
SUPPLEMENTARY METHODS 
 
Test datasets 
 
Within long-billed hermits, only males in this species sing and crystallized songs appear after 
birds are about 6 months old. All included songs were crystallized songs. In the study population, 
relatedness is low even between individuals from the same lek (Araya-Salas et al. 2019) and is 
likely to be low among all individuals in our sample. We did not control for variation among 
individuals producing the same song type, as this made the dataset more realistic and provided a 
good test for our method. 
 
We collected recordings of live budgerigars in a controlled laboratory environment. The 
individuals used for this study were acquired from a large breeding population and are assumed 
to have low relatedness. In order to promote calling during recording sessions, we played 
recordings of unfamiliar budgerigar vocalizations at low amplitudes and also ensured that 
isolated individuals were in visual contact with the flock mates. Calls were recorded during 30 
min sessions that occurred twice per week using an Audio-Technica Pro 37 microphone input to 
a Dell DHMPC running Syrinx 2.6 (Burt 2006, www.syrinxpc.com) with a 22.05 kHz sampling 
rate. Calls were automatically partitioned and saved to separate wav files by Syrinx.  
 
To illustrate the manner in which songs and calls are used by budgerigars and long-billed hermits 
in natural settings, we have included spectrograms of vocal displays recorded from wild long-
billed hermits and budgerigars that contain multiple elements (i.e., multiple songs or calls) in 
Fig. S1. Broadly speaking, long-billed hermit songs span a wider range of frequencies and have 
higher harmonic content than budgerigar calls, and the differences in the fundamental frequency 
contours of these signals are readily apparent when viewing spectrograms of recordings. 
 
 
Synthetic data creation 
 
We varied the duration of synthetic sounds based on the distribution of durations of natural 
vocalizations in each species (Fig. S2). The natural vocalizations used as templates have very 
little harmonic content. Hence, harmonic content was simulated arbitrarily as frequency contours 
an octave (twice the frequency) and a fifth (2.5 times) above the dominant frequency contour. 
Variation in background noise was generated by adding normally distributed noise (i.e., white 
noise) to each signal. Allowing for different levels of harmonic content made it possible to 
simulate recordings with low levels of signal attenuation, such as those collected at close range, 
as well as recordings with high levels of attenuation, which could be caused by environmental 
factors such as habitat type, as well as recording conditions. Sample spectrograms of synthesized 
signals are shown in Fig. S3. Based on visual assessment of spectrograms of synthetic signals 
and their strong resemblance to spectrograms of the live bird recordings used for this study, as 
well as the parameters with which we designed the synthetic signals, we are confident that the 
synthetic signals closely resemble those of live birds. Thus, we expect that signals resembling the 
synthetic songs might be heard in nature. 
 



By using simulated data with known classes, we were able to make better predictions about 
which signal characteristics or recording conditions are likely to affect performance while also 
avoiding the time-consuming collection of data from live animals. This approach of using 
synthetic data with known variation and class labels for every signal types is analogous to data 
augmentation in supervised machine learning. Data augmentation is a process in which labeled 
training data is slightly altered or modified in order to create additional annotated examples for 
training an algorithm, and is often employed when labeled data is scarce (Krizhevsky et al. 
2012). Data augmentation has been shown to enhance performance of deep learning models in 
the classification of acoustic data (McFee et al. 2015, Salmon and Bello 2017). This approach 
may be particularly valuable when developing tools to help bioacoustics researchers in the 
analysis of field recordings because environmental conditions can alter acoustic structure in 
distinct ways through scattering, frequency-dependent attenuation and introduction of noise. 
Previous work has shown that creating synthetic datasets can improve performance of 
unsupervised random forests (Dalleau et al. 2018). In addition, this approach provides test sets 
with known attributes to evaluate performance of new methods. However, to our knowledge this 
technique has not been used to evaluate classification methods of animal vocalizations.  
The code for data synthesis used in this study is included in the appendix. 
 
Feature measurements 
 
Acoustic features were selected with the aim of creating a general, reproducible framework using 
accessible, commonly used acoustic measurements. This included mel frequency cepstral 
coefficients (MFCCs; Lyon and Ordubadi 1982), which have been applied widely applied in the 
analysis of bioacoustic signals (reviewed in Stowell and Plumbley 2010). For each spectrogram, 
we calculated 25 MFCCs and their derivatives and extracted descriptive statistics (e.g., mean, 
median, and variance) from these values sensu Salamon et al. (2014), producing 179 MFCC 
measurements for each audio clip. We measured acoustic parameters using the specan function 
from R package warbler (Araya-Salas and Smith-Vidaurre 2017), which includes many of the 
same metrics provided by the seewave R package (Sueur et al. 2008) and Raven Pro (Center for 
Conservation Bioacoustics, 2019), and included peak frequency (i.e., frequency at which the 
highest power is present), bandwidth (i.e., frequency range of a signal), signal duration, and 
robust measurements based on energy distributions within the spectrogram. Recently, researchers 
have shown that incorporating parameters extracted directly from spectrogram images may 
facilitate high levels of classification accuracy for avian signals (Smith-Vidaurre et al. 2019); 
however, to ensure our approach is widely generalizable, we do not include such features here.  
 
 
Supervised random forest analyses 
 
When using a supervised random forest approach, individual decision trees are constructed by 
splitting data into two classes at each node using a randomly selected feature measurement, with 
the goal of optimizing the split between labeled classes. Out-of-bag error is a metric that is 
commonly used to assess the ability of random forest models to distinguish between distinct 
classes. Out-of-bag error is calculated by iteratively removing a single sample and building a 
random forest model with the remaining data, and then testing whether that sample is classified 
to the same category as other samples from the same class. 



 
Unsupervised random forest analyses 
 
Contrasting supervised random forest models, an unsupervised random forest uses unlabeled 
samples to create a collection of decision trees by optimally splitting the distribution of values 
for a randomly selected feature measurement at each node. This process enables unsupervised 
random forests to find groupings among similar samples and allows for measuring the degree of 
dissimilarity among all data points (Breiman 2001). This is possible with unlabeled data because 
decision trees assign all samples to end nodes, i.e., different classes, and one can then calculate 
the pairwise distance between samples within a data set as the proportion of times a pair of 
samples is classified in the same end node. 
 
 
 
SUPPLEMENTARY RESULTS 
 
We evaluated the ability of our models to correctly classify similar elements together by 
comparing our results to the classification rates that would be expected by random chance. We 
calculated random chance of correct assignment as 1/c, where c is the number of different 
classes. Note that to find statistical significance of observed correct classification rates versus 
those theoretically expected by chance one must adjust for a finite number of test data points (see 
Combrisson and Jerbi 2015). However, we use this value only as a point of reference for 
assessing supervised random forest performance. To evaluate the performance of our 
unsupervised method we use rigorous statistical testing, including calculating the acoustic space 
occupied by all signals in a dataset as well as the adjusted Rand index.  



Figure S1. Spectrograms showing examples of vocal displays recorded from wild birds. a) 
long-billed hermit songs produced by the same individual, b) budgerigar calls produced by the 
same individual. Sounds were obtained from Xeno Canto (www.xeno-canto.org). 
 
 

 
  



Figure S2. Histograms showing durations of a) field-recorded long-billed hermit songs, and b) 
lab-recorded budgerigar calls. Distributions of durations from live bird recordings were used to 
create synthetic datasets. 
 
 
 

 
 

  



Figure S3. Spectrograms showing examples of signals in test datasets. a) synthetic budgerigar 
calls, b) synthetic long-billed hermit songs. Spectrograms in the same row show different 
synthetic signals that are considered to be the same element type. 
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Figure S4. Sample plots showing silhouette widths for different numbers of clusters applied 
to distance matrices obtained from unsupervised random forest models. a) synthetic 
budgerigar dataset with 20 unique element types, b) synthetic long-billed hermit dataset with 20 
unique element types, c) synthetic budgerigar dataset with 50 unique element types, d) synthetic 
long-billed hermit dataset with 50 unique element types, e) synthetic budgerigar dataset with 100 
unique element types, f) synthetic long-billed hermit dataset with 100 unique element types, g) 
lab-recorded budgerigar dataset with 15 unique element types, h) field-recorded long-billed 
hermit dataset with 50 unique element types. Silhouette width is calculated as the ratio mean 
distance between points within a cluster to mean distance between clusters; the optimal number 
of clusters is typically determined to be that which results in the largest silhouette width. Blue 
and red dashed lines indicate true and estimated number of discrete elements in datasets, 
respectively. For synthetic datasets with large numbers of discrete elements, silhouette width is 
often high around the true number of discrete elements, and then increases again when high 
numbers of clusters are used. High silhouette values with very large numbers of clusters are 
likely due to overfitting, e.g., clusters created around very few data points.  
 

 
 



Table S1. Variable importance rankings indicating which feature measurements were most 
useful in splitting data into distinct classes were different for each of the four dataset types used 
for testing. Variable rankings were produced by the separate unsupervised random forest models 
created for each data set. Rankings shown for synthetic data were randomly selected from 
random forest models created for synthetic budgerigar and long-billed hermit data sets with 100 
unique elements. Variable names are listed as they are referred to by the R packages warbleR 
and seewave and correspond to the feature measurements listed in the main text. The number of 
variables used varies between datasets because highly correlated measurements were removed 
before random forest models were created. 
 

Variable 
ranking 

Field-recorded 
long- billed 

hermit songs 

Lab-recorded 
budgerigar 

calls 

Synthetic long 
billed hermit 

songs 

Synthetic 
budgerigar calls 

1 var.cc23 max.cc1 min.cc12 max.cc13 
2 var.cc16 xc.dim.1 median.cc9 mean.cc24 
3 var.cc24 xc.dim.3 kurt.cc21 kurt.cc25 
4 var.cc15 xc.dim.2    kurt.cc16 var.cc25 
5 var.cc22 xc.dim.4 var.cc4 var.cc8 
6 median.cc4 xc.dim.5 max.cc23 var.cc4 
7 var.cc14 median.cc2 max.cc22 var.cc22 
8 var.cc13 time.ent    median.cc8 skew.cc2 
9 var.cc11 freq.Q25 mean.cc23 skew.cc22 
10 sfm freq.median skew.cc8 kurt.cc20 
11 entropy median.cc16 kurt.cc1 kurt.cc23 
12 median.cc3 time.Q75    kurt.cc19 kurt.cc21 
13 median.cc5 sfm var.cc22 skew.cc20 
14 dtw.dim.1 min.cc2 skew.cc7 freq.IQR 
15 var.cc9 kurt.cc7 max.cc21 time.Q25 
16 kurt.cc15 var.cc1     min.cc9 maxdom 
17 min.cc15 median.cc3   time.median xc.dim.4 
18 skew.cc4 var.cc7 dtw.dim.3 var.cc6 
19 var.cc10 median.cc7 max.cc19 var.cc18 
20 mean.cc6 dtw.dim.1 kurt.cc11 var.cc19 
21 kurt.cc14 var.cc5 skew.cc22 var.cc5 
22 mean.cc15 var.cc4 kurt.cc2 mean.cc22 
23 freq.IQR time.IQR   var.cc3 median.cc15 
24 max.cc14 time.median median.cc13 skew.cc19 
25 skew.cc15 var.cc10    var.cc8 skew.cc25 
26 var.cc25 entropy    kurt.cc20 var.cc15 
27 max.cc13 freq.Q75   mean.cc18 max.cc15 
28 mean.cc14 skew.cc1    var.cc25 max.cc20 



29 max.cc16 sd max.cc24 median.cc13 
30 skew.cc14 median.cc6 max.cc8 var.cc23 
31 min.cc14 var.cc6 max.cc14 var.cc17 
32 max.cc15 time.Q25    kurt.cc17 kurt.cc8 
33 var.cc21 max.cc3 skew.cc6 var.cc20 
34 min.cc10 dtw.dim.4 skew.cc1 var.cc14 
35 max.cc11 dtw.dim.5 skew.cc10 mean.cc11 
36 modindx skew.cc2    var.cc16 median.cc7 
37 skew.cc18 median.cc5 median.cc24 max.cc25 
38 min.cc3 var.cc9 var.cc23 max.cc11 
39 min.cc6 var.cc3 var.cc13 max.cc3 
40 median.cc7 median.cc15 max.cc20 min.cc11 
41 skew.cc10 skew.cc6 max.cc9 min.cc24 
42 skew.cc16 max.cc5 max.cc15 min.cc15 
43 kurt.cc16 skew.cc3 xc.dim.4 max.cc4 
44 max.cc3 mean.cc5    min.cc10 max.cc5 
45 max.cc5 median.cc9 max.cc3 min.cc19 
46 time.ent skew.cc5    min.cc15 min.cc25 
47 var.cc19  skew.cc8   xc.dim.2 min.cc22 
48 skew.cc13 min.cc3     sfm min.cc18 
49 skew.cc9 kurt.cc6   dtw.dim.1 min.cc1 
50 time.Q75 kurt.cc4 min.cc19 xc.dim.2 
51 var.cc17 var.cc8     sp.ent xc.dim.3 
52 time.median median.cc11 mindom min.cc13 
53 max.cc19 kurt     min.cc8 var.cc10 
54 min.cc16 kurt.cc1 max.cc10 mean.cc23 
55 var.cc8 median.cc17 median.cc2 kurt.cc19 
56 mean.cc10 var.cc12   mean.cc6 skew.cc13 
57 max.cc10 skew.cc4 var.cc24 var.cc13 
58 var.cc18 kurt.cc3 median.cc22 median.cc19 
59 mean.cc9 min.cc4   skew.cc20 median.cc9 
60 kurt.cc11 min.cc6    skew.cc18 median.cc10 
61 max.cc23 median.cc10 var.cc9 max.cc23 
62 var.cc6 skew.cc7   skew.cc11 median.cc12 
63 max.cc18 max.cc9    skew.cc3 median.cc8 
64 kurt.cc13 var.cc11   max.cc25 max.cc16 
65 kurt.cc7 median.cc18 max.cc16 max.cc17 
66 kurt.cc4 var.cc2    median.cc5 min.cc12 
67 median.cc15 min.cc7   min.cc25 min.cc9 



68 min.cc9 kurt.cc8   min.cc23 min.cc7 
69 var.cc12 median.cc20 min.cc21 min.cc21 
70 skew.cc11 meanpeakf   min.cc11 min.cc23 
71 median.cc14 var.cc24   min.cc4 max.cc1 
72 skew.cc3 kurt.cc5   dfrange max.cc2 
73 median.cc11 modindx    modindx min.cc8 
74 var.cc7 median.cc19 xc.dim.5 min.cc2 
75 median.cc13 max.cc2    min.cc6 dtw.dim.1 
76 min.cc4 var.cc13   dtw.dim.5 dtw.dim.3 
77 min.cc24 max.cc7 min.cc2 median.cc21 
78 median.cc2 min.cc8   max.cc7 skew.cc10 
79 min.cc5 var.cc25 var.cc14 kurt.cc17 
80 median.cc18 mean.cc12 kurt.cc14 kurt.cc16 
81 skew.cc19 median.cc8 mean.d2.cc skew.cc5 
82 max.cc8 median.cc4 kurt.cc25 var.cc16 
83 skew.cc17 median.cc21 kurt.cc3 mean.cc16 
84 xc.dim.2 dtw.dim.2 kurt.cc4 median.cc18 
85 mean.cc8 var.cc16   skew.cc17 median.cc6 
86 var.cc20 min.cc1 var.cc17 max.cc12 
87 skew.cc5 max.cc4 var.cc6 var.cc12 
88 min.cc22 min.cc16   mean.cc11 median.cc17 
89 skew.cc7 min.cc11 var.cc12 max.cc19 
90 var.cc3 min.cc5   skew.cc14 median.cc3 
91 kurt.cc10 median.cc13 skew.cc5 skew.cc6 
92 max.cc4 freq.IQR   skew.cc24 var.cc2 
93 min.cc18 dtw.dim.3 kurt.cc24 median.cc5 
94 dtw.dim.2 max.cc12 kurt.cc23 skew.cc4 
95 min.cc2 kurt.cc2 kurt.cc22 max.cc22 
96 min.cc12 max.cc15   skew.cc23 max.cc18 
97 median.cc21 max.cc10 skew.cc21 var.cc1 
98 time.Q25 kurt.cc9   kurt.cc13 max.cc14 
99 meanpeakf max.cc6   skew.cc25 var.cc7 
100 mindom max.cc21   kurt.cc18 skew.cc3 
101 kurt.cc3 min.cc20 kurt.cc9 kurt.cc13 
102 median.cc23 max.cc8     kurt.cc15 kurt.cc24 
103 min.cc23 var.cc15 kurt.cc7 kurt.cc22 
104 var.cc1 var.cc22   kurt.cc5 skew.cc15 
105 startdom skew.cc19 kurt.cc12 var.cc21 
106 kurt.cc23 max.cc19 skew.cc15 skew.cc7 



107 min.cc7 skew.cc9   kurt.cc10 skew.cc12 
108 kurt.cc8 var.cc14   kurt.cc8 skew.cc11 
109 max.cc24 median.cc14 skew.cc2 skew.cc23 
110 kurt.cc22 var.cc23 skew.cc12 kurt.cc6 
111 kurt.cc9 maxdom   var.cc11 kurt.cc2 
112 max.cc17 median.cc22 mean.cc10 skew.cc21 
113 median.cc16 skew.cc20 var.cc5 kurt.cc1 
114 max.cc9 var.cc20 mean.cc4 skew.cc16 
115 max.cc21 max.cc22 median.cc16 kurt.cc10 
116 min.cc13 max.cc14   median.cc12 kurt.cc4 
117 var.cc5 median.cc23 median.cc17 kurt.cc15 
118 min.cc20 kurt.cc10 var.cc21 kurt.cc14 
119 skew.cc6 kurt.cc11 var.cc15 kurt.cc5 
120 median.cc12 min.cc9    var.cc18 skew.cc14 
121 var.cc4 var.cc17 var.cc7 skew.cc18 
122 dtw.dim.5 skew.cc10 mean.cc7 skew.cc24 
123 max.cc22 kurt.cc25   median.cc25 kurt.cc3 
124 max.cc1 min.cc13   var.cc2 kurt.cc12 
125 max.cc2 var.cc21 mean.cc2 kurt.cc9 
126 skew.cc2 kurt.cc12 mean.cc15 kurt.cc7 
127 median.cc24 skew.cc11 median.cc21 kurt.cc18 
128 skew.cc22 max.cc16   var.cc20 skew.cc17 
129 min.cc21 min.cc19 skew.cc4 skew.cc1 
130 skew.cc21 mean.cc24 skew.cc9 var.cc9 
131 mean.cc25 min.cc10 skew.cc16 mean.cc15 
132 var.cc2 max.cc11   kurt.cc6 max.cc24 
133 maxdom max.cc13   skew.cc19 max.cc9 
134 xc.dim.4 min.cc18 skew.cc13 min.cc17 
135 kurt max.cc23 var.cc10 min.cc6 
136 min.cc17 var.cc18   mean.cc19 meanpeakf 
137 max.cc7 var.cc19 median.cc14 startdom 
138 kurt.cc21 dfrange   max.cc17 meandom 
139 max.cc6 min.cc12 max.cc12 sfm 
140 dfrange min.cc21   max.cc1 time.Q75 
141 min.cc19 skew.cc12 min.cc14 mindom 
142 min.cc11 min.cc22 meanpeakf time.ent 
143 median.cc22 max.cc20 kurt kurt 
144 dtw.dim.3 max.cc17   freq.IQR time.median 
145 median.cc19 skew.cc18 freq.Q75 freq.Q25 



146 skew.cc20 startdom duration freq.median 
147 median.cc20 skew.cc21 sd freq.Q75 
148 dfslope kurt.cc13 time.ent xc.dim.1 
149 kurt.cc6 min.cc14 time.Q25 min.cc20 
150 skew.cc1 kurt.cc19 min.cc5 median.cc20 
151 xc.dim.1 kurt.cc20 min.cc7 var.cc24 
152 max.cc25 kurt.cc14 min.cc17 skew.cc8 
153 kurt.cc24 skew.cc22 max.cc5 var.cc11 
154 skew.cc12 min.cc24 min.cc22 median.cc14 
155 min.cc8 min.cc15   max.cc11 median.cc4 
156 dtw.dim.4 kurt.cc22 max.cc4 max.cc21 
157 skew.cc8 max.cc18   max.cc6 max.cc10 
158 skew.cc23 skew.cc17 max.cc13 max.cc8 
159 max.cc20 skew.cc15 min.cc20 max.cc7 
160 kurt.cc12 kurt.cc23 min.cc13 max.cc6 
161 kurt.cc18 min.cc25 min.cc18 min.cc10 
162 median.cc17 dfslope startdom min.cc4 
163 skew.cc24 median.cc25 xc.dim.3 xc.dim.5 
164 xc.dim.3 skew.cc16 dtw.dim.4 dtw.dim.4 
165 kurt.cc1 skew.cc14 xc.dim.1 dtw.dim.5 
166 kurt.cc17 skew.cc13 time.Q75 min.cc5 
167 kurt.cc5 max.cc24 maxdom min.cc3 
168 kurt.cc19 min.cc23   enddom dtw.dim.2 
169 max.cc12 kurt.cc16 time.IQR dfslope 
170 min.cc25 min.cc17   dfslope modindx 
171 xc.dim.5 max.cc25 dtw.dim.2 time.IQR 
172 kurt.cc2 skew.cc23 min.cc16 enddom 
173 skew.cc25 kurt.cc17   max.cc18 min.cc14 
174 enddom kurt.cc24 min.cc24 median.cc25 
175 kurt.cc20 kurt.cc15 var.cc19 min.cc16 
176 kurt.cc25 kurt.cc18 median.cc20 skew.cc9 
177   skew.cc25   kurt.cc11 
178   kurt.cc21   var.cc3 
179   mindom   elm.type 
180   skew.cc24   sd 
181   enddom   duration 

 
 
  



WORKS CITED 
 
Araya‐Salas, M., & Smith‐Vidaurre, G. (2017). warbleR: an R package to streamline analysis of 
animal acoustic signals. Methods in Ecology and Evolution, 8(2), 184-191. 
 
Araya-Salas M, Smith-Vidaurre G, Mennill DJ, González-Gómez PL, Cahill J, Wright TF. 
(2019). Social group signatures in hummingbird displays provide evidence of co-occurrence of 
vocal and visual learning. Proceedings of the Royal Society B: Biological Sciences 
286:20190666. 
 
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. 
 
Combrisson, E., & Jerbi, K. (2015). Exceeding chance level by chance: The caveat of theoretical 
chance levels in brain signal classification and statistical assessment of decoding 
accuracy. Journal of neuroscience methods, 250: 126-136. 
 
Dalleau, K., Couceiro, M., & Smaïl-Tabbone, M. (2018). Unsupervised extremely randomized 
trees. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer, Cham, 
2018. 
 
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep 
convolutional neural networks. In Advances in neural information processing systems, pp. 1097-
1105. 
 
Lyon, R. H., & Ordubadi, A. (1982). Use of cepstra in acoustical signal analysis. 
 
McFee, B., E. Humphrey, and J. Bello. (2015). A software framework for musical data 
augmentation. In 16th International Society for Music Information Retrieval Conference, pp. 
248–254. 
 
Raven Pro 1.6.1. Center for Conservation Bioacoustics. (2019). Raven Pro: Interactive Sound 
Analysis Software (Version 1.6.1) [Computer software]. Ithaca, NY: The Cornell Lab of 
Ornithology. Available from http://ravensoundsoftware.com/. 
 
Salamon, J., Rocha, B., & Gómez, E. (2012, March). Musical genre classification using melody 
features extracted from polyphonic music signals. In 2012 ieee international conference on 
acoustics, speech and signal processing (icassp) (pp. 81-84). IEEE. 
 
Salamon, J., & Bello, J. P. (2017). Deep convolutional neural networks and data augmentation 
for environmental sound classification. IEEE Signal Processing Letters, 24: 279-283. 
 
Sueur, J., Aubin, T., & Simonis, C. (2008). Seewave, a free modular tool for sound analysis and 
synthesis. Bioacoustics, 18(2), 213-226. 
 
Smith-Vidaurre, G., Araya-Salas, M., & Wright, T. F. (2019). Individual signatures outweigh 
social group identity in contact calls of a communally nesting parrot. Behavioral Ecology. 



 
Stowell, D., & Plumbley, M. D. (2010). Birdsong and C4DM: A survey of UK birdsong and 
machine recognition for music researchers. Centre for Digital Music, Queen Mary University of 
London, Tech. Rep. C4DM-TR-09-12. 
 
 


