2e)

Prepared according to **General Procedure B** using *N*-nosyl deprotected dimer **S33** (0.32 g, 0.79 mmol), 4,6-dichloropyrimidine (0.82 g, 5.53 mmol), $Pd_2(dba)_3$ (40 mg, 40 µmol), Xantphos (70 mg, 0.12 mmol), toluene (10 mL), and Cs_2CO_3 (0.64 g, 1.98 mmol). Reaction time = 16 h. Purification by flash column chromatography (silica gel, petrol:ethyl acetate, 10:1 \rightarrow 5:1) afforded the chloropyrimidine **2e** (0.33 g, 82%) as a yellow crystalline solid. δ_H (600 MHz, CDCl₃): 9.16 (1H, s), 8.65 (1H, s), 8.56 (2H, s), 4.74 (1H, dt, *J* 9.1, 2.7), 4.62 (1H, dt, *J* 9.3, 3.0), 4.10 (1H, dd, *J* 11.2, 2.3), 3.95 (1H, app. t, *J* 10.2), 3.46 (1H, app. t, *J* 9.4), 3.31 (1H, dd, *J* 9.2, 2.3), 2.57-2.54 (1H, m), 2.30-2.25 (1H, m), 1.44 (9H, s), 1.41-1.37 (1H, m), 1.23-1.21 (1H, m), 1.01 (3H, d, *J* 7.0), 0.99 (3H, app. t, *J* 7.4), 0.81 (3H, d, *J* 6.8), 0.77 (3H, d, *J* 6.8); δ_C (151 MHz, CDCl₃): 161.5, 158.7, 158.4, 157.8, 157.1, 157.1, 156.1, 153.3, 109.9, 96.6, 55.6, 54.0, 53.9, 41.4, 40.5, 35.2, 28.3, 27.8, 25.8, 18.2, 14.1, 12.1, 11.8; HRMS (ESI+): found 553.2205; $C_{25}H_{35}N_8O_2CIK$, [M+K]⁺ requires 553.2209; v_{max} (thin film): 2959.5, 2873.8, 1714.6, 1565.5, 1531.9, 1461.1, 1435.0, 1386.6, 1274.7, 1241.2, 1200.2, 1110.7, 984.0, 875.9, 812.6, 764.1, 678.4 cm⁻¹; [α]_D²⁰ +10.7 (c = 2.1, CHCl₃).

(*S*)-4-((*S*)-sec-butyl)-1-(*tert*-butyl)-3-(6-((*S*)-4-isopropyl-3-(6-((*S*)-4-methyl-3-((2-nitrophenyl)sulfonyl)-2oxoimidazolidin-1-yl)pyrimidin-4-yl)-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)imidazolidin-2-one (S34)

Prepared according to **General Procedure B** using chloropyrimidine **2e** (0.33 g, 0.65 mmol), imidazolidin-2-one **7** (0.28 g, 0.97 mmol) [added in 2 portions at reaction time = 0 h and at 1 h], $Pd_2(dba)_3$ (30 mg, 30 µmol), Xantphos (60 mg, 0.10 mol), toluene (10 mL), and K_2CO_3 (0.22 g, 1.63 mmol). Reaction time = 16 h. Purification by flash column chromatography (silica gel, dichloromethane \rightarrow dichloromethane:ethyl acetate 6:1) afforded the di-protected trimer **S34** (0.47 g, 95 %) as a pale yellow solid. δ_H (600 MHz, CDCl₃): 9.04 (1H, s), 8.88 (1H, s), 8.58 (1H, s), 8.55-8.54 (2H, m), 7.79 (1H, t, *J* 7.3), 7.75-7.71 (2H, m), 4.72 (1H, dt, *J* 9.2, 6.0), 4.68-4.66 (1H, m), 4.61 (1H, dt, *J* 9.4, 2.8), 4.26 (1H, t, *J* 9.7), 4.02 (1H, dd, *J* 11.1, 2.0), 3.90 (1H, t, *J* 10.0), 3.86 (1H, dd, *J* 10.6, 1.9), 3.46 (1H, t, *J* 9.3), 3.31 (1H, dd, 8.9, 2.2), 2.54-2.49 (1H, m), 2.31-2.24 (1H, m), 1.65 (3H, d, *J* 6.3), 1.46 (9H, s), 1.41-1.36 (1H, m), 1.23-1.18 (1H, m), 0.99 (6H, app. t, *J* 6.7), 0.82 (3H, d, *J* 6.8), 0.75 (3H, d, *J* 6.8); δ_C (151 MHz, CDCl₃): 158.6, 158.1, 157.7, 157.4, 157.1, 157.0, 156.0, 153.2, 150.4, 148.0, 135.5, 135.0, 132.4, 131.5, 124.3, 98.4, 97.0, 55.6, 54.0, 53.9, 51.1, 49.4, 41.3, 40.5, 35.2, 28.4, 27.8, 25.8, 22.9, 18.1, 14.2, 12.1, 11.8; HRMS (ESI+): found 802.2885; $C_{35}H_{45}N_{11}O_7SK$, $[M+K]^+$ requires 802.2861; v_{max} (thin film): 2992.2, 2851.4, 1733.2, 1580.4, 1539.4, 1446.2, 1367.9, 1278.5, 1215.1, 1174.1, 1110.7, 875.9, 749.2 cm⁻¹; $[\alpha]_D^{20} + 5.5$ (c = 2.1, CHCl₃).

(S)-4-((S)-sec-butyl)-1-(*tert*-butyl)-3-(6-((S)-4-isopropyl-3-(6-((S)-4-methyl-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)imidazolidin-2-one (S35)

Prepared according to **General Procedure A** using di-protected trimer **S34** (0.47 g, 0.62 mmol), thiophenol (90 µL, 0.93 mmol), K₂CO₃ (0.26 g, 1.86 mmol) and *N*,*N*-DMF (10 mL). Reaction time = 20 h. Purification by flash column chromatography (silica gel, dichloromethane \rightarrow 1% methanol:dichloromethane) afforded **S35** (41 g, 52 %) as a pale yellow crystalline solid. δ_H (600 MHz, CDCl₃): 9.09 (1H, s), 9.01 (1H, s), 8.54 (1H, s), 8.53 (1H, s), 6.18 (1H, br. s), 4.76 (1H, dt, *J* 9.0, 2.9), 4.59 (1H, dt, *J* 9.3, 2.8), 4.22 (1H, dd, *J* 10.5, 8.7), 4.03 (1H, dd, *J* 11.0, 3.5), 4.0-3.9 (2H, m), 3.69 (1H, dd, *J* 10.1, 6.6), 3.43 (1H, t, *J* 9.3), 3.28 (1H, dd, *J* 8.5, 1.6), 2.54-2.49 (1H, m), 2.28-2.23 (1H, m), 1.40 (10H, app. s), 1.36 (3H, d, *J* 5.8), 1.22-1.17 (1H, m), 0.99-0.96 (6H, m), 0.79 (3H, d, *J* 6.8), 0.77 (3H, d, *J* 6.8); δ_C (151 MHz, CDCl₃): 158.8, 158.6, 157.6, 157.6, 157.2, 156.9, 155.9, 155.9, 153.3, 97.8, 97.1, 55.4, 54.0, 53.9, 51.2, 44.8, 41.3, 40.5, 35.2, 28.5, 27.7, 25.9, 21.9, 18.2, 14.3, 12.1, 11.8; HRMS (ESI+): found 617.3064; C₂₉H₄₂N₁₀O₃K, [M+K]⁺ requires 617.3078; v_{max} (thin film): 3321.1, 2959.5, 2922.2, 2873.8, 2359.4, 1718.3, 1576.7, 1446.2, 1378.1, 1274.7, 1237.5, 1274.7, 1110.7, 1073.5, 879.7, 756.6, 670.9 cm⁻¹; [α]_D²⁰ +63.7 (c = 0.6, CHCl₃).

(S)-4-((S)-sec-butyl)-1-(*tert*-butyl)-3-(6-((S)-3-(6-(lS)-3-(6-chloropyrimidin-4-yl)-4-methyl-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)-4-isopropyl-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)imidazolidin-2-one (S36)

Prepared according to **General Procedure B** using *N*-nosyl deprotected trimer **S35** (0.26 g, 0.46 mol), 4,6-dichloropyrimidine (0.61 g, 4.11 mmol), Pd₂(dba)₃ (21 mg, 23 µmol), Xantphos (40 mg, 70 µmol), toluene (5 mL), and K₂CO₃ (0.16 g, 1.14 mmol). Reaction time = 16 h. After 16 h the reaction had not reached completion, a second portion of Pd₂(dba)₃ (10 mg, 12 µmol) and Xantphos (20 mg, 35 µmol) was added. Reaction time = 7 h. Purification by flash column chromatography (silica gel, petrol:ethyl acetate, $10:1 \rightarrow 5:1 \rightarrow 1:1$) afforded the chloropyrimidine **S36** (0.28 g, 90%) as a pale yellow crystalline solid. δ_H (600 MHz, CDCl₃): 9.17 (1H, d, 1.0), 9.09 (1H, d, *J* 0.9), 8.67 (1H, d, *J* 0.8), 8.62 (1H, d, *J* 1.0), 8.56 (1H, d, *J* 0.9), 8.49 (1H, d, 0.8), 4.86 (1H, pent. d, *J* 27.6, 21.3, 15.2, 12.5, 6.1, 3.0), 4.77 (1H, dt, *J* 9.5, 3.4), 4.60 (1H, dt, *J* 9.6, 3.2), 4.18 (1H, dd, *J* 10.6, 9.0), 4.07 (1H, dd, *J* 10.9, 3.2). 4.00 (1H, dd, *J* 10.7, 9.5), 3.93 (1H, dd, *J* 10.6, 2.8), 3.45 (1H, t, *J* 9.2), 3.30 (1H, dd, *J* 9.1, 3.2), 2.60-2.53 (1H, m), 2.32-2.25 (1H, m), 1.50 (3H, d, *J* 6.3), 1.43 (9H, s), 1.22-1.19 (1H, m), 1.02 (3H, d, *J* 7.0), 0.99 (3H, t, *J* 7.5), 0.80 (6H, t, *J* 7.1); δ_C (151 MHz, CDCl₃): 161.4, 158.7, 158.2, 158.1, 158.0, 157.8, 157.4, 157.1, 156.9, 155.9, 153.3, 152.6, 109.8, 98.2, 97.2, 55.6, 54.0, 54.0, 48.3, 48.0, 41.4, 40.5, 35.2, 28.5, 27.7, 25.8, 20.2, 18.2, 14.2, 12.1, 11.8; HRMS (ESI+): found 729.2830; C₃₃H₄₃N₁₂O₃CIK, [M+K]⁺ requires 729.2907; v_{max} (thin film): 2922.2, 2959.5, 1714.6, 1561.8, 1528.2, 1438.8, 1394.0, 1364.2, 1278.5, 1237.5, 1207.7, 1110.7, 984.0, 875.9, 741.7, 670.9 cm⁻¹; [*a*]_D²⁰ +28.9 (*c* = 2.0, CHCl₃).

(S)-1-(6-((S)-5-((S)-sec-butyl)-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)-3-(6-((S)-3-(6-chloropyrimidin-4-yl)-4methyl-2-oxoimidazolidin-1-yl)pyrimidin-4-yl)-4-isopropylimidazolidin-2-one (4b)

At room temperature, trifluoroacetic acid (5 mL) was added to the chloropyrimidine **S36** (37 mg, 54 µmol). The reaction mixture was stirred and trifluoromethanesulfonic acid (1 mL) was subsequently added. When TLC analysis showed all starting material had been consumed, excess trifluoroacetic acid and trifluoromethanesulfonic acid was removed by running a compressed air line over the solution for 1 h. The resulting crude brown residue was taken up in dichloromethane and washed with NaHCO₃. The layers were separated, and the aqueous layer was further extracted with dichloromethane (2 x 10 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. The crude solid was used without any further purification due to the reaction size and inherent loss of mass during trituration. The *tert*-butyl deprotected trimer **4b** (34 mg, >99%) was obtained as a pale yellow crystalline solid. δ_H (400 MHz, CDCl₃): 9.17 (1H, s), 9.06 (1H, s), 8.66 (1H, s), 8.62 (1H, d, *J* 0.9), 8.58 (1H, s), 8.46 (1H, s), 5.36 (1H, br. s, N-H), 4.89-4.86 (1H, m), 4.83 (1H, dt, *J* 9.5, 3.4), 4.78 (1H, dt, *J* 9.4, 3.3), 4.19 (1H, dd, *J* 10.5, 9.0), 4.08 (1H, dd, *J* 11.0, 3.1), 4.0 (1H, dd, 10.8, 9.7), 3.93 (1H, dd, *J* 10.7, 2.6), 3.55 (1H, t, *J* 9.3), 3.35 (1H, dd, J 10.5, 9.0), 4.08 (1H, dd, *J* 11.0, 3.1), 4.0 (1H, dd, 10.8, 9.7), 3.93 (1H, dd, *J* 10.7, 2.6), 3.55 (1H, t, *J* 9.3), 3.35 (1H, dd, J 10.5, 9.0), 4.08 (1H, dd, *J* 11.0, 3.1), 4.0 (1H, dd, 10.8, 9.7), 3.93 (1H, dd, *J* 10.7, 2.6), 3.55 (1H, t, *J* 9.3), 3.35 (1H, dd, J 10.5, 9.0), 4.08 (1H, dd, *J* 11.0, 3.1), 4.0 (1H, dd, 10.8, 9.7), 3.93 (1H, dd, *J* 10.7, 2.6), 3.55 (1H, t, *J* 9.3), 3.35 (1H, dd, J 10.5, 9.0), 4.08 (1H, dd, *J* 11.0, 3.1), 4.0 (1H, dd, 10.8, 9.7), 3.93 (1H, dd, *J* 10.7, 2.6), 3.55 (1H, t, *J* 9.3), 3.35 (1H, dd, J 10.5, 9.0), 4.08 (1H, dd, *J* 11.0, 3.1), 4.0 (1H, dd, 10.8, 9.7), 3.93 (1H, dd, *J* 10.7, 2.6), 3.55 (1H, the tert subar subsequences and the subsequences and the subsequences an

J 9.0, 3.3), 2.59-2.53 (1H, m), 2.35-2.29 (1H, m), 1.50 (3H, d, J 6.3), 1.39-1.34 (1H, m), 1.23-1.15 (1H, m), 1.01 (3H, d, J 7.0), 0.97 (3H, t, J 7.4), 0.84 (3H, d, J 6.9), 0.79 (3H, d, J 6.9) ; δ_C (101 MHz, CDCl₃): 161.6, 158.5, 158.3, 158.2, 158.1, 157.9, 157.6, 157.2, 157.1, 153.4, 152.6, 109.8, 98.1, 97.3, 58.1, 55.6, 48.3, 48.0, 41.4, 37.9, 35.2, 28.5, 25.7, 20.3, 18.2, 14.3, 12.0, 11.8; HRMS (ESI+): found 673.2280; C₂₉H₃₅N₁₂O₃ClK, [M+K]⁺ requires 673.2281; v_{max} (thin film): 2959.5, 2922.2, 2855.1, 1729.5, 1565.5, 1531.9, 1423.8, 1367.9, 1207.7, 1110.7, 984.0, 875.9, 771.6, 741.7, 708.2 cm⁻¹; [α]_D²⁰ +6.1 (*c* = 1.8, CHCl₃).

2.5 Synthesis of Macrocycles

Macrocyclic Tetramer 3a

To a sealed tube equipped with a magnetic stir bar was added dimer 2a (72 mg, 0.16 mmol), freshly recrystallized Pd₂(dba)₃ (4 mg, 4 µmol), and Xantphos (7 mg, 12 µmol). Anhydrous toluene (10 mL) was added to the flask, and the resulting suspension was degassed by sparging with nitrogen gas for 30 min. Cs₂CO₃ (60 mg, 0.20 mmol) was then added in one portion to the flask, and the reaction mixture was heated to reflux under a nitrogen atmosphere. Reaction time = 16 h. After complete consumption of the urea starting material by TLC analysis (petrol:ethyl acetate, 1:1), the reaction was cooled to room temperature, diluted with dichloromethane (20 mL) and filtered over Celite®. The crude diluted product was then washed in distilled water for 4 h to displace any Cs⁺ that was bound inside the macrocycle cavity. The layers were then separated and the aqueous layers extracted with dichloromethane (2 x 30 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo. The crude solid was purified by trituration in hot diethyl ether to afford the macrocyclic tetramer 3a (37 mg, 56%) as an offwhite crystalline solid. δ_H (600 MHz, CDCl₃): 9.97 (4H, app. d, J 2.4), 8.60 (4H, d, J 3.9), 4.83 (2H, dt, J 9.9, 3.1), 4.73 (2H, dt, J 8.9, 2.6), 4.06-3.98 (8H, m), 2.68-2.62 (2H, m), 2.44-2.39 (2H, m), 1.50-1.41 (2H, m), 1.35-1.27 (2H, m), 1.01 (12H, dd, J 6.8, 2.5), 0.78 (12H, dd, J 12.2, 7.0); δ_{C} (151 MHz, CDCl₃): 158.2, 158.1, 157.9, 157.8, 157.2, 157.1, 153.6, 153.5, 97.9, 97.8, 55.4, 54.3, 40.8, 40.7, 35.2, 28.5, 25.7, 18.2, 14.0, 12.0, 11.4; HRMS (ESI+): found 883.3961; C₄₂H₅₂N₁₆O₄K, [M+K]⁺ requires 883.3995; *v_{max}* (thin film): 3190.6, 2959.5, 2873.8, 1729.5, 1580.4, 1476.0, 1423.8, 1364.2, 1259.8, 1215.1, 1114.5, 987.7, 902.0, 723.1, 682.1 cm⁻¹; [α]_D²⁰ +6.5 (*c* = 0.2, CHCl₃). Diffraction-quality crystals were grown by the vapour diffusion method (CHCl₃/MeOH).

To a sealed tube equipped with a magnetic stir bar was added dimer 2b (50 mg, 0.11 mmol), freshly recrystallized Pd₂(dba)₃ (5 mg, 5 µmol), and Xantphos (9 mg, 16 µmol). Anhydrous toluene (5 mL) was added to the flask, and the resulting suspension was degassed by sparging with nitrogen gas for 30 min. K₂CO₃ (40 mg, 0.27 mmol) was then added in one portion to the flask, and the reaction mixture was heated to reflux under a nitrogen atmosphere. Reaction time = 16 h. After complete consumption of the urea starting material by TLC analysis (petrol:ethyl acetate, 1:1), the reaction was cooled to room temperature, diluted with dichloromethane (20 mL) and filtered over Celite®. The crude diluted product was then washed in distilled water for 4 h to displace any Cs⁺ that was bound inside the macrocycle cavity. The layers were then separated and the aqueous layers extracted with dichloromethane (2 x 30 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo. The crude solid was purified by trituration in hot diethyl ether to afford the macrocyclic tetramer 3b (28.4 mg, 61%) as an offwhite crystalline solid. δ_{H} (600 MHz, CDCl₃): 9.97 (4H, s, H3), 8.61 (4H, s, H1), 4.84 (4H, dt, J 9.1, 3.0, H7), 4.03 (4H, dd, J 10.8, 2.7, H6), 3.98 (4H, t, J 10.0, H6'), 2.45-2.38 (4H, m, H8), 1.48 (4H, ddq, J 13.5, 7.3, 6.9, H9), 1.36-1.28 (4H, m, H9'), 1.02 (12H, t, J7.4, H10), 0.78 (12H, d, J6.9, H11); δ_C (151 MHz, CDCl₃): 158.0, 157.7, 157.0 (C1), 153.5, 97.8 (C3), 54.2 (C7), 40.7 (C6), 35.0 (C8), 25.5 (C9), 11.9 (C10), 11.3 (C11); HRMS (ESI+): found 911.4267; C₄₄H₅₆N₁₆O₄K, [M+K]⁺ requires 911.4308; *v_{max}* (thin film): 3183.1, 2963.2, 1736.9, 1584.1, 1431.3, 1394.0, 1263.6, 1222.6, 987.7, 887.1, 752.9, 685.8 cm⁻¹; $[\alpha]_D^{20}$ +16.5 (c = 0.3, CHCl₃). Note: The ¹H NMR spectrum of **3b** indicated the presence of a second, C_{p} -symmetrical species (Figure S1) in a ~6:1 ratio relative to the major compound. For example, two pyrimidine peaks at 9.44 and 8.78 ppm were observed, and the fact only two peaks were observed is indicative of a symmetrical molecule (as opposed to residual starting material or open-chain oligomers, which would lack this symmetry).

Figure S1. The spectrum of 3b (600 MHz, CDCl₃) with major (top) and minor (bottom) resonances integrated.

NOESY analysis of the mixture showed in-phase cross-peaks between equivalent ¹H resonances in the major and minor components, indicating that these molecules undergo *chemical* exchange on the timescale of the NOESY experiment (Figure S2 below).

Figure S2. NOESY spectrum of 3b (600 MHz, CDCl₃, t_{mix} 0.30 s). Structural assignments for peaks corresponding to the major (black) and minor (red) components are labelled on the 1D projection. Cross-peaks indicating chemical exchange processes are highlighted.

The observed chemical exchange may be due to the molecule populating two low energy interconverting conformers, or due to a reversible binding interaction between the macrocycle and an unknown guest. To rule out the latter, the macrocycle was placed in a much more competitive (Lewis basic) NMR solvent – d_5 -pyridine. If an unknown guest were bound, it would be expected that the ratio of unoccupied:occupied macrocycle would increase. However, the minor component was still present in the same proportion when the ¹H NMR spectrum was acquired in a more competitive d_5 -pyridine NMR solvent (Figure S3).

Figure S3. ¹H NMR spectrum of 3b in *d*₅-pyridine (400 MHz).

In combination with the NOESY experiment, these data are consistent with the presence of two low energy conformations of the macrocycle.

Macrocyclic Tetramer 3c

To a sealed tube equipped with a magnetic stir bar was added dimer **2c** (0.56 g, 1.18 mmol), freshly recrystallized $Pd_2(dba)_3$ (30 mg, 30 µmol), and Xantphos (50 mg, 90 µmol). Anhydrous toluene (59 mL) was added to the flask, and the resulting suspension was degassed by sparging with nitrogen gas for 30 min. Cs_2CO_3 (0.48 g, 1.48 mmol) was then added in one portion to the flask, and the reaction mixture was heated to reflux under a nitrogen atmosphere. Reaction

time = 16 h. After complete consumption of the urea starting material by TLC analysis (petrol:ethyl acetate, 1:1), the reaction was cooled to room temperature, diluted with dichloromethane (20 mL) and filtered over Celite®. The crude diluted product was then washed in distilled water for 4 h to displace any Cs⁺ that was bound inside the macrocycle cavity. The layers were then separated and the aqueous layers extracted with dichloromethane (2 x 30 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. The crude solid was purified by trituration in hot diethyl ether to afford the macrocyclic tetramer **3c** (0.38 g, 74%) as an off-white crystalline solid. δ_H (600 MHz, CDCl₃): 9.89 (4H, d, *J* 0.8), 8.60 (4H, d, *J* 0.7), 4.81-4.78 (4H, m), 4.11 (4H, app. t, *J* 10.0), 4.01 (4H, dd, *J* 10.4, 2.2), 1.93-1.89 (4H, m), 1.82-1.75 (4H, m), 1.53-1.48 (4H, m), 1.05 (12H, d, *J* 6.5), 0.97 (12H, d, *J* 6.6); δ_C (151 MHz, CDCl₃): 158.4, 157.8, 157.2, 153.3, 97.9, 50.1, 45.9, 42.4, 25.0, 23.9, 21.8; HRMS (ESI+): found 890.5020; $C_{44}H_{60}N_{17}O_4$, [M+NH₄]⁺ requires 890.50147; v_{max} (thin film): 2959.5, 2873.8, 1736.9, 1580.4, 1423.8, 1386.6, 1259.8, 1218.8, 1110.7, 987.7, 771.6, 670.9 cm⁻¹; [α]_D²⁰ +3.2 (c = 0.7, CHCl₃).

Macrocyclic Tetramer 3d

To a sealed tube equipped with a magnetic stir bar was added dimer **2d** (0.12 g, 0.26 mmol), freshly recrystallized $Pd_2(dba)_3$ (6 mg, 6 µmol), and Xantphos (11 mg, 20 µmol). Anhydrous toluene (13 mL) was added to the flask, and the resulting suspension was degassed by sparging with nitrogen gas for 15-30 min. Cs_2CO_3 (0.11 g, 0.33 mmol) was then added in one portion to the flask, and the reaction mixture was heated to reflux under a nitrogen atmosphere. Reaction time = 16 h. After complete consumption of the urea starting material by TLC analysis (petrol:ethyl acetate, 1:1), the reaction was cooled to room temperature, diluted with dichloromethane (20 mL) and filtered over Celite®. The crude diluted product was then washed in distilled water for 4 h to displace any Cs⁺ that was bound inside the macrocycle cavity. The layers were then separated and the aqueous layers extracted with dichloromethane (2 x 20 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. The crude solid was purified by trituration in hot diethyl ether to afford the macrocyclic tetramer **3d** (91 mg, 85%) as an off-white crystalline solid. δ_H (600 MHz, CDCl₃): 9.98 (4H, s), 8.62 (4H, s), 4.74 (4H, dt, *J* 9.5, 3.0), 4.06 (4H, dd, *J* 10.9, 2.5), 3.97 (4H, app. t, *J* 10.2), 2.68-2.63 (4H, m), 1.04 (12H, d, *J* 7.0), 0.81 (12H, d, *J* 6.9); δ_C (151 MHz, CDCl₃): 158.2, 157.9, 157.2, 153.6, 97.9, 55.4, 40.7, 28.5, 18.2, 14.1; HRMS (ESI+): found 855.3653 C₄₀H₄₈N₁₆O₄K, [M+K]⁺ requires 855.3682; v_{max} (thin film): 3183.1, 2959.5, 2873.8, 1729.5, 1580.4, 1423.8, 1386.6, 1282.2, 1259.8, 1218.8, 1114.5, 987.7, 730.6, 685.8 cm⁻¹; [α]_D²⁰ +33.6 (*c* = 0.28, CHCl₃).

To a sealed tube equipped with a magnetic stir bar was added trimer **4a** (60 mg, 0.09 mmol), freshly recrystallized Pd₂(dba)₃ (4 mg, 3 µmol), and Xantphos (6 mg, 10 µmol). Anhydrous toluene (21 mL) was added to the flask, and the resulting suspension was degassed by sparging with nitrogen gas for 30 min. K₂CO₃ (22 mg, 0.16 mmol) was then added in one portion to the flask, and the reaction mixture was heated to reflux under a nitrogen atmosphere. Reaction time = 16 h. After complete consumption of the urea starting material by TLC analysis (petrol:ethyl acetate, 1:1), the reaction was cooled to room temperature, diluted with dichloromethane (20 mL) and filtered over Celite®. The crude diluted product was then washed in distilled water for 4 h to displace any Cs⁺ that was bound inside the macrocycle cavity. The layers were then separated and the aqueous layers extracted with dichloromethane (2 x 30 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. Purification by flash column chromatography (silica gel, 1% methanol:dichloromethane) to afford the macrocyclic trimer **5a** (3.5 mg, 6%) as an off-white crystalline solid. δ_H (600 MHz, CDCl₃): 8.69 (3H, d, *J* 1.0), 8.50 (3H, d, *J* 0.9), 4.71-4.67 (3H, m), 4.18 (3H, app. dd, *J* 10.4, 8.8), 3.91 (3H, dd, *J* 10.6, 5.7), 1.91-1.87 (3H, m), 1.78-1.71 (3H, m), 1.01 (9H, d, *J* 6.6), 0.95 (9H, d, *J* 6.7); δ_C (151 MHz, CDCl₃): 158.6, 158.0, 157.4, 153.3, 101.3, 51.3, 47.1, 42.1, 24.9, 23.9, 21.8; HRMS (ESI+): found 655.3581; C₃₃H₄₃N₁₂O₃, [M+H]⁺ requires 665.3576; v_{max} (thin film): 2955.8, 2929.7, 2870.1, 1736.9, 1576.7, 1435.0, 1364.2, 1241.2, 1211.4, 987.7, 749.2, 682.1 cm⁻¹; [α]₀²⁰ +23.7 (c = 0.4, CHCl₃).

Macrocyclic Trimer 5b

To a sealed tube equipped with a magnetic stir bar was added trimer **4b** (40 mg, 63 µmol), freshly recrystallized $Pd_2(dba)_3$ (3 mg, 3 µmol), and Xantphos (6 mg, 10 µmol). Anhydrous toluene (21 mL) was added to the flask, and the resulting suspension was degassed by sparging with nitrogen gas for 30 min. Cs_2CO_3 (50 mg, 0.16 mmol) was then added in one portion to the flask, and the reaction mixture was heated to reflux under a nitrogen atmosphere. Reaction time = 16 h. After complete consumption of the urea starting material by TLC analysis (ethyl acetate), the reaction was cooled to room temperature, diluted with dichloromethane (20 mL) and filtered over Celite®. The crude diluted product was then washed in distilled water for 4 h to displace any Cs⁺ that was bound inside the macrocycle cavity. The layers were then separated and the aqueous layers extracted with dichloromethane (2 x 30 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated *in vacuo*. Purification by flash column chromatography (silica gel, 5% methanol:dichloromethane) to afford the macrocyclic trimer **5b** (11 mg, 29%) as an off-white crystalline solid. δ_H (400 MHz, CDCl₃): 8.72-8.71 (3H, m), 8.66 (1H, d, *J* 1.1), 8.49 (1H, d, *J* 1.1), 8.44 (1H, d, *J* 1.0), 4.81-4.76 (1H, m), 4.69-4.64 (2H, m), 4.20 (1H, app. dd, *J* 10.4, 8.6), 4.04-3.94 (4H, m), 3.83 (1H, dd, *J* 10.7, 7.2), 2.44-2.34 (1H, m), 2.24-2.17 (1H, m), 1.47-1.42 (4H, m), 1.30-1.21 (3H, m), 0.98 (6H, app. t, *J* 7.0), 0.79 (6H, app. dd, *J* 1.0), 9.86 (1H, dn, app. td, *J* 1.0), 9.86 (1H, dn, app. td, *J* 1.0), 9.86 (1H, dn, app. td, *J* 1.0), 9.86 (6H, app. t, *J* 7.0), 0.79 (6H, app. dd, 9.10.1) (3H, m), 0.98 (6H, app. t, *J* 7.0), 0.79 (6H, app. dd, 9.10.1) (3H, m), 0.98 (6H, app. t, *J* 7.0), 0.79 (6H, app. dd, 9.10.1) (3H, m), 0.98 (6H, app. t, *J* 7.0), 0.79 (6H, app. dd, 9.10.1) (3H, m), 0.98 (6H, app. t, *J* 7.0), 0.79 (6H, app. dd, 9.10.1) (3H, m), 0.98 (6H, app. t, *J* 7.0), 0.79 (6H, app. dd, 9.10.1) (3H,

J 6.9, 2.0); $δ_C$ (151 MHz, CDCl₃): 158.5, 158.40, 158.38, 157.8, 157.7, 157.6, 157.41, 157.39, 157.3, 153.7, 153.5, 153.1, 101.8, 101.5, 101.3, 56.0, 55.0, 48.7, 48.5, 41.4, 41.3, 34.5, 27.5, 25.3, 19.2, 17.7, 14.0, 11.9, 11.5; HRMS (ESI+): found 599.2960; $C_{33}H_{43}N_{12}O_3$, [M+H]⁺ requires 599.2950; v_{max} (thin film): 2959.5, 2877.5, 1736.9, 1576.7, 1435.0, 1248.7, 987.7, 872.2, 730.6, 685.8 cm⁻¹; [α]_D²⁰ +25.4 (c = 0.5, CHCl₃).
3 NMR Titration

3.1 Hexadecylammonium Chloride Binding

3.1.1 Host and Guest Solution Preparation

Macrocycle **3d** (2.30 mg, 2.8 μ mol) was weighed accurately into a gas chromatography vial which was then fitted with a screw-top lid featuring a rubber septum to prevent evaporation of solvent. Deuterated chloroform (1.07 mL) was then added to the vial and sonicated briefly to ensure the macrocycle had been fully dissolved. The solution was split into two parts, the host solution (0.66 mL) which was transferred using a micro syringe into an NMR tube leaving the guest solution (0.41 mL) in the sealed gas chromatography vial. Hexadecyltrimethylammonium chloride (11.5 mg, 31.6 μ mol) was added to the guest solution and sonicated.

3.1.2 NMR Titrations

An NMR of the free host solution was carried out to obtain a reference spectrum. The guest solution (2 µmL) was then added to the NMR tube and a second spectrum obtained. This process was repeated according to the Table S1 below to acquire a range of data points. All spectra were referenced to tetramethylsilane and the chemical shifts of the two pyrimidine C-H residues were measured.

Table S1: NMR Guest Titration Values

Vol Guest (mL)	Conc. Guest (M)	δ(H ^A) / ppm	δ(H ^в) / ppm	
0.002	0.0002335	10.00185	8.63103	
0.004	0.00046559	9.99813	8.63223	
0.006	0.0006963	9.99462	8.6347	
0.008	0.00092562	9.99027	8.63574	
0.01	0.00115359	9.98596	8.63671	
0.012	0.0013802	9.98153	8.63641	
0.014	0.00160547	9.97726	8.63606	
0.016	0.00182942	9.97512	8.63794	
0.018	0.00205205	9.9739	8.63971	
0.02	0.00227337	9.97018	8.63917	
0.022	0.0024934	9.96773	8.64006	
0.024	0.00271215	9.96449	8.63939	
0.03	0.0033608	9.96243	8.63977	
0.04	0.00441727	9.9567	8.64143	
0.06	0.00644247	9.94844	8.64234	
0.08	0.00835855	9.93626	8.64421	
0.1	0.0101741	9.92784	8.64647	
0.2	0.01798872	9.91795	8.64493	
0.3	0.02417935	9.89376	8.64581	
0.4	0.02920457	9.87964	8.64533	

3.1.3 Fitting

Job's plot analysis of the binding between hexadecyltrimethylammonium chloride and the macrocycle **3d** suggested a simple 1:1 binding isotherm was not appropriate (Figure S4).

Figure S4. Job's plot for the binding of hexadecyltrimethylammonium chloride to macrocycle **3a**, determined by ¹H NMR (CDCl₃, 400 MHz). NMR chemical shift data for H^A and H^B were fitted using Bindfit.^[8,9] Fitting curves and residuals are shown in Figure S5.

Figure S5. *Top*: ¹H NMR chemical shift values of H^A (left) and H^B (right) in macrocycle **3d** upon addition of dodecyltrimethylammonium chloride as described above. Measured chemical shifts are indicated by black squares. Fitted curves are overlaid for 1:1 (red) and 1:2 (blue) **3a**:NR₄⁺ isotherm models. *Bottom*: residual curves for 1:1 (red triangle) and 1:2 (blue circle) binding isotherm models.

This analysis is suggestive of a 1:2 host:guest binding mode between **3a** and the ammonium salt, since when a 1:2 binding isotherm model is applied, the residuals (δ_{fitted} - δ_{observed}) more closely resemble a random distribution around y = 0, as proposed by Jurczak.^[10] Application of the 1:2 binding model leads to a first binding constant K_{11} = 1550 ± 120 M⁻¹ and second K_{12} = 28 ± 1 M⁻¹. The robustness of these fitted parameters was verified by conducting the fit from a range of different initial guess values for K_{11} and K_{12} , and using both the Nelder-Mead and Limited-Memory Broyden-Fletcher-Goldfarb-Shanno with Box contstraint (L-BFGS-B) fitting algorithms (Table S2). In all cases, the algorithm converged on the same fitted binding constants.

	Initia	al Guess (M ⁻¹)	Fit V	Fit Values (M ⁻¹)		Error (%)	
Method	K ₁₁	K ₁₂	K ₁₁	K ₁₂	K ₁₁	K ₁₂	
Nelder-Mead	1	100	1554	28	7.7	2.6	
Nelder-Mead	1	1	1554	28	7.7	2.6	
Nelder-Mead	100	1	1554	28	7.7	2.6	
L-BFGS-B	1	100	1554	28	7.7	2.6	
L-BFGS-B	1	1	1554	28	7.7	2.6	
L-BFGS-B	100	1	1554	28	7.7	2.6	
Details			Details			Details	
Time to fit SSR Fitted datapoints Fitted params	1.7940 s 2.8899e-5 42 6		Time to fit SSR Fitted datapoints Fitted params	1.4107 s 2.8899e-5 42 6		Time to fit SSR Fitted datapoints Fitted params	1.4531 s 2.8899e- 42 6

Table S2. Fitted binding constants generated within Bindfit from a range of initial guesses and using different algorithmic methods.

 Raw outputs for each case are shown below.

Nelder-Mead
output

Details				Details				Details			
Time to fit SSR Fitted datapoints Fitted params Parameters	1.7940 s 2.8899e-5 42 6			Time to fit SSR Fitted datapoints Fitted params Parameters	1.4107 s 2.8899e-5 42 6			Time to fit SSR Fitted datapoints Fitted params Parameters	1.4531 s 2.8899e-5 42 6		
Parameter (bounds)	Optimised	Error	Initial	Parameter (bounds)	Optimised	Error	Initial	Parameter (bounds)	Optimised	Error	Initial
$K_{\mathfrak{l}\mathfrak{l}} \left(\ 0 \to {}^\infty \ \right)$	1554.11 M ⁻¹	± 7.6950 %	1.00 M ⁻¹	$K_{11} \left(\ 0 \to {}^\infty \right)$	1554.11 M ⁻¹	± 7.6950 %	1.00 M ⁻¹	$K_{11} \left(\ 0 \rightarrow ^\infty \ \right)$	1554.11 M ⁻¹	± 7.6950 %	100.00 M ⁻¹
$K_{\mathtt{12}}(0\to\infty)$	28.12 M ⁻¹	± 2.5941 %	100.00 M ⁻¹	$K_{12} \left(\ 0 \rightarrow {}^\infty \ \right)$	28.12 M ⁻¹	± 2.5941 %	1.00 M ⁻¹	$K_{sz} \left(\ 0 \to ^\infty \ \right)$	28.12 M ⁻¹	± 2.5941 %	1.00 M ⁻¹

	Details				Details				Details			
	Time to fit SSR Fitted datapoints Fitted params	1.0942 s 2.8899e-5 42 6			Time to fit SSR Fitted datapoints Fitted params	1.4351 s 2.8899e-5 42 6			Time to fit SSR Fitted datapoints Fitted params	1.2042 s 2.8899e-5 42 6		
L-BFGS-B	Parameters		Parameters				Parameters					
output	Parameter (bounds)	Optimised	Error	Initial	Parameter (bounds)	Optimised	Error	Initial	Parameter (bounds)	Optimised	Error	Initial
	$K_{ss} \left(\ 0 \to \infty \ \right)$	1553.78 M ⁻¹	± 7.6940 %	1.00 M ⁻¹	$K_{11} \left(\begin{array}{c} 0 \rightarrow ^\infty \end{array} \right)$	1554.17 M ⁻¹	± 7.6952 %	1.00 M ⁻¹	$K_{\mathfrak{s}\mathfrak{s}} \left(\ 0 \to ^\infty \right)$	1554.30 M ⁻¹	± 7.6956 %	100.00 M ⁻¹
	$K_{\mathtt{12}} \; (\; 0 \to {}^\infty \;)$	28.12 M ⁻¹	± 2.5941	100.00	$K_{\mathtt{12}} \left(\ 0 \to {}^\infty \ \right)$	28.12 M ⁻¹	± 2.5941	1.00	$K_{12} \left(\ 0 \rightarrow ^{\infty} \ \right)$	28.12 M ⁻¹	± 2.5941	1.00 M ⁻¹

The binding of the cationic ammonium salt by the macrocycle is believed to be mediated by C-H···O hydrogen bonds formed with between the acidified α -hydrogens of the ammonium salt and the imidazolidin-2-one carbonyl groups. Evidence for specific binding of the ammonium head-group (as opposed to e.g. hydrophobic effects) is found through examination of the chemical shift changes of the hexadecyltrimethylammonium salt itself. In the following discussion we follow the naming convention of Magid,^[11] where the ¹H NMR chemical shift environments are divided into the head group (*hg*), α , β , γ ', main chain (*mc*) and ω positions (Figure S6).

Figure S6. A. Evidence for interaction *via* N⁺C-H···O interactions. Peak regions within the hexadecylammonium salt (NR₄Br) are denoted as follows: head group (*hg*, blue circle), α (red square), β (green triangle), γ ' (yellow star), *mc* (teal star), ω (purple diamond). **B**. Serial dilution of a solution of hexadecyltrimethylammonium bromide in CDCl₃ showing minimal change in chemical shift across a 100-fold change in concentration.

A upon addition of the host **3a**, a strong upfield shift is observed in the *hg*- and *α*-environments, with overall $\Delta\delta$ values across the concentration range investigated of 0.093 and 0.115 ppm respectively. While the precise chemical shifts of the β - and γ '-hydrogens are not discernible in the [H]/[G] = 11.3 sample, they display much smaller $\Delta\delta$ shifts than the *hg*- and *α*-hydrogens in the [H]/[G] = 2.3 relative to the [H]/[G] = 0.09 spectrum, as do the *mc*- and *ω*-hydrogens. These data are consistent with binding occurring primarily through hydrogen bonding at the *hg*- and *α*-hydrogens, which has previously been demonstrated to induce an upfield shift in the hydrogens adjacent to the tetrasubstituted nitrogen both in molecular recognition^[12–16] and more recently in asymmetric catalysis^[17,18] applications. Spectral excerpts are taken directly from the **3a**/NR₄+Br titration described above, so host concentration is constant for all spectra while guest concentration is varied. The validity of this approach was confirmed by a dilution study on pure ammonium salt, which indicated minimal chemical shift change as a function of concentration (with the exception of the residual water peak) in CDCl₃ (Figure S6B). Small upfield shifts in *hg*- and *α*-hydrogens were observed upon increasing concentration ($\Delta\delta \approx 0.02$ ppm), but these changes are dwarfed by those seen in the titration experiment so can be disregarded.

3.2 Dibenzoyl Tartaric Acid (DBTA) Binding

3.2.1 Host and Guest Solution Preparation

Macrocycle **3b** (910 μ g, 0.312 μ mol) was dissolved in CDCl₃, made up to a total volume of 1.000 mL (0.312 μ M), and the volumetric flask was sealed with parafilm and refrigerated to prevent evaporation.

Dibenzoyl-*L*-tartaric acid (500 mg, 1.40 mmol) was dissolved in $CDCI_3$, made up to a total volume of 10.00 mL (0.140 M), and the volumetric flask was sealed with parafilm and refrigerated to prevent evaporation. An identical method was used to prepare the stock solution of dibenzoyl-D-tartaric acid.

3.2.2 NMR Titrations

The ¹H NMR spectra of the macrocyles display no measurable change with concentration in the range $0 - 1 \mu M$, so titrations were carried out on a single sample with aliquots of guest added incrementally.

The stock solution of **3b** (0.30 mL, 0.0936 μ mol) was placed in an NMR tube and further diluted with CDCl₃ (0.30 mL) to a total volume of 0.60 mL. The dibenzoyl tartaric acid stock solutions were added without further dilution according to the schedule below.

Entry	Vol DBTA stock added (μL)	Total Vol DBTA stock added (µL)	Total amount DBTA added (µmol)	[DBTA]/[3b]
1	0	0	0	0
2	2.24	2.24	0.313	3.339658
3	2.24	4.48	0.625	6.679316
4	2.24	6.72	0.938	10.01897
5	2.24	8.96	1.250	13.35863
6	2.24	11.2	1.563	16.69829
7	2.24	13.44	1.876	20.03795
8	2.24	15.68	2.188	23.37761
9	2.24	17.92	2.501	26.71726
10	2.24	20.16	2.813	30.05692
11	2.24	22.4	3.126	33.39658
12	11.2	33.6	4.689	50.09487
13	11.2	44.8	6.252	66.79316
14	22.4	67.2	9.378	100.1897

The results of these titrations are displayed in figure S7 below. These indicate that the macrocycle does not differentiate between enantiomers of DBTA to any significant extent, with binding constants of 51 M^{-1} and 56 M^{-1} (for D and L-enantiomers respectively) the same within experimental error.

Figure S7. ¹H NMR titration data indicating chemical shift change in the inward-pointing pyrimidine hydrogen of **3b** (*cf*. H^A in Figure S1), upon addition of both enantiomers of dibenzoyl tartaric acid (DBTA). Individual datapoints represent raw data, and lines indicate fitting curves as produced by Bindfit according to a 1:1 binding model.

4 X-Ray Crystallography

Data for compounds **1a**, **2a**, **2d** and **3a** were collected as described in the General Experimental section. For full details on the collection and refinement of crystal data, please refer to the cif files, accessible from the ccdc using the accession numbers given below.

4.1 t-Bu Protected Dimer 1a (CCDC #2057484)

4.1.1 Crystal Data

$a = 12.05260(10) \text{ Å } \alpha = 90^{\circ}$				
$b = 12.05260(10) \text{ Å } \beta$	= 90°			
$c = 37.0309(5) \text{ Å} \gamma$	= 90°			
Volume	5379.30(12) Å ³			
Space group	P 4 ₁ 2 ₁ 2			
Formula	C ₂₅ H ₃₄ Cl N ₈ O ₂			
Cell determined from	14408 reflections			
Temperature	100K			
Pressure	100 kPa	Shape		
Colour	clear_pale_colourless			
D _x	1.27 Mg m ⁻³			
μ	1.562 mm ⁻¹			
Absorption correction	multi-scan			

Crystal Class	tetragonal
Z =	8
M _r	514.05
Cell θ range =	5 - 71°

blocks	
Size	$0.60 \times 0.50 \times 0.50$ mm
F000	2184.000

min

0.39

4.1.2 Data Collection

Diffractometer	multi-scan
Scan type	ω scans
Reflections measured	22811
Independent reflections	5157
Rint	0.0306
θ_{max}	71.2738
h =	$-14 \rightarrow 14$
k =	- 9 → 14
1 =	$-45 \rightarrow 35$

4.1.3 Refinement

$\Delta \rho_{min} =$	-0.22 e Å ⁻³	
$\Delta \rho_{max} =$	0.34 e Å ⁻³	
Reflections used	5135	
Cutoff: I >	-3.00σ(I)	
Parameters refined	334	
S =	1.17	
R-factor	0.044	
weighted R-factor	0.058	
Δ / σ_{max}	0.0093	
Flack parameter	0.032(5)	Parsons, Flack & Wagner (2013)
Refinement on	F ²	

4.2 Dimer 2a (CCDC #2057483)

4.2.1 Crystal Data

$a = 9.69330(10) \text{ Å} \alpha$	= 90°	
$b = 9.01790(10) \text{ Å} \beta$	= 90.0868(8)°	
$c = 13.41980(10) \text{ Å } \gamma$	= 90°	
Volume	1173.07(2) Å ³	
Space group	P 2 ₁	
Formula	C ₂₁ H ₂₇ Cl N ₈ O ₂	
Cell determined from	9280 reflections	
Temperature	100K	
Pressure	100 kPa	Shape
Colour	clear_pale_colourless	
D _x	1.30 Mg m ⁻³	
μ	1.728 mm ⁻¹	
Absorption correction	multi-scan	
T _{min}	0.32	

4.2.2 Data Collection

multi-scan
ω scans
10892
3858
0.0271
71.3843
$-11 \rightarrow 11$
$-10 \rightarrow 7$
$-16 \rightarrow 16$

4.2.3 Refinement

$\Delta \rho_{\min} =$	-0.20 e Å ⁻³
$\Delta \rho_{\rm max} =$	0.22 e Å ⁻³
Reflections used	3842

Crystal Class	monoclinic
Z =	2
M _r	458.9497
Cell θ range =	• 6 - 71°

needle	
Size	$0.50 \times 0.40 \times 0.40 \text{ mm}$
F000	484.000

T_{max} 0.42

Cutoff: I >	-3.00σ(I)	
Parameters refined	294	
S =	1.95	
R-factor	0.034	
weighted R-factor	0.064	
Δ / σ_{max}	0.0099	
Flack parameter	0.015(5)	Parsons, Flack & Wagner (2013)
Refinement on	F ²	

4.3 Dimer 2d (CCDC #2057482)

Crystal Data 4.3.1

$a = 8.9540(2) \text{ Å} \alpha =$	90°			
$b = 14.9196(3) \text{ Å } \beta =$	90°			
$c = 16.0420(3) \text{ Å } \gamma =$	90°			
Volume	2143.05(8) Å ³		Crystal Class	orthorhombic
Space group	P 2 ₁ 2 ₁ 2 ₁		Z =	4
Formula	C ₂₀ H ₂₅ Cl N ₈ O ₈		M _r	444.93
Cell determined from	4064 reflections		Cell θ range =	= 6 - 71°
Temperature	150K			
Pressure	100 kPa	Shape	needles	

Colour	clear_pale_colourless	Size	$0.40 \times 0.15 \times 0.10 \text{ mm}$
D _x	1.38 Mg m ⁻³	F000	936.000
μ	1.875 mm ⁻¹		
Absorption correction	multi-scan		
T _{min}	0.36	T _{max}	0.47

4.3.2 Data Collection

Diffractometer	multi-scan
Scan type	ω scans
Reflections measured	6522
Independent reflections	4053
Rint	0.0265
θ_{max}	71.3775
h =	$-7 \rightarrow 10$
k =	$-17 \rightarrow 18$
1 =	$-18 \rightarrow 19$

4.3.3 Refinement

$\Delta \rho_{\min} =$	-0.20 e Å ⁻³	
$\Delta \rho_{max} =$	0.31 e Å ⁻³	
Reflections used	4053	
Cutoff: I >	-3.00σ(I)	
Parameters refined	285	
S =	1.87	
R-factor	0.038	
weighted R-factor	0.043	
Δ / σ_{max}	0.0014	
Flack parameter	-0.003(10)	Parsons, Flack & Wagner (2013)
Refinement on	F ²	

4.4 Macrocyclic Tetramer 3a (CCDC #2057486)

4.4.1 Crystal Data

$a = 12.00486(4) \text{ Å} \alpha$	= 90°			
$b = 15.58877(3) \text{ Å} \beta$	$= 96.150(5)^{\circ}$			
$c = 23.79439(4) \text{ Å} \gamma$	= 90°			
Volume	5279.29(6) Å ³		Crystal Class	monoclinic
Space group	I 2		Z =	4
Formula	C42.64 H56.23 Cl3.11 N16 O5.46		M_r	990.44
Cell determined from	4657 reflections		Cell θ range =	= 3 - 68°
Temperature	293K			
Pressure	100 kPa	Shape	plates	
Colour	clear_pale_colourless		Size	$0.22\times0.14\times0.005~mm$
D _x	1.246 Mg m ⁻³		F000	2082.261
μ	2.098 mm ⁻¹			
Absorption correction	multi-scan			
T _{min}	0.14		T _{max}	0.99

4.4.2 Data Collection

Diffractometer	multi-scan
Scan type	ω scans
Reflections measured	31995
Independent reflections	9165
Rint	0.114
θ_{max}	68.242
h =	$-13 \rightarrow 14$
k =	$-22 \rightarrow 22$
1 =	$-28 \rightarrow 28$

4.4.3 Refinement

$\Delta \rho_{\min} =$	-0.69 e Å ⁻³
$\Delta \rho_{\text{max}} =$	0.71 e Å ⁻³

Reflections used	6744	
Cutoff: I >	-3.00σ(I)	
Parameters refined	406	
S =	1.7645	
R-factor	0.225	
weighted R-factor	0.498	
Δ / σ_{max}	0.037	
Flack parameter	0.22(4)	Parsons, Flack & Wagner (2013)
Refinement on	F^2	

Portions of the macrocyclic skeleton were found in the raw structure solution from Superflip. With the exception of the side chains, the rest of the structure was resolved by Fourier cycles. The refinement was not stable, and restraints were applied to bond distances following measurements from a previous structure (CCDC #1824642) corresponding to the repeating motif in the present structure. The first carbon of the side chains was then resolvable in the Fourier map, and in agreement with the expected chirality. Refinement of the anisotropic ADPs revealed that there was extensive disorder in the macrocycle position along the vector perpendicular to its plane. The molecule was then modelled over two positions, and with competitively refined occupancy. Further side chain structure then became visible, although it was not possible to distinguish between valine and isoleucine-derived monomers, with the additional methyl unit failing to appear or to refine to physically reasonable positions even when restrained. The anisotropic ADPs of both sets of atoms for the macrocycle were still prolate beyond physically reasonable limits, and so restrained refinement from isotropic ADPs was performed to account for electron density, before fixing the ADPs. The macrocycle could feasibly be modelled over more than two locations, but the qualitative description of the structure would not be more precise - there is extensive disorder in position perpendicular to the plane of the macrocycle. Hydrogen atoms were added geometrically, and the solvent was modelled by examination of slant Fourier maps. While we are confident of the location and orientation of the chloroform molecules, the ethanol molecules are more speculative. Solvent molecules were refined isotropically and with partial occupancies. Weights were selected and the structure was refined to convergence.

This is a low-quality structure and only information about connectivity, relative molecular position and orientation, and gross conformation of the main residue should be taken with any level of confidence. There are no fully ordered portions.

5 Density Functional Theory Calculations

All optimisation, frequency, and single-point calculations were performed with *Gaussian 16*, rev A.03.^[19] Structures are displayed with CYLView.^[20] The B3LYP functional was used for all geometry optimisations with the 6-31G(d,p) basis set on all atoms unless otherwise stated. Grimme's DFT-D3BJ correction was included in the optimisation procedure as well as single point calculations.^[21] All optimised structures were confirmed as minima by the absence of imaginary harmonic frequencies. Further refinements to the electronic energies were made through single point calculations on the optimised geometries using the B3LYP functional with the 6-311+G(d,p) basis set for all atoms. Grimme's DFT-D3BJ correction and further corrections for bulk solvation through a polarisable continuum model (PCM) with description of toluene in all calculations were also incorporated. Free energies were determined from thermochemical corrections of the geometries applied to electronic energies. Coordinates for all minimized geometries are given below (§8, pg. 162)

5.1 Trimer Summary (See Figure 3B)

Two conformations of the trimer were found, both bowl shaped, with the R group sidechains in either pseudo-axial or equatorial positions. No other conformations, including a flat or staggered arrangement of each monomeric unit, could be found. The pseudo-equatorial conformation was consistently more stable. This was found to hold true for a number of different functionals employed during optimisation (Table S3) with relative energies very similar in each case.

Table S3. Relative energies of pseudo-axial and equatorial conformations R=Me trimer using different functionals during optimisation. B3LYP and B3PW91 include D3BJ corrections, M062X and ω b97xd do not. Single point energy calculations performed at B3LYP-D3BJ-PCM_{Toluene}/6-311+G(d,p) throughout.

Optimisation Functional	ddG (kcal mol ⁻¹)
B3LYP	5.8
B3PW91	6.0
M062X	6.6
ωb97xd	5.8

For the B3LYP functional, the effects of solvation and dispersion during singled point energy calculations were examined (Table S4). While the inclusion of solvation makes only a minor change in the relative energy, inclusion of dispersion corrections prompts a very large decrease in relative energies of the conformers, 4.2 kcal mol⁻¹ for R=Me. Notably, the stabilisation offered by the inclusion of dispersion corrections increases as the size of the sidechain R groups increases and the dispersion level contacts between ends of the sidechain become more numerous.

Table S4. Effect of solvation and dispersion corrections on relative energies of pseudo-axial and equatorial conformations oftrimers of various R groups.

	R=Me	R=ABC	R=iPr
SP	10.3	16.5	17.1
SP/PCM _{Toluene}	10.0	16.0	16.5
SP/D3BJ	6.2	6.4	3.2
SP/PCM _{Toluene} /D3BJ	5.8	6.0	2.6

5.2 Tetramer Summary (See Figure 3a)

A significant degree of conformational flexibility was observed, with many essentially isoenergetic conformations found, although all retained the shallow bowl conformation when R=Me, two examples are shown in Figure S8. The conformation when one carbonyl is on a different face to the other three is 0.17 kcal mol⁻¹ higher in energy compared to when all are pointing towards the same face. All attempts at finding the pseudo-axial conformation of the tetramer optimised to the pseudo-equatorial.

Figure S8. Examples of different shallow bowl conformations found when R=Me.

When R=H, one conformation was found which was entirely flat (Figure S9). O-O distances are slightly shorted in this conformation at 3.6 and 5.0 Å. However, this was 3.9 kcal mol⁻¹ higher in energy than any other shallow bowl conformations, making this conformation highly unfavoured.

Figure S9. Tetramer flat conformation when R=H.

6 Supplementary References

- [1] J. Cosier, A. M. Glazer, J. Appl. Crystallogr. **1986**, *19*, 105–107.
- [2] CrysAlisPRO, Oxford Diffraction/Agilent Technologies UK Ltd, Yarnton, England, n.d.
- [3] L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 786–790.
- [4] P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Crystallogr. 2003, 36, 1487.
- [5] R. I. Cooper, A. L. Thompson, D. J. Watkin, J. Appl. Crystallogr. 2008, 43, 1100–1107.
- [6] Z. Lockhart, P. C. Knipe, Angew. Chem. Int. Ed. 2018, 57, 8478–8482.
- [7] P. Jain, I. O. Raji, S. Chamakuri, K. R. MacKenzie, B. T. Ebright, C. Santini, D. W. Young, J. Org. Chem. 2019, 84, 6040–6064.
- [8] P. Thordarson, *Chem. Soc. Rev.* **2011**, *40*, 1305–1323.
- [9] www.supramolecular.org
- [10] F. Ulatowski, K. Dabrowa, T. Bałakier, J. Jurczak, J. Org. Chem. 2016, 81, 1746–1756.
- [11] P. J. Kreke, L. J. Magid, J. C. Gee, *Langmuir* **1996**, *12*, 699–705.
- [12] D. A. Stauffer, D. A. Dougherty, *Tetrahedron Lett.* **1988**, *29*, 6039–6042.
- [13] L. Garel, B. Lozach, J. P. Dutasta, A. Collet, J. Am. Chem. Soc. 1993, 115, 11652–11653.
- [14] A. Arduini, W. M. McGregor, D. Paganuzzi, A. Pochini, A. Secchi, F. Ugozzoli, R. Ungaro, *J. Chem. Soc. Perkin Trans.* 2 **1996**, 839–846.
- [15] R. Arnecke, V. Böhmer, R. Cacciapaglia, A. Dalla Cort, L. Mandolini, *Tetrahedron* 1997, 53, 4901–4908.
- [16] S. Kubik, J. Am. Chem. Soc. 1999, 121, 5846–5855.
- [17] S. Shirakawa, S. Liu, S. Kaneko, Y. Kumatabara, A. Fukuda, Y. Omagari, K. Maruoka, Angew. Chem. Int. Ed. 2015, 54, 15767–15770.
- [18] Y. Kumatabara, S. Kaneko, S. Nakata, S. Shirakawa, K. Maruoka, Chem. An Asian J. 2016, 11, 2126–2129.
- [19] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V Ortiz, J. Cioslowski, D. J. Fox, *Gaussian16 (Revision A.03)* 2016.
- [20] C. Y. Legault, Univ. Sherbrooke 2009.
- [21] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- [22] P. C. Knipe, S. Thompson, A. D. Hamilton, Chem. Commun. 2016, 52, 6521–6524.

7 <u>NMR Spectra</u>

							Current NAME	Data Parameters TW-A-125-A RERUN
						1	EXPNO	90 1
							PROCINO	I Mulaition Decembera
							Date_	20190427
	Ļ						Time	21.48
	Y NO ₂						PROBHD	5 mm PARRO BR/
	O=S=O					1	PULPROG	zg30
	Ň						TD	131072
	Δ						SOLVENT	CDC13
		`				1	DS	04
	Ξ						SWH	12019.230 Hz
							FIDRES	0.091699 Hz
							AQ	5.4525952 sec
S1							DW	41.600 usec
01							DE	9.85 usec
							TE	300.0 K
¹ H NMR							TDO	0.10000000 sec 1
								CHANNEL f1
400 MHZ							SF01	399.9024695 MHz
					1	1	NUC1	1H
CDCl ₃							PI	14.88 USEC
					100		11341	1133333330 11
	I						F2 - Pro	cessing parameters
	1						SI	131072
	1	1					WDW	599.9000082 MHz EM
	1 1				d l	1 (1) 1	SSB	0
	1 /1					C #4	LB	0.10 Hz
	1				8 1	1076	GB	1 00
							PC	1.00
	[]				·I			
	9 8	7	6 5	4	3 2	1 ppm		
	八八				八八	JULI		
	8 8				8 8	3 1 2 2		
	17 F 18				191 151	15 15 15 18		

		Current Data Parameters IAME TW-A-197-A RERUN (XPNO 10 PROCNO 1 72 - Acquisition Parameters Date_ 20190430 Fime 20.53 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zg30 FD 131072 SOLVENT CDC13 NS 64 DS 0
S2	S S S	WH 12019.230 Hz PIDRES 0.091699 Hz AQ 5.4525952 sec
¹ H NMR		3G 101 3W 41.600 usec 3DE 9.85 usec
400 MHz		TE 300.0 K)1 0.10000000 sec TD0 1
CDCl ₃	s N P P	CHANNEL f1 FO1 399.9024695 MHz WC1 1H P1 14.88 usec PLW1 7.59999990 W
		2 - Processing parameters 131072 F 399.9000085 MHz MW EM SSB 0 LB 0.10 Hz B 0 PC 1.00
	9 8 7 6 5 4 3 2 1 ppm 0001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

I

	N N-H		Current Data Parameters NAME $TW-A-169-A 600$ EXPNO 80 PROCNO 1 F2 - Acquisition Parameters Date_ 20190831 Time 9.15 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG 2g30 TD 65536 SOLVENT CDC13 NS 16
S4			SWH 12019.230 Hz FIDRES 0.183399 Hz AO 2.7262976 Sec
¹ H NMR			RG 83.95 DW 41.600 usec DE 6.50 usec
600 MHz			TE 300.0 K D1 1.00000000 sec TD0 1
CDCI ₃			CHANNEL f1
	9 8 7 6	2 00 1.00	ppm

			Current Data Parameters NAME TW-A-168-A COSY1 EXPNO 10
~~			PROCNO 1 F2 - Acquisition Parameters Date20190828 Time 16.41 INSTRUM spect PROBHD 5 mm PULPROG zg30 TD 131072 SOLVENT CDC13 NS 16 DS 0 SWH 12019.230 Hz F IDRES 0.091699 Hz AQ 5.4525952 sec RG 203
S5			DW 41.600 usec DE 9.85 usec
¹ H NMR			TE 299.7 K D1 0.1000000 sec TD0 1
400 MHz			CHANNEL f1
CDCI			NUC1 1H P1 14.88 usec
			PLW1 7.59999990 W F2 - Processing parameters SI 131072 SF 399.9000095 MHz WDW EM SSB 0 LB 0 PC 1.00
	9 8 7 6	5 4 3 2 1 ppm	

				Current Da NAME EXPNO PROCNO	ita Parameters TW-B-215 10 1
	$ \begin{array}{c} CI \\ O \\ O \\ N \\ N$			F2 - Acqui Date_ Time INSTRUM PROBHD S PULPROG TD SOLVENT NS DS SWH F DDRES	sition Parameters 20190905 19.05 spect 5 mm PABBO BB/ 2g30 65536 CDC13 16 2 12019.230 Hz 0.183399 Hz
S6				AQ RG DW DE	2.7262976 sec 148.05 41.600 usec 6.50 usec
¹ H NMR				TE D1 TD0	300.0 K 1.00000000 sec 1
600 MHz				SF01	HANNEL f1
CDCI ₃			- Muh	NUC1 P1 PLW1 F2 - Proce SI SF WDW SSB LB GB PC	1H 10.00 usec 26.60000038 W ssing parameters 65536 600.1300149 MHz EM 0 0.30 Hz 0 1.00
	9 8 7 6 301 101 108 301 101 108	5 4 3	2 1 ppr 3:13 3:03 3:03	r n	

				Current Data Parameters NAME TW-B-196-A 600 EXPNO 27 PROCNO 1
	$ \begin{array}{c} CI & O_2N \\ O & O_1 \\ N & N & N & S \\ \end{array} $			F2 - Acquisition Parameters Date_ 20190830 Time 18.57 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG 2g30 TD 65536 SOLVENT CDC13 NS 16 DS 2
S12				SWH 12019.230 Hz FIDRES 0.183399 Hz AQ 2.7262976 sec
¹ H NMR				RG 134.29 DW 41.600 usec DE 6.50 usec TE 300.0 K D1 1.0000000 sec TD0 1
CDCI ₃	3			CHANNEL f1
				PLW1 26.60000038 W F2 - Processing parameters SI 65536 SF 600.1300150 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00
	6 5 6 1100 100	5 4	3 2 1 1 3 300 3 300 1 100	opm

	N N N N N N N N N N			Current Data Parameters NAME TW-A-49-A RERUN EXPNO 20 PROCNO 1
S15 ¹ H NMR				F2 - Acquisition Parameters Date20190425 Time 12.26 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zg30 TD 131072 SOLVENT CDC13 NS 64 DS 0 SWH 12019.230 Hz FIDRES 0.091699 Hz AQ 5.4525952 sec RG 203 DW 41.600 usec DE 9.85 usec
400 MHz				TE 300.0 K D1 0.10000000 sec TD0 1
CDCI ₃			Mulu	CHANNEL f1 SF01 399.9024695 MHz NUC1 1H P1 14.88 usec PLW1 7.59999990 W F2 - Processing parameters SI 131072 SF 399.9000099 MHz WDW EM SSB 0 LB 0.10 Hz GB 0 PC 1.00
	9 8 7 6	100 100 100 100 100 100 100 100 100 100	2 1 ppm	

				Curren NAME EXPNO PROCNO	t Data Parameters RK1-83-1 10 1
	$O=S=O$ NO_2 NO_2			F2 - A Date Time INSTRU PROBHD PULPRO TD SOLVEN NS DS SWH FIDRES	cquisition Parameters 20181128 16.16 M spect 5 mm PABBO BB/ G zg30 131072 T CDC13 T CDC13 T CDC13 16 0 12019.230 Hz 0.091699 Hz
S18				RG DW DE	90.5 41.600 usec
¹ H NMR				TE D1 TD0	298.1 K 0.10000000 sec 1
400 MHz				SF01	
CDCI ₃				P1 PLW1	14.88 usec 7.59999990 W
				F2 - P SI SF WDW SSB LB GB PC	rocessing parameters 131072 399.9000059 MHz EM 0 0.10 Hz 0 1.00
	9 8 7	6 5 4	3.14 2 2 2 3.14 2 2 2 1.01 2 1.01 2 1.01 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 ppm	

	$ \begin{array}{c} $		Current Data Parameters NAME TW-A-184 TRIT 600 EXPNO 10 PROCNO 1 F2 - Acquisition Parameters Date_ 20190904 Time 10.43 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG 2g30 TD 65536 SOLVENT CDC13 NS 16
1a ¹ H NMR			DS 2 SWH 12019.230 Hz FIDRES 0.183399 Hz AQ 2.7262976 sec RG 119.2 DW 41.600 usec DE 6.50 usec TE 300.0 K D1 1.0000000 sec TD0 1
CDCI3			CHANNEL f1
	6 100 100 100 100 100 100 100 100	5 4 3 2 1 ppm 1001 1001 1001 1001 1000 3000 1001 1001 1001 1000 3000 1001 1001 1000 3000 1001 1001 1000 3000 1001 1001 1000 3000 1001 1001 1000 1000 1000 1000 1000	

			Current Data Parameters NAME TW-A-185-A TRIT 600 EXPNO 10 PROCNO 1
	$ \begin{array}{c} H \\ N \\$		F2 - Acquisition Parameters Date_ 20190904 Time 10.55 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zg30 TD 65536 SOLVENT CDC13 NS 16 DS 2 SWH 12019.230 FIDRES 0.183399 AQ 2.7262976
2a			RG 105.21 DW 41.600 usec DE 6.50 usec
¹ H NMR			TE 300.0 K D1 1.00000000 sec TD0 1
600 MHz			SF01 600.1337060 MHz
CDCI ₃			PI 10.00 usec PLW1 26.60000038 W
			F2 Processing parameters SI 65536 SF 600.1300142 MHW EM SSB 0 LB 0.30 GB 0 PC 1.00
	9 7 7 100 100 00 100 00 100 00 00 00	5 4 3 2 1 ppm 101 101 101 101 101 101 101 10	

* This compound was partially contaminated with hydrocarbon grease.

* This compound was partially contaminated with hydrocarbon grease.

S23*

¹³C NMR

151 MHz

CDCl₃

	$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Current Data Parameters NAME TW-B-225 600 EXPNO 90 PROCNO 1 F2 - Acquisition Parameters Date_ 20190831 Time 11.25 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG 2g30 TD 65536 SOLVENT CDC13 NS 16 DS 2
S24 ¹ H NMR		SWH 12019.230 Hz FIDRES 0.183399 Hz AQ 2.7262976 sec RG 105.21 DW 41.600 usec DE 6.50 usec TE 300.0 K D1 1.0000000 sec
600 MHz CDCI ₃		TD0 1 CHANNEL f1 SF01 600.1337060 MHz NUC1 1H P1 10.00 usec PLW1 26.60000038 W F2 - Processing parameters SI 65536 SF 600.1300149 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00
	9 8 7 6 5 4 3 2 1 ppm 100 100 100 100 100 100 100 10	

	$ \begin{array}{c} $			Current Data Parameters NAME TW-A-144-A TRIT 600 EXPNO 10 PROCNO 1 F2 - Acquisition Parameters Date_ 20190903 Time 16.12 INSTRUM spect PROBHD 5 mm PABB0 BB/ PULPROG zg30 TD 65536 SOLVENT CDC13 NS 16 DS 2 SWH 12019.230 Hz
S25				FIDRES 0.183399 Hz AQ 2.7262976 sec RG 168.12
¹ H NMR				DW 41.600 usec DE 6.50 usec TE 300.0 K D1 1.0000000 sec
600 MHz	ĩ			TDO 1
CDCI₃			Miller	SF01 600.1337060 MHz NUC1 1H P1 10.00 usec PLW1 26.6000038 W F2 - Processing parameters SI 65536 SF SF 600.1300152 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00
	9 7 6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	2.16 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1	2 1 bbm 2.17 2.16 9.78 3.31 3.31	

		Current Data Parameters NAME TW-A-146-A RERUN EXPNO 50 PROCNO 1
		F2 - Acquisition Parameters Date_ 20190425 Time 12.45
		INSTRUM spect PROBHD 5 mm PABBO BB/ PUL PROS
		TD 131072 SOLVENT CDC13
		NS 64
		SWH 12019.230 Hz
S26		FIDRES 0.091699 Hz AQ 5.4525952 sec
		RG 203
		DW 41.600 usec DE 9.85 usec
		TE 300.0 K
400 MHz		D1 0.10000000 sec TD0 1
400 10112		CHANNEL f1
CDCI		SF01 399.9024695 MHz
00013		NUC1 1H P1 14.88 usec
		PLN1 7.59999990 W
		F2 - Processing parameters
		SI 131072
		SF 399.900097 MHz
		SSB 0
		LB 0.10 Hz
		GB 0
	lllllllll	
	9 8 7 6 5 4	3 2 1 ppm
	- ハ ハ ハ ハ ハ ハ ハ ハ ハ ハ ハ ハ ハ ハ ハ ハ ハ ハ ハ	
		8 2 8 3 3 3

	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			Current Data Parameters NAME TW-A-108 600 TRIT EXPNO 10 PROCNO 1 F2 - Acquisition Parameters Date_ 20190909 Time 17.05 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG Zg30 TD TD 65536 SOLVENT CDC13 NS 16 DS 2 SWH 12019 230
10				FIDRES 0.183399 Hz AQ 2.7262976 sec
				RG 168.12 DW 41.600 usec
¹ H NMR				TE 300.0 K D1 1.00000000 sec
600 MHz				TDO 1
				SF01 CHANNEL f1
				NUC1 1H P1 10.00 usec
				PLW1 26.60000038 W
				F2 - Processing parameters SI 65536
	1 10		il II I	SF 600.1300152 MHz WDW EM
				SSB 0
		an al la		GB 0.30 Hz
	ll	AAM		PC 1.00
	9 8 7 6	5 4 3	2 1 ppm	
	1 JUL		JULK	
	8 8 8 8	19 P P P P P	14 29 29 19 28	
		- - - - -	0 0 2 7 7 0	

	$ \begin{array}{c} $				Current I NAME EXPNO PROCNO F2 - Acq Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS	Data Parameters TW-B-231-A 600 40 1 uisition Parameters 20190830 21.07 spect 5 mm PABBO BB/ 2q30 65536 CDC13 16
S27					SWH FIDRES AQ	12019.230 Hz 0.183399 Hz 2.7262976 sec
¹ H NMR					RG DW DE	105.21 41.600 usec 6.50 usec
600 MHz					D1 TD0	1.00000000 sec 1
CDCI₃					SF01 NUC1 P1 PLW1	CHANNEL f1
		M	l		F2 - Pro SI SF WDW SSB LB GB PC	cessing parameters 65536 600.1300155 MHz EM 0 0.30 Hz 0 1.00
	2 3 5 5 5 5 5 5 5 5 5 5	4 1.10 2.28 4	3 2 1.08 1.12 1.12	9.38 3.24 3.15 3.04 1 3.15 3.04 1 3.15		

S27

S29

¹³C NMR

151 MHz

CDCl₃

	$ \begin{array}{c} & & \\ & & $			Current Data Parameters NAME TW-B-271-A 600 EXPNO 190 PROCNO 1 F2 - Acquisition Parameters Date_ 20190901 Time 17.24 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zg30 TD 65536 SOLVENT CDC13 NS 16 DS 2
S33				SWH 12019.230 Hz FIDRES 0.183399 Hz AQ 2.7262976 sec
¹ H NMR				RG 148.05 DW 41.600 usec DE 6.50 usec
600 MHz				TE 300.0 K D1 1.0000000 sec TD0 1
CDCI ₃				CHANNEL f1 SF01 600.1337060 MHz NUC1 1H P1 10.00 usec PLW1 26.6000038 W F2 - Processing parameters SI SF 600.1300153 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00
	7 8 9 1901	6 5 4 3 801 111 111 111 111 111 111 111 111 111	2 1 ppm 3 000 9 000 9 000 9 000 1 120 1 1	

	Ν		Current Data Parameters NAME TW-B-296-B EXPNO 10
			PROCNO
			F2 - Acquisition Parameters Date 20191126
			Time 16.23
			INSTRUM spect
			PULPROG Zg30
			TD 65536
			SOLVENT CDC13
	N N		DS 2
	N N		SWH 12019.230 Hz
536			FIDRES 0.183399 Hz
000			RG 83.95
			DW 41.600 usec
¹ H NMR			TE 300.0 K
			D1 1.00000000 sec
600 MHz			TDO 1
		Ĩ	CHANNEL fl
CDCL			SF01 600.1337060 MHz
00013			NUC1 1H P1 10.00 usec
			PLW1 26.60000038 W
			P2 Decocacing parameters
			SI 65536
			SF 600.1300148 MHz
	1. mil		WDW EM
			LB 0.30 Hz
			GB 0
			PC 1.00
	0 8 7 6	5 4 3 9 1 pp	
	0.	11111011100110000	
		to the factor for the factor of the factor for the	

8	Appendix	-	Coordinates	for	DFT-Opti	mized	Geo	<u>metries</u>
				н	-4.8855	-1.91415	-0.82854	
8.1	Trimer Coo	rdinates	(Figure 3B)	Н	-5.60682	0.037042	0.368813	
				Н	-4.92657	0.898568	-1.03066	
R=N	/le, Pseudo-Axial			Н	4.101425	-3.27502	-0.82537	
				Н	2.769624	-4.87466	0.368879	
Ν	4.486655	-0.59285	-0.55038	Н	1.684421	-4.71471	-1.03113	
С	3.404083	-0.71712	0.241927	Н	-2.21554	-5.38437	-1.39971	
С	2.767509	0.380589	0.817981	Н	-0.73874	-1.81297	1.493825	
С	3.190042	1.635894	0.364419	С	0.866887	3.421166	-2.08077	
Ν	4.271136	1.789424	-0.41998	Н	1.175776	2.373465	-2.00188	
С	4.873436	0.658887	-0.79518	Н	-0.17759	3.462976	-2.38984	
Ν	2.436773	2.78761	0.619049	Н	1.475824	3.899473	-2.85348	
С	1.123257	2.682348	1.127182	С	-3.39398	-0.9587	-2.08019	
Ν	0.305771	3.507017	0.353718	Н	-2.90746	-1.88392	-2.38921	
С	1.074351	4.140241	-0.74675	Н	-4.11153	-0.67	-2.8538	
С	2.519316	3.979568	-0.23237	Н	-2.64122	-0.16741	-1.99954	
С	-1.0811	3.306276	0.241582	С	2.531426	-2.4612	-2.0809	
С	-1.71384	2.206601	0.81821	Н	1.469806	-2.20392	-2.00292	
С	-3.01195	1.944439	0.363992	Н	3.090865	-1.57805	-2.38955	
С	-3.00679	3.889864	-0.79723	Н	2.641185	-3.22786	-2.85346	
Ν	-1.72957	4.181046	-0.55179					
Ν	-3.63313	0.716485	0.61893	R=Me	, Pseudo-Equa	torial		
С	-2.8859	-0.36867	1.127712	Ν	0 20656	1 5156	0 72/06	
Ν	-3.19107	-1.48894	0.35405	N C	-0.20050	-4.5450	-0.75490	
С	-4.12239	-1.13944	-0.74738	C C	-0.42198	-5.50651	0.095925	
С	-4.70634	0.191955	-0.23292	C C	1 995429	-2.75120	0.05090	
Ν	2.884538	-2.01857	0.353968		1.005409	-2.99505	0.101515	
С	3.048946	-3.00077	-0.74648	N C	2.130956	-4.0205	-0.72930	
С	2.186287	-4.17143	-0.23289		1.068298	-4.70024	-1.0015	
Ν	1.195391	-3.50384	0.618575	N C	2.955753	-2.111/1	0.298052	
С	1.761192	-2.31394	1.127002		2.77548		0.91/095	
С	-0.17867	-3.58035	0.364038	N	3.619973	0.052035	0.286534	
Ν	-0.58576	-4.59254	-0.4217	C	4.549871	-0.61274	-0.62916	
С	-1.86582	-4.54871	-0.79735	C	4.106636	-2.10238	-0.62377	
Ν	-2.7567	-3.58831	-0.55183	C	3.249669	1.388843	0.096257	
С	-2.32363	-2.58953	0.241945	C	2.072979	1.911887	0.639062	
С	-1.05497	-2.5876	0.81869	C	1.651064	3.130234	0.101422	
Ν	-3.68492	2.803299	-0.42156	L	3.588592	3.305426	-1.06098	
0	1.328167	-1.66796	2.05803	N	4.040228	2.094104	-0.73439	
0	-2.11046	-0.31683	2.05917	N	0.350915	3.615428	0.29796	
0	0.780319	1.9842	2.058099	C	-0.63527	2.838048	0.917584	
н	1.937554	0.267078	1.49188	N	-1.85502	3.108862	0.286219	
н	5.77273	0.773816	-1.39645	C	-1.74411	4.24633	-0.62975	
Н	0.785121	5.188637	-0.82647	C	-0.23246	4.60/443	-0.62395	
Н	3.241298	3.817124	-1.03021	N	-1./6484	-3.16079	0.286283	
Н	2.835678	4.836565	0.369637	C	-2.80565	-3.6338	-0.62918	
Н	-1.2011	1.545202	1.493116	C	-3.87407	-2.5051	-0.62367	
Н	-3.55564	4.610757	-1.39935	N	-3.30671	-1.50384	0.298269	
				C	-2.14027	-1.96916	0.917783	

С	-3.53658	-0.13528	0.101572	C	-3.34976	0.990755	-0.68219
Ν	-4.5527	0.167825	-0.72899	C	-2.2529	1.645207	-1.23919
С	-4.65691	1.454967	-1.06113	C	-2.04456	2.959473	-0.80529
Ν	-3.83362	2.451752	-0.7347	C	-4.0301	2.921044	0.287151
С	-2.82766	2.119812	0.096069	Ν	-4.27468	1.631389	0.059375
С	-2.69246	0.839344	0.639142	Ν	-0.82146	3.605215	-1.01088
Ν	2.421697	3.858677	-0.72905	C	0.283715	2.900144	-1.52806
0	-1.54376	-1.42226	1.822178	Ν	1.393451	3.225246	-0.75026
0	-0.45985	2.048087	1.822047	C	1.030396	4.128451	0.368511
0	2.003454	-0.62588	1.821999	C	-0.3432	4.654114	-0.10394
н	0.44113	-1.9584	1.342231	Ν	2.097019	-2.8187	-0.75066
н	1.261341	-5.62181	-1.69713	C	3.061776	-2.9567	0.367096
н	5.578129	-0.50072	-0.27432	C	4.203375	-2.02954	-0.10585
Н	4.486941	-0.15733	-1.6184	Ν	3.533298	-1.09036	-1.01163
Н	3.751291	-2.40421	-1.61183	C	2.369729	-1.6947	-1.52821
Н	1.475468	1.36081	1.342147	C	3.585498	0.291643	-0.80531
Н	4.238286	3.903518	-1.69642	Ν	4.610602	0.742723	-0.06123
Н	-2.10666	3.963774	-1.61903	C	4.545152	2.030001	0.287657
н	-2.35549	5.080841	-0.27539	Ν	3.550405	2.88661	0.060575
Н	0.206886	4.450732	-1.61191	C	2.533126	2.406194	-0.68115
н	-2.37997	-3.80711	-1.61847	C	2.551346	1.129341	-1.23866
н	-3.2227	-4.58027	-0.27414	Ν	-2.9478	3.621394	-0.06099
н	-3.95778	-2.04637	-1.6117	0	1.722941	-1.28856	-2.47177
н	-5.49969	1.718528	-1.69664	0	0.255491	2.137816	-2.47234
н	-1.91658	0.597481	1.342366	0	-1.97606	-0.84709	-2.47198
С	0.046961	6.035077	-0.16996	н	-0.20711	-1.91314	-1.87704
н	1.122265	6.221138	-0.16936	н	-0.60316	-5.87737	0.849936
н	-0.43275	6.746335	-0.85046	н	-5.15849	-0.94277	0.414411
н	-0.34527	6.200591	0.838321	н	-3.62521	-3.31244	0.701948
С	5.203233	-3.0583	-0.16992	н	-4.72281	-3.01259	-0.65473
н	4.826699	-4.08257	-0.16947	н	-1.55278	1.137606	-1.87795
н	6.05908	-2.9984	-0.85038	н	-4.78856	3.461607	0.8492
н	5.542657	-2.80154	0.838419	н	1.762393	4.936237	0.420829
С	-5.25023	-2.97677	-0.16985	Н	-0.2464	5.59682	-0.64979
н	-5.94895	-2.13851	-0.16952	н	-1.05647	4.794272	0.704818
н	-5.62628	-3.74797	-0.85024	н	3.395497	-3.99453	0.418248
н	-5.19762	-3.39899	0.838538	н	4.970793	-2.58441	-0.65286
				н	4.682322	-1.48246	0.702722
R=iF	Pr, Pseudo-Axial			н	5.392665	2.416398	0.849613
N	0 725283	-/ 5173	0 060649	н	1.76152	0.777045	-1.87733
C	0.723283	-3 39611	-0 68108	С	-3.45168	-0.84316	1.733306
C C	-0 29699	-2 77332	-1 238/3	н	-3.62642	0.22422	1.893734
C C	-0.23055	-2.77552	-0.80536	С	0.993249	3.404768	1.734735
N	-1 66152	-7 36330	-0.00330	н	2.004577	3.021179	1.894894
	-1.00133 _0 [1200	-4.30339 -1 05021	-0.00122 0.20701	С	2.455051	-2.56385	1.734309
	-0.51358	-4.90U31	U.20/01	Н	1.617666	-3.24837	1.895039
	-2./1019	-2.5138	-1.U1Z	C	-4.17659	-1.59916	2.852758
	2.00129		-1.528/	Н	-4.02228	-2.68139	2.781759
	-3.4873	-0.403/3	-0.73193	н	-3.80189	-1.28168	3.830268
	-4.09208	-1.1/234	0.303027	н	-5.25467	-1.40874	2.830514
C	-3.85927	-2.02465	-0.10/1/				

С	-1.93898	-1.09128	1.775328
Н	-1.69597	-2.15582	1.699651
Н	-1.41556	-0.56394	0.972717
Н	-1.52755	-0.72901	2.722167
С	0.700837	4.407445	2.856946
Н	0.786918	3.921117	3.833066
Н	1.405697	5.245187	2.83801
Н	-0.31305	4.816228	2.786164
С	0.021334	2.219188	1.772489
Н	-1.02204	2.541718	1.699426
Н	0.130046	1.677495	2.716809
Н	0.215095	1.505729	0.966471
С	1.913805	-1.12964	1.773547
Н	2.714438	-0.38719	1.698004
Н	1.196684	-0.94113	0.96956
Н	1.392994	-0.95304	2.719358
С	3.470978	-2.81215	2.855186
Н	3.00794	-2.64383	3.831914
Н	3.844131	-3.84141	2.835555
Н	4.331765	-2.13836	2.783507
R=iPr,	Pseudo-Equa	torial	
N	-0.88425	-4.4648	-0.78082
С	-0.94165	-3.40449	0.046981
С	0.200225	-2.81239	0.590895
С	1.416643	-3.24882	0.058981
N	1.505883	-4.31475	-0.75946
С	0.34428	-4.87741	-1.0951
Ν	2.601622	-2.53075	0.251046
С	2.613752	-1.27334	0.866481
Ν	3.581873	-0.49404	0.223985
С	4.339954	-1.27881	-0.75636
С	3.770573	-2.71679	-0.62309
С	3.419332	0.886689	0.045592
С	2.336471	1.579674	0.591063
С	2.105394	2.851152	0.059007
С	4.0507	2.736745	-1.09727
Ν	4.307862	1.466461	-0.78338
Ν	0.891095	3.518203	0.251975
С	-0.20373	2.899521	0.867294
Ν	-1.36291	3.348618	0.225362
С	-1.06271	4.398441	-0.75408
С	0.467417	4.623955	-0.62149
Ν	-2.2186	-2.85491	0.225889
С	-3.27821	-3.12017	-0.75307
С	-4.23793	-1.90714	-0.6215
Ν	-3.49251	-0.98768	0.252652
С	-2.40924	-1.62651	0.867839
С	-3.52188	0.397525	0.059944
N	-4,48923	0.852673	-0.75927

-4.39554	2.139747	-1.09576
-3.42393	2.997472	-0.78185
-2.47742	2.517603	0.046807
-2.53613	1.233203	0.591981
2.982971	3.46136	-0.76047
-1.74057	-1.18351	1.778994
-0.15434	2.099044	1.778525
1.896463	-0.91589	1.778237
0.142763	-1.9967	1.28847
0.405943	-5.76342	-1.72345
5.40765	-1.23286	-0.537
4.191273	-0.8647	-1.75579
3.418993	-3.08102	-1.59028
1.659744	1.122229	1.289671
4.786525	3.233172	-1.72637
-1.34766	4.063715	-1.75368
-1.63602	5.300021	-0.53335
0.95811	4.50191	-1.58898
-2.84612	-3.20088	-1.75267
-3.77286	-4.06695	-0.53131
-4.37628	-1.42111	-1.58917
-5.19347	2.528981	-1.72461
-1.80141	0.875602	1.290238
0.879325	5.991677	-0.04398
1.971372	5.947403	0.04067
4.749596	-3.7571	-0.04587
4.16529	-4.68066	0.039566
-5.62918	-2.23355	-0.04555
-6.13671	-1.26551	0.03802
-5.55825	-2.86421	1.348583
-6.56553	-3.02832	1.742556
-5.05345	-3.83673	1.330734
-5.02599	-2.21856	2.052409
-6.42198	-3.10255	-1.02818
-5.96686	-4.09164	-1.15383
-7.44195	-3.25879	-0.66527
-6.48542	-2.63273	-2.01544
0.523966	7.113547	-1.02599
-0.56004	7.213562	-1.15306
0.897708	8.074789	-0.66162
0.964015	6.934725	-2.01281
0.296251	6.244255	1.349783
-0.7984	6.292773	1.331017
0.656893	7.198547	1.744783
5.898104	-4.01064	-1.02866
6.526594	-3.1219	-1.1565
6.544011	-4.81479	-0.66453
5.522462	-4.30266	-2.0151
5.260925	-3.37796	1.347385
5.851625	-2.45512	1.327665

С Ν С С Ν 0 0 0 н Н Н Н Н Н Н Н Н Н Н Н Н Н Н С Н С н С Н С Н н н С н н Н С н Н Н С Н н С Н н Н С н

ц	4 425049	רדדכר כ	2 051151
	4.455946 E 006066	-3.23///	2.031131
	0.580067	-4.10004	1.742755
п	0.385007	5.400172	2.055542
R=ABC	, Pseudo-Axia	al	
Ν	3.201946	3.395137	0.580853
С	2.277033	2.894786	-0.26217
С	2.47673	1.716228	-0.97817
С	3.604435	0.968343	-0.61833
Ν	4.549392	1.449555	0.208033
С	4.300689	2.65563	0.725197
Ν	3.73755	-0.37031	-1.00609
С	2.626004	-1.05104	-1.54922
Ν	2.485564	-2.25153	-0.85595
С	3.541317	-2.42399	0.170627
С	4.549692	-1.32498	-0.24363
С	1.277297	-2.96631	-0.81871
С	0.100779	-2.43669	-1.34611
С	-1.08288	-3.08955	-0.98329
С	0.122068	-4.72384	0.022871
Ν	1.306427	-4.13902	-0.15536
Ν	-2.33006	-2.49771	-1.20237
С	-2.42585	-1.1499	-1.59694
Ν	-3.40901	-0.5473	-0.81373
С	-4.03618	-1.5142	0.121934
С	-3.52529	-2.86394	-0.44021
Ν	1.048499	3.577167	-0.28361
С	0.55965	4.29889	0.916852
С	-0.84855	4.729193	0.456711
Ν	-1.19569	3.710886	-0.53989
С	-0.01266	3.192285	-1.10377
С	-2.35307	2.930403	-0.44417
Ν	-3.33128	3.402171	0.349134
С	-4.34721	2.562637	0.563267
Ν	-4.45222	1.291527	0.174441
С	-3.44721	0.83991	-0.60028
С	-2.42402	1.673049	-1.05147
Ν	-1.08278	-4.25688	-0.31513
0	0.055988	2.523909	-2.11465
0	-1.7494	-0.61679	-2.45226
0	1.91837	-0.63975	-2.44468
Н	1.752987	1.354486	-1.68591
Н	5.077274	3.069805	1.364583

Н

Н

н

Н

Н

Н

Н

3.977727

5.012925

5.338176

0.096058

0.135372

-5.1196

-4.25862

-3.41823

-0.82204

-1.72606

-1.53329

-5.68784

-1.43755

-3.32598

0.05668

0.601902

-0.88644

-1.92791

0.52674

0.010063

-1.10727

Н	-3.26308	-3.58148	0.333639
Н	1.204856	5.157662	1.104566
Н	-0.8404	5.717162	-0.01358
Н	-1.58005	4.726019	1.262739
Н	-5.17357	2.952856	1.153352
Н	-1.66389	1.326399	-1.72677
С	3.022493	-2.27499	1.617885
Н	2.222102	-3.01111	1.728475
С	-3.70234	-1.30859	1.618785
н	-4.01838	-0.292	1.867084
С	0.503579	3.388438	2.144778
н	-0.15322	2.532964	1.956918
Н	1.496866	3.021454	2.404401
Н	0.106594	3.945582	2.998494
С	4.131528	-2.64628	2.609101
Н	4.976523	-1.95073	2.55402
Н	3.752047	-2.61514	3.634669
Н	4.511535	-3.65617	2.423281
С	2.4498	-0.8851	1.914614
Н	3.228649	-0.11671	1.928418
Н	1.696694	-0.58935	1.179544
н	1.970218	-0.88127	2.898249
С	-4.57157	-2.27134	2.442632
н	-4.4655	-2.05919	3.510198
н	-5.6315	-2.17324	2.186609
н	-4.28364	-3.31742	2.289203
С	-2.21896	-1.45671	2.00969
н	-1.82158	-2.41728	1.659051
н	-2.19145	-1.51606	3.104558
С	-1.29006	-0.31478	1.581007
н	-1.05271	-0.32791	0.515164
н	-1.73827	0.658351	1.807351
н	-0.34287	-0.37693	2.121368
R=AE	3C, Pseudo-Equ	uatorial	
Ν	4.497552	1.769752	-0.69241
С	3.586777	1.20144	0.119871
С	2.513658	1.913652	0.661891
С	2.314683	3.193537	0.137097
Ν	3.211552	3.788562	-0.6724
С	4.269465	3.046445	-1.00109
Ν	1.11314	3.892942	0.321177
С	-0.00707	3.278052	0.895831
Ν	-1.14621	3.764579	0.244141
С	-0.82392	4.903835	-0.61661
С	0.728332	4.977985	-0.6018
С	-2.26275	2.956756	-0.00287
С	-2.34834	1.652099	0.488183
С	-3.33147	0.850438	-0.09743
С	-4.15471	2.644845	-1.20809

6.646438	-4.53493	-0.54424
5.679288	-3.99989	-1.9256
-6.24286	-2.56917	-1.3826
-5.82838	-3.58088	-1.4588
-7.29732	-2.67052	-1.11113
-6.195	-2.11108	-2.37627
-5.55478	-2.38426	1.057185
-4.80957	-3.18845	1.124017
-6.52712	-2.88395	1.144838
-5.39985	-1.43045	2.248707
-4.40042	-0.99907	2.32244
-6.11292	-0.60218	2.174657
-5.6	-1.9578	3.186701

Н

н С

H H

Н

С Н

Н

С Н

H H

8.2 Tetramer Coordinates (Figure 3A)

R=iPr			
N	-0.68871	-4.64602	-0.28316
С	-0.19785	-5.95903	-0.70194
С	1.315576	-5.8954	-0.39875
Ν	1.542436	-4.44976	-0.24308
С	0.351866	-3.74501	-0.05894
0	0.240966	-2.57172	0.239254
С	2.805376	-3.86679	-0.32665
Ν	3.811341	-4.71281	-0.62931
С	5.010766	-4.15073	-0.77363
Ν	5.328789	-2.86042	-0.67192
С	4.308099	-2.03805	-0.358
С	3.005411	-2.49592	-0.1452
С	1.75182	-6.68272	0.855382
С	1.61723	-8.18952	0.609659
С	1.008412	-6.24256	2.120812
Ν	4.646241	-0.68891	-0.28341
С	5.959419	-0.19795	-0.70151
С	5.895502	1.315496	-0.39844
Ν	4.449748	1.542206	-0.24336
С	3.745017	0.351588	-0.05964
0	2.571534	0.240549	0.237763
С	3.866785	2.805171	-0.32674
Ν	4.712853	3.811122	-0.62932
С	4.150864	5.010598	-0.77352
Ν	2.86058	5.328708	-0.67173
С	2.038168	4.308056	-0.35781
С	2.49593	3.005297	-0.14518
С	6.682285	1.751924	0.855937
С	8.18923	1.617919	0.610693
С	6.241987	1.008245	2.121168
Ν	0.689048	4.646214	-0.28315

Ν	-3.18482	3.480006	-0.833
Ν	-3.32584	-0.53845	0.049922
С	-2.29483	-1.2169	0.703726
N	-2.11322	-2.4432	0.054874
С	-3.1442	-2.66417	-0.96549
С	-4.07569	-1.42635	-0.84937
N	3.71787	-0.18434	0.283072
С	4.492293	-0.96831	-0.68546
С	3.901617	-2.39963	-0.58363
N	2.705055	-2.2051	0.250196
С	2.715074	-0.95544	0.881481
С	1.516367	-2.90107	0.006215
N	1.615931	-3.95396	-0.82792
С	0.457393	-4.49033	-1.2134
N	-0.77432	-4.06093	-0.93526
С	-0.84189	-3.01531	-0.09021
С	0.290121	-2.45469	0.505435
N	-4.27135	1.346872	-0.92504
0	1.971376	-0.597	1.771383
0	-1.6622	-0.80896	1.656998
0	0.00839	2.448712	1.781656
н	1.819847	1.463526	1.348155
н	5.021882	3.532314	-1.61866
н	-1.27005	5.81927	-0.2173
н	-1.22978	4.742636	-1.61588
н	1.136261	4.742974	-1.58809
н	-1.63647	1.258754	1.190871
н	-4.93084	3.067385	-1.8427
Н	-2.67921	-2.7424	-1.95038
н	-3.67231	-3.59948	-0.77473
н	-4.16802	-0.92806	-1.81652
Н	4.375511	-0.54158	-1.6838
Н	5.554163	-0.93788	-0.43717
Н	3.5798	-2.75219	-1.56529
н	0.525808	-5.3665	-1.85469
н	0.222609	-1.65184	1.216922
С	-5.49901	-1.72571	-0.33756
н	-5.99603	-0.75009	-0.27777
С	1.262653	6.329914	-0.14551
н	2.353688	6.317721	-0.1442
Н	0.920123	7.117259	-0.82518
Н	0.905719	6.562128	0.862686
С	4.8463	-3.45664	0.01974
н	4.247149	-4.3728	0.078992
С	5.314853	-3.09325	1.432139
Н	5.936452	-3.89398	1.843492
Н	5.917257	-2.17782	1.438616
Н	4.468504	-2.94734	2.108839
С	6.024447	-3.7196	-0.92474
н	6.66895	-2.83877	-1.02449

С	0.198017	5.959188	-0.70179	H 6.446261 -0.0661 2.05496
С	-1.31547	5.895213	-0.3989	H 5.173243 1.138039 2.31347
Ν	-1.54206	4.449545	-0.24298	H 0.707252 6.74772 -0.1486
С	-0.35135	3.745067	-0.05868	H 0.403914 6.115045 -1.7651
0	-0.24012	2.571895	0.239851	H -1.90052 6.249473 -1.2493
С	-2.80499	3.866517	-0.32639	H -5.82863 4.827112 -1.0120
Ν	-3.81079	4.712486	-0.62971	H -2.20168 1.829971 0.11242
С	-5.01022	4.150469	-0.77422	H -2.8164 6.456925 0.98110
Ν	-5.32837	2.860244	-0.67214	H -2.01282 8.752881 1.45937
С	-4.30789	2.037902	-0.3574	H -0.57121 8.488842 0.47930
С	-3.00526	2.495744	-0.14415	H -2.17025 8.498798 -0.284
С	-1.75221	6.682658	0.854957	H -1.3914 6.785097 2.99061
С	-1.61746	8.189441	0.609153	H 0.065153 6.446115 2.05487
С	-1.00934	6.242554	2.120729	H -1.13989 5.173992 2.31354
Ν	-4.64622	0.688835	-0.28261	Н -6.74783 0.707338 -0.1494
С	-5.95901	0.197863	-0.70191	H -6.11419 0.40347 -1.7654
С	-5.89538	-1.31554	-0.39866	H -6.24959 -1.90073 -1.2489
Ν	-4.44975	-1.54228	-0.24246	H -4.82698 -5.82892 -1.0117
С	-3.74526	-0.35165	-0.05771	H -1.83007 -2.20146 0.11168
0	-2.57216	-0.24059	0.241179	H -6.45703 -2.81583 0.98205
С	-3.86667	-2.80515	-0.32618	H -8.75351 -2.01293 1.458914
Ν	-4.71258	-3.81107	-0.62929	H -8.4987 -2.17112 -0.2844
С	-4.15042	-5.01042	-0.77394	H -8.48968 -0.57171 0.47823
Ν	-2.86012	-5.32839	-0.67217	H -6.7866 -1.38971 2.99056
С	-2.03783	-4.30778	-0.35774	Н -5.17532 -1.13799 2.31398
С	-2.49579	-3.00517	-0.14456	H -6.44781 0.066403 2.05402
С	-6.68315	-1.7518	0.855183	H 5.829316 -4.82737 -1.0110
С	-8.1899	-1.61777	0.608716	
С	-6.24385	-1.00797	2.120658	R=Me, carbonyls on same face
н	2.201649	-1.8301	0.110619	C 0.445327 -6.47917 -0.5252
н	2.815953	-6.45692	0.981943	
н	2.012188	-8.75287	1.460127	
н	2.170453	-8.49896	-0.2834	
н	0.57104	-8.48895	0.479333	C = 0.203047 - 5.32403 - 0.24802
н	1.390089	-6.78508	2.990879	
н	1.138911	-5.17399	2.313662	N = 1.001007 - 5.85204 - 0.5705
н	-0.06605	-6.4461	2.054484	C = 2.823212 - 2.47596 - 0.2620
н	-0.70735	-6.74757	-0.14906	N 4 166010 2 15474 0 06222
н	-0.40353	-6.11465	-1.76539	
н	6.747715	-0.70736	-0.1482	C = 2.07/149 + 4.6972 + 0.0390
н	6.115614	-0.40366	-1.76488	C = 5.574146 - 4.40675 - 0.51157
н	6.250326	1.900614	-1.24857	$\sim -2.15551 -4.19404 0.1050$
н	4.827553	5.829127	-1.01085	
н	1.900735	-6.24998	-1.24894	
н	1.830032	2.201589	0.110619	N -3.832 -2.70387 0.060504
Н	6.456082	2.815955	0.98252	
Н	8.752156	2.013135	1.461327	
Н	8 / 98731	2 17125	-0.28228	
••	0.4707.11			i 3.869497 0.265677 0.12656
н	8.48912	0.571857	0.480494	
н н	8.48912 6.783841	0.571857	0.480494 2.991493	C 4.525821 1.496225 0.05562

С	6.52798	0.448359	-0.10115
Ν	6.028689	-0.78733	-0.05475
Ν	-5.86418	-1.60411	-0.05641
С	-6.52788	-0.44835	-0.10191
Ν	-6.02861	0.787329	-0.05523
С	-4.68805	0.863539	0.057004
С	-3.86952	-0.26568	0.12731
Ν	3.831983	2.703842	0.060024
Ν	-4.16604	2.154755	0.062769
С	-5.00261	3.348845	-0.05905
С	-3.97413	4.468663	-0.31151
N	-2.70878	3.860154	0.107618
С	-2.82323	2.476012	0.26286
С	2.457945	2.838537	0.260718
N	2.155298	4.194016	0.105496
С	3.325337	4.969609	-0.31464
С	4.497349	4.001142	-0.06193
С	0.861728	4.704976	0.000103
С	-0.26966	3.924632	0.248525
С	-1.49726	4.543079	0.00122
N	-1.60162	5.832086	-0.37643
С	-0.44534	6.479219	-0.52508
N	0.788653	5.996095	-0.37765
0	-1.92441	1.700245	0.520924
0	1.673747	1.94721	0.519242
0	1.924375	-1.70012	0.520316
0	-1.67377	-1.94734	0.519875
н	0.517294	-7.52584	-0.81382
н	0.199059	-2.89732	0.554707
н	5.71579	-3.23489	-0.87522
н	4.178637	-5.36976	0.267137
н	3.920366	-4.75375	-1.36671
н	-3.23254	-5.244	-1.36995
н	-5.03867	-4.23586	0.859963
н	-5.21904	-3.98512	-0.87867
н	2.802639	0.192345	0.231313
н	7.610103	0.522716	-0.18774
н	-7.60996	-0.5227	-0.18902
н	-2.80272	-0.19236	0.232644
н	-5.71573	3.234661	-0.87519
н	-3.92034	4.753478	-1.36694
н	-4.17862	5.369817	0.266778
н	3.232659	5.243596	-1.37024
н	5.219489	3.985473	-0.87799
н	5.038029	4.235734	0.860617
н	-0.19907	2.897266	0.554498
н	-0.5173	7.525916	-0.8136
С	3.437707	6.270829	0.501329
н	4.469312	6.492365	0.679128
н	2.989391	7.074236	-0.04498

Н	2.932492	6.149979	1.436772
С	-5.80136	3.571451	1.238662
Н	-5.86761	4.620001	1.44128
Н	-6.78556	3.167176	1.125485
Н	-5.30589	3.081843	2.050875
С	-3.43789	-6.27063	0.501895
Н	-4.46952	-6.49201	0.679705
Н	-2.98962	-7.07424	-0.04414
Н	-2.93271	-6.14954	1.437329
С	5.801248	-3.57112	1.23875
Н	5.869259	-4.61972	1.440535
н	6.784781	-3.16502	1.126289
Н	5.304598	-3.08305	2.05117
R=Me, o	one carbonyl	on differei	nt face
С	4.829627	4.348502	-0.51284
Ν	5.217443	3.080826	-0.37857
С	4.241131	2.204533	-0.06707
C	2 01 / 21 2	2 505112	0 12/500

С Ν С С С Ν Ν С Ν С С Ν С С Ν С С С С С Ν С Ν Ν С Ν С С Ν Ν С С Ν С С

4.241131	2.204533	-0.06707
2.914212	2.595113	0.134598
2.643766	3.950469	-0.06989
3.599019	4.844861	-0.3931
1.357931	4.480646	0.020605
0.195509	3.733271	0.220793
-0.88014	4.601858	0.029642
-0.44508	6.00122	-0.11442
1.06198	5.84755	-0.41261
4.641571	0.871572	-0.0038
6.031326	0.441478	-0.23083
5.863288	-1.0629	-0.53901
4.521288	-1.36618	-0.03851
3.790939	-0.20826	0.235735
3.978521	-2.64638	-0.13245
-2.21608	4.214621	-0.05444
-2.6222	2.89	0.127754
-3.97836	2.63565	-0.09314
-4.85889	3.602267	-0.41925
-4.34949	4.829886	-0.51546
-3.08032	5.203996	-0.35917
4.853845	-3.61008	-0.47934
4.342252	-4.8366	-0.58641
3.072224	-5.21066	-0.43163
2.212941	-4.22097	-0.11813
2.624133	-2.9037	0.093646
-4.52042	1.353276	-0.02338
0.876677	-4.60064	0.006699
0.444349	-6.00708	0.062538
-1.07366	-5.89994	-0.21101
-1.3612	-4.48219	0.010967
-0.19586	-3.71117	-0.01195
-3.79051	0.190482	0.226807

Ν	-4.64403	-0.88444	-0.02705
С	-6.03437	-0.44864	-0.2368
С	-5.86446	1.059495	-0.52487
С	-4.24562	-2.21713	-0.10428
С	-2.91914	-2.60791	0.091799
С	-2.64704	-3.9612	-0.11887
N	-3.60257	-4.86016	-0.42462
С	-4.8344	-4.36337	-0.5416
N	-5.22181	-3.09458	-0.41359
0	-0.13234	-2.49793	-0.04126
0	-2.63441	0.12901	0.597213
0	0.134898	2.552761	0.503669
0	2.636824	-0.15334	0.613063
Н	5.612216	5.063894	-0.7577
Н	2.144541	1.892555	0.39815
Н	-0.974	6.446642	-0.95787
н	1.668821	6.564512	0.141195
Н	1.293905	5.961396	-1.4764
Н	6.428202	0.981817	-1.0912
н	6.609122	-1.67499	-0.03082
н	5.920797	-1.28164	-1.61014
н	-1.92963	2.110875	0.389818
н	-5.05441	5.622385	-0.7588
н	5.045898	-5.62726	-0.83893
н	1.934325	-2.12539	0.364066
н	0.950111	-6.56107	-0.72967
н	-1.33606	-6.18317	-1.23502
н	-1.66098	-6.5196	0.468105
Н	-6.43945	-0.97572	-1.10166
Н	-5.92407	1.292751	-1.59285
Н	-6.60775	1.666003	-0.0066
Н	-2.14926	-1.9025	0.344932
н	-5.61848	-5.08017	-0.77722
С	-6.89834	-0.72933	0.991209
н	-7.92186	-0.38289	0.816302
н	-6.92255	-1.80095	1.195289
н	-6.50026	-0.20619	1.866554
С	-0.7261	6.80407	1.154217
Н	-0.38183	7.835525	1.028895
Н	-1.79762	6.817237	1.360467
Н	-0.20185	6.364803	2.008901
С	6.904174	0.707487	0.994038
Н	7.927013	0.365649	0.806531
н	6.927788	1.77634	1.21224
н	6.514017	0.171936	1.865428
С	0.771558	-6.63015	1.417682
Н	0.434237	-7.67102	1.444158
Н	1.849385	-6.6118	1.590618
Н	0.271699	-6.08116	2.221862

С

С	-4.22109	-5.02914	-0.04444
N	-4.7658	-3.81101	-0.03775
С	-3.88773	-2.7894	-0.00791
С	-2.50574	-2.98291	0.018494
С	-2.07385	-4.31007	0.002975
N	-2.92664	-5.35286	-0.02818
N	-0.72072	-4.64429	0.017667
С	0.325337	-3.72244	0.02417
Ν	1.515057	-4.44946	0.012706
С	1.291613	-5.89508	0.019647
С	-0.25066	-6.02901	-0.0229
Ν	-4.45196	-1.51499	-0.00594
С	-5.89749	-1.29193	-0.0321
С	-6.03247	0.250471	0.005493
Ν	-4.64725	0.720606	-0.00942
С	-3.72515	-0.32513	-0.00135
С	-4.31255	2.073595	0.000921
С	2.789837	-3.886	0.010874
С	2.984569	-2.50402	-0.00514
С	4.312277	-2.07365	-0.00161
Ν	5.354538	-2.92754	0.012749
С	5.029594	-4.22174	0.023038
Ν	3.810862	-4.76517	0.023564
Ν	-5.35468	2.927709	0.009805
С	-5.02946	4.221856	0.017488
Ν	-3.8106	4.765017	0.019458
С	-2.7897	3.885642	0.011909
С	-2.98474	2.503652	0.000193
Ν	4.646923	-0.72065	-0.01358
Ν	-1.51491	4.449121	0.014389
С	-1.29186	5.894835	0.014885
С	0.25066	6.029295	-0.01841
Ν	0.720838	4.644477	0.016364
С	-0.32499	3.72242	0.024607
С	3.724854	0.325137	-0.01093
Ν	4.451736	1.514956	-0.0099
С	5.897351	1.291851	-0.02923
С	6.032058	-0.25055	0.008894
С	3.887631	2.789424	-0.01032
С	2.505626	2.98305	0.01366
С	2.073975	4.310324	0.002172
Ν	2.926927	5.353111	-0.02435
С	4.221361	5.029244	-0.0394
Ν	4.765885	3.811018	-0.03518
0	-0.21935	2.511816	0.038907
0	2.514151	0.219626	-0.01084
0	0.220314	-2.51178	0.038112
0	-2.51449	-0.2195	0.006798
н	-4.91997	-5.86284	-0.06754

Н	-1.81663	-2.16021	0.042282
Н	1.776135	-6.35738	-0.84288
Н	1.724886	-6.34024	0.918571
Н	-0.64575	-6.58851	0.827568
Н	-0.603	-6.52077	-0.93287
Н	-6.33079	-1.72729	-0.93573
Н	-6.37092	-1.77476	0.825389
Н	-6.54178	0.60409	0.905203
Н	-6.57547	0.644227	-0.85626
Н	2.162532	-1.81373	-0.01501
Н	5.862728	-4.92161	0.033158
Н	-5.86245	4.921936	0.02356
Н	-2.1629	1.813103	-0.00548
Н	-1.73117	6.344905	0.908311
Н	-1.77093	6.352112	-0.85345
Н	0.607921	6.526778	-0.92323
Н	0.640942	6.583566	0.837791
Н	6.366677	1.774612	0.830541
Н	6.334996	1.727222	-0.93077
Н	6.579772	-0.64417	-0.84993
Н	6.536413	-0.60434	0.911327
Н	1.81631	2.160403	0.033667
Н	4.920399	5.862906	-0.05883