Supplementary Information

Collapse of the mammoth-steppe in central Yukon as revealed

by ancient environmental DNA

2
3
6
6
8
14
15
18
22
25
25
28
34
34
36
39
42
56
63
86
88

List of tables

Supplementary Table 1 Bestiary of Pleistocene-Holocene extinctions based on Stuart ¹	6
Supplementary Table 2 Potter et al. ¹⁴ data of earliest archaeological sites in northwestern North	
America	. 12
Supplementary Table 3 Permafrost cores and radiocarbon dates used in Bayesian age-depth	
modelling	. 21
Supplementary Table 4 Raw palynomorph and non-pollen palynomorph counts	. 24
Supplementary Table 5 Proteinase K digestion solution	. 28
Supplementary Table 6 Guanidinium binding buffer	. 28
Supplementary Table 7 Library preparation: blunt-end repair	. 28
Supplementary Table 8 Library preparation: adapter ligation	. 29
Supplementary Table 9 Library preparation: adapter fill-in	. 29
Supplementary Table 10 Indexing PCR	. 30
Supplementary Table 11 Pre-indexing qPCR short amplification, total quant	. 31
Supplementary Table 12 Enrichment master-mixes	. 32
Supplementary Table 13 Post-indexing/enrichment qPCR long amplification, total quant	. 33
Supplementary Table 14 Sequencing summary and assigned reads of extraction replicates	. 34

List of figures

Supplementary Figure 1 Radiocarbon dated fossils for eastern Beringian megafauna over the last
30,000 years from Conroy et al. (2020)7
Supplementary Figure 2 Beringia during the Late Pleistocene
Supplementary Figure 3 Radiocarbon calibration plot of the earliest alleged archaeological sites in
northwestern North America
Supplementary Figure 4 Workflow schematic from wet-lab procedures (extraction through sequencing)
to <i>in silico</i> data analysis14
Supplementary Figure 5 Upper Quartz permafrost exposure; age model for horizontal cores collected
in 2012
Supplementary Figure 6 Lucky Lady II permafrost exposure. A) Age model for three vertical cores
collected at the site. B) Plate from Mahony ³⁴ 19
Supplementary Figure 7 Upper Goldbottom permafrost exposure. A) Age model for horizontal cores
collected at the site. B) Plates from Mahony ³⁴ 20
Supplementary Figure 8 Pre-indexing short amplification qPCR assay for estimating total adapted DNA
concentrations
Supplementary Figure 9 Post-enrichment long amplification qPCR assay for estimating total adapted
DNA concentrations following targeted capture for equimolar pooling
Supplementary Figure 10 Lucky Lady II stacked normalized reads assigned to the rank 'family' in A)
Animalia (insects excluded) with read counts, and B) Viridiplantae with proportions
Supplementary Figure 11 Upper Goldbottom stacked normalized reads assigned to the rank 'family' in
A) Animalia (insects excluded) with read counts, and B) Viridiplantae with proportions
Supplementary Figure 12 Upper Quartz stacked normalized reads assigned to the rank 'family' in A)
Animalia (insects excluded) with read counts, and B) Viridiplantae with proportions
Supplementary Figure 13 On-target mapped reads for <i>Picea</i>
Supplementary Figure 14 Off-target mapped reads for <i>Picea</i>
Supplementary Figure 15 Mammuthus primigenius mapDamage plots and fragment length
distributions
Supplementary Figure 16 Equus mapDamage plots and fragment length distributions

Supplementary Figure 30 Fragment misincorporation plots to confirm the presence of hydrolytic

Supplementary Figure 42 PHP-9 replicates comparison with PIA and MEGAN taxonomic binning.......72 Supplementary Figure 43 PHP-11 replicates comparison with PIA and MEGAN taxonomic binning......73 Supplementary Figure 44 PHP-12 replicates comparison with PIA and MEGAN taxonomic binning......74 Supplementary Figure 45 PHP-13 replicates comparison with PIA and MEGAN taxonomic binning......75 Supplementary Figure 46 PHP-14 replicates comparison with PIA and MEGAN taxonomic binning......76 Supplementary Figure 47 PHP-15 replicates comparison with PIA and MEGAN taxonomic binning......77 Supplementary Figure 48 PHP-19 replicates comparison with PIA and MEGAN taxonomic binning......78 Supplementary Figure 49 PHP-20 replicates comparison with PIA and MEGAN taxonomic binning......79 Supplementary Figure 50 PHP-21 replicates comparison with PIA and MEGAN taxonomic binning...... 80 Supplementary Figure 51 PHP-22 replicates comparison with PIA and MEGAN taxonomic binning...... 81 Supplementary Figure 52 PHP-23 replicates comparison with PIA and MEGAN taxonomic binning...... 82 Supplementary Figure 53 PHP-24 replicates comparison with PIA and MEGAN taxonomic binning...... 83 Supplementary Figure 54 PHP-24 replicates comparison with PIA and MEGAN taxonomic binning...... 84 Supplementary Figure 57 Ghost range fragment length comparison (absolute unique read counts) 87

1. Supplementary Notes

1.1 Palaeontology background

Supplementary Table 1 Bestiary of Pleistocene-Holocene extinctions based on Stuart¹.

Losses from 40,000–15,000 cal BP								
Eurasia	Beringia	North America south of ice sheets						
Ursus spelaeus	Arctodus simus	Fremotherium rusconii (E. Jaurillardi sloth)						
(cave bear)	(short-faced bear)							
Crocuta crocuta	Homotherium serum	Gluntatherium floridanum (a gluntadant)						
(spotted hyaena)	(a sabretooth cat)							
Panthera spelaea		Holmosing contentrionalis ('giant armadille')						
(cave lion)								
Megaloceros giganteus		Paramylodon (Glossotherium) harlani (Harlan's						
(giant deer)		ground sloth)						
Palaeoloxodon naumanni		Miracinony trymani (American sheetsh)						
(Naumann's elephant)		Mirdeinonyx trumoni (American cheetan)						
Homotherium latidens								
(a sabretooth cat)		Homotherium serum (a sabretooth)						
		Canis dirus (dire wolf)						
	Losses after 15,000 cal BP to	mid-Holocene						
Eurasia	Beringia	North America south of ice sheets						
Coelodonta antiquitatis	Mammuthus primigenius							
(woolly rhino)	(woolly mammoth)	Panthera atrox (American lion)						
Panthera spelaea (cave lion)	Panthera spelaea (cave lion)	Arctodus simus (short-faced bear)						
Mammuthus primiaenius	······································							
(woolly mammoth)	Saiga tatarica (saiga antelope)	Megalonyx jeffersonii (Jefferson's ground sloth)						
Bison priscus (steppe bison)	Equus caballus (caballine horse)	Mammuthus columbi (Columbian mammoth)						
Megaloceros aiganteus	Harinatonhippus francisci							
(giant deer)	(New World stilt-legged horse)	Mammuthus primigenius (woolly mammoth)						
	Bootherium bombifrons	+						
	(Harlan's musk ox)	Mammut americanum (mastodon)						
	Bison priscus (steppe bison)	Equidae (horses)						
	(DNA evidence suggests	Platyaonus compressus and Mylohyus nasutus						
	persistence until ~400 yrs cal BP)	(extinct peccaries)						
	······································	Palaeolama mirifica (extinct lama)						
		Hemiquchenia macrocenhala (large-headed						
		lama)						
	<u> </u>	Cervalces scatti (extinct moose)						
		Bootherium hombifrons (Harlan's musk ox)						
	+	Navahoceros fricki (American mountain deer)						
		Stockoceros onusrosaaris (a pronghorn)						
	1	Camelons hesternus (western camel)						
	+	Castoroides obioensis (giant boyer)						
		Castoroloues Onioensis (giant beaver)						
	<u> </u>							
		Notificitieriops snastensis (Snasta ground sloth)						
	 	<i>Oreamnos harringtoni</i> (extinct mountain goat)						
		Bison priscus (steppe bison)						

*List is not exhaustive.

1.2 Archaeology background

Assessing when humans became ecologically significant in eastern Beringia is relevant to understanding whether anthropogenic pressures could have contributed to declining megafaunal populations prior to the collapse of the mammoth-steppe ecosystem. The first people to inhabit the northwestern portions of unglaciated North America arrived from Siberia following dispersal across the exposed Bering Isthmus. Humans may have reached the Siberian arctic coast, west of the Yenisey River as early as ~45,000 cal BP^{2,3} (Supplementary Figure 2). Evidence during this period is fragmentary, but these first northern peoples had sophisticated Upper Palaeolithic technologies, including prepared lithic blade-cores and abundant bone tools^{4,5}. The earliest evidence of humans in western Beringia, east of the Lena River⁶, is ~32,000 cal yr BP⁷. This site has an abundance of faunal remains, including lithic and osseous tools, and projectile point fragments embedded in two differently-aged woolly mammoths⁷.

Humans appear to have thrived in Siberia until the peak of the Last Glacial Maximum (LGM, 26,500–19,000 BP)⁸, although to date it appears as if these populations largely remained in western Beringia⁶. A series of alleged archaeological components at Bluefish Caves I and II in northern Yukon date to as early as ~23,800 years ago^{9,10} based on bones that have been debatably interpreted to exhibit human-made cut-marks and other modifications. Sedimentary biomarkers of faecal sterols and polycyclic aromatic hydrocarbons have also been controversially interpreted to be suggestive of a human presence on the Alaskan North Slope from 34,000–16,000 cal BP, along with a rise in fire activity¹¹. However, the strongest evidence of sustained human occupations of ecological significance in eastern Beringia comes from sites in the Tanana River Valley, Alaska, chiefly at Swan Point CZ₄^{12,13} dating to ~14,000 years ago¹⁴.

Middle Upper Palaeolithic occupations around Lake Baikal and the Yenisey and Lena drainages in Siberia have evidence of semi-subterranean dwellings, storage pits, diverse faunal remains (large-tosmall mammals, birds), and a substantial quantity of lithic debris and other artifacts^{6,15–18}. These people hunted a variety of megafauna, including: *Mammuthus primigenius* (woolly mammoth), *Coelodonta antiquitatis* (woolly rhinoceros), *Bison priscus* (steppe bison), *Rangifer tarandus* (reindeer), and *Equus caballus* (horse)^{6,19}. There may have been an abandonment of much of Siberia and Beringia during the LGM due to the extreme cold climatic conditions^{4,17,19–24}, although this is contested^{25–27}. It

has been hypothesized that people may have taken refuge farther south in the Russian Far East and on the Palaeo-Sakhalin-Hokkaido-Kuril Peninsula in present day northern Japan^{4,28,29}.

The people who came to reoccupy Beringia after the LGM seem to have had substantially different lifeways from their predecessors. Late Upper Palaeolithic populations in Siberia had developed a mobile settlement system technologically based on a highly economical and portable use of lithic raw material: microblades³⁰. Sites after ~21,000 cal BP lack semi-subterranean dwellings and storage pits⁶ and have thin occupation layers with single taxon dominant faunal assemblages⁴. This change in lifeways towards high residential mobility may have been adapted to perusing the shifting ranges of mobile herd fauna^{17,22}.

Supplementary Figure 2 Beringia during the Late Pleistocene. Includes select archaeological sites and geographic areas discussed in text. Ice sheet data at Last Glacial Maximum (LGM, 26,500–19,000 BP) (Clark, 2009) and 12,500 ¹⁴C BP (15,200–14,400 cal BP) from Dyke (2004). Sea level during LGM set to 126 meters below sea level based on midpoint between maximum and minimum eustatic sea level estimation models in Clark and Mix (2002). Beringian palaeodrainage data from Bond (2019) (<u>http://data.geology.gov.yk.ca/</u>). Archaeological sites with calibrated ages from Potter et al.¹⁴. Pleistocene Park: <u>https://pleistocenepark.ru/</u>.

OxCal v4.4.2 Bronk Ramsey (2020); r:5 Atmospheric data from Reimer et al (2020)

Supplementary Figure 3 Radiocarbon calibration plot of the earliest alleged archaeological sites in northwestern North America. Data compiled by Potter et al.¹⁴. Calibrated using Oxcal v.4.4.2³¹ and the IntCal20 calibration curve³². See the supplementary materials of Potter et al.¹⁴ for the original data, and Supplementary Table 2 for the calibrations.

Supplementary Table 2 Potter et al.¹⁴ data of earliest archaeological sites in northwestern North America.

		Radioc	arbon a	ge		Calibrated	age		Reference
Intcal ID	Site/Component	¹⁴ C yr BP ¹	±	n of dates	From	То	Median cal years BP	Area	in Potter et al.
1a	Bluefish Caves II	19 650	130	7	23 900	23 234	23 561	Beringian Interior	49
10 1b	Bluefish Caves II	18570	110	7	22.873	22.299	22,490	Beringian Interior	49
2a	Bluefish Caves I	17,610	100	7	21,715	20,954	21,268	Beringian Interior	49
2b	Bluefish Caves I	17,660	100	7	21,780	21,000	21,362	Beringian Interior	49
2c	Bluefish Caves I	14,645	75	7	18,205	17,586	17,961	Beringian Interior	49
2d	Bluefish Caves I	12,790	65	7	15,525	15,072	15,262	Beringian Interior	49
2e	Bluefish Caves I	10,490	55	7	12,680	12,103	12,514	Beringian Interior	49
3	Swan Point CZ4	12,160	20	8	14,110	14,015	14,064	Beringian Interior	83
4	Little John sub-paleosol	12,020	70	1	14,061	13,771	13,913	Beringian Interior	84
5	Mead CZ5	11,460	50	1	13,455	13,188	13,337	Beringian Interior	75
6	Broken Mammoth C24	11,440	60	2	13,445	13,179	13,313	Beringian Interior	85
/	Upward Sun River C1	11,320	30	3	13,300	13,121	13,211	Beringian Interior	86
0	Mooso Crook C1	11,220	90 60	5	12 224	12,925	12,134	Beringian Interior	07
10	Linda's Point	11,190	40	2	13,234	12,927	13,114	Beringian Interior	89
11	Dry Creek C1	11,120	90	1	13,180	12,910	13.019	Beringian Interior	90
12	Owl Ridge C1	11.110	60	2	13.157	12.847	13.018	Beringian Interior	91-92
13	Mead CZ4	11.808	20	5	13.760	13.595	13.678	Beringian Interior	75
14	Bachner C1	11,030	70	1	13,095	12,771	12,956	Beringian Interior	93
15	Teklanika West C1	11,000	40	2	13,076	12,785	12,919	Beringian Interior	94
16	Eroadaway	10,890	40	1	12,890	12,744	12,799	Beringian Interior	95
17	MacDonald Creek (FAI-2043)	11,600	50	1	13,585	13,339	13,462	Beringian Interior	96-97
18	MacDonald Creek (FAI-2043)	10,730	40	1	12,753	12,684	12,724	Beringian Interior	96-97
19	Moose Creek C2	10,500	60	1	12,689	12,103	12,524	Beringian Interior	88
20	Mead CZ3	10,270	20	5	12,096	11,830	11,966	Beringian Interior	98
21	Broken Mammoth CZ3	10,290	70	1	12,470	11,818	12,079	Beringian Interior	85
22	Owl Ridge C2	10,490	30	7	12,620	12,206	12,554	Beringian Interior	91-92
23	Owl Ridge C2	10,020	40	6	11,738	11,318	11,516	Beringian Interior	91-92
24	Phipps	10,230	70	1	12,459	11,643	11,928	Beringian Interior	99
25	Upward Sun River C2	10,140	40	2	11,937	11,410	11,769	Beringian Interior	86
20	FAI-2077	10,130	50	1	11,938	11,403	11,742	Beringian Interior	96-97
27	XBD-308	10,080	40 70	5	11 821	11,401	11,059	Beringian Interior	100
20	XBD-338 C1	>10,000	80*	1	11,021	11,280	11,307	Beringian Interior	100
30	XBD-338 C1	10 000	80	1	11,720	11,209	11,483	Beringian Interior	100
31	Upward Sun River C3	9,990	30	3	11.687	11,273	11,454	Beringian Interior	101
32	Whitmore Ridge C1	9.950	40	3	11.612	11.245	11.361	Beringian Interior	102
33	Little Delta River #3	9,920	60	1	11,684	11,212	11,346	Beringian Interior	100
34	Panguingue Creek C1	9,890	50	3	11,603	11,201	11,297	Beringian Interior	103
35	Carlo Creek C1	9,880	20	6	11,390	11,229	11,261	Beringian Interior	104
36	Gerstle River C1	9,740	40	1	11,245	10,897	11,188	Beringian Interior	105
37	Dry Creek C2	9,660	30	9	11,193	10,807	11,101	Beringian Interior	90
38	Healy Lake Village Chindadn	9,580	110	2	11,201	10,589	10,922	Beringian Interior	106
39	Little John Paleosol	9,510	20	6	11,068	10,688	10,771	Beringian Interior	84
40	Gerstle River	9,450	40	2	11,061	10,571	10,681	Beringian Interior	105
41	XBD-303	9,340	80	1	10,751	10,275	10,544	Beringian Interior	100
42	XBD-312	9,290	40	1	10,643	10,297	10,480	Beringian Interior	100
43	Sparks Point	9,170	50	3	10,493	10,235	10,334	Beringian Interior	107
44		9,080	90	1	10,502	9,915	10,248	Beringian Interior	100-109
45	Gerstle Pivor C2	0,930	20	0	10,240	9,720	10,024	Beringian Interior	105
40	Unward Sun River C4	8 870	20	2	10,137	9,900	10,020	Beringian Interior	86
48	Teklanika West C2	8,820	40	1	10,147	9,690	9,863	Beringian Interior	94
49		11 160	20	5	13 157	13 072	13.096	North Alaska	110
50	Putu	10.490	70	1	12.688	12.099	12,487	North Alaska	111
51	Raven Bluff	10.280	30	7	12.432	11.829	11.991	North Alaska	112
52	Serpentine Hot Springs	10,150	30	3	11,935	11,644	11,788	North Alaska	113
53	HAR-006	10,140	90	1	12,421	11,316	11,739	North Alaska	114
54	Irwin Sluiceway	10,050	50	2	11,813	11,330	11,564	North Alaska	115
55	Mesa	10,000	80*		12,478	11,769	12,110	North Alaska	116

		Radioc	ge		Calibrated	age		Reference	
Intcal ID	Site/Component	¹⁴ C yr BP ¹	±	n of dates	From	То	Median cal years BP	Area	in Potter et al. (2018)
56	Nat Pass	9,960	30	2	11,609	11,260	11,364	North Alaska	117
57	NR-5	9,570	60	2	11,158	10,709	10,928	North Alaska	118
58	Onion Portage Akmak	9,570	150	1	11,252	10,440	10,900	North Alaska	119
59	Calvert Island (EjTa-4)	11,140	25	1	13,156	12,991	13,087	NW Coast	39
60	Calvert Island (EjTa-4)	10,720	60	5	12,760	12,620	12,714	NW Coast	39
61	Calvert Island (EjTa-4)	10,625	20	1	12,712	12,618	12,671	NW Coast	39
62	K1 Cave	10,960	80*		13,070	12,755	12,886	NW Coast	120
63	Gaadu Din 1 Cave	10,620	80*	6	12,745	12,475	12,638	NW Coast	121
64	Gaadu Din 2 Cave	10,530	80*	12	12,724	12,102	12,534	NW Coast	122
65	Cardinalis Creek	10,370	80*		12,605	11,890	12,234	NW Coast	123
66	On-Your-Knees Cave	10,300	50	1	12,478	11,769	12,110	NW Coast	124
67	Hunter Island	9,940	50	1	11,683	11,238	11,361	NW Coast	125
68	Namu	9,700	80*		11,247	10,773	11,086	NW Coast	126
69	Kilgii Gwaay	8,540	80*	12	11,165	10,595	10,886	NW Coast	121
70	Hidden Falls	9,500	80*		11,141	10,571	10,811	NW Coast	127-128
71	Arrow Creek 2	9,500	80*		11,141	10,571	10,811	NW Coast	129
72	Ground Hog Bay	9,200	70	2	10,561	10,235	10,370	NW Coast	130
73	Richardson Island	9,290	80*	8	10,680	10,250	10,468	NW Coast	131
74	Irish Creek	9,280	40		10,578	10,295	10,459	NW Coast	132
75	Neck Creek	9,260	30		10,565	10,291	10,437	NW Coast	133
76	Trout Creek	9,130	40		10,482	10,220	10,281	NW Coast	132
77	Rice Creek	9,090	50		10,406	10,181	10,243	NW Coast	132
78	Arrow Creek 1	8,800	80*		10,155	9,556	9,845	NW Coast	129
79	Wally's Beach	11,210	40	4	13,175	13,085	13,128	Ice Free Corridor	53
80	Vermilion Lakes Loc A, C9b	10,770	180	3	13,104	12,103	12,737	Ice Free Corridor	134
81	Lake Minnewanka	10,800	80*		12,905	12,625	12,757	Ice Free Corridor	135
82	Charlie Lake Cave	10,470	50	3	12,659	12,102	12,477	Ice Free Corridor	137
83	Vermilion Lakes Loc A, C9a	10,300	60	4	12,465	11,829	12,092	Ice Free Corridor	134
84	Vermilion Lakes Loc A, C6b	10,200	110	2	12,466	11,399	11,881	Ice Free Corridor	134
85	Twin Pines Layer 2	10,140	80		12,042	11,340	11,742	Ice Free Corridor	138
86	Vermilion Lakes Loc B, C4	9,910	100	3	11,801	11,179	11,388	Ice Free Corridor	134
87	Lindoe (EaOp9)	9,900	120		11,824	10,904	11,391	Ice Free Corridor	139
88	Twin Pines Layer 3	9,750	80		11,388	10,784	11,161	Ice Free Corridor	138
89	Vermilion Lakes Loc A, C6a	9,640	100	2	11,232	10,706	10,965	Ice Free Corridor	135
90	Gap site (DIPo20)	9,600	240		11,690	10,253	10,937	Ice Free Corridor	140
91	J-Crossing (DjPm-16)	9,600	80*		11,190	10,707	10,942	Ice Free Corridor	141
92	Saskatoon Mountain, Level 11	9,380	360	1	11,805	9,605	10,682	Ice Free Corridor	138

¹Oldest date from site selected.

 *14 C date with error range not supplied; used median age with ± 80 for calibration using Oxcal v.4.4.2³¹ and the IntCal20 calibration curve³².

2. Supplementary Methods and Results

Supplementary Figure 4 Workflow schematic from wet-lab procedures (extraction through sequencing) to *in silico* data analysis.

2.1 Site descriptions

Bear Creek (n=1). The Bear Creek site is located 11 km east of Dawson City, Yukon, in the Klondike placer mining district. Mining activities had exposed a ~10 m vertical surface consisting of 3 m of alluvial sediment overlain by 7 m of ice-rich loessal silt³³. The Dawson tephra is prominent at the site, dating to 25,300 ¹⁴C yr BP (≥30,000 cal BP)³⁴, and is situated between 5.2 and 6 m from the base of the exposure. Horizontal core sample BC 4-2B was collected 50 cm below the tephra under a stratified lens of ice, likely the remnant of a surface icing similar to other sites associated with Dawson tephra in the area (Froese et al., 2006). The singular core sample used in this analysis from Bear Creek (BC 4-2B) was collected from reddish-brown ice-poor silts that extend below the tephra. These sediments are interpreted as the palaeosurface and include the palaeo-active layer that existed at the time of Dawson tephra deposition. This unit was preserved due to the rapid deposition of the tephra (~80 cm thick at this site) that shifted the active layer upward. Observations of the palaeoactive layer and preservation of the ice body indicate that there was no thawing or water migration in these relict permafrost sediments following deposition of the Dawson tephra³³.

Upper Goldbottom (n=7). This site is located 28 km southeast of Dawson along Goldbottom Creek, a tributary of Hunker Creek and the Klondike River. The 28.5 m exposure was divided by Mahony³⁵ into five units, dating roughly between 46 ka cal BP near the base, to 6 ka cal BP near the surface. The lowermost unit (0–12.6 m, Unit 1—not represented in this sedaDNA dataset) consists of grey and brown silts with lenses of rust-brown sandy gravel, in addition to *in situ* macrofossils of graminoid vegetation and infrequent wood and shrub remains, as well as *in situ* bones of large mammals, mainly bison and mammoth. This unit is estimated to have been deposited between 43,985 and 35,895 cal BP ³⁵.

Unit 2 (12.6–18.0 m, 32,385–29,400 cal BP) is also not represented in this sample set, but includes brown and grey silts, *in situ* macrofossils in sandy gravel lenses, large ice wedges, and the Dawson tephra (10 cm thick) at 17.7 m³⁵.

Unit 3 (18.0–22.5 m) consists of grey silts with *in situ* graminoid macrofossils and a few lenses of thin gravels. Four arctic ground squirrel nests were recovered dating between 25,285 to 20,375 cal BP (20,960 \pm 150, UCIAMS-131095; 16,895 \pm 45, UCIAMS-114712)³⁵. The three permafrost samples

from Unit 3 used in this analysis were originally dated to 21,775 cal BP (MM12-117B), 21,000 cal BP (MM12-116B), and 18,510 cal BP (MM12-115B)³⁵.

Unit 4 (22.5–26.5 m) consist of black and grey organic rich silts with thin (5–15 cm) interbedded lenses of gravels and sand, as well as components of green-grey silts and interbedded humified brown organic silts. *In situ* graminoid and shrub macrofossils were also identified. Unit 4 is estimated to have begun deposition ca. 10,600 cal BP (9,395 ± 25, UCIAMS-114910)³⁵. Aggragation rates could not be assessed at the time by Mahony as radiocarbon dated samples were laterally-offset. Core samples MM12-118B and -119B were originally dated to 9,685 and 10,340 cal BP respectively³⁵.

Upper Quartz (n=7). The Upper Quartz site is located 33 km southeast of Dawson in the narrow valley of Quartz Creek, a tributary to the Indian River. Mahony³⁵ divided the 7 m vertical section into three units. The lowermost unit (0–2.8 m) consists of grey and brown silts with several thin (1–3 cm) discontinuous black organic lenses in the upper ~1 m with abundant *in situ* macrofossils of graminoid vegetation and rare detrital woody macrofossils. Mahony's calibrated radiocarbon dates from this unit indicated a deposition between 16,560–13,510 cal BP (13,680 ± 390, UCIAMS-114710; 11,680 ± 35, UCIAMS-131100). Two arctic ground squirrel nests were identified at 0 and 0.75 m from the base in this unit, with ¹⁴C dates of 16,270 and 15,740 cal BP respectively (13,510 ± 45, UCIAMS-131096; 13,110 ± 35, UCIAMS-142195). Aggradation rates for this unit were estimated by Mahony³⁵ to range from 0.06–0.14 cm/year. Permafrost cores MM12-QC-2, -3, and -4 were sampled from this unit, and were originally dated to 16,560 cal BP (13,680 ± 390, UCIAMS-114710), 15,745 cal BP, and 14,925 cal BP respectively³⁵.

The second unit (2.8–3.8 m) consists of grey and black silts, a laterally continuous black organic rich layer with *in situ* macrofossils of shrubby roots and graminoid vegetation. The unit also contains several aggregational ice lenses (2 cm thick), one syngenetic ice wedge, and abundant non-parallel, wavy microlenticular cryostructures³⁵. Shrub macrofossils had date ranges between 13,685 and 13,160 cal BP (11,885±35, UCIAMS-142206; 11,315±35, UCIAMS-142205), although aggradation rates could not be estimated. Core MM12-QC-6 was sampled from this unit, and was ¹⁴C dated to 12,805 cal BP (10,960 ± 35, UCIAMS-114733).

The uppermost unit (3.7–7.0 m), consists of organic-rich black and grey silts, interbedded discontinuous diamict and sand lenses (10–15 cm thick) with *in situ* macrofossils of fibrous organics and wood. Cryostructures are generally non-parallel wavy lenticular (2–6 mm) with microlenticular ice, crustal ice, and a syngenetic ice wedge (~50 cm wide). Aggradation rates were estimated at 2.0 cm/year³⁵. Radiocarbon samples had dates ranging from 5,925 to 5,165 cal BP (5,160 ± 20, UCIAMS-114899; 4,520 ± 25, UCIAMS-142207). Permafrost cores MM12-QC-8, -9, and -10 were sampled from this unit, and were originally dated to 5,915, 5,840, and 5,765 cal BP³⁵. The youngest core has been found to be much younger with redating (Supplementary section 2.2), with a new median age of 3849 cal BP.

Lucky Lady II (n=8). The Lucky Lady II site is located 46 km southeast of Dawson along the Sulphur Creek tributary of the Indian River. Core samples from this site were previously analyzed by both Mahony³⁵ and Sadoway³⁶, with Sadoway using PCR metabarcoding and targeted enrichment techniques.

An 11.5 m section of the Lady Lady II permafrost exposure was sampled by Mahony³⁵, which was divided into two units; five vertical cores were taken at the site for high-resolution isotopic and radiocarbon analyses. The lowermost unit (0–3.5 m) unit consists of grey silts with a thick black-organic rich horizon (palaeosol) at 2.7 m from the base dating from 13,410 to 13,140 cal BP (11,580 \pm 35 ¹⁴C yr BP, UCIAMS-143308; 11,290 \pm 160 ¹⁴C yr BP, UCIAMS-56390) with several thinner palaeosol horizons above. The unit includes *in situ* graminoid macrofossils and multiple arctic ground squirrel nests; several horse and bison bones were also identified. The unit is suggestive of a steppe-tundra landscape, which is estimated to have been deposited from ca. 16,500 to 13,140 cal BP (13,680 \pm 35 ¹⁴C yr BP, UCIAMS-51324 to 11,290 \pm 160 ¹⁴C yr BP, UCIAMS-56390), with an aggradation rate of 0.12– 0.62 cm/year³⁵ and with deep active layers. Samples PHP-4 through PHP-9 were recovered from this unit, dating between 15,865 and 13,105 (11,250 \pm 20 ¹⁴C BP) cal BP³⁶.

The uppermost unit (3.5–11.5 m) consists of organic-rich grey and black silts with more organicrich sediments towards the top of the unit exposure. Several black organic-rich horizons (2–6 cm thick) are interspersed throughout the unit. The defining contact between the upper and lower units at Lucky Lady II is the appearance of shrub vegetation macrofossils in the uppermost unit. This upper unit contains abundant *in situ* shrub and graminoid macrofossils, but no *in situ* animal remains were

identified. The unit is considered to have been deposited between 13,150 and 8,525 cal BP (11,300 ± 35, UCIAMS-142197; 7,750 ± 25, UCIAMS-143296) at an aggradation rate of ~0.12-0.19 cm/year³⁵. This unit suggests a shift away from a steppe-tundra ecosystem towards one with an abundance of shrub vegetation. Permafrost samples PHP-2 and -3 were recovered from this unit and dated to 10,220 and 10,340 (9195 ± 20 ¹⁴C BP) cal BP respectively³⁶.

2.2 Bayesian age-depth modelling figures and tables

Supplementary Figure 5 Upper Quartz permafrost exposure; age model for horizontal cores collected in 2012.

Supplementary Figure 6 Lucky Lady II permafrost exposure. A) Age model for three vertical cores collected at the site. B) Plate from Mahony³⁵.

Modelled date (BP)

Plate 2 Upper 2 m of unit 4 (24.5–26.5 m). Knife handle is 11 cm long.

B)

Plate 1 Unit 4 exposure (22.5–26.5 m). Sharp basal contact at arrow with underlying grey silts. Width of ice axe head is 21 cm.

Plate 3 Unit 3 exposure (18–22.5 m). Overlying sandy gravels indicated by arrow. Shovel is ~1.2 m in length.

Supplementary Figure 7 Upper Goldbottom permafrost exposure. A) Age model for horizontal cores collected at the site. B) Plates from Mahony³⁵.

Supplemente					140-	ujcu i	Calibu			Mada	1 <u>5</u> 		1		
Site &	Corro ID1	Height from	SedaDNA	14C Lab ID	-⁼C a	ge	Calibra	ated age (ca	iyr bpj	iviode	lied age (ca	ii yr BP)	Low mass	Matarial	Notos
exposure height	Core ID-	base (m)	ID		Median	±	From	То	Median	From	То	Median	samples	waterial	Notes
	MM12-39	26.6		LICIAMS-114898	5 185	20	5 994	5 907	5 938	5 994	5 906	5 937	(ilige)	wood	
	MM12-124	24.6		UCIAMS-114910	9 395	25	10 700	10 515	10.626	-	-	-		wood	Outlier
	MM12-118h	23.4	PHP-11	000/0000 114510	5,555	23	10,700	10,515	10,020	9 869	8 604	9 246		wood	outilei
	MM12-121	22.85		LICIAMS-114906	8 965	25	10 227	9 921	10 166	-	-	-		wood	Outlier
	MM12-119B	22.6	PHP-12	UCIAMS-240143	8,905	25	10,178	9,908	10,036	10,181	9,909	10.051		twig	outlief
	MM12-115b	22.3	PHP-14		0,000	20	10,170	5,500	10,000	20.320	19.070	19,704			
Upper	MM12-112	22.2		UCIAMS-122282	15.570	50	18.940	18,770	18.852	18,943	18.764	18.850		AGSN ² , FP ³	adi 23.04
Goldbottom	MM12-116b	21.4	PHP-13	UCIAMS-240140	17.230	80	20.952	20.556	20,786	20.955	20.554	20,787	0.200	twig	,
28.5 m	MM12-117b	21.15	PHP-15	UCIAMS-240141	26,420	1,920	36,870	27,275	31,228	22,424	20,568	21,232	0.029	twig	¹⁴ C an outlier
20.5 m	MM12-113	20.9		UCIAMS-114712	16,895	45	20,530	20,294	20,425	20,538	20,294	20,430		AGSN	adj 21.7
	MM12-134	12.6		UCIAMS-114714	32,000	320	37,058	35,620	36,367	37,036	35,653	36,363		AGSN	adj 13.4
	MM12-132b	9.9								41,947	39,394	40,703			·
	MM12-125	8.5		UCIAMS-142208	37,770	660	42,773	41,379	42,159	42,617	41,421	42,123		wood	
	MM12-129	6.7		UCIAMS-114716	40,270	770	44,620	42,580	43,562	44,532	42,815	43,715		wood	
	DF12-24	5.7		UCIAMS-122274	42,070	980	46,771	43,155	44,909	45,962	43,406	44,769		wood	
	MM12-QC-10	7	PHP-19	UCIAMS-240142	3,550	15	3,896	3,727	3,847	3,899	3,727	3,849		twig	
	MM12-96	5.5		UCIAMS-114911	5,115	25	5,926	5,753	5,814	5,929	4,590	5,776		wood	
	MM12-QC-9	5.5	PHP-20	UCIAMS-114911						5,929	4,590	5,776			
Upper Quartz	MM12-QC-8	4	PHP-21							5,992	5,744	5,909			
	MM12-95	3.8		UCIAMS-114899	5,160	20	5,989	5,897	5,921	5,992	5,896	5,923		wood	
7 111	MM12-QC-06	2.3	PHP-22	UCIAMS-114733	10,960	35	12,990	12,758	12,860	12,989	12,758	12,860	0.190	grass	
	MM12-QC-4	1	PHP-23							15,958	13,988	14,939			
	MM12-QC-3	0.5	PHP-24							16,862	14,720	15,759			
	MM12-QC-02	0	PHP-25	UCIAMS-114710	13,680	390	17,785	15,499	16,565	17,810	15,469	16,563	0.021	grass	
	LL2S-169	10.47		UCIAMS-143296	7,750	25	8,593	8,448	8,524	8,597	8,461	8,545		twigs	
	LL2S-189	10.27	PHP-2	UCIAMS-142212	7,975	25	8,993	8,652	8,862	8,919	8,637	8,707		needle/ leaves	
	LL2S-253-D1	9.55	PHP-3							9,485	8,950	9,177			
	LL2S-353	8.63		UCIAMS-142211	8,770	30	9,903	9,560	9,767	10,110	9,559	9,776		leaves/twigs	
	LL2C-37	4.3		UCIAMS-143306	11,070	30	13,090	12,909	13,006	13,092	12,913	13,015		twigs/grass	
	LL2C-88(2)	3.58		UCIAMS-142198	11,290	40	13,295	13,100	13,176	13,228	13,109	13,160		shrub/twigs	
	LL2C-88	3.58		UCIAMS-142197	11,300	35	13,297	13,111	13,187	13,228	13,109	13,160		shrub/twigs	
	LL2C-118-C	3.49	PHP-4							13,250	13,119	13,176			
Lucky Lady II	DF08-26A	2.7		UCIAMS-56390	11,290	160	13,486	12,843	13,194	13,307	13,168	13,241	0.052	twigs/grass	palaeosol
11.5 m	DF12-18	2.7		UCIAMS-114725	11,360	40	13,314	13,166	13,238	13,339	13,225	13,288	0.160	twigs/grass	palaeosol
	DF12-18	2.7		UCIAMS-143307	11,535	35	13,475	13,318	13,401	13,443	13,324	13,386		twigs/grass	palaeosol
	DF12-18	2.7		UCIAMS-143308	11,580	35	13,571	13,345	13,446	13,499	13,353	13,438		twigs/grass	palaeosol
	LLII 12-84-3	2.7	PHP-6							13,393	13,277	13,335			palaeosol
	LL2C-205-B	2.62	PHP-5							13,596	13,401	13,510			
	LL2C-243-A2	2.24	PHP-/		12 200	240	15.200	12 440	14 227	14,245	13,975	14,113	0.350	Aug. 1-	
	LL2-12-170-6	1.84	РНР-8	UCIAIVIS-240139	12,200	340	15,389	13,449	14,337	14,897	14,595	14,750	0.250	twig	
	LL2-12-184	1.7		UCIAIVIS-122284	12,980	60	15,727	15,307	15,531	15,730	15,305	15,532	0.190	grass	
	LLII 12-217-8	1.37	PHP-9		12 420	25	16 210	16.020	16 170	15,651	15,339	15,500		grace	
L	LLZ-12-259	0.95		UCIAIVIS-1222/3	13,430	35	10,310	10,030	8/1,01	10,310	10,015	10,1/1	1	grass	

Supplementary Table 3 Permafrost cores and radiocarbon dates used in Bayesian age-depth modelling

¹As per Mahony³⁵. ²AGSN: Arctic ground squirrel nest. ³FP: fecal pellets.

⁴AGSN height adjustment.

2.3 Palynology

Samples were processed and analysed for palynomorphs and non-pollen palynomorphs (NPP) at the University of Alberta. Palynological methods followed slightly modified procedures of Faegri et al.³⁷ with the addition of high-density separation. Each 4 cm³ sample was spiked with a *Lycopodium clavatum* spore tablets of known quantity (Batch Number: 483216 [Sep. 2004]; 18,582 spores per tablet ± 3,820) before processing to allow calculations of palynomorphs and NPP concentrations. Sediment was processed with 10% hydrochloric acid, 10% sodium hydroxide, high density separation with 1.9 g cm⁻¹ density sodium polytungstate (SPT), 50% hydrofluoric acid, acetolysis (10:1 acetic anhydride: concentrated sulphuric acid), dehydrated using 95% ethyl alcohol and tert-butanol and mounted in (2000 cs) silicone oil. Due to the limited presence of pollen grains throughout the samples, a minimum of 50 *L. clavatum* were counted instead of the 300 pollen grains typical of palynological analysis. This allowed calculation of palynomorph and NPP concentrations and to determine if samples are barren or near absent of pollen grains. Identifications of pollen followed McAndrews et al.³⁸ and were identified at least to family and more typically to genus. NPP identifications followed³⁹⁻⁴⁵. NPP taxa are also identified by their Hugo de Vries (HdV) designation where possible to enable cross study comparison⁴⁶.

Samples were selected to cover the last ca. 30,000 years. Thirteen samples were counted from the Bear Creek, Upper Goldbottom and Upper Quartz sites (Supplementary Table 5). Pollen counts average at 23 grains (range 0–121.5) with 17 palynomorph taxa identified. Of the 15 samples analyzed, only PHP-19 (3849 cal BP) reached a pollen count greater than 100 grains. The remaining samples were near absent of pollen grains with PHP-22 (12,860 cal BP) and PHP-24 (15,759 cal BP) being completely barren of any palynomorphs. Holocene samples PHP-19, PHP-20 (5776 cal BP), and PHP-11 (9246 cal BP) were the only samples to preserve bisaccate pollen grains of spruce (*Picea*) and pine (*Pinus*) with the addition of a singular spruce stomata.

Non-pollen palynomorph were represented primarily by (semi-)coprophilous fungal taxa (n=315), *Sordaria* (HdV-55), an unknown ellipsoidal ascospore assigned as HdV-834 by Langeveld et al. ⁴⁷ that likely represents the genus *Arnium*, *Sporormiella* (HdV-113), *Arnium* (HdV-261), *Cercophora* (HdV-112), *Delitschia* (no HdV designation), *Chaeotomium* (HdV-7) and *Gelasinospora* (HdV-1). Other fungi include the arbuscular mycorrhizal genus, *Glomus* (HdV-1103) and the saprophytic genus

Byssothecium (HdV-1030). The NPP is not limited to fungi, a singular oocyte of the neorhabodocoela, *Gyratrix*, was preserved in the Holocene sample MM12-QC-10 (PHP-19) and the colonial chlorophytes *Pediastrum* (HdV-760) and *Botryococcus* (HdV-766) occurred in PHP-23 and PHP-1, respectively.

Due the exceptional preservation and abundance of NPP from the samples, it is unclear why palynomorph concentrations are comparatively so low. There is no indication of palynomorph loss during processing given the presence of the NPP taxa and more importantly, the continued presence of *Lycopodium clavatum* tracers. If *L. clavatum* was missing from the palynological residue, we may then consider a loss of palynomorphs during heavy-density separation, but this is not the case. Similarly, we may consider taphonomic processes leading to loss of the palynomorph grains/spores, but the excellent preservation of NPP in the residue suggests this is unlikely. Further study is required to fully understand what factors may be influencing the occurrence of palynomorphs in these permafrost samples.

Supplementary Table 4 Raw palynomorph and non-pollen palynomorph counts

SedaDNA ID	• •	PHP-19	PHP-20	PHP-21	PHP-11	PHP-12	PHP-22	PHP-23	PHP-24	PHP-25	PHP-14	PHP-13	PHP-15	PHP-1
Site		UQ	UQ	UQ	UGB	UGB	UQ	UQ	UQ	UQ	UGB	UGB	UGB	BC
Median age (2σ)		3849	5776	5909	9246	10,051	12,860	14,939	15,759	16,563	19,704	20,787	21,232	30,000
Target	Element													
					Ра	lynomorphs								
Lycopodium clavatum spike	Spore	50	50	50	50	51	57	71	70	126	60	114	107	68
Arboreal Poller	n													
Picea	Pollen	44.5	6	13	50									
Picea mariana	Pollen	9			1									
Pinus	Pollen	2.5	1	1										
Salix	Pollen	0			1							2	2	
Betula	Pollen	1	1	1	3	22				1			1	
Alnus	Pollen	4	2											
Poaceae	Pollen	1	1		2	2					3	1	1	1
Cyperaceae	Pollen				1							1		
Artemisia	Pollen													
Asteraceae cf. Taraxacum	Pollen				1							2	3	
Polygonaceae	Pollen				1						1		1	
Chenopodium	Pollen			1				2					1	
Shepherdia canadensis	Pollen			1	1						1			
Indet. Pollen	Pollen	6									1	4	2	2
Stomata														
Picea Stomate	Stomata	1		3	2	6								
Aquatic Pollen	1													
Isoetes	Pollen	1				1								1
Spores														
Sphagnum	Spore	77	2			1								
Dryopteris-type	Spore	1	3											
Trilete	Spore			4									1	
					Non-Pollen	Palynomorp	hs (NPP)							
Fungi														
Sordaria (HdV-55)	Ascospore	1	2	5	6	3	1	5	10	5	1	15	191	
Sordariale (HdV-834)	Ascospore				4								6	
Sporormiella (HdV-113)	Ascospore									4		11	11	
Arnium (HdV-261)	Ascospore			2		1						5	16	
Cercophora (HdV-112)	Ascospore			1	2							1	4	
Delitschia	Ascospore	1			3					1			1	
Gelasinospora (HdV-1)	Ascospore			1	2					1				
Chaetomium (HdV-7)	Ascospore				2								2	
Byssothecium (HdV-1030)	Ascospore			1	5	1								
Glomus (HdV-1103)	Chlamydospore	1			9		4	3		3	1	7	21	38
Chlorophytes														
Pediastrum (HdV-760)	Colony							1						
Botryococcus (HdV-766)	Colony													1
Other														
Gyratrix	Oocyte	1												

UQ = Upper Quartz, UBG = Upper Goldbottom, BC = Bear Creek

2.4 Ancient DNA wet lab additional methods and results2.4.1 Pre-sequencing qPCR concentration estimates

In the initial batch of subsamples (PHP; Supplementary Table 15) sedaDNA recovery and isolation was high, although success was somewhat inconsistent. For example, PHP-2, PHP-3, and PHP-12 had less than 1,000,000 total library adapted DNA molecules (based on a quantitative PCR [qPCR] assay prior to indexing) (Supplementary Figure 8). Generally, low pre-indexing estimates are suggestive of poor ligation success during library preparation—likely as a result of co-eluted inhibitory substances during extraction⁴⁸—or poor aDNA preservation or recovery. This pattern was observed again in the post-enrichment qPCR where almost no PalaeoChip Arctic-1.0 on-target DNA could be isolated from those challenging libraries (Supplementary Figure 9), whereas most other libraries retained sufficient concentrations for pooling and sequencing. A subsequent batch of subsamples (PHP_{ii}) with lower sediment inputs (0.15 g per PowerBead tube, duplicated for each core) improved the DNA isolation of those challenging samples, which enabled the recovery of sedaDNA from all targeted permafrost cores. These duplicated lysed extracts were combined by core following the cold spin during binding to the silica spin column in the high-volume Roche tubes.

Supplementary Figure 8 Pre-indexing short amplification qPCR assay for estimating total adapted DNA concentrations.

Supplementary Figure 9 Post-enrichment long amplification qPCR assay for estimating total adapted DNA concentrations following targeted capture for equimolar pooling.

2.4.2 Master mix recipe tables

Proteinase K Digestion Solution						
Component	Final Concentration					
Tris-Cl (pH 9.0)	0.02 M					
SDS	0.5 %					
Proteinase K	0.25 mg/ml					
CaCl2	0.01 M					
DTT	100 mM					
PVP	2.5 %					
РТВ	5 mM					
Volume per rxn	0.5 mL					

Supplementary Table 5 Proteinase K digestion solution

These are the lysis buffer concentrations after being combined with 0.75 mL of the pre-loaded PowerBead solution (garnet beads and 750 μL 181 mM NaPO4, 121 mM guanidinium isothiocyanate). These concentrations were multiplied by 2.5x prior to loading to account for the pre-loaded PowerBead dilution. Protenaise K added individually (15.53 μL) after vortexing for >20 minutes. Samples digested overnight at 35°C with rotation. Nanopure Barnstead water was used to bring up the volume to the desired concentration. Concentrations based on Karpinski et al.⁴⁹.

Supplementary Table 6 Guanidinium binding buffer

Guanidinium Binding Buffer						
Component	Final Concentration					
Guanidine Hydrochloride	5 M					
Isopropanol (100%)	40 %					
Tween-20	0.05 %					
3 M Sodium Acetate (pH 5.2)	0.09 M					

Nanopure Barnstead water was used to bring up the volume to the desired concentration.

Concentrations based on Dabney et al.⁵⁰. Utilized a ratio of 13 volumes of binding buffer to 1 volume of lysis supernatant. With a typical expected volume of 1.25 mL of lysis, 16.25 mL of binding buffer was used.

Supplementary Table 7 Library preparation: blunt-end repair

Blunt-End Repair Mixture							
Component	Final Concentration						
NE Buffer 2.1	1X						
DTT	1 mM						
dNTP mix	100 µM						
ATP	1 mM						
T4 polynucleotide kinase	0.5 U/μL						
T4 DNA polymerase	0.1 U/μL						
Template (DNA extract)	10 μL						

A final volume of 40 μ L per rxn was used for the master mix (30 μ L) and sedaDNA extract. Nanopure Barnstead water was used to bring up the volume to the desired concentration.

cuppience in a number of the part of the p								
3. Adapter Ligation Mixture								
Component	Final Concentration							
T4 DNA Ligase Buffer	1X							
PEG-4000	5%							
Adapter Mix	0.5 μM							
T4 DNA Ligase	0.125 U/μl							
2. Adapter	Mix							
IS1_adapter_P5.F	200 µM							
IS2_adapter_P7.F	200 μM							
IS3_adapter_P5+P7.R	200 µM							
Oligo Hybridization Buffer	1X							
1. Oligo Hybric	lization Buffer							
NaCl	500 mM							
Tris-Cl, pH 8.0	10 mM							
EDTA, pH 8.0	1 mM							

Supplementary Table 8 Library preparation: adapter ligation

Oligo Hybridization Buffer was prepared prior to the Adapter Mix (2), which was prepared separately for IS1 adapter_P5.F and IS2_adapter_P7.F. These two mixes were then combined after an incubation at 95°C for 10 seconds, and a ramp from 95°C to 12°C at a rate of 0.1°C/sec. A final volume of 40 µl was used for the mixture and template DNA. Nanopure Barnstead water (not listed) was used to bring the volume up to the desired concentration.

Supplementary Table 9 Library preparation: adapter fill-in

Adapter Fill-In Mixture			
Component	Final Concentration		
ThermoPol Reaction Buffer	1X		
dNTP Mix	250 μM		
BST Polymerase (large fragment)	0.4 U/μl		

A final volume of 40 μ l was used for the mixture and template DNA with the addition of Nanopure Barnstead water to bring the mix up to the desired concentration and volume.

Supplementary Table 10 Indexing PCR

Indexing PCR Master Mix					
	Component	Final Conce	Final Concentration		
KAPA SYBR®F	AST qPCR Master Mix (2X)	1X	1X		
F	orward primer	750 r	750 nM		
R	everse primer	750 r	750 nM		
Primer Sequences					
Forward Primer	Forward Primer AATGATACGGCGACCACCGAGATCTACAC NNNNNN ACACTCTTTCCCTACACGACGCTCTT				
Reverse Primer	Reverse Primer CAAGCAGAAGACGGCATACGAGATTAT NNNNNNN ACTGGAGTTCAGACGTGT				
Indexing PCR Protocol					
Phase	Temperature (°C)	Time	Cycles		
Initial Denaturat	ion 95	5 min			
Denaturation	95	20 sec	Repeated for		
Annealing + Exten	sion *60*	*45 sec*	8-12 cycles		
Final Extension	n 60	5 min			

The N in each primer sequence represents the 7 bp index specific to each primer. A final reaction volume of 40 μ l was used for the assay, with 12.5 μ l of the adapter ligated DNA libraries. Nanopure Barnstead water (not listed) was used to bring the volume up to the desired concentration. Fluorescence readings were recorded post-annealing as indicated above with asterisks.

PCR Master Mix				
Component	Final Concentration			
KAPA SYBR®FAST qPCR M	1X			
Forward prim	er	0.2 μΜ		
Reverse prim	er	0.2 μΜ		
Oligos		Sequence (5'–3')		
Forward primer (ILPr_shortampP5F_MeyerIS7)		ACACTCTTTCCCTACACGAC		
Reverse prim (ILPr_shortampP7R_	GTGACTGGAGTTCAGACGTGT			
Library adapted oligo based on the mammoth 12S mitochondrial gene (Priming sites with reverse-complement bolded)		ACACTCTTTCCCTACACGACGCTCT TCCGATCTCCCTAAACTTTGATAGC TACCTTTACAAAGCTATCCGCCAGA GAACTACAGATCGGAAGAGCACA CGTCTGAACTCCAGTCAC		
Input		Volume		
PCR master mix		6 μL		
Library adapted template		4 μL		
	PCR Protocol			
Phase	Temperature (°C)	Time	Cycles	
Initial Denaturation	95	5 min		
Denaturation	95	30 sec	Repeated for 30	
Annealing + Extension	60	45 sec cycles		
Melt Curve	**65–95**	**5 sec per degree**		

Supplementary Table 11 Pre-indexing qPCR short amplification, total quant

Nanopure Barnstead water was used to bring the mix up to the desired concentration and volume. Oligo based on Enk et al.⁵¹; primers based Meyer and Kircher⁵².

Hybridization MasterMix				
Component	Final Concentration			
Hyb N (19.46X SSPE, 13.5 mM EDTA)	9X, 6.25mM			
Hyb D (50X Denhardt's Solution)	8.75X			
Hyb S (10% SDS)	0.25 %			
Hyb R RNAsecure	1.56X			
Bait Mixture (200 ng baits per reaction)	11.11 ng/µL			
Bait Mixture				
Component	Final Concentration			
Plant: 18,672 baits	83.33 ng/rxn			
Animal: 57,588 baits	138.89 ng/rxn			
Library MasterMix (b	olocks)			
Component	Final Concentration			
Block A (xGens)	0.04 ng/μL			
Block C (Human Cot-1 DNA)	NA) 0.19 ng/μL			
Block O (Salmon Sperm DNA)	0.19 ng/μL			
Library template input	7 μL			
Wash Buffer X (0.2X WB)				
Component	Final Concentration			
HYB S (10% SDS)	0.08 %			
Wash Buffer	0.2X			
(0.1X SSC; 0.1% SDS; 1mM EDTA)	0.27			

Supplementary Table 12 Enrichment master-mixes

Nanopure Barnstead water was used to bring mixes up to the desired concentration and volume.

PCR Master Mix					
Component	Final Concentration				
KAPA SYBR [®] FAST qPCR M	1X				
Forward prim	0.2 μM				
Reverse prim	er	0.2 μM			
Oligos	Sequence (5'–3')				
Forward prim (ILPr_shortampP5F_I	AATGATACGGCGACCACCGA				
Reverse primer (ILPr_shortampP7R_MeyerIS6)		CAAGCAGAAGACGGCATACGA			
PhiX library adapted control standard from 100 pM to 62.6 fM		AATGATACGGCGACCACCGA ADAPTER INSERT TCGTATGCCGTCTTCTGCTTG			
Input		Volume			
PCR master m	PCR master mix		6 μL		
Library adapted and inde	exed template	4 μL			
	PCR Protocol				
Phase	Temperature (°C)	Time	Cycles		
Initial Denaturation	95	5 min	1		
Denaturation	95	30 sec Repeated for			
Annealing + Extension	60	45 sec	35 cycles		
Cooldown	8	30 sec	1		

Supplementary Table 13 Post-indexing/enrichment qPCR long amplification, total quant

Nanopure Barnstead water was used to bring the mix up to the desired concentration and volume. Primers from Meyer and Kircher⁵².

2.5 Bioinformatic supplement

2.5.1 Full sample list with core replicates

Input Total raw PalaeoChip mapped SedaDNA ID Age¹ Site Core ID (grams) reads & MEGAN assigned PHP-1 0.25 1,619,859 58,020 (3.58%) 0.25 SET-277 1,235,759 76,001 (6.15%) Bear Creek³³ BC 4-2B 30,000 SET-278 0.25 1,275,219 47,127 (3.70%) SET-279 0.25 1,519,972 59,995 (3.95%) PHP-2 0.3 63,685 250 (0.39%) LL2S-189-E PHPii-2 8707 0.3 4.141.976 8716 (0.21%) 4,461,835 942 (0.02%) PHPii-2cd 0.3 PHP-3 0.3 not sequenced LL2S-253-D1 PHPii-3 9177 0.3 5,445,860 111,232 (2.04%) 380,255 (9.86%) PHPii-3cd 0.3 3,857,668 PHP-4 0.3 83,631 (5.16%) 1,619,858 LL2C-118-C 13,176 PHPii-4 0.3 6,129,319 95,342 (1.56%) PHP-5 0.3 1,126,060 25222 (2.24%) LL2C-205-B 13.335 3,871,764 PHPii-5 0.3 23004 (0.60%) PHP-6 0.3 1,571,297 127,515 (8.12%) Lucky Lady II³⁶ PHPii-6 0.3 4,287,316 246,751 (5.76%) LLII 12-84-3 SET-271 13,510 0.25 1,807,078 150,779 (8.34%) 0.25 SET-272 1,322,559 137,744 (10.42%) 0.25 SET-273 143,812 (11.53%) 1,247,471 PHP-7 0.3 1,449,830 6395 (0.44%) LL2C-243-A2 14,113 PHPii-7 0.3 4,370,642 48,305 (1.11%) LLII 12-170-6 PHP-8 14,750 0.3 1.331.181 17,628 (1.33%) PHP-9 0.3 958,126 15,200 (1.59%) 0.25 SET-274 845,348 10,397 (1.23%) LLII 12-217-8 15,500 SET-275 0.25 970,115 8778 (0.91%) SET-276 0.25 341,707 4191 (1.28%) PHP-11 0.3 79,090 6035 (7.63%) 0.3 60152 (1.87%) PHPii-11 3,221,976 9236 1,678,166 MM12-118B SET-268 0.25 182,089 (10.85%) SET-269 0.25 1,754,121 148,670 (8.48%) 0.25 SET-270 1,249,732 144,575 (11.57%) **PHP-12** 0.3 not sequenced Upper PHPii-12 0.3 61,637 296 (0.48%) Goldbottom³⁵ 0.3 587,919 (11.23%) CSMii-PHP-12a 5,234,065 MM12-119B 10,626 CSMii-PHP-12b 0.3 3,464,073 441,102 (12.73%) CSMii-PHP-12c 0.3 4,649,222 366,785 (7.89%) CSMii-PHP-12d 0.3 5,000,444 427,516 (8.55%) MM12-116b 19,879 0.3 PHP-13 1,624,580 174,890 (10.77%) 18,768 MM12-115b **PHP-14** 0.3 2,320,965 35,539 (1.53%) 164,997 (8.64%) MM12-117b PHP-15 20,212 0.3 1,910,387 PHP-19 0.3 2,279,133 168,768 (7.41%) MM12-QC-10 3849 PHPii-19 0.3 6,965,795 21,787 (0.31%) Upper Quartz³⁵ PHP-20 0.3 1,883,409 186,238 (9.89%) MM12-QC-9 5776 PHPii-20 0.3 4,030,038 126,359 (3.14%) MM12-QC-8 PHP-21 5909 1,590,777 0.3 229,319 (14.42%)

Supplementary Table 14 Sequencing summary and assigned reads of extraction replicates

Site	Core ID	SedaDNA ID	Age ¹	Input (grams)	Total raw reads	PalaeoChip mapped & MEGAN assigned
		PHPii-21		0.3	3,551,677	36,570 (1.03%)
	MM12-QC-6	PHP-22 PHPii-22 12,	12 960	0.3	1,135,493	41,668 (3.67%)
			12,800	0.3	4,944,689	73,310 (1.48%)
		PHP-23		0.3	1,207,782	26,776 (2.22%)
	MM12-QC-4	PHPii-23a	14,939	0.3	5,380,376	17,206 (0.32%)
		PHPii-23b		0.3	8,141,488	24,204 (0.30%)
	MM12-QC-3	PHP-24	15,759	0.3	1,129,623	17,162 (1.52%)
	MM12-QC-2	PHP-25	16,563	0.3	1,568,411	29,419 (1.87%)
	Extraction	PHP-10-BK	na		9,882	
	Blanks (Batch	PHP-18-BK	na		1,495	
	1)	PHP-26-BK	na		7,351	
	Library Blanks (Batch 1)	LibBK-PHP_CL	na		4,451	
	Extraction	PHPii-BK27	na		2,316	
Blanks	Blanks (Batch	PHPii-BK28	na		4,045	
	2)	PHPii-BK29	na		2,170	81 (0.82%)
	_/	CSMii-BK2	na		8,681	
	Library Blanks	PHPii-LB	na		4,570	
	(Batch 2)	CSMii-LB	na		275	
	Extraction	SET-BK22	na		55,877	
	Blanks (Batch 3)	SET-BK23	na		852	
	Library Blanks (Batch 3)	SET-BK24	na		475	

¹Median modeled ages. Cells shaded by core ID.

2.5.2 Normalized read proportions by site

Lucky Lady II sedaDNA samples and calendar ages

Supplementary Figure 10 Lucky Lady II stacked normalized reads assigned to the rank 'family' in A) Animalia (insects excluded) with read counts, and B) Viridiplantae with proportions.

Upper Goldbottom sedaDNA samples and calendar ages

Supplementary Figure 11 Upper Goldbottom stacked normalized reads assigned to the rank 'family' in A) Animalia (insects excluded) with read counts, and B) Viridiplantae with proportions.

Supplementary Figure 12 Upper Quartz stacked normalized reads assigned to the rank 'family' in A) Animalia (insects excluded) with read counts, and B) Viridiplantae with proportions.

2.5.3 Assessing ancient DNA damage

When mapping to a specific reference, *mapDamage*⁵³ quantifies the proportion of polymorphic nucleotides in a read relative to the reference to assess whether reads are characteristically damaged on their termini, and as such, are more likely to be ancient. The damage signal being quantified is deamination, which results in C-to-T (or G-to-A) substitutions. These substitution errors rarely occur with modern contaminants. This trend is observed consistently where sufficient read depth is achieved, supporting the argument that these reads are ancient and originate from the samples themselves.

Mapped read counts are inflated however when mapping to a specific organism as compared to taxonomically binned read counts that can be confidently *MEGAN* or *PIA* assigned. This is due to a degree of non-specific mapping of conserved regions of the mitochondrial and chloroplast genomes in highly complex metagenomic samples. This, in some instances, results in stacks of non-specific mapped reads at these conserved sites that contain internal polymorphisms, which causes jagged misincorporation plots and fragment length distributions. Conversely, reads that can be *BLASTn* and *MEGAN/PIA* assigned are individually diagnostic of the identified organism, and hence have smaller counts. Regardless of whether all of the mapped reads utilized for *mapDamage* originate from the specific organism to which they were mapped, or more likely originate from closely related species in the same genus or family, these damage plots show abundant terminal deamination patterns in both plant and animal sequences that are characteristic of ancient DNA. This again suggests that these molecules originate from the samples themselves and are not the result of contamination. Supplemental Figures 13 and 14 provide examples of on-target versus off-target mapping.

Supplementary Figure 13 On-target mapped reads for Picea

A) mapDamage fragment misincorporation plot⁵³ with a flat baseline. **B)** Ancient DNA typical fragment length distribution. **C)** Read mapping and binning specificity on a log scale. **D)** Edit distance distribution plot. Most reads have 0 polymorphisms relative to the mapped reference. **E)** BWA mapped reads in a portion of the rbcL gene with a coverage plot. Coloured squares indicate polymorphisms relative to the reference. Visualized in Geneious Prime (2019.2.3, www.geneious.com).

Supplementary Figure 14 Off-target mapped reads for Picea

A) *mapDamage* fragment misincorporation plot⁵³ with jagged baseline, but still containing clearly deaminated terminal bases. **B)** Bimodal fragment length distribution. **C)** Read specificity on a log scale. Note the significant drop in MEGAN read assignment compared with Supplemental Figure 13. **D)** Edit distance distribution plot. Note the increased average mismatches compared with Supplemental Figure 13. **E)** BWA mapped reads in a portion of the rbcL gene. Coloured squares indicate polymorphisms relative to the reference. This off-target mapping does not affect the *BLASTn/MEGAN* assignments. However, it does inflate the number of reads that map to a reference when assessing *mapDamage* plots. Regardless of off-target reads, there is still a pronounced signal of damage on the ends of these molecules even with polymorphic interior sites. The number of mapped reads here should not be used to infer taxonomic presence, but rather to confirm terminal base damage, supporting the argument that these molecules are ancient.

2.5.4 mapDamage plots

Supplementary Figure 15 *Mammuthus primigenius mapDamage* plots and fragment length distributions. <u>https://www.ncbi.nlm.nih.gov/nuccore/NC_007596.2</u>

Supplementary Figure 16 *Equus mapDamage* plots and fragment length distributions. Jagged baseline caused by mapping to Eurasian *Equus caballus* whereas the *Equus caballus* lambei clade (Yukon wild horse) is a better mapping target. https://www.ncbi.nlm.nih.gov/nuccore/NC 001640.1

Supplementary Figure 17 *Bison priscus mapDamage* plots and fragment length distributions. <u>https://www.ncbi.nlm.nih.gov/nuccore/NC_027233</u>

Supplementary Figure 18 *Rangifer tarandus mapDamage* plots and fragment length distributions. <u>https://www.ncbi.nlm.nih.gov/nuccore/NC_007703</u>

Supplementary Figure 19 *Alces alces mapDamage* plots and fragment length distributions. Abundant mapped reads in PHP-1/15/13 due to off-target mapping within Cervidae. <u>https://www.ncbi.nlm.nih.gov/nuccore/NC_020677</u>

Supplementary Figure 20 *Ovis canadensis mapDamage* plots and fragment length distributions. <u>https://www.ncbi.nlm.nih.gov/nuccore/NC_015889</u>

Supplementary Figure 21 *Lagopus lagopus mapDamage* plots and fragment length distributions. <u>https://www.ncbi.nlm.nih.gov/nuccore/NC_035568</u>

Supplementary Figure 22 *Lepus americanus mapDamage* plots and fragment length distributions. <u>https://www.ncbi.nlm.nih.gov/nuccore/NC_024043.1</u>

Supplementary Figure 23 *Microtus agrestis mapDamage* plots and fragment length distributions. <u>https://www.ncbi.nlm.nih.gov/nuccore/NC_041250</u>

Supplementary Figure 24 *Uroitellus richardsonii mapDamage* plots and fragment length distributions. <u>https://www.ncbi.nlm.nih.gov/nuccore/NC_031209</u>

Supplementary Figure 25 *Poa palustris mapDamage* plots and fragment length distributions. https://www.ncbi.nlm.nih.gov/nuccore/NC 027484.1

Supplementary Figure 26 *Artemisia frigida mapDamage* plots and fragment length distributions. https://www.ncbi.nlm.nih.gov/nuccore/NC 020607

Supplementary Figure 27 *Salix interior mapDamage* plots and fragment length distributions. <u>https://www.ncbi.nlm.nih.gov/nuccore/NC_024681</u>

Supplementary Figure 28 *Picea glauca mapDamage* plots and fragment length distributions. <u>https://www.ncbi.nlm.nih.gov/nuccore/NC_028594</u>

2.5.5 Depurination and deamination rates

Several additional analyses were performed to assess whether the sequenced molecules had damage patterns characteristic of ancient DNA with a paired temporal or climatological signature. We expanded on the *mapDamage* analyses with reads mapped specifically to the *Salix interior* (sandbar willow) chloroplast reference genome (NC_024681.1 [https://www.ncbi.nlm.nih.gov/nuccore/NC_024681.1]) as Salicaceae was identified in all samples (mean = 160,733 reads mapped per library; min = 2917; max = 1,211,599; std dev = 269,302). To note, sandbar willow is likely not the specific species of willow represented in this dataset. This *Salix* chloroplast genome was chosen because it is a curated NCBI reference sequence, and as it has been demonstrated that *Salix* readily hybridizes within the genus, limiting phylogenetic resolution at the species rank⁵⁴.

We first assessed whether the mapping target was reasonably accurate by assessing the nucleotide mismatch distribution as denoted by a decreasing edit distance⁵⁵. Mapped reads followed the expected pattern with the exception of samples PHP-5, 7–9, and 23 (Supplementary Figure 29). *Salix* was found to have the most consistent edit distance signal across time compared with alternative taxa within Poaceae and *Artemisia* despite some *Salix* mapped libraries with atypical distributions. The extent of DNA damage⁵⁶ was assessed using *mapDamage* v2.0⁵³. Hydrolytic deamination, the erroneous replacement of nucleotides on the 5' and 3' ends of ancient DNA molecules, was assessed with fragment misincorporation plots (Supplementary Figure 30). Hydrolytic depurination, the fragmentation of DNA into short (20–60 bp) sections was assessed using fragment length distributions (FLD). These lengths will take the form of an exponential distribution and thus the depurination rate can be estimated as λ in the formula $y = N \cdot e^{-\lambda \cdot x}$ ⁵⁷. This parameter was estimated using a modified version of a previously published script from Kistler et al.⁵⁸.

We compared the rates of deamination and depuration against the modeled age estimates using multiple linear regressions by core sample and site. As the total amount of damage is expected to increase over time, a positive relationship between age and damage was hypothesized to be present. Further, mean temperature and annual precipitation have been shown to affect the rate of DNA damage ⁵⁸. While not exactly temperature or precipitation measurements, δ^{18} O can serve as an excellent proxy as it is affected by these two variables⁵⁹.

Single stranded deamination rates are roughly correlated with age, wherein older samples tend to have more deamination than those which are younger (Supplementary Figure 31). However, when comparing deamination rates to δ^{18} O, we see a stronger correlation to temperature and hydrology wherein cores dating

56

to colder and drier periods have less deamination relative to those where the eDNA was released during warm and wet periods (Supplementary Figure 32). This is consistent with the results of Kistler et al.⁵⁸ who found that precipitation and temperature fluctuations contributed significantly to aDNA damage patterns, often irrespective of sample age. Depuration rates are also correlated with age wherein sedaDNA fragments tend to be shorter with older permafrost cores (Supplementary Figure 33). Deamination was found to be strongly correlated in a multivariate regression when the δ^{18} O values at the time of eDNA release was paired with modelled age (R²_{adj} = 0.4219; p-value = 0.0112; F-statistic: 6.473 on 2 and 13 DF). Depurination rates by contrast were not significantly correlated with age and δ^{18} O (R²_{adj} = 0.1695; p-value = 0.118; F-statistic: 2.531 on 2 and 13 DF).

The age and climate associated damage patterns observed here support the proposition that the bulk of eDNA recovered for our ecological reconstructions are roughly contemporaneous with the age-modelled dates for these cores. This supports both the timings of ecological turnover, and the late persistence of *Mammuthus* and *Equus* sedaDNA to the early and mid-Holocene.

Mismatches

Supplementary Figure 29 Plotted edit distances for reads mapped to the *Salix interior* chloroplast reference genome (NC_024681.1). PHP-5,7–9, and 23 have atypical edit distance distributions indicating that there is abundant off-target mapping to this reference, which may impact deamination/depuration rate estimates.

Supplementary Figure 30 Fragment misincorporation plots to confirm the presence of hydrolytic deamination for reads mapped to the *Salix interior* chloroplast reference genome (NC_024681.1). All libraries show characteristic ancient DNA damage patterns.

Supplementary Figure 31 Deamination rate of *Salix interior* mapped reads against time. **A)** All libraries included (n=21). **B)** Reads with atypical edit distance distributions removed (n=16). Shaded region = 95% confidence interval. P-values from a two-sided F-test of the linear regression model.

Supplementary Figure 32 Deamination rate of *Salix interior* mapped reads compared with the temporally nearest Greenland Ice Sheet Project 2 (GISP2) oxygen-18 isotope value ⁶². A) All libraries included (n=21). B) Atypical edit distance libraries removed (n=16). Shaded region = 95% confidence interval. P-values from a two-sided F-test of the linear regression model.

Supplementary Figure 33 Depurination rate of *Salix interior* mapped reads against time. A) All libraries included (n=21). B) Reads with atypical edit distance distributions removed (n=16). Shaded region = 95% confidence interval. P-values from a two-sided F-test of the linear regression model. Note: PHP-2 is an outlier in the metagenomic data with exceptionally poor sedaDNA preservation (no faunal DNA were identified). When this library is removed from panel B, the model becomes significantly correlated (R^2_{adj} = 0.620, P = 0.007, F = 6.716 (4/10 DF, critical F = 4.468).

2.5.6 Taxonomic binning replicate comparison between MEGAN and PIA

This section includes a taxonomic binning breakdown of subsampled replicates across batches. We observe a consistency between replicates in terms of their taxonomic compositions. We also observe that while the PIA taxonomic binning approach my be effective in reducing the potential for false-positive hits, it is too conservative to be of direct utility with this dataset. We utilized the top 600 BLASTn hits (100 more hits retained than recommended by the PIA developers⁶⁰, but still observe in many instances that all 600 hits are for the same or very closely related organisms. In these instances, PIA drops the read entirely assuming that this portion of the database is lacking in references aside from a set of over-represented 'oasis' taxa, irrespective of the taxonomic accuracy. Overall, this results in substantial data loss compared with *MEGAN*. We suspect that this limitation could be avoided by returning as many as the top 1500+ hits, but our blast files were already almost unwieldy with 600 hits. Some individual blast files are over 200 gigabytes, and in total the post-filtering dataset is approximately 3 terabytes in size. These limitations could likely be avoided by utilizing a taxonomically non-redundant or otherwise manually curated reference database, but these options may bias taxonomic binning to only organisms one expects to find. A BLASTn or similar alignment approach that had the option to collapse accession hits based on Taxonomy ID up to a certain threshold and could instead return the top 500+ Taxonomic ID hits would help alleviate the challenges of metagenomic noise observed here and in Murchie et al.⁴⁸. We also observed that there is utility in an ensemble PIA and MEGAN approach insofar as it provides a sanity check for taxonomic binning of rare or unexpected taxa. The flexibility and power of MEGAN with its customizable LCA and comprehensive GUI was found to be highly effective with this dataset, with limitations in *BLASTn* customization being the limiting factor.

63

Supplementary Figure 34 PHP-1 replicates comparison with *PIA* and *MEGAN* taxonomic binning. Select nodes depicted.

Supplementary Figure 35 PHP-2 replicates comparison with *PIA* and *MEGAN* taxonomic binning. Select nodes depicted.

		ΡΙΑ	BLAST	Parametere	MEGAN		
SedaDNA ID: PHP-3		• Min coverage = 95%	• Top 60	00 hits	Min Score = 50 Min Unique	Reads = 3	
Core: LL2S-253-D1		Min taxonomic diversity score: 0.1	• Max E	xpected 1.0E-5	Top Percent = 20	CA at 80%	
~cal yr BP : 9177	Merged	PHPii-3	PHPii-3cd	Merged	PHPii-3	PHPii-3cd	
Papaver	6		6	·13		12	
Papaveroideae	°61	5	°56	°53	11	•47	
Poa				-24		-22	40,000
(Poeae type)	·23	5	18	°96	·17	°80	
Poeae	°50	-13	*53 •44	• 348 • 437	•70	°278 • 353	
Carex	900	•99	8 01	7941	1 01114	6823	\bigcirc
Cyperoideae	01069	°128	941	4936	847	4099	1,000
Ribes	°100	·15	°85	•100	•15	°84	Square-root
Epilobium	15	8	7	°107	°51	°76	bubbles
Potentilla	•27	3	•24	.47	6	•41	
Salix	4 14647	2737	11910	338	4032	3645	7
Populus	3288	•572	2716	148	1273	11702	
Fagaceae	6	1	5	707	°159	560	
Betula	[©] 473	°86	°387	2529	[©] 546	01993	
Alnus	14	4	10	.44	10	.34	
Betulaceae	7037	■1331	5706	7166	6 1372	5800	
Eupinus Pedicularis	•124	5	-17	128	-18	°108 •34	
Thymus	22	5	17	•130	•25	•101	
Vaccinium				6		5	
Vaccinieae	26	1	25	•31	3	-29	
Vaccinioideae	43	5	-38	°80	-14	°70	
Pyrola Bhododondron	°150	-30	°120	⁰ 460	°60	© 344	
Fricoideae	-48	12	-36	°221	°122 °67	° 168	
Arctous	9	2	7	•344	·15	°298	
Arbutoideae	01750	•279	01471	886	°164	•746	
Viburnum	°400	°59	°341	°242	-34	°208	
Senecioneae	°80	·16	°64	• 328	°62	°267	
Artemisia	3	7	3	•43	7	•36	
Pinus	45	1	2	201	40	- 155	
Picea	1		1	01015	°102	913	
Abies				4		3	
Pinaceae	13	1	12	3847	<u>•</u> 378	3471	
Equisetum	6292	1107	5185	172	228 3006	13841	
	5386		4427				eads assigned
Turdus	°2		°2	°9		9 t	o taxon node
Lagopus	117	©11	106		679 070	589)
Tetraoninae	64	°4	60	•4	°4	•6	
Phasianidae	64	⁰ 8	56	•12	°5	●18	
Equus	°4	°3	° 1	•11	•8	°3	600
Equidae 📒	°2	°2		°2		°2	000
Alces				⁰ 15		<mark>0</mark> 11	(100)
Odocoileinae	°3		°3	°4		°4	
Cervidae	<mark>0</mark> 8		<mark>0</mark> 8	°6		°6	Square-root
Bison	°4		°4	07		°5	scaled
Bovinae	21	°4	017	29	•8	23	5455100
Bovidae	•4	•3	• 1	•11	•6	•5	
Pecora	© 8	•1	07	014	्य	014	
Homo	0	I	,	• 1 -	7	°.3	
Marmotini	• 1	• 1				0	
Murinee	• 1	I	• 1				
Mudas	• 1		• 1				
wyodes		• •	I		00		
Microtus	 ✓15 	Σ.	− 13	40	<u>о</u>	<u> </u>	
Dicrostonyx	-1		-1	•7			
Arvicolinae	48	<u>о</u> 6	42	44	<u>9</u>	36	
Cricetidae	○ 14	°3	[©] 11	⁰ 15	° 1	[─] 15	
Muroidea	©11	°1	□10	22	°2	21	
Lepus	°1		°1	●16	°4	•12	
Mammuthus	° 1		• 1	•3		•3	
Elephantidae	°2		°2	°6		°6	

Supplementary Figure 36 PHP-3 replicates comparison with *PIA* and *MEGAN* taxonomic binning. Select nodes depicted.

	Ρ	ΙΑ	BL ASTn Parameters		MEGAN			
SedaDNA ID: PHP-4 Core: LL2C-118-C	Min coverage = 95% Min taxonomic diversity score: 0.1		• Top 600 hits • Max Expected 1.0E-5		• Min Score = 50 • Min U • Min Percent Identity = 95 • Weigh • Top Percent = 20	nique Reads = 3 ted LCA at 80%		
~cal yr BP: 13,176	Merged replicates	PHP-4	PHPii-4	Merged replicates	PHP-4	PHPii-4		
Ranunculus	•19	3	•16	•75	20	°55		
Anemone	°20	•13	•7	•19	*8	•11		
Anemoneae	°68	°38	°30	[•] 106	°66	°40	20.000	
Ranunculoideae	°28	•7	*21	•140	*58	•82	10,000	
Poinae	*16	*12	2	23	15	-8	(\bigcirc)	
Poeae Chloroplast Group 2 (Poeae type)	·20	13 •14	3 •6		0 107	° 126	(1,000)/	
Poeae	°99	°57	°42	508	• 227	² 281		
Bromus	4	2	2	~7	4	3	Square-root	
Carex	⁰ 247	⁰ 156	<mark>°</mark> 91	3654	1767		scaled	
Cyperoideae	5 02	[©] 240	[©] 262	2619	899	1731	5055100	
Saxifraga	3		2	.14	.6	.8		
Salix	5927	3633	2294	2	1339 11597	972	0	
Saliceae		-6	5	3619	1150	194	247	
Oxytropis	3 4174	1	2	•11	1159	100	947	
Astragalus	•6	2	4	16	.9	•7		
Galegeae	•10	5	5	°47	°24	°25		
Lupinus	[©] 96	°55	°41	•146	°75	°71		
Genisteae	[•] 102	° 46	°56	°82	° 35	°47		
Plantago	*21	*10	•11	°34	14	*20		
Phlox	5	4	1	°26	*15	11		
Polemoniaceae	°79	°35	°44	•77	°36	°44		
Bhododendron	248	185	63	112 8	●681 ●62	• 32 5 • 61		
Ericaceae	876	4 50	0426	1108	<u> </u>	<u> </u>		
Artemisia	4	2	2	*44	*22	*22		
Anthemideae	°33	•14	•19	245	• 108	[•] 138		
Asteroideae	[©] 145	°58	°87	172 5	5 89	01142		
Picea				°10	5	5		
Pinaceae				•13	•7	•6		
	•7	3	4		°16	*20 A r	bsolute unique eads assigned	
Passeriformes	°2	°2		•6	4		to taxon node	
Lagopus	197	92	10 5	1	588 627	901		
Tetraoninae	165	79	86	•11	•7	•5	1,000	
Phasianinae	•1	• 1						
Phasianidae	134	5 1	83	•20	• 19	•28		
Anatidae	•1		•1				Square-root	
Equus	[©] 19	[•] 10	•9	4 1	[•] 16	⁰ 25	scaled	
Odocoileinae	*1		*1	•3			bubbles	
Cervus	•1	• 1						
Caprinae	•1	* 1						
Bison	° 6	•4	•2	[•] 11	° 5	° 6		
Bovinae	<u> </u>	⁰ 24	⁰ 20	0 53	⁰ 28	⁰ 24		
Bovidae	[•] 10	°5	°5	•17	•11	°7		
Mustelinae	•1	•1						
Primates				•3		•3		
Neotominae	*1		•1					
Mammuthus 📒				•4	° 3			
Elephantidae 📃	°6	•1	°5	• 10	°2	•9		

Supplementary Figure 37 PHP-4 replicates comparison with *PIA* and *MEGAN* taxonomic binning. Select nodes depicted.

		ΡΙΑ	BLAST	In Parameters	MEGAN		
SedaDNA ID: PHP-5	 Min coverage = 95% Min taxonomic diversity score: 0.1 		• Top 6 • Max	600 hits Expected 1.0E-5 • Min Sc • Min Sc • Min Sc • Min Sc	core = 50 • Min Uniquercent Identity = 95 • Weighted ercent = 20	50 • Min Unique Reads = 3 Identity = 95 • Weighted LCA at 80% = 20	
~cal yr BP: 13,510	Merged replicates	PHP-5	PHPii-5	Merged replicates	PHP-5	PHPii-5	
Papaver	•				•3	•3	
Papaveroideae =	•8	•6	2	•9	•6	•3	
Triticeae 🔳	°26	°14	°12	284	• 165	•121	
Poa 🗖				°53	°33	•20	
Poinae 🗖	•5	2	•3	•73	°42	°31	9,000
Poeae Chloroplast Group 2 (Poeae type) 🔳	°30	°17	°13	2 19	[•] 126	•96	
Poeae 🗕	⁰ 150	<mark>°</mark> 86	°64	<u> </u>	0 301	<u> </u>	1,000
Bromus 🗖	°14	•3	•11	.8		.8	
Pooideae =	0325	0 180	•145	1416	724	692	Square-root scaled
Carex	⁰ 164	⁰ 125	°39	1308	01052	<u> </u>	bubbles
Cyperoideae 🔳	[©] 121	[®] 84	°37	502	0397	●106	
Brassicaceae	• 12	•9	•3	⁹ 1	°30	°64	
Potentilla =	•39	°25	•14	•75	°34	°41	
Salix	·8	1	•7	•84	°28	•56	
Saliceae =	•10	•6	•4	°63	•23	°40	
Oxytropis	8 5	°42	°43	•90	°41	°49	
Astragalus =	°65	°26	•39	2 19	•90	[©] 156	
Galegeae 🗕	<mark>0</mark> 207	<mark>°</mark> 81	⁰ 126	609	<u> </u>	0362	
IRL clade	599	188	0 411	1187	4 81	701	
Hologalegina 💻	° 21	•8	°13	•27	*8	°22	
Plantago 💻	⁰ 175	[•] 80	•95	271	[•] 128	[●] 143	
Plantagineae 🔳	°51	°35	°16	•4		*4	
Plantaginaceae =	°48	•23	°25	•33	•12	°21	
Phlox	_107	°63	°44	312	0 164	●145	
Polemoniaceae	1561	814	747	1359	705	657	
Artemisia 🗕	•22	•17	•5	<u> 240</u>	[•] 128	⁰ 112	
Artemisiinae 🔳	•4	1	•3	<u>•</u> 126	[®] 84	°49	
Anthemideae 💻	0 330	9 193	•137	1019	542	4 79	
Asteroideae	<u>_</u> 455	263	<u> </u>	5093	3 2772	229	6
Asteraceae	2087	1137	950	996	52 (5334	46	54
Bupleurum =	0 302	<mark>0</mark> 159	<mark>0</mark> 143	9312	159	152	
Apioideae 🗖	1 89	•78	•111	0398	194	0 202 /	Absolute unique
Tetraoninae		•1					to taxon node
Fours	42		077	107			
	43	10	27	137	49	00	100
	35	13	22		8	15	100
	2	• 1	•1	-5	•3		(10)
Cervidae	•1		•1	•2		•4	
Ovis 🗖				11	6	5	Square-root
Caprinae 🗕	<u> </u>		•3	8	<u> </u>	<u> </u>	scaled
Bovinae 🗖	•4	• 1	•3	•5	•4		seldaua
Bovidae 🗖	5	•3	•2	8	•3	6	
Pecora 🗖	05	4	•1	13	011	•2	
Homo 🗖				0 9	-	8	
Mammuthus =	• 1		•1	<u> </u>	05	06	
Elephantidae =	06	• 1		20		12	

Supplementary Figure 38 PHP-5 replicates comparison with *PIA* and *MEGAN* taxonomic binning. Select nodes depicted.

Supplementary Figure 39 PHP-6 replicates comparison with *PIA* and *MEGAN* taxonomic binning. Select nodes depicted.

Supplementary Figure 40 PHP-7 replicates comparison with *PIA* and *MEGAN* taxonomic binning.

Supplementary Figure 41 PHP-8 replicates comparison with *PIA* and *MEGAN* taxonomic binning. Select nodes depicted.

Supplementary Figure 42 PHP-9 replicates comparison with *PIA* and *MEGAN* taxonomic binning. Select nodes depicted.
SedaDNA I		P	ΡΙΑ		BLASTn	Parameters		MEGAN				
Core: MM12-118B			Min covera	ge = 95% mic diversity ecore: 0.1		• Top 600 hits			Min Score = 50 Min Percent Identity =			
~cai yr	BP: 9240			mounterany ocore. c.		• Max Ext	Margad		Top Percent = 20	to Heighted Lorrar o	0,0	
	replicates	PHP-11	PHPii-11	SET-268	SET-269	SET-270	replicates	PHP-11	PHPii-11	SET-268	SET-269	SET-270
Thalictrum	3			1		2						
Thalictroideae 📒	3					3	6			3		
Delphinium	•42		2	12	•17	11	•32		-	9	9	12
Delphinieae	*80		6	-35	•21	•18	•76		8	-29	•22	·18
Ranunculoideae	·54	4	3	15	11	-25	•153	4	14	•45	•40	·5/
Poeae	-48	1	5	13	12	-23	•94	4	3	•105	•01	•71
Pooideae	•106	1	7	.30	.34	-34	e611	6	-63	•195	•190	•164
BOP clade	·31		2	8	9	12	•290	3	·24	•92	*90	*85 50,000
Carex 📕	•96		10	.25	•34	•27	e667	9	•54	•193	•220	•191
Cyperoideae 📒	•127	2	12	-39	•39	-35	•778	9	•80	°249	°217	•233 (^{10,000})
Ribes 📕	°384		•31	•155	•90	•108	°358		·19	•149	1 00	•82
Saxifragales 📒	°343	2	-25	°150	*82	•84	°302		-26	•122	•69	*86 Square-root
Brassica							.33			8	11	10 bubbles
Potentilla	4			1	2	1	•37			10	16	10
Potentilleae	•249	1	•40	•74	-62	•72	•140	-	18	•48	•46	-33
Rosoldeae	•188	2	14	•70	.56	-46	1093	1	-80	•397	•333	•285
Rosaceae	203	2	-20	-79	-58	-44	495	1	-44	181	150	128
Populus	10420	1 120	• 17 54	100	4599	4094	00007	-17	199	19665	2246	14373
Saliceae	10595	•110	013/2	3657	-74	-2603	59640	ee20	6889	20506	15673	15170
Fagaceae	1 10000	110	01042	0001	1	2005	•427	6	*33	161	120	116
Betula	•182	1	.23	-52	.55	·51	1368	14	•129	•398	e437	•388
Alnus	5	·	20	1		4	20		120	5	9	5
Betulaceae	2863	·20	°330	•929	•780	•804	●3111	·28	°337	•1019	923	8 03
Lupinus 📒	•91		13	·22	-30	-26	•132		15	-36	•35	-40
Genisteae	•107		3	-35	-39	·30	•114		8	-38	·48	-27
Vaccinium 📕	•33		4	12	12	5	•105		9	•40	· 35	·18
Vaccinieae	°285	4	.19	•111	•87	-64	°558	4	-50	°206	°170	•111
Vaccinioideae	[©] 600	4	-39	°240	°172	°145	•1320	7	*102	°503	°388	°334
Pyrola 📕	•102	_	15	•35	•24	-28	•726	4	-39	°219	•120	•158
Pyroleae	659	8	•103	°226	•166	°156	129	3	•70	•44	•76	•47
Rhododendron	■451 ●4500	/	-35	°147	*135	•127	8843	•197	■883 •25	0149	-2376	2433
Empetrum	•1029	-31	-94	- 344	•420	-434	• 235	4	.25	-94	25	-73
Ericoideae	2555	.39	•335	e833	888	≥4 ●682	5874	•103	•761	01995	0 1473	23 01515
Arctous	- 2000	00	000	000	000	002	•162	100	9	•45	.51	- 46
Arbutoideae	°240		·31	-84	-46	-79	*132		9	.47	.30	-44
Caprifoliaceae	°222	4	•34	•67	•68	-49	•244	4	•31	•79	•82	-53
Viburnum 📕	•147	2	11	•44	•45	•45	•93		10	.30	·26	-25
Adoxaceae	-51		7	15	13	16	·32	3	6	8	11	8
Heliantheae alliance	15		2	1	6	6	.60		8	·18	·22	·21
Artemisia 📃	6		1	2	2	1	•73		8	-26	·18	-20
Anthemideae	.53	1	9	-22	10	11	•351	6	-23	•126	•109	•88
Asteraceae	⁶²⁵	3	-38	°216	•168	°200	4905	•32	°359	●1718	•1194	01635
Pinus Pinus	6		1	2	1	2	-40	.05	3	7	.19	12
Picea	•70		11	-10	.20	.20	10823	•102	-030	-376	-2210	-769
Fauisetum	0843	5	*83	•287	•226	•242	2486	102	•207	2009	●2210 ●629	9725
Equisetaceae	692	3	·60	°248	•150	•231	14	12	1	11	5	-22
Hypnales	•318	2	.63	•102	•79	•72	•547	3	•140	°153	•130	•131 Absolute unique
												- reads assigned
Fringillidae	2	1	. 10		•1		•4				3 100	to taxon hode
Lagopus	83	•1	•10	28	26	18	438	•5	-27	134	120	108
Phasianinae	•1		- 1	20		• 1	99		-3	•0	•4	- 1
Phasianidae	53		• 1	20	11	15	23		• 3	011	012	012
Anatidae	•1		-4	•1	• 14	015	23		- 5		• 12	· 12
Fauus	• 3		•1		•2		•7			<u>•</u> 3	<u>ہ د</u>	
Equidae	•2		·		•2		•3			•1	•2	
Alces	•1			•1	-		0 11			•3	•3	400
Odocoileinae	•3			•	•2	•1	•6			•1	•2	•3
Cervus	•2					•2	•4					
Cervinae	017			0 11	•2	•4	012			0 11	•3	•4
Cervidae 📃	•12	•1	•1	•7	•2	•1	019			8	•4	Square-root
Caprinae	•1					•1						scaled bubbles
Bison	<u>8</u>			•1	•1	•6	21			°3	0 8	●8
Bovinae	49	•2	•4	•11	●13	1 9	68		●8	1 5	1 9	25
Bovidae 📕	017	•1	•1	•7	•4	•4	24	•3	•3	•9	•5	•6
Canidae	•1			•1								
Homo 🔳							•4					
Marmotini 📒	•1					•1				•••		
Microtus	•12		°1	•5	•4	•2	21		•3	9		•3
Dicrostonyx	•3		• •	•3	<u></u>	<u></u>	_ 40		A	• 40	<u> </u>	-10
	-30		×3	-10	— y @ o	<u>⊸</u> 8 ⊪1	42		~4	- 16	- 14	U 10
Muraidae =	- 13 0 E		-2	- 2	• O	1	-13		1	- 2	- 10 • •	• 3
	•1		• 1	5	2		06			- 0	• 3 • 3	- 0
Mammuthus	•4			•2	•2		0 21				017	•3
Elephantidae	. 17			•1	013	•3	34		•3	•5	018	<u>8</u>
Afrotheria	•1					•1	•1		-	-	•1	-

Supplementary Figure 43 PHP-11 replicates comparison with *PIA* and *MEGAN* taxonomic binning. Select nodes depicted.

SedaDNA ID: PHP-12 Core: MM12-119B ~cal yr BP: 10,051		PIA • Min coverage = 95% • Min taxonomic diversity score: 0.1				BLASTn Parameters Top 600 hits Max Expected 1.0E-5 			MEGAN • Min Score = 50 • Min Unique Reads = 3 • Min Percent Identity = 95 • Weighted LCA at 80% • Top Percent = 20				
	Merged	PHPii-12	CSMii-12a	CSMii-12b	CSMii-12c	CSMii-12d	Merged	PHPii-12	CSMii-12a	CSMii-12b	CSMii-12c	CSMii-12d	
Ranunculeae Anemoneae Ranunculoideae Poeae Pooideae Carex Cyperoideae Saxifraga Ribes Chamaenerion	*185 *130 *203 *185 *201 *158 *315 *533 41 •3422 63	1	·76 35 28 50 47 36 ·131 ·218 7 *825 16	30 72 147 64 82 66 58 82 6 6 6 465 19	65 6 7 48 36 23 45 -79 6 •1240 17	14 17 23 36 33 81 154 22 • 891 11	*82 96 *294 *414 *551 *1104 *3028 *2833 *118 *3095 20		29 27 39 114 158 282 1182 1058 32 817 8	19 44 189 153 168 380 525 547 20 *429 0	27 9 25 92 88 172 475 451 21 21 5	7 16 41 55 137 •270 •846 •777 45 •775 7	200,000 (10,000) Square-root
Gossypium Gossypioides Brassica Draba Potentilla Dasiphora Salix Populus Fagaceae Betula	11 4 50 21 6 77277 8189 22 •1735	3 1 1	3 4 7 3 26002 • 3027 12 • 596	2 1 18 4 219629 • 1798 4 • 421	4 26 4 13796 •1588 3 •342	2 6 6 17847 • 1775 3 • 375	-255 -241 -88 -70 -70 -70 241882 53307 -2362 -6180	2 30	·90 ·80 26 3 35 22 79930 17178 •752 •1495	54 61 18 19 13 61099 13340 •593 •2008	54 47 20 19 14 17 45168 10234 •484 •1653	57 53 24 0 33 18 5565 12555 •533 •1024	scaled bubbles
Astragalus Galegeae Lupinus Genisteae Pedicularis Thymus Vaccinium Vaccinieae Vaccinioideae	-89 -152 -2921 -2821 2 -85 1 -97 -683 -1268		19 32 • 2501 • 2451 2 47 26 • 181 • 427	55 94 127 121 13 18 94 163	7 13 56 51 8 1 38 *276 *452	8 13 237 198 17 0 15 15 132 226	*166 *318 •3012 •2153 *138 *162 *560 *196 •1186 •2849		35 -78 •2549 •1787 43 -81 -183 67 -380 •923	-97 -176 -134 -114 30 26 -125 29 -184 -423	18 25 56 54 34 18 123 63 •383 •993	16 39 •273 ·198 31 37 •129 37 •239 •510	
Pyrola Pyroleae Rhododendron Rhodoreae Erica Empetrum Empetrum Arctous Arbutoideae	•1230 •4438 •73 •190 1 •84 •520 11 •1608	1	*354 *1163 5 22 15 *146 6 *500	 271 1009 3 17 21 100 1 412 	-185 •741 16 58 1 24 -127 3 *364	*420 •1524 49 ·93 24 ·147 1 *332	•4094 •497 •1953 •106 40 •173 •89 •274 •842		*1012 *179 *368 26 12 57 32 *88 *266	*899 119 *327 19 12 31 9 29 *229	°697 *88 *544 36 10 48 19 *83 *178	•1486 •111 •714 25 6 37 29 •74 •169	
Vaterana Caprifoliaceae Viburnum Adoxaceae Artemisinae Arthemideae Picea Pinaceae	3 *394 •1609 •696 7 1 .75	1	1 -69 -566 -252 2 27 48	 153 443 176 1 17 	1 •98 •171 •69 18	1 •74 •429 •198 4 1 13	27 *398 *1060 *259 *74 45 *415 15 53 *586		6 •77 •387 •88 28 21 •150 0 12 •245	4 -158 -269 -69 13 5 -88 7 10 -68	10 •87 •120 33 14 6 •87 3 6 4 178	7 •284 •69 19 13 •90 5 25 •95	
Equisetum Equisetaceae Hypnales Passeriformes	10754 9982 307 	2	•3786 •3518 •92	•2260 •2103 • 87 • 2	•1667 •1590 	• 3039 • 2771 56 4	30983 62 •680 •25	6	10992 9 -201 -6 229	•6659 18 •175	•4807 20 •164 	8519 15 - 140 - 14 - 14	Absolute unique reads assigned to taxon node
Edgopol Equus Alces Odocoileinae Cervinae Cervinae Cervidae Caprinae Bos	41 70 59 110 154		•2 •3 •5 •13 •27 •23 •1	•1 •13 •36 •21 •48 •59	● 12 ● 10 ● 19 ● 23 ● 30 ● 1	•1 •13 •19 •6 •12 •42 •1	17 334 225 135 126 °3 °3	,	14 36 6 6 30 24 3	•9 •9 •53 •50	•3 •5 •6 •32 •30	99 •5 •4 •20 •22 •3	700 100 10 Square-root
Bison Bovinae Pecora Martes Lemuriformes Marmotini Rhizomys Neotominae	25 130 24 157 3 157 1 1		•3 ●16 ●6 ●33 •1	●10 ●47 ●9 ●54	•6 ●24 0 ●36 •2	•6 ●43 ●9 ●34 •1 •1	25 147 46 169 •3		•4 ●25 ●10 ●39 •3 •3	●10 ●46 ●17 ●58	•5 ●29 •5 ●36	•6 ●47 ●14 ●36	scaled bubbles
Myodes Microtus Eothenomys Dicrostonyx Arvicolinae Ctenodactylidae	*2 *1 *5 160		•1 ●15 •1 ●45	•12 •1 •45 •1	●18 •3 ●22	•1 •27 •1 •48	147 15 142		● 37 0 0 ● 40	●24 0 0 ●44	●34 0 ●9 ●20	● 52 0 ● 6 ● 38	
Lepus Mammuthus Elephantidae	•52 •23		●31 ●16	•15 •3	°4 °2	°2 °2	112 18 42		67 15 30	●25 •3 •4	●11 ●4	•9 •4	

Supplementary Figure 44 PHP-12 replicates comparison with *PIA* and *MEGAN* taxonomic binning. Select nodes depicted.

Supplementary Figure 46

PHP-14 replicates comparison with PIA and MEGAN taxonomic binning. Select nodes depicted.

Supplementary Figure 47 PHP-15 replicates comparison with PIA and MEGAN taxonomic binning.

Supplementary Figure 48 PHP-19 replicates comparison with *PIA* and *MEGAN* taxonomic binning. Select nodes depicted.

Supplementary Figure 49 PHP-20 replicates comparison with *PIA* and *MEGAN* taxonomic binning. Select nodes depicted.

Supplementary Figure 50 PHP-21 replicates comparison with *PIA* and *MEGAN* taxonomic binning. Select nodes depicted.

Supplementary Figure 51 PHP-22 replicates comparison with *PIA* and *MEGAN* taxonomic binning. Select nodes depicted.

Supplementary Figure 52 PHP-23 replicates comparison with *PIA* and *MEGAN* taxonomic binning. Select nodes depicted.

Supplementary Figure 53 PHP-24 replicates comparison with *PIA* and *MEGAN* taxonomic binning. Select nodes depicted.

Supplementary Figure 54 PHP-24 replicates comparison with *PIA* and *MEGAN* taxonomic binning.

Supplementary Figure 55 Blanks comparison with PIA and MEGAN taxonomic binning.

2.5.7 GC content and ghost range fragment lengths

Supplementary Figure 56 Assessing GC content of reference sequences and binned reads.

A) GC content of reference sequences (limited to Salicaceae, Poaceae, and Asteraceae) of the PalaeoChip Arctic v1.0 bait-set targeting loci within the chloroplast genome. Dots indicate GC content of the reference sequence.

GC content (%)

B) GC content of sedaDNA reads map-filtered, BLASTn assigned, and MEGAN binned to the three target loci. Includes molecules enriched from all three chloroplast loci (matK, rbcL, trnL). SedaDNA reads tend to have a GC content mode of ~37% irrespective of family, which may imply some degree of preferential bias. However, reads were sequenced from ~20-80% GC from the three loci, and could be assigned to all three families.

Supplementary Figure 57 Ghost range fragment length comparison (absolute unique read counts).

A) Fragment length distributions of reads binned within Proboscidea and Perissodactyla subdivided between periods that pre and post-date the last known appearance of that taxon with macrofossils in eastern Beringia. Most reads have fragment lengths between 30–50 BP, even among the ghost range samples.

B) Reads re-processed in *MEGAN* that were assigned to nodes within Proboscidea and Perissodactyla with an increased minimum fragment length to 35 bp. These plots demonstrate that exceptionally short fragments (~24 bp) have not influenced the taxonomic binning of ghost range reads. Some reads are dropped (not assigned) relative to the main-text bubble chart with the increased minimum fragment length (Fig. 2), but the signal does not disappear.

3. Supplementary References

- 1. Stuart, A. J. Late Quaternary megafaunal extinctions on the continents: a short review. *Geol. J.* **50**, 414–433 (2015).
- 2. Pitulko, V. V. *et al.* Early human presence in the Arctic: Evidence from 45,000-year-old mammoth remains. *Science (80-.).* **351**, 260–263 (2016).
- 3. Maschenko, E. N. *et al.* The Zhenya Mammoth (Mammuthus primigenius (Blum.)): Taphonomy, geology, age, morphology and ancient DNA of a 48,000 year old frozen mummy from western Taimyr, Russia. *Quat. Int.* **445**, 104–134 (2017).
- 4. Graf, K. E. Siberian Odyssey. in *Paleoamerican Odyssey* (eds. Graf, K. E., Ketron, C. V. & Waters, M. R.) 65–80 (Texas A&M University Press, 2014).
- 5. Pitulko, V. V. *et al.* The Yana RHS site: humans in the arctic before the last glacial maximum. *Science (80-.).* **303**, 52–56 (2004).
- 6. Hoffecker, J. F. & Elias, S. A. *Human Ecology of Beringia*. (Columbia University Press, 2007).
- 7. Nikolskiy, P. & Pitulko, V. Evidence from the Yana Palaeolithic site, Arctic Siberia, yields clues to the riddle of mammoth hunting. *J. Archaeol. Sci.* **40**, 4189–4197 (2013).
- 8. Clark, P. U. The Last Glacial Maximum. *Science (80-.).* **325**, 710–714 (2009).
- 9. Bourgeon, L. Bluefish Cave II (Yukon Territory, Canada): Taphonomic Study of a Bone Assemblage. *PaleoAmerica* **1**, 105–108 (2015).
- Bourgeon, L., Burke, A. & Higham, T. Earliest human presence in North America dated to the last glacial maximum: New radiocarbon dates from Bluefish Caves, Canada. *PLoS One* 12, e0169486 (2017).
- 11. Vachula, R. S. *et al.* Sedimentary biomarkers reaffirm human impacts on northern Beringian ecosystems during the Last Glacial period. *Boreas* **49**, 514–525 (2020).
- Holmes, C. E. Tanana River Valley archaeology circa 14,000 to 9000 BP. *Arctic Anthropol.* 38, 154–170 (2001).
- 13. Holmes, C. E. The Beringian and Transitional Periods in Alaska. in *From the Yenisei to the Yukon: Interpreting Lithic Assemblage Variability in Late Pleistocene/Early Holocene Beringia* (eds. Goebel, T. E. & Buvit, I.) 179–191 (Texas A&M University Press, 2011).
- 14. Potter, B. A. *et al.* Current evidence allows multiple models for the peopling of the Americas. *Sci. Adv.* **4**, 1–9 (2018).
- 15. Abramova, Z. A. Paleolit Severnoi Azii. in *Paleolit Kavkaza i Severnoi Azii* (ed. Boriskovskii, P. I.) 145–243 (Nauka, 1989).
- 16. Abramova, Z. A., Astakhov, S. N., Vasil'ev, S. A., Ermolva, N. M. & Lisitsyn, N. F. *Paleolit Eniseya*. (Nauka, 1991).
- Goebel, T. Siberian middle Upper Paleolithic. in *Encyclopedia of prehistory. Vol 2: Arctic and Subarctic* (eds. Peregrine, P. N. & Ember, M.) 192–196 (Kluwer Academic Publishers, 2002).
- 18. Ermolova, N. M. *Teriofauna doliny Angary v pozdem antropogene*. (Nauka, 1978).
- 19. Goebel, T. Pleistocene Human Colonization of Siberia and Pepoling of the Americas: An

Ecological Approach. Evol. Anthropol. 8, 208–227 (1999).

- Davis, R. S. & Ranov, V. A. Recent Work on the Paleolithic of Central Asia. *Evol. Anthropol.* 8, 186–193 (1999).
- 21. Dolukhanov, P. M., Shukurov, A. M., Tarasov, P. E. & Zaitseva, G. I. Colonization of Northern Eurasia by modern humans: Radiocarbon chronology and environment. *J. Archaeol. Sci.* **29**, 593–606 (2002).
- Graf, K. E. Adandomment of the Siberian Mammoth-Steppe during the LGM: Evidence from the calibration of 14C-dated archaeological occupations. *Curr. Res. Pleistocene* 22, 2–5 (2005).
- 23. Graf, K. E. 'The Good, the Bad, and the Ugly': evaluating the radiocarbon chronology of the middle and late Upper Paleolithic in the Enisei River valley, south-central Siberia. *J. Archaeol. Sci.* **36**, 694–707 (2009).
- 24. Graf, K. E. Hunter-gatherer disperals in the Mammoth-Steppe: Technological provisioning and land-use in the Enisei River Valley, south-central Siberia. *J. Archaeol. Sci.* **37**, 210–23 (2010).
- 25. Fiedel, S. J. & Kuzmin, Y. V. Radiocarbon date frequency as an index of intensity of Paleolithic occupation of Siberia: Did humans react predictably to climate oscillations? *Radiocarbon* **49**, 741–756 (2007).
- 26. Kuzmin, Y. V. & Keates, S. G. Dates are not just data: Paleolithic settlement patterns in Siberia derived from radiocarbon records. *Am. Antiq.* **70**, 773–789 (2005).
- 27. Kuzmin, Y. V. Siberia at the Last Glacial Maximum: Environment and archaeology. *J. Archaeol. Res.* **16**, 163–221 (2008).
- 28. Izuho, M. Human Technological and Behavioral Adaptation to Landscape Changes around the Last Glacial Maximum in Japan: A Focus on Hokkaido. in *Paleoamerican Odyssey* (eds. Graf, K. E., Ketron, C. V. & Waters, M. R.) 45–64 (Texas A&M University Press, 2014).
- 29. Buvit, I. & Terry, K. Outside Beringia: Why the Northeast Asian Upper Paleolithic Record Does Not Support a Long Standstill Model. *PaleoAmerica* **5563**, 1–5 (2016).
- Goebel, T. The 'microblade adaptation' and recolonization of Siberia during the late Upper Pleistocene. in *Thinking small: Global perspectives on microlithization. Archaeological Paper No. 12* (eds. Elston, R. G. & Kuhn, S. L.) 117–131 (American Anthropological Association, 2002).
- 31. Bronk Ramsey, C. Deposition models for chronological records. *Quat. Sci. Rev.* **27**, 42–60 (2008).
- 32. Reimer, P. J. *et al.* The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP). *Radiocarbon* **62**, 725–757 (2020).
- 33. D'Costa, V. M. *et al.* Antibiotic resistance is ancient. *Nature* **477**, 457–61 (2011).
- 34. Froese, D. G., Zazula, G. D. & Reyes, A. V. Seasonality of the late Pleistocene Dawson tephra and exceptional preservation of a buried riparian surface in central Yukon Territory, Canada. *Quat. Sci. Rev.* **25**, 1542–1551 (2006).
- 35. Mahony, M. E. 50,000 years of paleoenvironmental change recorded in meteoric waters

and coeval paleoecological and cryostratigraphic indicators from the Klondike goldfields, Yukon, Canada. (University of Alberta, 2015). doi:10.7939/R34T6FF58

- 36. Sadoway, T. R. A Metagenomic Analysis of Ancient Sedimentary DNA Across the Pleistocene-Holocene Transition. (McMaster University, 2014).
- 37. Fægri, K., Kaland, P. E. & Krzywinski, K. *Textbook of pollen analysis*. *Textbook of pollen analysis*. (John Wiley & Sons Ltd., 1989).
- 38. McAndrews, J. H., Berti, A. A. & Norris, G. *Key to the quaternary pollen and spores of the Great Lakes region*. (Royal Ontario Museum, 1973).
- 39. Hansen, B. C. Conifer stomate analysis as a paleoecological tool: An example from the Hudson Bay Lowlands. *Can. J. Bot.* **73**, 244–252 (1995).
- 40. van Geel, B. & Aptroot, A. Fossil ascomycetes in Quaternary deposits. *Nov. Hedwigia* 313–329 (2006). doi:10.1127/0029-5035/2006/0082-0313
- 41. van Geel, B. Non-pollen palynomorphs. in *Tracking environmental change using lake sediments* 99–119 (Springer, 2001).
- Haas, J. N. Neorhabdocoela oocytes-Palaeoecological indicators found in pollen preparations from Holocene freshwater lake sediments. *Rev. Palaeobot. Palynol.* **91**, 371–382 (1996).
- 43. Turton, C. L. & McAndrews, J. H. Rotifer loricas in second millennium sediment of Crawford Lake, Ontario, Canada. *Rev. Palaeobot. Palynol.* **141**, 1–6 (2006).
- 44. McCarthy, F. M. C., Pilkington, P. M., Volik, O., Heyde, A. & Cocker, S. L. Non-pollen Palynomorphs in Freshwater Sediments and their Palaeolimnological Potential and Selected Applications. *Geol. Soc. London, Spec. Publ.* **511**, SP511-2020–109 (2020).
- 45. Non-pollen palynomorphs as relevant indicators in palaeoecology and archaeobotany. Special Issue: Review of Palaeobotany and Palynology **186**, (2012).
- 46. Miola, A. Tools for Non-Pollen Palynomorphs (NPPs) analysis: A list of Quaternary NPP types and reference literature in English language (1972-2011). *Rev. Palaeobot. Palynol.* 142–161 (2012). doi:10.1016/j.revpalbo.2012.06.010
- 47. Langeveld, B. W. *et al.* A multidisciplinary study of a Late Pleistocene arctic ground squirrel (Urocitellus parryii) midden from Yukon, Canada. *Quat. Res.* **89**, 333–351 (2018).
- 48. Murchie, T. J. *et al.* Optimizing extraction and targeted capture of ancient environmental DNA for reconstructing past environments using the PalaeoChip Arctic-1.0 bait-set. *Quat. Res.* **99**, 305–328 (2021).
- 49. Karpinski, E., Mead, J. I. & Poinar, H. N. Molecular identification of paleofeces from Bechan Cave, southeastern Utah, USA. *Quat. Int.* **443**, 140–146 (2016).
- 50. Dabney, J. *et al.* Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. *Proc. Natl. Acad. Sci.* **110**, 15758–15763 (2013).
- 51. Enk, J. *et al.* Mammuthus population dynamics in Late Pleistocene North America: Divergence, Phylogeogrpaphy and Introgression. *Front. Ecol. Evol.* **4**, 1–13 (2016).
- 52. Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed

target capture and sequencing. Cold Spring Harb. Protoc. 5, (2010).

- Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. MapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. *Bioinformatics* 29, 1682–1684 (2013).
- 54. Percy, D. M. *et al.* Understanding the spectacular failure of DNA barcoding in willows (Salix): Does this result from a trans-specific selective sweep? *Mol. Ecol.* 4737–4756 (2014). doi:10.1111/mec.12837
- 55. Hübler, R. *et al.* HOPS: automated detection and authentication of pathogen DNA in archaeological remains. *Genome Biol.* **20**, (2019).
- Dabney, J., Meyer, M. & Pääbo, S. Ancient DNA damage. *Cold Spring Harb. Perspect. Biol.* 5, 1–7 (2013).
- 57. Deagle, B. E., Eveson, J. P. & Jarman, S. N. Quantification of damage in DNA recovered from highly degraded samples A case study on DNA in faeces. *Front. Zool.* **3**, 11 (2006).
- 58. Kistler, L., Ware, R., Smith, O., Collins, M. & Allaby, R. G. A new model for ancient DNA decay based on paleogenomic meta-analysis. *Nucleic Acids Res.* **45**, 6310–6320 (2017).
- 59. Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 180 records. *Paleoceanography* **20**, 1–17 (2005).
- 60. Cribdon, B., Ware, R., Smith, O., Gaffney, V. & Allaby, R. G. PIA: More Accurate Taxonomic Assignment of Metagenomic Data Demonstrated on sedaDNA From the North Sea. *Front. Ecol. Evol.* **8**, 1–12 (2020).
- 61. Conroy, K. J. *et al.* Tracking late-Quaternary extinctions in interior Alaska using megaherbivore bone remains and dung fungal spores. *Quat. Res.* 1–12 (2020). doi:10.1017/qua.2020.19
- 62. Grootes, P. M. & Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 10-3- to 105-year time resolution. *J. Geophys. Res. Ocean.* **102**, 26455–26470 (1997).