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Section 1 Integration analysis of experimental and clinical data  

In this study, multi-source experimental and clinical datasets of patients with 

COVID-19 were available from published studies (Details in Method). Some datasets 

were used to develop the multiscale model of SARS-CoV-2 infection, and other datasets 

were used to validate the model. Here, we introduced how these datasets are linked with 

our model. 

We obtained epidemiological information when patients were exposure and 

presented symptom from dataset 1. For simplicity, incubation period is approximately 

considered as the time period from starting exposure to showing symptom. According 

to the data of incubation period, we validated that the threshold of asymptomatic and 

symptomatic state is well defined in our model. 
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As for datasets 2, 3, 4 and 5, they mainly include clinical information of immune 

microenvironment from different types of patients. According to the analysis of these 

datasets, we proposed three assumptions to establish our model.  

⚫ The depletion of T cell counts is associated with T cell exhaustion. Based on the 

analysis of dataset 4, effector T cells including CD4+ and CD8+ T cells in severe 

cases are significantly lower than those in moderate cases. Previous studies have 

showed that exhaustion of T cells is linked with the severity of COVID-19 [1,2], 

we gained directly the information of biomarkers or T cell exhaustion, PD-1 and 

Tim-3, from datasets 2 and 5. The expression of Tim-3 in severe or critical patients 

shows obviously higher level than that in mild or moderate patients (Figs 1g-h in 

main text). We noted that the expression level of PD-1 in severe or critical patients 

is insignificantly difference from dataset 5 compared with PD-1 expression from 

dataset 2 (Fig B). Despite of the differences, our assumption is still acceptable. 

⚫ T cell exhaustion is dependent on the density of cytokines. Before the analysis 

of datasets 3 and 4, we picked cytokines included in both datasets 3 and 4. Notably, 

cytokines measured in dataset 3 are showed in Fig A. Based on significant 

examination of these cytokines, IL-6, IL-10, and IFN-γ presented obvious higher 

level in death or severe patients than in survival or moderate patients (Fig A). We 

also noted that IL-2, IL-4 and TNF-α  are uncertainty for the development of 

COVID-19 (Fig C). These results demonstrate that high level of cytokines IL-6, 

IL-10, and IFN-γ may lead to the malignant development of COVID-19. Persistent 

high level cytokines is known to induce the exhaustion of T cells [3]. 

⚫ The comprehensive effect of IL-6, IL-10, and IFN-𝛄  is represented by a 

variable of cytokines. Because the relationship between IL-6, IL-10, and IFN-γ 

is unidentified by current datasets, we assumed a variable to replace the overall 

effect of IL-6, IL-10, and IFN-γ for simplicity. 

Datasets 6 and 7 are used to estimate some parameters in our model. In our model, 

we assumed that cell heterogeneity is represented by various receptor proteins on the 

surface of cells. More information of receptor proteins is required to be determined. 

ACE2 and NRP1 are receptors for S protein of SARS-CoV-2 [4,5]. Dataset 6 includes 

proteomic information from patients with COVID-19. We assumed that the amount of 

receptor protein is approximately equivalent to the abundant of NRP1 in our model. 

Dataset 7 obtained by software GetData (http://www.getdata-graph-digitizer.com/) 

includes dynamic of T cells in patients with moderate, severe and critical, and were 

applied to determine other parameters in our model. Details of parameter estimation are 

in Section 3. 

Section 2 Model 

We combined the major processes with a model of host immune dynamics to develop 

a hybrid multi-scale model of SARS-CoV-2 infection. The model describes the immune 
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dynamics through two parts: T cell immunity and type I interferon innate immunity, 

which is based on virus-triggered immune dynamics [6,7]. We integrate these dynamics 

with individual heterogeneity due to IFN-I response [8] and T cell response [2]. Besides, 

we considered cell heterogeneity due to receptor expression on the surface of target 

cells. With time course after infection, the population size of infected cells changes 

according to viral infection and cell removal (due to T cell immunity) events. In 

addition, we performed stochastic modeling for the effects of viral infection and cell 

clearance. The model includes three components: type I interferon regulatory network, 

T cell response, and cell status transition. Main process of the three components are 

listed below:  

Cell status transition  

We divided all cells into normal and infected cells in the model. Viral infection 

and cell clearance are assumed to be stochastic [9]. Whether a cell is infected by virus 

is dependent on the viral density in the extracellular environment and the receptor 

expression level on the cell surface. The clearance of infected cells is dominated by the 

concentration of effector T cells.  

Type I interferon regulatory network  

When viral RNA is released into the cytoplasm, type I interferon is activated and 

stimulates downstream signaling pathway to produce antiviral protein. Anti-viral 

protein inhibits viral replication to protect organism.  

T cell response  

 The infected cells secrete cytokines and activate the naïve T cells to produce 

effector T cells. The effector T cells continuously clear the infected cells and secrete 

cytokines, which may lead to chronic inflammation and further induce the exhaustion 

of effector cells [10]. 

 

Section 2.1 Model description 

The formulations of partial biological processes in our model are described as 

integrodifferential equations as follows: 

𝑑𝑅𝑖

𝑑𝑡
= 𝑘on(𝑅0

𝑖 − 𝑅𝑖)𝑋ex⏟          
associated with free receptor

− 𝑘off𝑅
𝑖⏟  

dissociated with receptor

− 𝑘in𝑅
𝑖⏟  

RNA release

(1) 

𝑑𝑋in
𝑖

𝑑𝑡
=

𝑘in𝑅
𝑖

𝑣cell⏟  
RNA released into cell

+ 𝜆1𝑋in
𝑖 (𝑡 − 𝜏1)

𝑏1𝐾1
𝑚1

𝐾1
𝑚1 + ([AVPs]𝑖)𝑚1⏟                      

antiviral protein inhibition to viral replication

− 𝛿1𝑋in
𝑖

⏟  
RNA degradation

− 𝑞0𝑋in
𝑖 (𝑡 − 𝜏2)⏟        

viral budding

(2)
 

𝑑[IFNs]𝑖

𝑑𝑡
= 𝜆2𝑋in

𝑖
⏟  

activated by viral RNA

+
𝑏𝟐([IFNs]

𝑖)
𝑚2

𝐾2
𝑚2 + ([IFNs]𝑖)𝑚2⏟            

positive autoregulation of IFN

− 𝛿2[IFNs]
𝑖⏟      

IFN degradation

(3)
 

𝑑[AVPs]𝑖

𝑑𝑡
= 𝜆3[IFNs]

𝑖⏟      
synthesis by IFN

− 𝛿3[AVPs]
𝑖⏟      

degradation of AVP

           (𝑖 ∈ 𝐼(𝑡)) (4) 
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𝑑𝑋ex
𝑑𝑡

=
𝑣cell
𝑉ex

∑ 𝑞0𝑋in
𝑖 (𝑡 − 𝜏2)

𝑖∈𝐼(𝑡)⏟              
progeny virus budding to extracell

+
1

𝑉ex
∑ [𝑘off𝑅

𝑖 − 𝑘on(𝑅0
𝑖 − 𝑅𝑖)𝑋ex]

𝑖∈𝐼(𝑡)⏟                      
association and dissociation of virus and receptors

− 𝛿4𝑋ex⏟  
virus cleaning

(5)
 

d[𝑇effector]

d𝑡
= 𝜇1

[Cytokines]𝑚3

[Cytokines]𝑚3 + 𝐾3
𝑚3

[𝑇0]
⏟                  

the differential of naive T cells acitved by cytokines

− 𝛿effector([Cytokines])[𝑇effector]⏟                    
T cell death and exhaustion

(6) 

d[Cytokines]

dt
= 𝜇2𝑅IC⏟  

produced by infected cells

+ 𝜇3[𝑇effector]⏟      
produced by effector T cells

− 𝛿6[Cytokines]⏟        
degradation of cytokines

(7) 

𝛿effector([Cytokines]) = 𝛿5⏟
basic death rate

+ 𝜌𝐻(𝑡 − 𝑡2)∫
[Cytokines](𝑠)𝑚4

[Cytokines](𝑠)𝑚4 + 𝐾4
𝑚4

d𝑠
𝑡

𝑡−𝜏3⏟                            
T cell exhaustion rate

(8)
 

𝐻(𝑡 − 𝑡2) = {
1 𝑡 > 𝑡2
0 𝑡 ≤ 𝑡2

(9) 

 

The equations (1)-(4) describes intracellular virus-trigged type I interferon 

pathways and we denoted 𝐼(𝑡) ⊆ {1,2, . . . , 𝑁} as the set of indexes of infected cells at 

time t. With respect to the ith infected target cell (𝑖 ∈ 𝐼(𝑡)), we denoted intracellular 

virus RNA concentration 𝑋in
𝑖  , interferons concentration [IFNs]𝑖 , antiviral protein 

concentration [AVPs]𝑖, and cell surface free receptor protein number 𝑅𝑖. For simplicity, 

we assumed that each receptor protein on target cell surface can only bind to one spike 

protein of SARS-CoV-2, and the receptor protein is freed when SARS-CoV-2 releases 

its RNA into the host cell and the spike protein dissociates from the receptor protein 

(Eq. (1)). SARS-CoV-2 releases its RNA to the host cell after the spike protein is bound 

to receptor of the target cell, then the RNA of SARS-CoV-2 directs RNA replication 

and virus assembly using organelles and synthase from the host cell. We assumed that 

there is a time delay (𝜏1) in the processes of virus replication because of involved 

multi-step reactions. The inhibition of viral replication is described by a Hill type 

function. Progeny virus is assembled by organelles, and synthase from the host cell after 

viral replication. Since the process involves multistep reactions, we assumed a lag time 

(𝜏2) for the process of virus budding. These processes of viral RNA inside a host cell 

are described by Eq. (2). Within the process of virus replication, interferon signaling 

pathway is activated to produce interferons (IFNs) and antiviral proteins (AVPs), 

resulting in limited virus replication. The interferons (IFNs) are activated by viral 

nuclear and has positive autoregulation (Eq. (3)), and the antiviral proteins (AVPs) are 

synthesized in the IFNs downstream signaling pathways and are degraded naturally in 

the host cell (Eq. (4)). 

The equations (5)-(9) describe intracellular biological processes, including mainly 

the extracellular viral concentration and T cell response. We denoted the extracellular 

virus RNA concentration 𝑋ex , cytokines concentration [Cytokines]  and density of 

effector T cells [𝑇effector]. The extracellular virus involves the processes of association 

and dissociation with receptor proteins on the infected cells, and progeny virus 

produced by infected cells (Eq. (5)). The infected cells secrete cytokines and activate 
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the naïve T cells to produce effector T cells. The effector T cells continuously clear the 

infected cells and secrete cytokines, which may lead to chronic inflammation and 

further induce the exhaustion of effector T cells [2]. We assumed a constant naïve T 

cells number [𝑇0] over time for simplicity[11]. The biological processes are described 

by Eqs. (6)-(7). In the equations, 𝑅IC denotes the ratio of infected cells over total cells, 

𝛿effector([Cytokines]) represents the rate of effector T cell exhaustion/cleaning (Eq. 

(8)). The Heaviside function 𝐻(𝑡 − 𝑡2) (Eq. (9)) is introduced to represent the starting 

of T cell exhaustion, where 𝑡2 = 𝑇𝐼𝑃 indicates the starting time of T cell exhaustion 

from a symptomatic status. Clinically, T cell exhaustion is associated with the 

expression of specific immune-inhibitory factors, including PD-1 and Tim-3 on cell 

surface [1,12]. The origin of T cell exhaustion remains unclear and hence details are 

omitted here [13,14].  

The intracellular and intercellular models are coupled by the extracellular virus 

(𝑋ex) and the ratio of infected cell (𝑅IC). The concentration of extracellular virus (𝑋ex) 

is described by Eq. (5), while the biological processes of infected cells are stochastic 

events include cell infection in a rate 𝛽(𝑋ex, 𝑅0
𝑖 , 𝐴) and the clearance of infected cells 

in a rate 𝜂([𝑇effector]) in the intercellular model. 

Section 2.2 Deviation of the infected rate  

First, we assumed that 𝑅𝑖 , 𝑋ex, 𝑅0
𝑖  and 𝐴 = 𝑘off 𝑘on⁄  respectively represent the 

receptor proteins binding to SARS-CoV-2 for the ith target cell, viral density in the 

extracellular environment, total number of receptors on the surface of the ith target cell 

and the binding affinity. The relationship among them is simplified as  

𝑋ex + 𝑅0
𝑖

𝑘off
←  

𝑘on
→ 

𝑅𝑖 

At the equilibrium, we have  

𝑅𝑖 =
𝑘on𝑋ex𝑅0

𝑖

𝑘off+𝑘on𝑋ex
(10) 

Further, we considered a threshold effect between receptor protein and virus, and 

proposed a Hill type function for the infected rate of the ith target cell (𝛽𝑖) as follows:  

𝛽𝑖 = 𝛽0
(𝑅𝑖)

𝑚0

(𝑅𝑖)
𝑚0

+𝐾0
𝑚0

(11) 

Substituting (10) into (11), we write 

𝛽(𝑋ex, 𝑅0
𝑖 , 𝐴) = 𝛽0

(𝑋ex𝑅0
𝑖 )

𝑚0

(𝑋ex𝑅0
𝑖 )

𝑚0
+ (𝐾0(𝑋ex + 𝐴))

𝑚0
(12) 

here, 𝐾0, 𝑚0 are constants. The binding affinity measures the equilibrium dissociation 

constant between S protein on SARS-CoV-2 and the receptor proteins on target cells. 
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In our model, all cells are initially normal and un-infected, and once a cell is recognized 

by SARS-CoV-2 and the infection is initiated, the status of the cell becomes infected. 

Section 2.3 Dynamics of recovery 

In the current medication for treatment of COVID-19, there is an antiviral medication 

that stimulates the phagocytic function of macrophages to clear infected cells, such as 

Umifenovir [15]. In our model, we set the parameter 𝜀5 in the cleared rate of T cells 

𝜂([𝑇effector]) to quantify this antiviral treatment. The formulation was written as  

𝜂([𝑇effector]) = 𝜂0[𝑇effector] + 𝜀5 

We simulated the dynamics of the antiviral treatment for moderate patient (𝜌 = 0.0005) 

under the deterministic value (𝜀5 = 0.025) , and this result exhibited that both Xex 

and RIC decreased to zero on day 15 after treatment (Fig P). 

Section 3 Parameter estimation 

Some parameters were estimated by published relevant studies, which are listed the 

source in Table A. The association (𝑘on) and dissociation (𝑘off) between S protein of 

SARS-CoV-2, receptor protein were taken as 𝑘on = 0.6759 nM ∙ ℎ−1  and 𝑘off =

9.9365 ℎ−1 [5]. The mammalian cell volume (𝑣cell) is 100~10000 μm
3 [16] and the 

density of naïve T cell is about 4 × 10−3  g cm3⁄  [11], the counts of naïve T cell ([𝑇0]) 

is about 0.4~4.0 × 105 cells ml⁄ . The half-life of IFNs, AVPs and SARS-CoV-2 were 

determined from published studies; the half-life of IFNs is ranged from 1.3 to 4.7 hour 

[17], that of AVPs is about 2~24 hour [7], and the half-life of SARS-CoV-2 is about 6.8 

hour [18]. From the natural depletion rate δ  ln2 𝑡1/2⁄   (𝑡1/2  is the half-life), the 

degradation rates of IFNs, AVPs and SARS-CoV-2 were estimated as 𝛿1 =

0.1 ℎ−1, 𝛿2 = 0.4 ℎ−1, 𝛿3 = 0.12 ℎ−1, respectively. Extracellular viruses are easier to 

be cleaned by humoral and cell-mediated immune response, and hence we set 𝛿4 =

2.5𝛿1 . In Eq.(1), parameters were set to 𝑚0 = 5, 𝐾0 = 48 × 10−11, β0 = 0.15  to 

satisfy the effect of threshold between virus and receptor protein (Fig Ka), 𝑅0 in the 

Eq.(1) was assumed to obey a gamma distribution Γ(𝛼1, 𝛼2), the parameters of 𝛼1 , 𝛼2 

were estimated by the means of max likelihood estimation (MLE) (𝛼1 = 12.11 , 𝛼2 =

9.50) (Fig Kb). 

The remaining parameters were regulated to fit the dataset 7, which includes kinetic 

data of effector T cells from moderate (410 cases), severe (206 cases) and critical (91 

cases) during patients in the hospital. We assumed that the initial time of patients in the 

hospital (𝑇𝐼𝑃 + 𝑡0), and 𝑡0 represents a time interval from showing symptom to being 

hospitalized. The parameter 𝑡0 was taken as 1 day based on the information of dataset 

7. Dataset 7 gives median and interquartile range of counts of effector T cells at five 

https://en.wikipedia.org/wiki/Phagocytosis
https://en.wikipedia.org/wiki/Macrophage
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different time after illness onset. We proposed two indexes L =

∑ 𝜒(𝑇sim(𝑡𝑖))(𝑇1/4(𝑡𝑖),𝑇3/4(𝑡𝑖))
𝑛
𝑖=1   and Q = √∑ (

𝑇sim(𝑡𝑖)−𝑇1/2(𝑡𝑖)

𝑇1/2(𝑡𝑖)
)
2

𝑛
𝑖=1   where 𝑇sim(𝑡𝑖) 

is the density of effector T cells from our model, 𝑇1/4(𝑡𝑖), 𝑇1/2(𝑡𝑖) and 𝑇3/4(𝑡𝑖) are 

the first, second and third quartile density of effector T cells at time 𝑡𝑖 from real data, 

and n is the total number of real data. The value of 𝜒(𝑇sim(𝑡𝑖)) is one if 𝑇sim(𝑡𝑖) is 

in the interval (𝑇1/4(𝑡𝑖), 𝑇3/4(𝑡𝑖)) , otherwise the value of 𝜒(𝑇sim(𝑡𝑖))  is zero. The 

large value of L represents that numerical simulation is much possible in the range of 

real data. The small value of Q represents that numerical simulation approaches the 

median level of real data. We selected the greedy algorithm at the appropriate parameter 

space to search remaining parameters. Numerical schemes for parameter estimation are 

listed below: 

1. Estimating the remaining parameters by maximizing the index L and minimizing 

the index Q with data of effector T cells in moderate patients from dataset 7. 

2. Adjusting the exhaustion rate ρ alone by maximizing the index L and minimizing 

the index Q with the data of effector T cells in severe patients from dataset 7. 

3. Similar process as step 2 for critical patients from dataset 7. 

Using the above method, we searched the exhaustion rate corresponding to 

moderate, severe and critical (Moderate: ρ = 0.0005;  Severe: ρ =

0.0025;  Critical: ρ = 0.005), and the remaining parameters in Table A. The numerical 

results show that the dynamics of effector T cells are in the range of data from severe 

and critical patients when model is simulated by the estimated parameters (Fig L).  

Considering the different scales between dataset 7 and estimated parameters of 

viral replication, we applied the method of partial rank correlation coefficient (PRCC) 

[19] to perform sensitive analysis for estimated parameters related with viral dynamics. 

Sensitivity analysis was performed with 200 sample runs and a perturbation magnitude 

of 0.1. The sensitivity of input parameters to the ratio of infected cell (𝑅IC) at day 30 

after infection were calculated (Fig D). The most sensitive parameters 𝜆1  and 𝑏1 

correspond to the rate of virus RNA replication and is attributed to the characteristics 

of the virus itself. The parameters 𝜆2  and 𝐾1  are significant as well, which 

correspond to IFN response and coefficient of inhibiting virus replication, respectively. 

We also note the two parameters 𝑣ex  and 𝛿4  that associated with the process of 

susceptible cells infected by SARS-CoV-2. 

Further, we perform a perturbation to above four parameters on the default value 

and use these indexes, including 𝑅IC, [Cytokine]  and [𝑇effector] on day 30, to study 

how these parameters affect the progression of SARS-CoV-2 infection. As exhibited in 

Figs Ra-d, most of patients shows symptomatic manifestation and a few are 

symptomatic among these parameters. However, 𝜆1 and 𝑏1 that are linked with the 

virus itself result in more asymptomatic individuals (Figs Ra-b). Interestingly, we noted 

that both symptomatic and asymptomatic manifestation are present when the value of 

𝜆1  is assigned around 0.145 (Fig Rb). At the view of immunological 
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microenvironment, these results of both cytokines and effector T cells are in agreement 

with 𝑅IC, yet we noted that a few symptomatic patients show low level of cytokine and 

effector T cells (Figs Re-l). 

Besides, we examine whether the total number of targeted cells (N) have influence 

on numerical results. We perform a simulation of 200 individuals with N increased by 

50%, then compare with the result of N assigned with default value using the indexes 

including the incubation period (𝑇IP) and the distribution of 𝑅IC on day 30. Using the 

Kolmogorov-Smirnov test, and the result exhibits that the change of N is insignificant 

difference on the both incubation period (𝑇IP) and the distribution of 𝑅IC on day 30 

(Figs Sa-b). 

Section 4 Source codes 

The code of our model is composed of four parts that are main function (“BCTool.cpp”), 

single cell function (“CCell.cpp”), system function (“System.cpp”) and random number 

(“Random.cpp”), which are programed by C++ programming. All parameters are saved 

in two files: “par.dat” and “md.in”. The running command is controlled by the shell 

script “run.sh”. The numerical results are integrated and plotted by MATLAB. The 

more details of code have been deposited at the GitHub repository 

(https://github.com/WilliamMoriaty/Model-COVID-19).  

 

Section 5 Cell heterogeneity 

In the model, we supposed that cell heterogeneity is characterized by different receptor 

expressions on the surface of each target cell. According to proteomic data from dataset 

6, the distribution of receptor expression is approximately gamma distribution.  

To examine the assumption of cell heterogeneity, we set three groups of low 

homogeneity, high homogeneity and heterogeneity, and simulate 200 individuals for 

each group, each individual is infected by SARS-CoV-2 with a time course of 30 days. 

Homogeneity refers to the same receptor expression on the surface of each target cell. 

Low homogeneity represents the case in which the value of receptor expression is about 

the average of gamma distribution, while high homogeneity represents the case in 

which the value of receptor expression is increased by 20% on the basis of the average 

of gamma distribution.  

The numerical results were shown in Fig N, all individuals in the group of low 

homogeneity are in low level of 𝑅IC and were concentrated in about 0.01. In contrast, 

𝑅IC in the group of high homogeneity increased rapidly at the beginning and decreased 

to about 0.3 with the pressure of T cell immunity. The case of heterogeneity exhibited 

diverse disease progressions. Based on the definition of symptomatic and asymptomatic 

status in our study, all cases of low homogeneity exhibited asymptomatic state, while 

https://github.com/WilliamMoriaty/Model-COVID-19
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all cases of high homogeneity exhibited symptomatic state on day 30 after infection. 

But, the group heterogeneity exhibited that a few individuals exhibited symptomless 

though most of individuals were symptomatic state on day 30 after infection, which is 

in agreement with the fact that there are a few patients with long incubation period [20]. 

 

Section 6 Quantitative T cell exhaustion  

To further explore the effect of T cell exhaustion on COVID-19 progression, we 

introduced a concept of transition time that refers to the first passage time from onset 

to severe cases. In the model, we defined severe symptom as the case with the value of 

𝑅𝐼𝐶 in the range from 0.4 to 0.8, and the onset of symptom refer to situation when the 

value of 𝑅𝐼𝐶  is larger than 0.05. Thus, the transition time is defined as (𝑡2 − 𝑡1) , 

where 𝑡2 is the minimum time when 𝑅𝐼𝐶 is over 0.4, and 𝑡1 is the minimum time 

when 𝑅𝐼𝐶 is over 0.05. We varied the parameters in the (𝜌, 𝐾4) plane, and searched 

values of ρ  and 𝐾4  that may yield severe individuals. Next, we stochastically 

simulated 100 individuals for each pair of ρ  and 𝐾4 , and calculated the mean and 

standard of the corresponding transition time. In Fig F, the result indicated that the 

transition time decreases with increasing the level of T cell exhaustion, while the 

transition time lengthens when the level of anti-exhaustion of T cells increases.  

On the other hand, we noted that value of 𝑅𝐼𝐶 increase rapidly with either the 

increase of ρ or the decrease of 𝐾4. We set 26 individuals with different values of ρ 

or 𝐾4 and ran with both asymptomatic initial state (𝑅IC = 0) and severe initial state 

(𝑅IC = 1). The results exhibited in Fig 6 indicated that there is bistable for cytokines 

and 𝑅𝐼𝐶  in the range of 85 < 𝐾4 < 98  when ρ = 0.0025  (Figs 6a-b). Similarly, 

there is a bistable for cytokines and 𝑅𝐼𝐶  in the range 0.0018 < ρ < 0.0024  when 

𝐾4 = 84 (Figs 6d-e). These results imply that there is risk of transition from mild-

moderate to severe symptoms. It is interesting that effector T cells number do not show 

obvious bistability (Figs 6c and 6f) 

In addition, we examined the quantitative curve of cytokines with the change of T 

cell exhaustion (𝜌) (Fig Q). The dose response curve was formulated as  

[Ctyokines] = 𝛧max

𝜌𝑛

𝜌𝑛 + 𝛬𝑛
+ 𝛧0 

here, 𝛧max is the maximum concentration of cytokines at day 30 after infection, 𝛬 is 

EC50 for 𝜌, 𝛧0 is constant and n is constant. We fitted simulation results with the 

above formula with MATLAB ToolBox, all parameters are listed in Fig Q. The result 

indicated that the threshold of cytokines between mild-moderate and severe case 

approaches EC50 of the dose curve. 
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Section 7 Treatment for COVID-19 

The treatment strategies for COVID-19 are mainly classified as antiviral treatment and 

immune modulation. Antiviral treatment methods include type 1 interferons and 

Arbidole, and immune modulations include immunoglobulins and hormone treatment 

[21]. Potential immune therapy, such as blocking the inhibitory immune checkpoint 

molecules, is applied for severe cases [22]. 

Section 7.1 Metric for treatment efficacy 

To evaluate the effect of treatments, we considered changes in the population size of 

infected cells and immune microenvironment after treatment. In the model, we 

calculated the concentrations of cytokines and effector T cells at the day 15 after 

proposed treatments, with comparison to cases without treatment. In Fig Ga, the results 

exhibited that, for moderate patients, both concentration of cytokines and effector T 

cells number obviously decreased after high efficacy treatments, while increasing the 

resistance of T cell exhaustion remained high concentration of cytokines and number 

of effector T cells. However, for severe cases (Fig Gb), both the concentration of 

cytokines and the number of effector T cells were unchanged after single antiviral 

treatments, but obviously decreased to low levels after treatments with combined 

therapy. Moreover, cytokines concentration clearly decreased and the number of 

effector T cells remained while inhibition of T cell exhaustion was applied. At the view 

of immune microenvironment, both cytokines and effector T cells obviously improve 

after high efficacy treatments.  

 

Section 7.2 Quantitative treatments 

To further quantify the efficacy of four treatments, we simulated 50 moderate patients 

and 50 severe patients with various values of four parameters related to treatment, and 

fit the corresponding dose curves of the four treatments. First, when ρ was taken as 

0.0005 and other parameters were default in Table A, individual evolved to moderate 

cases after infection as in Section 3. For severe case, the parameter ρ was taken as 

0.0025 and other parameter were default in Table A.  

    For single treatment, we randomly selected values of one therapeutic parameter 

and other therapeutic parameters were taken as zero, and simulated 50 moderate/severe 

cases for the same value of treatment parameter. We calculated the average efficacy for 

every treatment and fitted the dose response curve for every single treatment. The 

formulation of dose response curve is written as  

E(𝜀𝑖) = 𝐸𝑖
0 𝜀𝑖

𝑛

𝜀𝑖
𝑛 + Λ𝑖

𝑛 
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here, 𝐸𝑖
0 is the maximum efficacy for 𝜀𝑖, Λ𝑖 is EC50 for 𝜀𝑖 and n is a constant. We 

fitted the data with MATLAB ToolBox, all parameters are listed in Table B. The results 

indicated that the maximum efficacy of targeting IFN response (𝜀1), viral replication 

(𝜀2) , and virus clearance (𝜀3)  was close to 1 (Figs Ha-c and He-g), , but the 

maximum efficacy of targeting T cell exhaustion (𝜀4) only reached 0.8 (Fig Hh) for 

severe case and was even less at 0.3 in moderate cases (Fig Hd) , suggesting that 

antiviral treatment is more effective than immunological treatment for both moderate 

and severe cases. We fitted the dose response curves with Hill functions, and compared 

the Hill coefficient n and EC50 of the functions for moderate and severe cases in 

response to the same treatment strategy (Table B). The coefficient n in moderate cases 

was generally smaller than in severe cases, and the value of EC50 in severe cases was 

generally larger than in moderate cases, implying that moderate cases are more sensitive 

to treatment than severe cases, and higher doses are required for severe cases. We also 

noted that efficacy of 𝜀2 and 𝜀3 were not suitable for the dose curve we set (Figs Hf-

g), there may be an alternative formulation for them. 

Although single antiviral treatment is effective for both moderate and severe cases, 

the required dose is large, especially for severe cases. We further considered different 

combinations of four treatments to reduce the dose and maintain high levels of 

treatment efficacy. On the one hand, the result of united antiviral treatments (Figs 9a, 

9b, and 9d) demonstrated that the antiviral drugs could take less dose than EC50 (Table 

B) while maintaining high efficacy for moderate case. The results from treatments in 

severe cases (Figs 9g, 9h, and 9j) are similar those of moderate cases, and the dose of 

antiviral treatment could refer to EC50 of single antiviral treatment for moderate patient. 

On the other hand, the immunological treatment combined with any antiviral treatment 

did not result obvious improvements compared to the single antiviral treatment in 

moderate cases (Figs 9c, 9e, and 9f), but combination of the EC50 of 𝜀4 in severe 

cases and low doses of other antiviral drugs maintained high levels of treatment efficacy 

in severe cases (Figs 9h, 9k, and 9l). 

 

Section 8 Influence of other factors on asymptomatic and the 

incubation period 

Except intracellular IFN-I response, we further explored the influence of intercellular 

T cell response on asymptomatic patient and incubation period. We set five examined 

groups (2-6 in Fig E) and one blank group (1. Mock in Fig E). Each group included 

200 simulated individuals. Every individual in the mock took parameter values from 

Table A except 𝐾1 = 45 . Other five examined groups were corresponding to 

parameters [𝑇0] or 𝜌 with different values compared with the mock (Fig E).  

We quantified the differences between mock and every groups by p-value, medium, 

mean and coefficient of variation. We noted that changes in the parameter 𝜌 did not 
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yield significant difference (p>0.05) in comparing with mock, and fluctuations of 

medium, mean and coefficient of variation were small. Nevertheless, changes in the 

parameter [𝑇0]  resulted in significant difference (p<0.05), and the fluctuations of 

medium and mean were large, but the change of coefficient of variation was minor. 

These results indicated that the number of naïve T cell is closely link to the incubation 

period in comparing with T cell exhaustion. We further calculated the proportion of 

asymptomatic patients in every groups then found that asymptomatic probability in 

groups of T cell exhaustion was nearly the same as the mock, suggesting that large 

number of naïve T cell could increase the proportion of asymptomatic patients. 

 

Section 9 Model Validation 

Intracellular model as we state in the supplementary was established based on previous 

research to viral triggered type I interferon pathway [7]. As for T cell activation induced 

by cytokine, we referred to the published work of immune mathematical model [11]. 

Thus, we need to test the formulation of T cell exhaustion, named as 

𝛿effector([Cytokines]) . Firstly, we proposed a formulation of T cell exhaustion is 

without accumulation effect of cytokine as follows: 

𝛿effector([Cytokines]) = 𝛿5 + 𝜌𝐻(𝑡 − 𝑡2)
[Cytokines]𝑚4

[Cytokines]𝑚4 + 𝐾4
𝑚4

 

This formulation includes basic apoptosis of effect T cells 𝛿5 , Hill type of T cell 

exhaustion, and Heaviside function (details stated in Section 2.1: Model description). 

The formulation fit our data well with appropriate parameter by maximizing the index 

L and minimizing the index Q in Section 3. Following fitting method in Section 3, all 

parameters are in Table C. However, the above formula failed to fit our data of effector 

T cells in critical cases at early infection (Fig Mc). We further considered an 

accumulation effect of cytokine in Section 2.1, and fit the data again using the method 

in Section 3 (Fig L). In Table C, we noted that the accumulation effect could increase 

the value of the index L in critical cases, and the value of the index Q was slightly 

increased. The result suggests that the accumulation effect is appropriate for the true 

dynamics of effector T cell in COVID-19 patients. 
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Section 10 Supplementary Tables 

Table A Parameter values in the proposed model 

Parameter Description Value Unit Source 

𝑘on Association rate between receptor 

and S protein 

0.6759 nM ∙ ℎ−1 [5] 

𝑘off Dissociation rate between 

receptor and S protein 

9.9365 ℎ−1 [5] 

𝑘𝑖𝑛 Rate of virus release its RNA 0.06 ℎ−1 Estimated 

𝑞0 Virus Budding 0.30 ℎ−1 Estimated 

𝑣ex Local environment volume 1.25 × 10−11𝐿−1 Estimated 

𝑣cell Cell volume 1.00 × 10−11𝐿−1 [16] 

𝛽0 Max infection rate 0.15 ℎ−1 Estimated 

𝜂0 The clear rate of effector T cells 6.75 

× 10−8 

mL cells−1ℎ−1  Estimated 

𝜌 The rate of T cell exhaustion 0.0005 ℎ−1 Estimated 

 

[𝑇0] 

 

Density of naïve T cells 

 

2.0 × 105 

 

cells mL−1 

 

[11,16] 

𝑋ex,0 Initial virus density 5 nM Estimated 

𝑏1 The maximal production rate of 

AVPs on the viruses 

4.0 − Estimated 

𝑏2 The maximal production rate of 

IFN positive feedback 

1.0 nM ∙ ℎ−1 Estimated 

𝛼1 Constant 12.11 − Estimated 

𝛼2 Constant 9.50 − Estimated 

𝜆1 The kinetic rate constant of the 

viral replication 

0.16 ℎ−1 Estimated 

𝜆2 The activation rate constant of 

IFNs induced by viruses 

0.3 ℎ−1 Estimated 

𝜆3 The activation rate constant of 

AVPs induced by IFNs 

0.1 ℎ−1 [7] 

𝜇1 The rate of naïve T cells activated 

by cytokines 

0.9296 ℎ−1 Estimated 

𝜇2 The rate of cytokines production 

by infected cells 

29.8455 nM ℎ−1 Estimated 

𝜇3 The rate of cytokines production 

by effector T cells 

6.632

× 10−7 

nM cells−1 ℎ−1 Estimated 

𝜏1 The duration of viral replication 0.5 ℎ Estimated 

𝜏2 The duration of viral budding 1.0 ℎ Estimated 

𝜏3 the effective time of cytokines 72.0 ℎ Estimated 

𝐾0 Constant 48.0 

× 10−11 

− Estimated 
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𝐾1 IC50 of AVPs on the viruses 47.0 nM Estimated 

𝐾2 EC50 of IFN positive feedback 0.1 nM [7] 

𝐾3 EC50 of cytokines activating 

naïve T cells 

40.0 pg ∙ ml−1 Estimated 

𝐾4 EC50 of cytokines inducing T cell 

exhaustion 

40.0 pg ∙ ml−1 Estimated 

𝛿1 Degradation of virus 0.1 ℎ−1 [18] 

𝛿2 Degradation of IFNs 0.4 ℎ−1 [7] 

𝛿3 Degradation of AVPs 0.12 ℎ−1 [7] 

𝛿4 Degradation of virus out of cell 0.25 ℎ−1 Estimated 

𝛿5 The basic death rate of effector 

cells 

0.063 ℎ−1 Estimated 

𝛿6 The rate of cytokines degradation 0.1733 ℎ−1 Estimated 

𝑚0 Hill coefficient 5 − Estimated 

𝑚1 Hill coefficient 3 − Estimated 

𝑚2 Hill coefficient 2 − Estimated 

𝑚3 Hill coefficient 2 − Estimated 

𝑚4 Hill coefficient 3 − Estimated 

 

 

Table B Parameter of dose response curves of treatment 

 𝜀1 𝜀2 𝜀3 𝜀4 

moderate severe moderate severe moderate severe moderate severe 

𝑛 3 4.5 3 11 3.5 12 3.5 6 

Λ 0.1904 0.8424 0.0290 0.1126 0.1852 1.24 0.2402 1.748 

𝐸0 0.9567 0.9988 0.9366 0.9813 0.9391 0.9896 0.2728 0.8141 

𝑅2 0.9832 0.9983 0.9795 0.9797 0.9874 0.9494 0.9465 0.9874 

 

 

Table C Comparison of two indexes between with and without accumulation 

 Moderate Severe Critical 

without with without with without with 

𝜌 0.06 0.0005 0.24 0.0025 0.48 0.005 

𝐾4 56 40 56 40 56 40 

𝐿 5 5 5 5 3 4 

𝑄 0.134 0.157 0.437 0.629 0.449 0.675 

Note: L = ∑ 𝜒(𝑇sim(𝑡𝑖))(𝑇1/4(𝑡𝑖),𝑇3/4(𝑡𝑖))
𝑛
𝑖=1  , Q = √∑ (

𝑇sim(𝑡𝑖)−𝑇1/2(𝑡𝑖)

𝑇1/2(𝑡𝑖)
)
2

𝑛
𝑖=1  . 𝑇sim(𝑡𝑖) : 

density of effector T cells from our model. 𝑇1/4(𝑡𝑖), 𝑇1/2(𝑡𝑖) and 𝑇3/4(𝑡𝑖) represent 

the first, second and third quartile density of effector T cells at time 𝑡𝑖 from real data, 
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respectively. 𝑛 : total number of real data. 𝜒(𝑇sim(𝑡𝑖))  is 1 if 𝑇sim(𝑡𝑖)  is in the 

interval (𝑇1/4(𝑡𝑖), 𝑇3/4(𝑡𝑖)) , otherwise the value of 𝜒(𝑇sim(𝑡𝑖))  is zero. Other 

parameters are default and are shown in Table A. 
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Section 11 Supporting Figures 

 

Figure A. Cytokines level from different symptom patients from two different 

datasets. a-c. IL-6, IL-10 and IFN-γ  from survival (n 57) and deceased (n 49) 

patients from Renmin Hospital of Wuhan University (Dataset 3). d-f. IL-6, IL-10 and 

IFN-γ in health donators (HCW: n 50), moderate (n 117), severe (n 40) from Yale 

New Haven Hospital (Dataset 4). Significance determined by two-sided, Wilcoxon 

rank-sum test. 

 

 

Figure B. The expression level of PD-1 from datasets 2 and 5. a. Percentage of PD-

1 expression on CD8+ T cells. f. Percentage of PD-1 on CD4+ T cell. a-b include health 

donators (HC: n 6), mild (n 29) and severe (n 12) patients from the Fifth Medical 

Center of PLA General Hospital of China (Dataset 2). c. Distribution of PD-1 

expression level in CD4/Treg cells. d. Distribution of PD-1 expression level in 

cytotoxic T lymphocytes (CTL). c-d include moderate (n 8) and critical (n 13) patients 

from Charité-Universitätsmedizin Berlin and University Hospital Leipzig (Dataset 5). 

Significance determined by two-sided, Wilcoxon rank-sum test. 
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Figure C. The levels of IL-2, IL-4 and TNF-𝛂 from different symptom patients 

from datasets 3 and 4. a-c. IL-2, IL-4 and TNF-α  in health control (HC: n 50), 

moderate (n 117), severe (n 40) from Yale New Haven Hospital (Dataset 4). d-f. IL-

2, IL-4 and TNF-α from survival (n 57) and deceased (n 49) patients from Renmin 

Hospital of Wuhan University (Dataset 3). Significance determined by two-sided, 

Wilcoxon rank-sum test. 

 

Figure D. Sensitivity analysis to estimated parameters that are related with viral 

dynamics in the model. Other parameters take default values in Table A. 
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Figure E. Asymptomatic state and incubation period influenced by T cell response. 

a. Incubation period from five examined groups and one mock. Solid circle represents 

simulated individual. P-value is calculated between examined group and mock by 

Wilcoxon test. b. The proportion of asymptomatic cases in every group. 𝑃Asymp 

represent the proportion of asymptomatic patients in every groups. 

 

 

Figure F. Transition time from onset to severe case. Squares and error bars are the 

mean and standard deviation of the first passage time, respectively. 
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Figure G. The concentration of cytokines and effector T cells at day 15 after 

treatments. a and b for moderate and severe case respectively. 

 

 
Figure H. Dose response curves of single treatment for moderate and severe case. 

a-d. Treatment for moderate cases. e-h. Treatment for severe cases. Blue and red 

represent moderate and severe cases, respectively. Squares are mean efficacy for 

treatment running 50 individuals in the model and the error bars are standard deviation. 

Lines are dose response curves for every single treatment. Dotted lines are EC50 for 

every single treatment. 
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Figure I. Dynamics of antiviral treatments with acceleration of IFN response 

(𝜺𝟏 = 𝟎. 𝟏)  and promotion of extracellular virus clearance (𝜺𝟑 = 𝟏. 𝟎)  for 

moderate (𝝆 = 𝟎. 𝟎𝟎𝟎𝟓)  and severe (𝝆 = 𝟎. 𝟎𝟎𝟐𝟓)  cases. a. Treatment for 

moderate cases (𝜌 = 0.0005) . b. Treatment for severe cases (𝜌 = 0.0025) . The 

green, blue and red lines represent acceleration of IFN response (𝜀1 = 0.1)  alone, 

single promotion of extracellular virus clearance (𝜀3 = 1.0), and combination of the 

two treatment strategies, respectively. Black dash line is the threshold between 

asymptomatic and symptomatic state. Other parameters take default values in Table A. 

 

 

Figure J. Flow chart of the numerical scheme of the simulation process. 
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Figure K. Parameter estimation. a. Threshold effect of the infected rate (𝛽)  on 

receptor proteins and extracellular virus concentration. b. Comparison of gamma 

distribution Γ(𝛼1, 𝛼2)  and real receptor protein distribution from Dataset 6. MLE 

refers to maximum likelihood estimation.    

 

 
Figure L. T cell dynamic with variable exhausted rate (𝝆) . a. Moderate: ρ =

0.0005 ; b. Severe: ρ = 0.0025 ; c. Critical: ρ = 0.005 . Lines obtained from 

simulation of model and solid dots are real data from the dataset 7. The blue, black and 

red solid circles represent for moderate, severe and critical cases, respectively. Other 

parameters are shown in Table A. Error bars for interquartile range. 

 

 
Figure M. T cell dynamics with variable exhausted rate (𝝆). a. Moderate; b. Severe; 

c. Critical. Lines obtained from simulation of model and solid dots are real data from 

the dataset 7. The blue, black and red solid circles represent for moderate, severe and 

critical cases, respectively. The values of parameters 𝐾4 and ρ are shown in Table C 

and the other parameters are shown in Table A. Error bars for interquartile range. 
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Figure N. Time course of SARS-CoV-2 infection and histogram of 𝑹𝐈𝐂 at day 30. 

Homogeneity refers to the same receptor expression on the surface of each target cell. 

Low homogeneity represents the case in which the value of receptor expression is about 

the average of gamma distribution. High homogeneity represents the case in which the 

value of receptor expression is increased by 20% on the basis of the average of gamma 

distribution. Heterogeneity represents the receptor expression obeys gamma 

distribution (𝑅0~Γ(α1, α2)). 
 

 

Figure O. The counts of Immune cell from the Dataset 2. Mild (n 29) and severe 

(n 12) patients from the Fifth Medical Center of PLA General Hospital of China 

(Dataset 2). 
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Figure P. Time course of antiviral treatment (𝜺𝟓)  for moderate patient. a. 

extracellular virus density (𝑋ex) . b. ratio of infected cells (RIC) . The value of 

parameters 𝜀6  and 𝜌  are taken as 0.025 and 0.0005, respectively. The other 

parameters are default and are shown in Table A. 

 

 
Figure Q. Dose curve of rate of T cell exhaustion (𝝆) for cytokines at day 30 after 

infection ([𝐂𝐭𝐲𝐨𝐤𝐢𝐧𝐞𝐬]). Red solid cycles and blue squares represent severe and mild-

moderate cases, respectively. Black line shows the dose response curve of T cell 

exhaustion for cytokines. The other parameters are default in Table A. The formulation 

is [Ctyokines] = Ζmax
𝜌𝑛

𝜌𝑛+𝛬𝑛
+ Ζ0  where 𝛬 = 0.9576 , Ζmax = 116.3 , Ζ0 = 16 , 

and   𝑛 = 2.2. The value of coefficient of determination (r2) is 0.9917. 

 

 
Figure R. Effect of four sensitive parameters on the progression of SARS-CoV-2 

infection. (a)-(d) are 𝑅IC on day 30. (e)-(h) are cytokine concentration ([Cytokine]) 
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on day 30. (i)-(l) are number of effector T cells ([𝑇effector]) on day 30. The red solid 

circles and blue solid squares for symptomatic and asymptomatic patients, respectively. 

All parameters are assigned with default values in Table A from Supplementary 

materials. 

 

 

Figure S. Comparison between N increased by 50% and N unchanged. (a) 

Cumulative probability of incubation period (𝑇IP). (b) The distribution of 𝑅IC on day 

30. The red and black lines represent that N is increased by 50% and that N is unchanged, 

respectively. 
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