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1 Grouping of Parameters with a Block Sparse Λ

Let us consider the scenario when the true number of factors is equal to 2, and the variables

inX can be divided in two groups. This structure is reasonable when we have measurements

of different chemicals that are breakdown products of the same exposure, for example PCB

metabolites (Longnecker et al., 2001). Then the a priori covariance between main effects

is equal to Cov(βg, βh|g, h ∈ Sr) = λhλg
(
∑p
j∈Sr λ

2
j+σ

2)2
, for r = 1, 2, when the chemicals belong

to the same group, and is zero otherwise. Hence, in this case, ATA is block diagonal. On

the other hand, assume that the number of factors is equal to the number of covariates,

with Λ being diagonal. In this case the induced covariance on β is diagonal with elements
λ2j

(λ2j+σ
2)2

. In general when there are l groups, the variance of βh, with h ∈ Sr, is equal

to
λ2h

(
∑
j∈Sr λ

2
j+σ

2)2
. Hence, the variance of β is lower with respect to the independent case

since we are borrowing strength and information from the other covariates within the same

group.

Let us now focus on the symmetric matrix Ω of dimension k, letting ν(Ω) be the vector

of lower triangular elements of Ω. Define the duplication matrix Dk as the k2 × k(k+1)
2

matrix such that Dkν(Ω) = vec(Ω), see Magnus (1988) as a reference. The duplication

matrix can be easily calculated for orders 2 and 3, whereas the R package matrixcalc

provides the duplication matrix for higher orders. We are interested in the distribution of

ΩX = ATΩA. Notice that

vec(ΩX) = vec(ATΩA) = (AT ⊗ AT )vec(Ω) = (AT ⊗ AT )Dkν(Ω).

We choose a normal prior on pairwise interactions, i.e., ν(Ω) ∼ N k(k+1)
2

(0, I k(k+1)
2

), so

that vec(ΩX) ∼ Np2(0, (A
T ⊗ AT )DkD

T
k (A ⊗ A)). Computing the covariance (AT ⊗

AT )DkD
T
k (A⊗A) of the induced Normal prior on the matrix containing the pairwise inter-
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actions vec(ΩX) = (ω1,1, ω1,2, · · · , ω4,3, ω4), we find that the variables are divided in three

groups: (ω1,1, ω1,2, ω2,2), (ω3,3, ω3,4, ω4,4) and (ω1,3, ω1,4, ω2,3, ω2,4). The quadratic effect of

the first two covariates are correlated with each other and with the interaction between

them. The same holds for the variables loading on the second factor. Finally, the third

group contains the interactions between one variable loading on the first factor and one

variable loading on the second factor. In general, with p variables and k factors, we will

have in total k +
(
k
2

)
groups. In particular, the first k groups will be made by the interac-

tions between variables loading on the same factor. On the other hand, we have groups for

the interactions between variables loading on different factors, as in the previous example

with S1 and S2.

2 Complexity Gains

Inference under existing approaches for Bayesian linear modeling for pairwise interactions

when p is moderately high is typically computationally infeasible. In fact the complexity

per iteration of Gibbs sampling is O(np4 + p6) and the storage is of order O(p2). This is

without considering any heredity structure. On the other hand, with model (1) we just

need samples of Ψ, Λ, ω and Ω to compute main effects and interactions of X on y thanks

to Proposition 1. The complexity per iteration of Gibbs sampling is O(k3p+npk), where k

is the number of factors. In our motivating applications, we have n > p > k. Further, the

storage complexity is only O(pk) since we only need to save the samples of Λ,Φ, ω and Ω.

The computational complexity could be further reduced using the algorithm of Sabnis

et al. (2016), which allows one to distribute the covariance matrix estimation to multiple

cores, efficiently using a divide and conquer strategy. Let g ≥ 1 denote the number of cores
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at our disposal and assume that p is a multiple of g. Letting pg = p
g
, the computational

complexity becomes O(k3pg +npgk). If we want to estimate the interactions up to the Qth

order, the computational complexity becomes O(k3(p+Q) + npk). Moreover, the storage

complexity is O(p(k +Q)).

3 Proofs

3.1 Proof of Proposition 2

As n grows, we have that the posterior distribution of (Λ,Ψ) concentrates on the model

that is closest to the true data-generating model in Kullback-Leibler divergence, see (Berk

et al., 1966).

KL((Λ0,Ψ0); (Λ,Ψ)) = tr

(
(ΛΛT + Ψ)−1(Λ0Λ

T
0 + Ψ0)

)
− p+ log

(
|ΛΛT + Ψ|
|Λ0ΛT

0 + Ψ0|

)
where KL((Λ0,Ψ0), (Λ,Ψ)) denotes the Kullback-Leibler divergence between p(X, y|Λ0,Ψ0)

and p(X, y|Λ,Ψ0). Let (Λ∗,Ψ∗) = arg inf

[
d(Λ,Ψ)

]
. Now, Λ0Λ

T
0 is symmetric and positive

definite, so it admits an EigenDecomposition, i.e.:

Λ0Λ
T
0 + s0Ip = Q0Σ0Q

−1
0 + s0Ip = Q0(Σ0 + s0Ip)Q

−1
0 ,

where Q0 is the p × p matrix containing the eigenvectors of Λ0Λ
T
0 and Σ0 is a diagonal

matrix containing the eigeinvalues, i.e. diag(Σ0) = (v1, · · · , vk0 , 0 · · · , 0). Define Λ1Λ
T
1

as the best kth rank approximation to Λ0Λ
T
0 , when the approximation is based on the

Frobenious norm. From the Eckart-Young theorem, we know that Λ1Λ
T
1 = Q0Σ1Q

−1
0 where

diag(Σ1) = (v1, · · · , vk, 0 · · · , 0). By definition of (Λ∗,Ψ∗):

KL((Λ0,Ψ0); (Λ∗,Ψ∗)) ≤ KL((Λ0,Ψ0); (Λ1,Ψ0)) =

4



= tr

(
(Q0(Σ1 + s0Ip)Q

−1
0 )−1(Q0(Σ0 + s0Ip)Q

−1
0 )

)
− p+ log

(
|Q0(Σ1 + s0Ip)Q

−1
0 |

|Q0(Σ0 + s0Ip)Q
−1
0 |

)
=

= tr

(
(Σ1 + s0Ip)

−1((Σ0 + s0Ip))

)
− p+

k0∑
j=k+1

(
log(s0)− log(vj + s0)

)
≤

≤ k +

k0∑
j=k+1

s0
s0 + vj

+ (p− k0)− p =

=

k0∑
j=k+1

(
s0 + vj
s0

− 1

)
=

k0∑
j=k+1

vj
s0

3.2 Proof of Proposition 3

Let p0(X, y) = p(X, y|Θ0) =
∫
p(X, y|Θ0, η)p(η)dη where Θ0 = (ω0,Ω0, σ

2
0,Φ0) and let

p′(X, y) = p(X, y|η′) for a given vector η′. Also, we have that p0(X, y) = C0k0(X, y), where

k0(X, y) is the kernel of a Multivariate normal distribution with parameters Θ0. We are

interested in computing:

KL(p0; p
′) =

∫
p0(X, y)log(

p0(X, y)

p′(X, y)
)dXdy

Let us focus on the p0(X, y):

p0(X, y) =

∫
p0(X, y|η)p(η)dη =

=

∫
B1−ε

p0(X, y|η)p(η)dη +

∫
BC1−ε

p0(X, y|η)p(η)dη

Where B1−ε is a closed ball such that p(η ∈ B1−ε) = 1− ε according to the prior p(η).

Now, on the closed ball B1−ε the function p0(X, y|η) has a supremum which we denote

η∗ = η(y,X,Θ0) = argsupη∈B1−εp0(X, y|η). Also recall that p0(X, y|η) = C0k0(X, y|η)

where k0(X, y|η) ≤ 1.

p0(X, y) =

∫
B1−ε

p0(X, y|η)p(η)dη +

∫
BC1−ε

p0(X, y|η)p(η)dη ≤
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≤
∫
B1−ε

p0(X, y|η∗)p(η)dη +

∫
BC1−ε

C0p(η)dη =

= p0(X, y|η∗)(1− ε) + C0ε

We now need to take the logarithm of the expression above, recall log sum inequality :

log(
a1 + a2
b1 + b2

) ≤ a1
a1 + a2

log(
a1
b1

) +
a2

a1 + a2
log(

a2
b2

) ≤

≤ log(
a1
b1

) + log(
a2
b2

)

We apply the log sum inequality with a1 = p0(X, y|η∗)(1 − ε), a2 = C0ε, b1 = 1 − ε∗ and

b2 = ε∗, so we have that:

log(
p0(X, y|η∗)(1− ε) + C0ε

1− ε∗ + ε∗
) ≤ log(p0(X, y|η∗)

1− ε
1− ε∗

) + log(
C0ε

ε∗
) =

= log(p0(X, y|η∗)) + log(
1− ε
1− ε∗

) + log(
C0ε

ε∗
) ≤

≤ log(p0(X, y|η∗))− log(1− ε∗) + log(
C0ε

ε∗
)

We can choose ε∗ s.t. −log(1 − ε∗) ≤ ε1 and ε = ε∗

C0
so that the last term in the above

expression is equal to zero. We can also choose ε ≤ ε∗

C0
and we would have log(C0ε

ε∗
) ≤ 0.

Finally we have that:

KL(p0; p
′) ≤

∫
p0(X, y)log(

p0(X, y|η∗)
p(X, y|η′)

)dXdy + ε1

We can now compute the above integral, find it below multiplied by 2:

log

(∏p
j=1 ψ

0
j∏p

j=1 ψj

)
+
[
(Λη′)TΨ−1(Λη′)− (Λ0η

∗)TΨ−10 (Λ0η
∗)
]

+ tr
(
(Ψ−1 −Ψ−10 )Cov0(X)

)
+

+ log

(
σ2
0

σ0

)
+ E0(y

2)

(
1

σ2
− 1

σ2
0

)
+ 2E0(y)

[
η∗ω0 + η∗Ω0η

∗

σ2
0

− η′ω + η′Ωη′

σ2

]
+
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+

[
(η′ω + η′Ωη′)2

σ2
− (η∗ω0 + η∗Ω0η

∗)2

σ2
0

]
We have that 2E0(X

T )
[
Ψ−10 Λ0η

∗ −Ψ−1Λη′
]

= 0. These are all continuous functions of

Θ,Θ, η∗ and η′, so we can choose Θ and η′ such that the above expression is ≤ ε1 so that

KL(p0; p
′) ≤ 2ε1. In particular there exist δ such that this holds for any η′ ∈ Dδ = {η :

||η − η∗||2 ≤ δ}. Hence we have that Φ(Dδ) > 0, where Φ is the multivariate normal

distribution and we can apply Proposition 6.28 of Ghosal and Van der Vaart (2017) to get

the result.
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Figures and Tables

HierNet FAMILY PIE RAMP FIN

test err 1 5.011 4.080 29.464 1.207

FR 1.317 1 1.369 1.098 1.021

factor main MSE 1.557 1 1.385 3.383 1.255

TP main 0.974 1 0.053 0.056 0.741

TN main 0.027 0.002 0.975 0.961 0.467

TP int 0.135 0.858 0.072 0.002 0.662

TN int 0.911 0.171 0.951 0.998 0.388

test err 1 1.547 2.100 4.717 1.781

FR 1.167 1 1.165 1.102 1.045

linear main MSE 14.006 1 1.873 3.267 1.827

TP main 1 1 0.071 0.034 0.114

TN main 0 0 0.945 0.968 0.913

TP int 0.332 0.798 0.068 0.002 0.147

TN int 0.866 0.280 0.966 0.998 0.902

test err 1 1.072 1.251 1.322 1.239

FR 1.211 1 1.112 1.140 1.105

independent main MSE 9.340 1.565 1.295 1.378 1

TP main 1 1 0.091 0.013 0

TN main 0 0 0.947 0.996 1

TP int 0.516 0.861 0.082 0 0.0002

TN int 0.810 0.308 0.991 1 1

Table 1: Results from simulation study with p = 50 and dense Ω0 in the three scenarios:

factor, linear and independent for n = 500. We computed test error, Frobenious norm,

MSE for main effects, percentage of true positives and true negatives for main effects

and interactions for Hiernet, Family, PIE, RAMP and FIN model with a = 0.5 across 50

simulations. Test error, FR, and main MSE are presented as ratios compared to the best

performing model.
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HierNet FAMILY PIE RAMP FIN

test error 2.755 16.096 3.381 24.331 1

FR 1 1.184 1.103 1.358 1.168

factor main MSE 1.367 1.209 1.183 1.853 1

TP main 0.825 0.958 0.415 0.264 0.812

TN main 0.225 0.067 0.890 0.934 0.606

TP int 0.631 0.940 0.485 0.014 0.645

TN int 0.966 0.264 0.967 0.995 0.893

test error 1 5.894 1.168 8.743 3.281

FR 1.122 1.990 1 2.154 2.114

linear main MSE 1 1.751 1.614 2.148 1.674

TP main 1 0.900 0.496 0.342 0.696

TN main 0.208 0.141 0.856 0.954 0.787

TP int 0.952 0.875 0.731 0.014 0.726

TN int 0.972 0.560 0.972 0.997 0.877

test error 1 7.881 1.738 10.984 10.288

FR 1.595 2.588 1 2.884 2.762

independent main MSE 1 2.687 2.859 3.573 4.116

TP main 1 1 0.350 0.062 0.112

TN main 0.054 0.012 0.919 1 0.979

TP int 1 0.985 0.753 0 0.025

TN int 0.979 0.355 0.979 1 1

Table 2: Results from simulation study with p = 50 and sparse Ω0 in the three scenarios:

factor, linear and independent for n = 500. We computed test error, Frobenious norm,

MSE for main effects, percentage of true positives and true negatives for main effects

and interactions for Hiernet, Family, PIE, RAMP and FIN model with a = 0.5 across 50

simulations. Test error, FR, and main MSE are presented as ratios compared to the best

performing model.
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Figure 1: Histograms of the chemicals measurements included in the matrix X in Section

5.
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Figure 2: Pattern of Missing data in the matrix X including the chemical measurements.
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