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Supplementary Figure 1. guided-auto-encoder with depth 2 and width 3. 2 
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Supplementary Figure 2. Cross-validation feature importance selection for prediction of the 8 
inflammatory clock (iAge). We estimated the minimum set of features able to predict iAge. From 9 
the left to right, each box represents the 5-fold cross-validation errors for a set of features. The 10 
leftmost feature ("None") represents no feature was removed, hence we use all features to predict 11 
iAge. Moving from left to right, each box represents the 5-fold cross-validation errors removing 12 
one feature at a time (with feature name as shown in the x axis) based on their importance derived 13 
from the analysis of the jacobians (low importance feature removed first). With removal of each 14 
feature, a p-value (two sample t-test) on the cross-validation errors between current feature set and 15 
all-feature-set ("None") is computed. Removal of most features does not significantly affect 16 
prediction accuracy. The cross-validation error using only 5 features (EOTAXIN, IFNG, GROA, 17 
TRAIL and CXCL9 (which is not removed as it is the last feature)), is not significantly different 18 
from the error obtained using all features, indicating that iAge can also be predicted with this 19 
reduced set, as accurately as using all 50 features. Boxes represent 25th and 75th percentiles around 20 
the median (red line); whiskers, 1.5× interquantile range). 21 
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Supplementary Table 1. Validation study. Baseline clinical and demographic data. 45 
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Supplementary Table 2 48 
 49 
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Supplementary Table 2. Available data for the 1000 Immunomes Project. 61 
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Supplementary Table 3 65 

Predictors N Subjects Total Analytes Outcome  Ref 

GWAS, 
polygenic risk 
score (lifespan) 

1 million Genome wide 
genetic variants 

validated 7 previously identified loci 
and 5 novel loci in relations to 
difference in lifespan. Predicted 
accuracy of age with MAE of 5 years. 

1 

GWAS 
(healthspan) 

300,447 
British 
individuals 

Genome wide 
genetic variants 

12 loci associated with healthspan, or 
disease-free survival.  

2 

DNA 
Methylation 

656 450,000 CpG 
markers 

predict a person’s age with RMSE of 
3.88 years and risk of mortality. 
measured age in many human tissues 

3 

DNA 
Methylation 

8,000 21,369 CpG 
sites 

Final model of 353 CpG sites predict 
a person’s risk of mortality and 
cancer. Prediction of age has a median 
absolute error of 3.6 years. 

4, 5 

DNA 
Methylation 
(DNAm 
PhenoAge) 

9,926 Phenotypic 
aging measures 
+ 20,169 CpG 
sites 

risks for an array of diverse outcomes 
across multiple tissues and cells. 
Association with all-cause mortality, 
cancers, healthspan, physical 
functioning, and Alzheimer's disease 

6 

DNA 
methylation 
(GrimAge) 

2356 88 plasma 
proteins + 
selected subset 
of CpG sites 
from 450,000  

predictive of time-to-death, time-to-
coronary heart disease, time-to-cancer 

7 

Transcriptomics 11,908 whole-blood 
gene expression 

1,497 genes were significant 
associated with blood pressure, 
cholesterol levels, fasting glucose, and 
body mass index. Predicted age with 
MAE of 7.8 years. 

8 

Transcriptomics 7682 7,682 common 
genes 

High accuracy of actual age bin 
prediction with MAE of 6.19 years on 
the test set 

9 



 6 

microRNA 5221 whole-blood 
microRNA 
expression 

127 microRNAs that were 
differentially expressed by age. The 
correlation between miRNA 
predicted age (miRNA age) and 
chronological age was significant 
(r = 0.70; P < 1 × 10−320). 

10  

Proteomics 677 1,129 
SOMAmers 

Eleven proteins were associated with 
chronological age 

11 

Proteomics 240 1,301 Proteins 76 proteins that highly correlated with 
chronological age, chronic diseases 
and all-cause mortality 

12 

Proteomics 4,263 
young 
adults 

2,925 plasma 
proteins 

non-linear changes in the human 
plasma proteome with age. differential 
associations with proteome of age-
related diseases and phenotypic traits 

13 

Glycan Age 5,117 24 IgG 
glycosylation 

glycans explained variance in age 
considerably more than other 
biomarkers of age like telomere 
lengths. Correlation between age and 
predicted age is .76. 

14 

Metabolomics 44,168 226 metabolic 
biomarkers 

14 biomarkers independently 
associating with all-cause mortality. 
C-statistic = 0.772 and 0.790 when 
looking at 5- or 10-year mortality, 
respectively. 

15 

Immunological 
cell subsets 
(IMM-Age) 

135  73 immune-cell 
subsets 

Low and high IMM-Age have 
different all-cause mortality that is 
statistically significant (p = 0.018). 

16 

PhotoAgeClock 8,414 High resolution 
pictures. visual 
photographic 
biomarkers 

achieve a mean absolute error of 2.3 
years in chronological age prediction 

17 

 66 
Supplementary Table 3. Notable aging clocks. Extracting signatures of aging has becoming 67 
increasingly popular. Monitoring the aging process in different modalities from cellular to tissue 68 
level have produced aging clocks with varying ability to correlate the different aspects of 69 
chronological aging and healthy aging. Some of the notable aging clocks are depicted, ranging 70 
from those using a wide array of biological modalities to facial features. The current standard 71 
efforts have mostly been exploring each modality in isolation. Future attention would benefit 72 
from combining modalities to provide a more wholistic resolution on the aging process. 73 
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