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Detailed methods

We build a deterministic model that approximates the average fitness of an

individual of a given strategy. We first consider a monomorphic population

where all individuals have the same resident strategy.

We denote i a focal individual, r a random individual other than the focal,

and N the population size. Considering that the number of interactions is large

enough, the fitness w∗
i of i is its average payoff

w∗
i =

1

N − 1

N−1∑
r=1

(bp∗(ci,r)− cp∗(cr,i)) . (1)

The fitness of an individual i is the benefit b received when other individuals

cooperate with i, discounted by the cost c when i cooperates. The probability

that an individual r cooperates with individual i is denoted by p(ci,r). The su-

perscript ∗ denotes that the fitness and probability of cooperation are considered

at equilibrium. The probability of cooperation is given by:

p∗(ci,r) = p∗(oir = 1)a1 + p∗(oir = 0)a0, (2)
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where oir stands for the opinion of individual r toward individual i. The prob-

ability of cooperation is the sum of the probabilities of encounters where the

action rules dictate cooperation. To simplify the writing, we define a probability

vector M which describes the probability of each encounter.

Mp(ojr) =

(
p(ojr = 1)

p(ojr = 0)

)
=

(
p(ojr = 1)

1− p(ojr = 1)

)
, (3)

M (p(oir),p(ojr)) =


p(oir = 1, ojr = 1)

p(oir = 1, ojr = 0)

p(oir = 0, ojr = 1)

p(oir = 0, ojr = 0)

 =


p(oir = 1)p(ojr = 1)

p(oir = 1)[1− p(ojr = 1)]

[1− p(oir = 1)]p(ojr = 1)

[1− p(oir = 1)][1− p(ojr = 1)]

 .

(4)

This vector contains two probabilities for action rules, that are the proba-

bilities that a recipient j is seen as 1, p(ojr = 1), or 0, p(ojr = 0). Note that the

probability that the recipient is seen as 0 is the probability that this recipient

is not seen as 1, that is p(ojr = 0) = 1 − p(ojr = 1). The probability vector

contains four probabilities for assessment rules, that are the probabilities that

a donor i and recipient j are respectively seen as 11, p(oir = 1, ojr = 1), 10,

p(oir = 1, ojr = 0), 01, p(oir = 0, ojr = 1), or 00, p(oir = 0, ojr = 0). These

probabilities can be described by a product of probabilities. For instance, the

probability that both a donor and recipient are seen as 1 is equivalent to the

probability that a donor is seen as 1 times the probabilities that the recipient

is seen as 1.

Because the donor, recipient and observer are chosen randomly, these prob-

abilities are described by the proportion of individuals with an opinion of 1 on

the individual i. We define a h-score of an individual i as

hi,r =
1

N − 1

N−1∑
r=1

oir. (5)

The h-score, hi,r, of a focal individual i is the proportion of other individuals

with opinion 1 on the focal individual, or the average reputation of i. Similarly,

the average opinion i has about other players can be written as

vr,i =
1

N − 1

N−1∑
r=1

ori. (6)

The h-score is useful because considering that the number of individuals is large
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enough and that the donor, recipient and observers are chosen randomly, it

describes the probability that a random individual has an opinion of 1 on i. In

other words, hi,r = p(oir = 1).

We now rewrite the probability of cooperation (see the definition of A in the

main text)

p∗(ci,r) = M (h∗i,r)A. (7)

The fitness and the probability of cooperation depend of the h-score at equilib-

rium reached after a large number of interactions. In order to calculate it, we

now describe the dynamics of opinions.

Opinion dynamics and h-score

To compute the h-score of an individual at equilibrium, we first describe how

the h-score changes after one interaction. After an interaction where the focal

individual i is the donor, her h-score will update to

hi,r(t+ 1) =
N −No

N
hi,r(t) +

No

N
p(oi,r,r′)

= hi,r(t) +
No

N
[p(oi,r,r′)− hi,r(t)],

(8)

where No represents the number of observers of an interaction. A proportion
N−No

N of individuals keep the same opinions hi,r(t), while the remaining propor-

tion, No

N , observe the interaction and update their opinions. Observers update

their opinions to 1 with a probability p(oi,r,r′) with the indices representing

respectively the donor, the recipient and the observer. It represents the proba-

bility that a random individual from the population judging the interaction of

the focal individual i with another random individual r as 1. It is calculated in

the same way as the probability of cooperation by summing the probabilities of

encounters where an observer would assign 1, as follows (see the main text for

the definitions of vectors C and D)

p(oi,r,r′) = AM (hr,r)M (hir,hrr)C + (1−AM (hr,r))M (hir,hr,r)D. (9)

It is the sum of the probability of encounters where the donor cooperates AM or

not 1−AM , and an observer assigns 1 to the donor for this action. This proba-

bility depends of the h-score of other individuals, which might differ. However,

the probability p(o) is the same function of h-score for all individuals sharing
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similar assessment rules and action rules. Thus, the h-score of individuals of

the same strategy will follow the same dynamics and hi,r = hr,r + ε with the

difference ε will only arise from stochasticity.

First, we make the assumption that the number of observers is small and

independent of the population size. Second, we make the assumption that the

initial h-scores are close, as done in previous work. Following these two assump-

tions, the difference due to stochasticity is small and negligible on the dynamics.

Thus, we can consider that hi,r = hr,r. Second, because the amount of change in

h-score is very small after an interaction, we can do a continuous approximation

of the change in h-score and describe it by a differential equation [1]

d(hr,r)

dt
= p(or,r,r′)− hr,r. (10)

The equilibrium points are the solutions of
d(hr,r)

dt = 0. The equation is a

polynomial of maximum degree 3 which could be analytically solved (see below).

Thus, there are at most three equilibrium points.

However, the solutions of a cubic polynomial equation can be in a complex

form and therefore not informative. A lot of the terms will be vanished for a

particular strategy (when A, C and D contain 0), it is easier to simplify the

equation for each strategy and then do the analysis on the equation obtained.

The stability of equilibrium points is determined by looking at the sign of

the derivative at the equilibrium points [2]. An equilibrium point h∗r,r is stable

if
d(

d(hr,r)
dt )

dhr,r

∣∣∣
hr,r=h∗r,r

< 0. (11)

Execution and assessment errors

So far, we considered that individuals never commit errors. Yet, more realisti-

cally, errors may occur during assessment or while implementing an action (i.e.

cooperate or defect). As in [3], we consider (i) execution errors where an indi-

vidual does the opposite of what it intended (i.e. determined by her strategy)

and (ii) assessment errors where an individual assigns the opposite opinion of

what her assessment rules would indicate.

Execution error. We consider that an execution error might happen after

the donor has chosen its action at a rate µe. The presence of execution errors
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modifies the probability of cooperation p(ci,r) as follows

p(ci,r)|with error = (1− µe)p(ci,r)|no error + µe(1− p(ci,r)|no error). (12)

The probability of cooperation is the sum of (i) cases where the donor decided

to cooperate and does not make an error and (ii) cases where the donor decided

to defect and make an error.

Assessment error. We consider that an assessment error might happen

after assessment at a rate µa. The presence of assessment errors modifies the

probability p(oi,r,r′) as follows

p(oi,r,r′)|with mutation = (1−µa)p(oi,r,r′)|no mutation+µa(1−p(oi,r,r′)|no mutation).

(13)

The probability is the sum of (i) cases where there is no error and opinions are

updated to 1 and (ii) cases where there is an error and the observer initially

assigned 0 to the donor.

Evolutionary invasion analysis

We now model the evolutionary success of strategies using an ESS analysis. We

need to compute the difference of absolute fitness between a mutant strategy

in a population of resident strategy. The difference of fitness between that of a

mutant, wm, and that of a resident, wr, is

∆w = wm − wr = p∗(cm,r)b− p∗(cr,m)c− p∗(cr,r)(b− c). (14)

The fitness of the mutant is the benefit received when a resident cooperates with

the mutant discounted by the cost of the cooperation from mutant to resident.

There are three different probabilities of cooperation:

p∗(cm,r) = M (h∗m,r)Ar

p∗(cr,m) = M (h∗r,m)Am

p∗(cr,r) = M (h∗r,r)Ar

(15)

The probability of cooperation and the h-score at equilibrium between residents

are calculated in the previous section. To compute the probability of cooperation

between mutant and resident, we need to describe the dynamics of the h-score
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as previously

d(hm,r)

dt
= p(om,r,r)− hm,r,

d(hr,m)

dt
= p(or,r,m)− hr,m,

(16)

where

p(om,r,r) = AmM
(hr,m)M (hm,r,hr,r)Cr + (1−AmM

(hr,m))M (hm,r,hr,r)Dr,

p(or,r,m) = ArM
(hr,r)M (hr,m,hr,m)Cm + (1−ArM

(hr,r))M (hr,m,hr,m)Dm.
(17)

This describes a system of two polynomial equations with two unknowns which

are solved numerically. To determinate the stability of the equilibrium points,

we look at the Jacobian matrix at the equilibrium of interest. The equilibrium

is locally stable if the real part of the leading eigenvalue is negative [2]. Errors

are integrated in the same way as in the case of monomorphic populations.

Mirror image

As described in reference [4], some pairs of strategies are equivalent. Formally,

a strategy u is the mirror image of strategy v when

au1 = av0,

au0 = av1,

cu11 = 1− cv00,

cu10 = 1− cv01,

cu01 = 1− cv10,

cu00 = 1− cv11,

du11 = 1− dv00,

du10 = 1− dv01,

du01 = 1− dv10,

du00 = 1− dv11.

(18)

We keep only one of each of these mirror images for the analysis and we arbitrary

decide to keep those strategies that cooperate if their opinion of the recipient

is 1 (if it is thought to be good). Hence, the strategies use only three different

action rules; the conditional 10 (cooperate with good but defect against bad)
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and the two unconditional 00 (always defect) and 11 (always cooperate). Since

the different assessment rules are irrelevant for cooperative behavior of these

strategies, we keep only one instance of unconditional cooperator and defector

(AllC and AllD), leaving us with 258 strategies to consider.

The realisable equilibrium points are the solutions in the definition domain

of the reals in the interval [0, 1]. When there are no solutions in the defini-

tion domain, one of the boundary is the stable equilibrium point, 1 when the

differential equation is positive and 0 when the differential equation is negative.

Extended results for monomorphic population

The results show that in absence of errors, 91.4% (236) of strategies have a single

stable point, 5% (13) have two stable points and 3.5% (9) do not have a stable

point. The last case occurs when the differential equation is equal to 0, and

thus any point is an equilibrium point. An example is a strategy that assesses

as good an individual that was previously good, and assess as bad an individual

that was previously bad, as illustrated in Figure S1. We consider that the h-

score is equal to the initial h-score when the whole domain is an equilibrium.

This case never happens when errors are significant where 257 strategies have

a single stable point and 1 has two stable points. In presence of multiple stable

points, the h-score predicted depends of the initial conditions. When the initial

h-score is exactly on the unstable point separating the two stable points, we

consider that the h-score predicted is the average of the two stable points.

Finally, some strategies (30% in absence of error, none with errors) have a

point which is neither stable or unstable. This case arises when the derivative

of the differential equation is equal to 0 at the equilibrium. This means that

the amount of change is slowly getting toward 0 as h-score get closer to the

equilibrium point, as illustrated in Figure S1. We consider that eventually, the

h-score will get close to the equilibrium point, and thus the predicted h-score is

the equilibrium point.

Next, we compare the predictions of the analytical model with computational

simulations. The results show that the analytical model correctly predicts the

h-score (and thus the frequency of cooperation). Figure S2 shows that the

difference between simulations and predictions are slightly higher when one of

the dynamic particularity is present but it remains low.
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Development of the differential equation

To find the h-score at equilibrium, we solve the differential equation
d(hr,r)

dt = 0,

as presented in Equation 10. A general form of the equation can be found by

developing the terms in Equation 9. Indeed, the equation reads (for simplicity,

the h-score is noted as h)

d(h)

dt
=
[
a1h+ a0(1− h)

][
c11h

2 + (c10 + c01)h(1− h) + c00(1− h)2
]
+[

1− (a1h+ a0(1− h))
][
d11h

2 + (d10 + d01)h(1− h) + d00(1− h)2
]
− h = 0.

(19)

The equation is a polynomial of maximum degree 3 of the form xh3 + yh2 +

zh+ w = 0, where

x = (a1 − a0)(c11 − c10 − c01 + c00) + (a0 − a1)(d11 − d10 − d01 + d00),

y = (a1 − a0)(c10 + c01 − 2c00) + a0(c11 − c10 − c01 + c00)+

(a0 − a1)(d10 + d01 − 2d00) + (1− a0)(d11 − d10 − d01 + d00),

z = (a1 − a0)(c00) + (a0 − a1)(d00) + a0(c10 + c01 − 2c00) + (1− a0)(d10 + d01 − 2d00),

w = a0c00 + (1− a0)d00,

(20)

which can be rewritten as

x = (a1 − a0)(c11 − d11 − c10 + d10 − c01 + d01 + c00 − d00),

y = (a1 − a0)(c10 − d10 + c01 − d01 − 2c00 + 2d00)

+ a0(c11 − d11 − c10 + d10 − c01 + d01 + c00 − d00) + (d11 − d01 − d10 + d00),

z = (a1 − a0)(c00 − d00) + a0(c10 − d10 + c01 − d01 − 2c00 + 2d00) + (d10 + d01 − 2d00)− 1,

w = a0(c00 − d00) + d00.

(21)

The derivative of the equation gives 3xh2 + 2yh+ z. Thus, an equilibrium point

h? is stable if and only if

3xh?2 + 2yh? + z < 0. (22)
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Comparison between C-* and leading eight

All C-* share c11 = 1 and c10 = 1. The first rule, assessing the action as

good when a good player cooperates with a good player, is also shared by all

leading-eight. It seems to be an universal rule. The reason might be, that it is

strictly required to reach an h-score of r = 1 (i.e. homogeneous good opinions)

and therefore full cooperation. This is the case because the observation that

c11 describes, becomes more and more frequent when r increases. It is more

likely that someone good meets someone good when good opinions are more

abundant. And with the universal action rules of discriminators, cooperation is

also more likely for higher h-scores. Hence, if this assessment rule would state

’bad’ instead (c11 = 0), this observation would lead to opinions turning bad,

which would happen more often the more good opinions there are, opposing a

negative feedback to an increase in h-score. (In fact, given that the equilibrium

point is reached when turning bad is as likely as turning good, the maximum

equilibrium h-score for strategies with c11 = 0 is for the strategy that assesses

good for all other observations (C = [0, 1, 1, 1], D = [1, 1, 1, 1]) r = 0.682 (from

rrr = 1(1− r)).
The second rule that all C-* share, c10 = 1, is shared by only half of the

leading-eight. Those leading eight which do not share this rule were shown to

suffer greatly by private assessments before . It stands to reason, that it is

necessary for private assessments to lessen the effect of disagreement.

All other of rules can go either way in the C-*, although there are systematic

exceptions about combinations (see below). Not all C-* share the other universal

rules of the leading eight: c01 = 1, d11 = 0, d10 = 1 and d01 = 0.

The C-* can be categorised into 3 groups. The first group, C1-4, contains 2

leading eight members. C1 is equivalent to L3 (also called simple-standing) and

C4 is equal to L4. A third norm, C2 is equivalent to L1 (also called standing) in

its assessment rules, but has slightly different action rules (The action rules of

L1 are not possible under our framework). This group has five universal rules,

4 of which match all leading eight (c01 = 1, d11 = 0, d10 = 1 and d01 = 0,

but c10 = 1 matches only half of them). The three wildcards (that can go

either 1 or 0 in this group) follow an additional rule: at least 2 have to be good

(c00 + d10 + d00 >= 2). The second group, C5-11, deviates some more from

the leading eight in the rule d01 = 1. This rule is also different to C1-4, but all

others and the slots of wildcards are the same. However, the additional rule for

the wildcard differs. Only one wildcard slot has to be 1 (c00 + d10 + d00 >= 1).
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The last group, C12-15, deviates from the leading eight in two different rules,

c01 = 0 and d11 = 1. This means in deviates from C1-4 in the same way and

in three ways from C5-11. However, the wildcard slots are the same and the

additional rule is also the same as for C1-4: at least two must be good. These

specific properties reveal an additional common feature of all C-*. They require

at least five rules with positive assessments. (Two of these at are always c11 and

c10). In comparison, the leading eight have as few as three of such rules. This

way the differential equations of C-* are always positive, h-scores grow to 1 and

the strategy can reach full cooperation in an homogeneous state. However, they

sacrifice some ability to discriminate against defection (which requires negative

assessments). Depending on which defections they assess good, these sacrifices

allow defectors to invade for different benefit to cost ratios. Concerning other

cooperators, no one could ever earn higher payoffs by cooperating more, since

C-* have reach full cooperation.

The leading eight established five rules for indirect reciprocity under public

assessment. For the 15 ESS strategies under private assessments, we find that

the subgroup C1-4, which fit the leading-eight the most (two are identical),

are the most successful strategies (i.e. they are stable for the lowest benefit to

cost threshold). Only one of these strategies, C-3, disobeys a rule that holds

for public assessment, where d10 = 0 instead of d10 = 1. For the leading

eight, a good player that defects against a bad player should keep his good

reputation. This rule was often considered crucial and being referred to as a

justified punishment. If no error in execution or assessment occurs, C-3 and

others can maintain stable indirect reciprocity without this rule. It is similar

for the less successful group C5-11 and the rule d01 = 1 (instead of d01 = 0).

This assessment rewards defection against good players, which is usually not the

case for indirect reciprocity. Similarly, the third group C12-15 rewards the same

act (but it is done by good players rather than bad ones, d11 = 1). Additionally,

it is different from leading-eight norms in that it does not reward cooperation

by bad players if it is aimed at good players.
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Figure S1: Differential equation (left) and single run of simulations (right) for
three different strategies: 10 1100 0111, 10 1111 0000 and 10 1111 0001. The
first strategy represents the most common analysis result (around 66%) and
the second and third represent particular cases, knowingly when differential
equation is equal to 0 (around 3.5% of strategies) and when the equilibrium
point is asymptotic (around 30% of strategies). The stable equilibrium points
are represented by a red point. They can be found graphically by looking at
the points where the function on right hand side of the differential equation
intersects with the x-axis. An equilibrium point is stable when the differential
equation has a negative slope around the equilibrium point.
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Figure S2: H-score difference between predictions and simulations for different
initial h-score. The results are presented for the two cases (i) when the errors are
considered negligible in the analytical model, and (ii) when the error rates are
significant (ε = 0.05). The results are presented as a function of the particularity
of the dynamics: ”Asymptotic” which represents asymptotic equilibrium points
for which the derivative is equal to 0, and ”drift” which represents cases where
the differential equation is equal to 0. The results presented are the average over
105 time step, after 4 × 105 time steps and for 30 replicates. The population
size in the simulations is N = 100.
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ESS that are defectors.
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a1 a0 c11 c10 c01 c00 d11 d10 d01 d00
Maximum ratio

benefit to cost
1 0 1 0 1 0 1 0 0 0 //

1 0 1 0 1 0 0 0 1 0 //

1 0 1 0 1 0 0 0 0 0 //

1 0 1 0 0 0 1 0 1 0 //

1 0 1 0 0 0 1 0 0 0 //

1 0 1 0 0 0 0 0 1 0 //

1 0 1 0 0 0 0 0 0 0 //

1 0 0 0 1 0 1 0 1 0 //

1 0 0 0 1 0 1 0 0 0 //

1 0 0 0 1 0 0 0 1 0 //

1 0 0 0 1 0 0 0 0 0 //

1 0 0 0 0 0 1 0 1 0 //

1 0 0 0 0 0 1 0 0 0 //

1 0 0 0 0 0 0 0 1 0 //

1 0 0 0 0 0 0 0 0 0 //
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1 0 1 0 1 1 0 0 0 0 1.3

1 0 1 0 0 1 1 0 0 0 1.3

1 0 1 0 0 1 0 0 0 0 1.3

1 0 0 0 1 1 1 0 0 0 1.3

1 0 0 0 1 1 0 0 0 0 1.3

1 0 0 0 0 1 1 0 0 0 1.3

1 0 0 0 0 1 0 0 0 0 1.3

1 0 1 1 1 0 0 0 0 0 1.1

1 0 1 1 0 0 1 0 0 0 1.1

1 0 1 1 0 0 0 0 1 0 1.1

1 0 1 1 0 0 0 0 0 0 1.1

1 0 0 1 1 0 1 0 0 0 1.1

1 0 0 1 1 0 0 0 1 0 1.1

1 0 0 1 1 0 0 0 0 0 1.1

1 0 0 1 0 0 1 0 1 0 1.1

1 0 0 1 0 0 1 0 0 0 1.1

1 0 0 1 0 0 0 0 1 0 1.1

1 0 0 1 0 0 0 0 0 0 1.1

1 0 1 1 0 1 0 0 0 0 1

1 0 0 1 1 1 0 0 0 0 1

1 0 0 1 0 1 1 0 0 0 1

1 0 0 1 0 1 0 0 0 0 1

Figure S4: List of strategies that are defectors and ESS for any initial h-score
and a least one value of the benefit to cost ratio, b/c. The last column represents
the minimum ratio for which a strategy is ESS for any initial h-score.
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Figure S5: Difference of fitness between mutant and resident wm − wr, for
different strategies that are ESS when there are no errors. We differentiate
between strategies that were cooperators, defectors and the strategy that always
defect (AllD), which is the only ESS in presence of errors. The results are
presented for different benefit to cost ratios b/c.
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Figure S6: Difference of fitness between mutant and resident wm − wr, for
different strategies that are ESS when there are no errors. We differentiate
between strategies that were cooperators, defectors and the strategy that always
defect (AllD), which is the only ESS in presence of errors. The results are
presented for different benefit to cost ratios b/c.
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