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Supplementary Note 1:  
Clinical Study details 
 
Study inclusion and exclusion criteria. All participants were        
aged 18 years or older, able to speak and read English, and            
were willing and able to follow study instructions. We         
excluded people who were pregnant, had known active        
infections and/or under antibiotics. All participants were not        
taking any local and/or systemic antibiotics prior to sample         
collection at point of diagnosis. For the normal healthy         
controls, their state of health was assessed using a survey          
questionnaire on recent history of alcohol or drug abuse or          
other medical condition; no prior individual history of any         
cancer (acceptable if family history of cancer); and no         
previous irradiation to head and neck region. 
 
Clinical labels. Clinical assessments for the Oral Cancer (OC)         
patients were performed using standard of care biopsies and         
histopathology evaluations. 45 OC samples were provided       
TNM codes as specified by [1]. These TNM codes were          
mapped to 13 Stage I, 16 Stage II, 2 Stage III, and 14 Stage IV               
samples. The tissue samples were located as shown in         
Supplementary Figure 1. The OPMD samples captured       
conditions such as: Epithelial hyperplasia with hyperkeratosis       
and mild dysplasia, fibroepithelial hyperplasia with      

hyperkeratosis, mild epithelial dysplasia, mild patchy      
lichenoid inflammatory change, mild lichenoid dysplasia,      
lichenoid reaction, hyperplastic squamous mucosa with hyper       
and parakeratosis, acanthosis associated with lichenoid      
inflammatory changes, mild non-specific chronic     
inflammation and overlying parakeratosis, oral lichen planus,       
and verrucous leukoplakia. 
 

 
Saliva sample collection and processing. Saliva samples       
were collected from all participants at a resting stage.         
Participants were asked to refrain from eating and drinking for          
1-hour prior to the collection of saliva, with the exemption of           
drinking plain water to ensure they are fully hydrated. Prior          

1 

 

Supplementary Figure 1: Tissue location of OC 
samples. 
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sample collection, bottled water was given to participants to         
rinse their mouth. During saliva collection/expectoration,      
participants sat comfortably in an upright position with the         
head slightly tilted forward so that saliva pools to the front of            
the mouth. The participants were asked to pool saliva (head          
tilted slightly down) in the mouth for about 2-5 minutes and           
expectorate into a specimen collection cup (at least 1-5 ml of           
saliva) as per our previous [2]. Collection was done under the           
supervision / assistance of trained staff. All specimens were         
preserved using the Viome RNA stabilizer [3], transported        
back to the laboratory, and stored at -80 °C until further use. 

Supplementary Note 2:  
Lab and bioinformatics details 
 

 
The overall lab and bioinformatic flow is shown in         
Supplementary Figure 2. For NGS analysis, a saliva specimen         
is lysed using bead beating in a chemical denaturant; total          
RNA is extracted from clarified lysate; DNA is removed using          
DNase; Bacterial and human rRNAs are physically removed        
from the specimen using a subtractive hybridization method.        
Biotinylated DNA probes complementary to rRNAs are       
hybridized to the total RNA and removed using streptavidin         

magnetic beads. The remaining RNAs are converted into        
Illumina sequencing libraries. Each specimen is tagged with        
11 bp dual unique molecular barcodes; libraries are pooled;         
the concentration of library pool is determined, and library         
pools are sequenced on Illumina NovaSeq 6000 to produce         
sequencing data. The only primers used are the ones that          
amplify cDNA during the library preparation process. Each        
primer consists of 1) the standard Illumina clustering        
sequences, 2) proprietary barcode sequences of 11 nts each         
and 3) proprietary and custom amplification sequences that        
amplify the cDNA molecules. 
 

 
Robustness of lab assay. Supplementary Figure 3 provides a         
high-level summary of the robustness of our lab process. For          
this evaluation, we took technical replicates from three saliva         
donors collected and processed both immediately and stored        
for 7 days, sequenced in separate batches. We then looked at           
Spearman correlations between all sample pair combinations       
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Supplementary Figure 2: Saliva sample processing      
procedure for NGS workflow  

 
(a) 

 
(b) 

Supplementary Figure 3: Distribution of Spearman 
correlations for inter and intra donor saliva sample pairs 
processed concurrently and independently (a) taxonomy 
data (b) functional data. 



 

spanning donors, sequencing batches and storage conditions       
for both active microbial and functional data. We find very          
high correlations across all sample pairs from the same donor          
regardless of storage and sequencing batch (see overlap in         
blue and green distributions in Supplementary Figure 3, mean         
at 0.96). Additionally, inter-donor sample pairs have lower        
Spearman correlations which is expected due to biological        
variation, however, there is no distinction between storage or         
sequencing batch (see overlap in red and orange distributions         
in Supplementary Figure 3, mean at 0.91). 
 
Bioinformatics. Once the saliva samples were processed       
through our lab process and sequenced, we processed the         
sequenced reads through our bioinformatic pipeline to obtain        
high-resolution metatranscriptomic data of the oral      
microbiome. This data includes 1) active microbes identified        
against Viome’s taxonomic catalog, and their relative       
activities are calculated at three different taxonomic ranks        
(genus, species, and strain); and 2) active gene-encoded        
functions, which are functional ortholog assignments (KEGG       
Orthologs or KOs) annotated for all sequencing reads aligned         
to the gene catalog (IGC) of the human microbiome and the           
KEGG databases.  
 

● We downloaded the complete genomes available in       
NCBI Reference Sequence Database and used the       
GenBank sequence database for viral genomes. 

● Compression of genomes was done during      
construction of the taxa index. All genomes are        
compared, and similarities are computed based on       
those that share the most number of k-mers.        
Redundancy is handled by iteratively merging      
sequences into genomes until each of the merged        
genomes has no sequences >99% identical to any        
other genomes. 

● We used various mock communities composed of a        
predetermined mixture of microbes (i.e. ATCC ®       
MSA-2002™ ATCC ® MSA-2003™ and     
ZymoBIOMICS® Microbial Community Standard)    
to validate and optimize our bioinformatics pipeline       
and their thresholds. We defined the minimum       
hitlength, the approximate number of base pairs of a         
given read that match the reference genomic       
sequence with a specific cutoff for mapping. 

● The expectation-maximization (EM) algorithm is     
widely used in computational biology to estimate       
relative expression levels in the face of read mapping         
uncertainty arising from multi mapping reads. EM is        
an iterative algorithm that converges towards the       

optimal solution for the relative abundance of each        
taxa. StrainFinder [4] uses the EM algorithm to        
estimate strain frequencies in complex metagenomic      
samples.  

● We use a very large catalog of compiled        
microbiome-associated genomes. Open reading    
frames (ORFs), i.e. protein coding sequences or       
colloquially "genes”, were predicted using common      
ORF prediction algorithms. Across all genomes,      
hundreds of millions of genes were identified. Genes        
were clustered by sequence similarity (homology)      
into 37 million gene clusters. For each cluster, a         
single representative gene sequence was chosen. 

 
Summary of metatranscriptomic data. On average, each       
sample has 1.5 million reads mapping to mRNA. In total, our           
molecular data consists of 1587 active microbes and 4932         
active functions, a total of 6,519 features. On average, each          
sample has 444 active microbes and 2299 active functional         
assignments.  

Supplementary Note 3:  
Additional analysis 
In addition to using the entire set of features (taxa and KOs)            
for machine learning purposes as presented in Table 2, we also           
developed additional machine learning models by separating       
the taxa & KO features. For Cohort A (discovery cohort), the           
ROC AUC using taxa features only was 0.85 and using KO           
features only was 0.84. The ROC AUC for the combined taxa           
& KO features is the highest at 0.87 and is thus shown in the              
table. For Cohort C (average-risk OC-only), which has        
significant overlaps with Cohort A (92 samples from A that          
were OC-only, plus 7 additional OC patients who were         
younger than 50 and with no history of tobacco), the ROC           
AUC for using taxa and KOs separately as features are 0.93           
and 0.88, respectively. To err on the conservative side, we          
only presented in Table 2 the model using both taxa & KO            
features, which performs at 0.9 ROC AUC (which is between          
the other two values above).  
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Supplementary Note 4:  
Viome Functional Categories 
Transcriptomic data support the concept that functional, rather        
than compositional, properties of oral bacterial communities       
have more relevance to cancer development. We have built an          
annotation system that integrates both taxonomic abundances       
and the functional expression profiles from KOs into higher         
order biological themes that are relevant to the Oral Cancer          
phenotype and Oral microbiome in general. We call these         
biological themes as `Viome Functional Categories (VFC)’.       
The VFC are unique, highly curated themes that take into          
account the direction of association of taxa and KO features          
from the OC predictive model discussed in the paper and          
provide mechanistic insights into Oral Carcinogenesis. For       
instance, the functions or pathways resulting in the production         
or utilization of a specific metabolite like Hydrogen sulfide or          
carcinogens could be attributed from the curated VFCs. We         
report a total of 36 VFC that could be grouped into 9 major             
biological themes relevant to Oral Cancer and Oral        
microbiome below. 
 
The theme ̀ProInflammatory Activities Promoting     
Carcinogenesis` provides evidence of a modified      
polymicrobial synergy and dysbiosis model for bacterial       
involvement in OC. The following three VFC provide details         
about the mechanism that induce inflammation and thereby        
favor carcinogenesis. Here, we report some of the features that          
are predictive of OC and shed light on some of the           
mechanisms in oral dysbiosis and periodontal conditions that        
mediate oral carcinogenesis. 

1. Opportunistic Microbial Activities and Oral     
Pathobionts: The opportunists like “Porphyromonas”,     
“Fusobacterium” and Oral Pathobionts    
(commensal-derived opportunistic pathogens) such as     
“Streptococcus sp.”, “Gemella sp.” are known to       
mediate oral dysbiosis and lead to subsequent       
periodontal conditions that might be conducive of       
OC. These organisms share the ability to attach and         
invade oral epithelial cells, and communicate with the        
host epithelium, and ultimately acquire phenotypes      
associated with cancer such as inhibition of       
apoptosis, increased proliferation, and increased     
migration of epithelial cells [5]. Additionally,      
emerging properties of structured bacterial     
communities may increase oncogenic potential, and      
consortia of P. gingivalis and F. nucleatum are        
synergistically pathogenic within in vivo OC models       

Among the pathogens positively associated with OC       
from the model are Porphyromonas, Treponema and       
Fusobacterium and have higher abundances in oral       
swabs of patients with oral cancer. [6]. 

2. LPS Production Activities: Bacterial outer membrane      
lipopolysaccharides are entities that mediate     
proinflammatory immune response and inflammation     
host cells. LPS regulates gene expression of       
pro-inflammatory cytokines through activation of     
toll-like receptor 4 (TLR4) via NF-kB [7]. The ‘O         
antigens’, an extremely polymorphic polysaccharide     
binds to LipidA to form the LPS outer-membrane of         
Gram-negative bacteria thereby imparting antigenic     
specificity to the organism. For instance, LPS from        
Porphyromonas, a positively associated taxa from the       
OC model, is known to activate macrophages and        
increase NO production of cancer cell lines [8].        
Furthermore, a functional KO implied in LPS       
production is positively associated from the OC       
model. 

3. Biofilm and Virulence Pathways: The OC model       
predicts a number of functional features associated       
with bacterial virulence promoting inflammation and      
positively associated with OC. For instance, sugar       
transport and chemotaxis associated KOs from oral       
microbes that are deterministic of virulence and       
pathogenesis [9] are predicted. Many lytic enzymes,       
cell wall synthesis associated transporter and      
phospholipase are the other virulence determining      
functional KOs that are found as predictive of OC         
from the model.  

 
AntiInflammatory and Antimicrobial Pathways: The     
commensal bacteria Streptococcus sp. establishes in the       
human oral cavity a few hours after birth and remains there as            
a predominant commensal and as a primary colonizer of         
biofilms. Upon strong adhesion mediated by the glycosylated        
surface-exposed proteins Streptococcus sp. promotes innate      
immunity by suppressing proinflammatory cascades as well as        
by producing anti-microbial substances like bacteriocins that       
antagonizes the virulent streptococci involved in tooth decay        
or pharyngitis or pathogens involved in periodontitis [10].        
Similarly, Streptococcus sp. 2, also an early colonial member         
of oral biofilm produces H2O2 to inhibit the growth of          
competitors, like the mutans streptococci, as well as strict         
anaerobic middle and later colonizers of the dental biofilm.         
Interestingly, Veillonella species, possess a putative catalase       
gene that mediates resistance to the Streptococcus sp.2 thereby         
enabling direct physical interaction (co-aggregate) with      
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Streptococcus sp.2 as well as Fusobacterium sp. that are late          
colonizers of biofilm [11]. It is interesting to note that          
Fusobacterium is a positive predictor of OC while        
Streptococcus sp.1 is negatively associated. Furthermore, the       
model captures functional determinant of antimicrobial      
resistance gene and catalase as positive predictors of OC. 
 
Hydrogen sulfide (H2S), a gaseous transmitter, is associated        
with oral periodontitis and is one of the main causes of           
halitosis and is generally associated with many oral diseases         
including OC [12]. Hydrogen sulfide production pathways       
including enzymes that produce H2S are increased in different         
human malignancies. The expression of both enzymes and        
cellular H2S levels increase tumor survival and promote tumor         
dedifferentiation [13]. Among the taxa, members of the        
Streptococcus group, Fusobacterium and Porphyromonas,     
some of the known producers of oral H2S are in turn also            
predicted from the model to be cancer specific. The model          
predicts three H2S producing KOs are also positively        
associated with OC. 
 
Cancer-Specific Energy Metabolism and Utilization: In      
cancer cells, the Pentose Phosphate Pathway (PPP) together        
with glycolysis, coordinates glucose flux and supports the        
cellular biogenesis of macromolecules such as lipids and DNA         
for energy production. An increased PPP flux in human cancer          
cells is indicative of its role in meeting the bioenergetic          
demands of cancer cell proliferation and contribution to the         
Warburg effect [14]. Enzymes involved in pentose       
interconversion, as well in pentose-5P production, are       
positively associated features from the model suggest       
microbial dysregulation of PPP flux in human cancer cells. 
 
Lack of Protective or Detox mechanisms: Detoxification       
mechanisms are essential for multitude of cellular processes,        
including cell differentiation, proliferation, and apoptosis, and       
disturbances in their homeostasis are implicated in the        
etiology and/or progression of a number of human diseases,         
including cancer, diseases of aging, inflammatory, immune,       
metabolic, and neurodegenerative diseases With the advent of        
cancer, a number of protective and detoxifying mechanisms        
are dysregulated in the cell in response to combat intracellular          
and extracellular stress. From the model, we see an         
upregulation of thiol based deconjugation functions, to be        
positively associated with cancer. Low Molecular weight       
(LMV) thiols are produced by gram-positive firmicutes that        
function in protecting cells against reactive oxygen species        
(ROS) and reactive electrophilic species, antibiotics,      
alkylating agents, as well as heavy metals [15]. On the other           

hand, microbial glutathione mediated stress response is       
negatively associated in the model. Thus, a preferential        
microbial thiol-based detoxification of ROS and reactive       
electrophilic species is known to be associated with OC from          
our model. Along with these, the antibacterial as well as          
AntiInflammatory functions such as catalase and butyrate       
production are downregulated and are found to be negatively         
associated with cancer. 
 
Protein fermentation as a tumorigenic mechanism: Protein       
fermentation results in the accumulation of by-products that        
are resourceful for the cancer cells hence is a favorable          
environment as a tumor promoting microenvironment.      
Polyamines such as putrescine, cadaverine and spermidine are        
products of microbial protein fermentation are essential for        
normal cell growth, and their depletion results in cytostasis.         
Polyamine metabolism is frequently dysregulated in cancer       
and elevated polyamine levels are necessary for       
transformation and tumor progression [16]. For instance, the        
spermidine is needed as a precursor of hypusine (a         
post-translational addition to eukaryotic initiation factor 5A       
isoform 1 (eIF5A) that is necessary to prevent ribosomal         
stalling in the translation of mRNAs encoding polyproline        
tracts and certain other amino acid combinations. The MYC         
oncogene plays a role in hypusine formation by driving the          
transcription of the gene encoding ornithine decarboxylase       
(ODC) and indirectly increasing the availability of spermidine        
for hypusine synthesis [17-18]. A deoxyhypusine synthase       
requiring spermidine is identified as a positively associated        
feature from the model. The cancer cells tend to accumulate          
increased concentrations of polyamines through increased      
uptake via their Polyamine Transport System (PTS) [19]. With         
increased microbial protein breakdown, cadaverine transport      
systems transport cadaverine into the host cell and promote         
carcinogenesis and such a polyamine antiporter is identified as         
positively associated with cancer from the model. The cellular         
protein degradation produces ammonia as a by-product which        
is recycled into central amino acid metabolism to maximize         
nitrogen utilization [20]. Increased microbial ammonia      
production is noted from KOs such as glutamate        
dehydrogenase associated with OC from the model.  
 
Benzaldehyde, arsenite, and other carcinogenic toxins: The       
exposure to synthetic chemicals such as dyes,       
organopesticides and pharmaceuticals increases the toxicity      
burden of cells that elevates the cancer-causing potential in         
general. A feature that contributes to the production of         
benzaldehyde is detected as the top second feature from the          
predictive model of OC. Benzaldehyde is a potential        
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biomarker for OC in breath test [21]. Further, traces of          
fluorobenzoate metabolism and acetaldehyde production KOs      
are also observed to be predictive of oral cancer. Exposure to           
metallic arsenic is toxic to the cells and the extent of arsenic            
toxicity is dependent on its oxidative state [22-23]. Arsenite         
transporters are positive predictors of OC from the model. 
 
While the above tumor promoting functions are all positively         
associated with the OC, a host of taxa and related activities are            
also detected as predictive of cancer. These include the Skin          
and genital microbes and several pathway functions such as         
Inorganic Ion Transport Pathways, Amino acid production and        
Vitamin Biosynthesis pathways and Cofactor and coenzyme       
synthesis. Amongst the most prominent negative associated       
features include the Oral Commensal and plaque microbes        
such as Streptococcus as well as several pathways such as          
Energy production, Cell wall biosynthesis and sporulation,       
Antibiotic resistance, Microbial heat and osmolarity mediated       
stress which are related to Common oral microbiome related         
functions not necessarily implicated in cancer. Several       
pathways such as Cell cycle and DNA repair and         
Carbohydrate metabolism and transport pathways are found to        
be less predictive as the features are found to be predictive of            
both cancer as well as controls. 
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