

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Hypertension incidence among middle-aged and older adults: Findings from a 5-year prospective study in rural South Africa, 2010-2015

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-049621
Article Type:	Original research
Date Submitted by the Author:	09-Feb-2021
Complete List of Authors:	Houle , Brian ; Australian National University, School of Demography; University of the Witwatersrand Faculty of Health Sciences Gaziano, Thomas A.; Harvard University Angotti, Nicole; University of the Witwatersrand Faculty of Health Sciences; American University, Department of Sociology Mojola, Sanyu A; Princeton University, Department of Sociology Kabudula, Chodziwadziwa; University of the Witwatersrand School of Public Health, MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Tollman, Stephen; University of the Witwatersrand School of Public Health, MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt); Harvard University of the Witwatersrand School of Public Health, MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt); Harvard University, Center for Population and Development Studies
Keywords:	Hypertension < CARDIOLOGY, PUBLIC HEALTH, HIV & AIDS < INFECTIOUS DISEASES, EPIDEMIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Hypertension incidence among middle-aged and older adults: Findings from a 5-year prospective study in rural South Africa, 2010-2015

Brian Houle,^{1,2,3} Thomas Gaziano,^{4,5} Nicole Angotti,^{2,3,6} Sanyu A Mojola,⁷ Chodziwadziwa W Kabudula,^{2,8} Stephen M Tollman,^{2,8,9} F Xavier Gómez-Olivé^{2,8,10}

1 School of Demography, The Australian National University, Canberra, ACT, Australia

2 MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School

of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg,

South Africa

3 Institute of Behavioral Science, University of Colorado Boulder, Boulder, Colorado, USA

4 Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA

5 Harvard Medical School, Harvard University, Boston, MA, USA

6 Department of Sociology and Center on Health, Risk and Society, American University,

Washington, DC, USA

7 Department of Sociology and Woodrow Wilson School of Public and International Affairs, and Office of Population Research, Princeton University, Princeton, NJ, USA

8 INDEPTH Network, Accra, Ghana

9 Centre for Global Health Research, Umeå University, Umeå, Sweden

10 Harvard Center for Population and Development Studies, Harvard University, Cambridge, MA, USA

Correspondence to: Brian Houle; brian.houle@anu.edu.au

Word count: 3,045

ABSTRACT

Objectives: There have been urgent calls for longitudinal cohort studies in sub-Saharan Africa to understand the epidemiology of cardiovascular disease as a basis for intervention. We estimated incident hypertension and associated sociodemographic, health and behavioural risk factors in a population aged 40 and older over a 5-year period. **Design:** We assessed the association between incident hypertension and sociodemographic, health and behavioural factors using Poisson regression. We adjusted for nonresponse in 2015 using inverse probability sampling weights from a logistic regression including sex and age at baseline.

Setting: Rural South Africa.

Participants: We used a population-based cohort of normotensive adults in 2010 who were ages 40 and older at retest in 2015.

Results: Of 676 individuals completing baseline and 5-year follow-up, there were 193 incident cases of hypertension. The overall hypertension incidence rate was 8.374/100 person-years. In multivariable analyses, those that became hypertensive were more likely to have a high waist circumference (incidence rate ratio (IRR): 1.557 95% CI: 1.074-2.259) and be employed (IRR: 1.579 95% CI 1.071-2.329) at baseline. Being HIV-positive (regardless of antiretroviral therapy status) at baseline was inversely associated with incident hypertension. **Conclusions:** Over a 5-year period, 29% of respondents developed hypertension. As the burden of hypertension continues to increase in sub-Saharan Africa, this study provides evidence of modifiable risk factors in a poor, rural South African setting to inform public health prevention strategies and programs. Continued longitudinal follow-up is needed to understand the complex interplay of noncommunicable and infectious diseases and their underlying and modifiable risk factors.

Keywords: Hypertension; incidence; South Africa; rural population; cohort

Strengths and limitations of this study

- In response to the urgent call for longitudinal sub-Saharan African studies, we provide longitudinal evidence on hypertension incidence from a population-based cohort in rural South Africa.
- Our results that being HIV-positive was inversely related to increased BP may be sensitive to survivorship bias if those who died due to HIV/AIDS over the five-year period were also more likely to develop hypertension.
- A longer period of follow-up is needed to assess the effects of HIV and ART on hypertension and related cardiometabolic conditions.

BMJ Open

INTRODUCTION

Hypertension is one of the most important noncommunicable disease (NCD) risk factors and the largest contributor to the global burden of disease, with high blood pressure accounting for 7% of global disability-adjusted life years.¹ The burden of hypertension is greatest in low and middle-income countries (LMIC),² and has increased rapidly in sub-Saharan Africa.^{3–7} A study of people aged 50 years and over from six countries found markedly high prevalence in South Africa (77.9%).⁸

Rapid demographic and epidemiological changes in LMICs, such as population aging, are expected to dramatically increase hypertension prevalence. Results from a modelling study found that without any changes in the age-specific prevalence of hypertension, the hypertensive population in South Africa is expected to grow by 105% by 2050.⁹ These dramatic changes on the epidemiology of hypertension are further complicated by a lack of awareness by those with a hypertensive condition, with serious consequences of a low proportion of hypertensive individuals being on treatment.^{10–12} In South Africa, an estimated 38-64% of hypertensives were aware of their status and 7.8-22.8% effectively controlled.^{8 13}

Longitudinal data from sub-Saharan Africa are needed to examine changes on populationspecific hypertension risk factors over time,¹⁴ particularly given differences in socio-cultural environments and related health factors (e.g., diet, concurrent infectious diseases), and differentials in rural versus urban risk factor level.¹⁵ This is particularly important as increased availability of antiretroviral therapy (ART) has reduced HIV/AIDS mortality^{16 17} and the subsequent aging of people living with HIV.¹⁸ The aging population will be at higher risk of developing hypertension, and the effect of HIV and ART may also increase the incidence of hypertension.^{19–22} In South Africa, an emerging dual burden of disease, along

BMJ Open

with urban-rural differences due to the legacy of the apartheid era also highlight the importance of understanding location-specific hypertension risk factors over time.²³ However, there is currently a limited number of longitudinal studies examining risk factors for incident hypertension in the region.^{24–27}

We use a population-based cohort of adults in rural South Africa who were normotensive in 2010-11 and were 40 years or older in 2014-15 to estimate hypertension incidence and identify sociodemographic, health and behavioural risk factors over a five-year period.

METHODS

 We use data from two survey studies conducted in 2010-11 and 2014-2015 in the Agincourt Health and socio-Demographic Surveillance System (HDSS) study area in rural northeast South Africa.²⁸ Since 1992, the Medical Research Council (MRC)/Wits Rural Public Health and Health Transitions Unit has been conducting an annual census update of the population living in the study site, including information on vital events (births, deaths, migrations) and household and individual socio-demographic information. In 2010-11, the baseline study (Ha Nakekela) included a sex-age stratified random sample of 7,662 men and women aged 15 and older who were permanent residents from the 2009 HDSS census.²⁹ A follow-up study from November 2014 to November 2015 (The Health and Aging in Africa: A Longitudinal Study of an INDEPTH Community in South Africa (HAALSI)) included a random sample of 6,281 men and women aged 40 years and older who were permanent residents from the 2013 HDSS census,³⁰ including those in the baseline study who fulfilled the inclusion criteria. Both studies included information on sociodemographic factors and self-reported health and conditions, anthropometric and blood pressure measurements, and point of care blood tests for glucose and lipids, and dried blood spots (DBS) for HIV status.

Outcome measure

Blood pressure (BP) and hypertension. BP was measured three times using a Boso BP instrument in 2010 and an Omron M6W automated cuff in 2015. Validation studies of similar blood pressure monitoring devices indicate that they can provide accurate measurements.^{31–33} We used the average of the second and third measurements consistent with national surveillance guidance.³⁴ Hypertension was defined as a systolic blood pressure \geq 140 mmHg or diastolic blood pressure \geq 90 mmHg or if the respondent self-reported taking hypertensive medication.

2010 risk factors

Anthropometry and high waist circumference. Height, weight, and waist circumference were measured using a flexible stadiometer (Seca). High waist circumference was defined as >102cm for men and >88cm for women. Obesity was classified as a body mass index (BMI; $kg/m^2) \ge 30$.

Random blood glucose and diabetes. Point of care instruments were used to measure glucose (Caresens POP blood glucose meter). Diabetes was defined as a random blood glucose level of \geq 11.1 mmol/L or if the respondent self-reported medication use for diabetes.

High triglycerides. A Cardiocheck instrument was used to measure lipid levels. High triglycerides was defined as $\geq 1.7 \text{ mmol/}1.^{35}$

HIV status. HIV DBS were tested using screening assay Vironostika Uniform 11 (Biomeriuex, France); with positive results retested using the SD Bioline HIV ELISA test

(SD; Standard Diagnostics Inc., Korea). If the two tests were inconsistent, we conducted a third assay (Elecys, Roche, USA) that determined the final result.

Socio-demographics and behaviours. Respondents were asked about smoking and alcohol history, physical activity, and if they were using ART. Information on years of completed education, employment (currently working for pay), union (informal or formal) and socioeconomic status (based on tertiles of an asset index³⁶) were extracted from the most recent surveillance census.

Cause of death: For those who died between the baseline and follow-up study and for whom a death was identified from census updates, a verbal autopsy (VA) was conducted using a standardized VA instrument. For each identified death, a specially trained team conducted a VA interview with the closest living care taker to record signs and symptoms experienced before the death. We categorized cause of death using InterVA-4³⁷ – assigning a single cause for the largest likelihood for each death.

Analysis

We calculated hypertension incidence for those aged 40 years and older at the time of the second survey over five years overall, and by sex, age, and other socio-demographic factors. We calculated age-adjusted incidence using the Agincourt 2009 census population. We used Poisson regression to examine the association of hypertension status with socio-demographic, health and behavioural factors from the baseline study. To adjust for nonresponse in the follow-up study, we developed inverse probability sampling weights (IPSW) based on a logistic regression including sex and age at August 2010. We multiplied the IPSW for nonresponse by the inverse probability weights from the 2010 sample selection to derive our

Page 9 of 45

BMJ Open

final weights for analysis. For our fully adjusted multivariable models, we fit separate models with and without HIV/ART status given a reduced sample of 2010 respondents with measured HIV status (particularly for the eligible sample estimates, see next paragraph).

We used two approaches to estimating exposure time for our incidence estimates. For the first approach, we included only those individuals who participated in both surveys. For incident cases, we defined exposure time as the midpoint between the dates of the first and second survey assessments. For the second approach, we included all eligible individuals from the first survey who were able to be tracked from census data. For those who out-migrated or died before the start of the second study, we allowed them to contribute exposure time between their blood pressure measurement in the first study and time at death or out-migration. For those who were not found or refused to participate in the second survey, we allowed exposure time between the first study's measurement and the start of the second study. As the second approach includes additional exposure time but no new incident cases, it provides a lower bound for our estimate of hypertension incidence. Individuals who aged to 40 during the follow-up time only contributed to exposure when they had reached 40 years or older. We used Stata 15 for all statistical analyses.³⁸

We also tested the sensitivity of our results. We tested models using either BMI or waist-tohip ratio instead of waist circumference. We also tested a model of hypertension based on only BP thresholds to assess if there were differences in the associations between predictors and incident BP only. Finally, we tested a competing-risk model for those eligible individuals who either died, migrated, or completed the follow-up study to test for bias in our risk factor associations. We modelled incident hypertension as the main event and death due to any cause as a competing event (censoring those who out-migrated) using the Fine-Grey model.³⁹

Patient and public involvement

Neither study participants nor public were involved in study design or conduct of the study. The HDSS Learning, Information dissemination and Networking with Community (LINC) office manages community liaison with the HDSS study communities and their leaders. Annual feedback of findings from the HDSS and projects are provided to open village meetings with participation commonly from local service providers.

RESULTS

 Figure 1 shows the participant flowchart. A total of 977 individuals were eligible for analysis from the first study and 676 (69%) also completed the second study. Table 1 presents sample characteristics from the baseline study comparing those who completed the second study and those who did not. Women, those with a high waist circumference, those in older ages and in a union with lower completed education were more likely to participate in the second study.

There were 193 incident cases of hypertension since baseline. The overall hypertension incidence rate was 8.374 per 100 person-years for those completing both studies (men 9.097; women 8.159; Table 2). The overall age adjusted hypertension incidence rate for those completing both studies was 8.372 per 100 person-years (men 8.955; women 8.50). Rates were lower when including the full eligible sample (Online supplemental table 1). By age, men in their 40s and 50s had higher incidence compared to same aged women, while women showed higher rates than men from ages 60-plus (Figure 2).

Table 2 shows incident rates and ratios for those completing both studies by baseline sociodemographic, health, and behavioural factors. Older age individuals were associated with Page 11 of 45

BMJ Open

higher incident hypertension risk compared to those ages 40-49. Those with high waist circumference and elevated triglycerides had a higher risk of incident hypertension. Respondents engaging in high physical activity levels had a lower risk of incident hypertension compared to those with low physical activity levels. Those HIV-positive and not on ART at baseline had a 55% lower risk of developing hypertension over the 5 years of follow-up, while those on ART also had lower hypertensive risk than those HIV-negative at baseline. Results for the full eligible sample are presented in online supplemental table 1.

Table 3 shows the multivariable-adjusted results from the full Poisson regression excluding HIV status for those completing both studies (see online supplemental table 2 for the full eligible sample results). Older ages, being employed (IRR: 1.579 95% CI: 1.071-2.329), and having a high waist circumference (IRR: 1.557 95% CI: 1.074-2.259) were associated with higher risk of incident hypertension in 2015. Those engaging in high levels of physical activity had an approximately 43% lower risk of incident hypertension, although the 95% CI overlapped with the null value of 1 (95% CI: 0.319-1.018)

Table 4 shows the same multivariable-adjusted Poisson model as Table 3 including HIV status, with similar results to those risk factors from the model without HIV status. The results for high waist circumference were in the same direction but the 95% CI overlapped with the null value of 1, likely due to the reduced sample size. Those who were HIV-positive and not on ART had an approximately 52% lower risk of incident hypertension compared to those HIV-negative at baseline (95% CI 0.301-0.778), while those HIV-positive and on ART showed similar associations to those not on ART.

BMJ Open

Results of the sensitivity analyses of alternate anthropometry measures showed similar associations for BMI as for waist circumference (online supplemental table 3). There were not enough cases of high waist-to-hip ratio to include in the models. A model examining an outcome based only on BP thresholds also showed similar associations to the original models (online supplemental table 4). For the competing risk model, high rates of missingness on HIV/ART status precluded including that indicator. Results omitting HIV/ART status at baseline are presented in online supplemental table 5, showing similar results to the full eligible sample (online supplemental table 2). Cause of death information according to broad cause groups is presented in online supplemental table 6.

DISCUSSION

In 1998, South Africa had approximately 6.3 million adults with hypertension.⁴⁰ Now it is estimated to be close to 12 million, nearly doubling despite population growth of about 34% over the same time period, with prevalence increasing from 24% to over 40% in some populations.⁴¹ Based on our finding of 8.37 per 100 person-years, roughly 1.4 million adults over the age of 40 will develop hypertension over the next five years. Given an increase of nearly 50% in the risk of ischemic heart disease and stroke death for each 10 mmHg increase,⁴² the results suggest a significant increase in the number of people required for additional treatment and premature mortality if not adequately controlled.

We found that 29% of older adults in our study developed hypertension over a five-year period. Our results were similar to another study from South Africa following individuals ages 30-plus who started with optimal blood pressure over five years (2005-2010). They found a relatively similar incidence of 24%²⁷ given the slightly younger age range.

Page 13 of 45

BMJ Open

We showed that men have higher hypertension incidence rates in mid-life, while women had higher rates in older ages. This is likely due at least in part to the smaller sample size of men in our study. A potentially similar pattern was shown in a study in South Africa (2004-2016) of patients initiating ART at 10 public sector clinics (9 urban, 1 rural) and including a wider age range (ages 18-50-plus).²⁴ They found that men had higher hypertension incidence rates at ages 18-39, while women had higher rates at ages 40-49 and 50-plus. Our finding may also be due in part to greater employment for middle-aged men⁴³ and higher survival^{17 44} or obesity^{45 46} among older women.

In multivariable-adjusted models, we found that being employed and having a high waist circumference at baseline were risk factors for incident hypertension. In another study in South Africa, they also found that high waist circumference was a key risk factor, along with alcohol intake.²⁷ While we showed no association with alcohol use, our sample also had low self-reported use of alcohol, with 80% reporting not drinking in the past month, which may be due in part to response bias.⁴⁷ Given the limited employment opportunities in our setting,²⁸ a higher risk of hypertension amongst employed individuals may represent those more likely to be exposed to workplace-related stress and other behavioural factors such as diet^{48 49} that may differ from those not employed.

We found that being HIV-positive at baseline was associated with a lower risk of incident hypertension. This also aligns with an earlier study in South Africa that showed that being HIV-positive was inversely related to increased BP.²⁷ However, our results may be sensitive to survivorship bias if those who died due to HIV/AIDS over the five-year period were also more likely to develop hypertension. Of the 71 individuals for which mortality information is available, about 28% died due to HIV/AIDS or TB. If a substantial portion of those

BMJ Open

individuals developed hypertension this may affect our estimates of the association between HIV/ART status and risk of incident hypertension. Further, as we lacked information on HIV/ART status for many individuals in the eligible sample who did not complete the follow-up study, this may affect our estimates if those individuals were more likely to be HIV-positive.⁵⁰ A longer period of follow-up is needed to assess the effects of HIV and ART on hypertension and related cardiometabolic conditions. Longitudinal studies restricted to HIV-positive individuals have shown high hypertension incident rates over relatively short periods of follow-up and similar risk factors to the HIV-negative population.^{25 26}

Our longitudinal findings are particularly important given the complex health transition occurring in South Africa, with a concomitant burden of infectious and noncommunicable diseases.^{17 23 29 45} A study from the same community as our study demonstrated a high and increasing burden of stroke morbidity and mortality.⁵¹ While our findings are consistent with hypertension-related risk factors found in other regions, population-specific studies such as ours are important to contextualize the epidemiological findings from elsewhere and inform local prevention and treatment strategies.¹⁴ They also provide an opportunity to understand the interaction between cardiometabolic and infectious diseases such as HIV. A longer period of follow-up, which will be possible as future waves of the study are completed, will permit a greater understanding of the interplay between hypertension, HIV, and treatment of both and related conditions.

We acknowledge our study limitations. While our study is one of the few population-based, longitudinal cohorts on hypertension incidence in Africa, the study comes from a defined region in rural northeast South Africa. Additional studies are needed in other settings, particularly given differences in exposures and differential risk factors in rural and urban

Page 15 of 45

BMJ Open

contexts. We include a wide range of potential risk factors based on existing studies. Other factors, however, such as migration history, would be important to consider given the high levels of circular labour migration in this setting and potential links of rural to urban migration to increased blood pressure.^{52–55} Further, food insecurity is highly prevalent in this setting⁵⁶ and may lead to differential hypertension risk due to dietary differences. Given the high level of missingness on HIV/ART status amongst the eligible population who did not complete the follow-up study, we were unable to assess the effect of HIV/ART in a competing risk framework. Our measure of ART status is also based on self-report and may be subject to response bias, as well as factors related to HIV awareness such as engagement with health services.⁵⁷

Over a period of five years, 29% of individuals developed hypertension in a population-based cohort of individuals ages 40 and older given an incidence rate of 8.374 per 100 person-years. Abdominal obesity was one of the most consistent risk factors. Being employed was also a predictor of incident hypertension. As South Africa continues to undergo a complex health and epidemiological transition, continued longitudinal follow-up is needed to understand the complex interplay of noncommunicable and infectious diseases, along with their underlying and modifiable risk factors. In response to the urgent call for longitudinal sub-Saharan African studies, an increasing evidence base can help inform and target public health strategies to reduce preventable morbidity and mortality.

1.

Acknowledgements

The authors thank the study participants and all those involved in the successful field operations in Ha Nakekela, HAALSI and the Agincourt HDSS.

Contributions: BH wrote the first draft and designed and completed the statistical analyses. FXG, BH, TG and SMT conceptualized the work. FXG, NA, CWK, and SMT designed and implemented the baseline study. TG, FXG, CWK, and SMT designed and implemented the follow-up study. TG, NA, SAM, CWK, SMT, and FXG revised the manuscript for important intellectual content and contributed to interpretation of the data. All authors read and approved the final manuscript.

Funding: The Ha Nakekela study was supported by the National Institutes of Health [R24 AG032112-05] and the William and Flora Hewlett Foundation 2009-4060 African Population Research and Training Program. Data analysis for this study was funded by the US National Institute on Aging [R01 AG049634] and the University of Colorado, Innovative Seed Grant HIV after 40 in rural South Africa [not applicable].

HAALSI was supported by the U.S. National Institute on Aging [P01AG041710; 1R01AG051144-01; 3U54HG006938-03S1].

The MRC/Wits Rural Public Health and Health Transitions Research Unit and Agincourt Health and Socio-Demographic Surveillance System, a node of the South African Population Research Infrastructure Network (SAPRIN), is supported by the Department of Science and Innovation [not applicable], the University of the Witwatersrand [not applicable], and the

BMJ Open

Medical Research Council, South Africa [not applicable], and previously the Wellcome Trust, UK (Grants 058893/Z/99/A; 069683/Z/02/Z; 085477/Z/08/Z; 085477/B/08/Z).

Competing interests: None declared.

Ethics approval: Ethical clearance for both surveys and the HDSS were obtained from the University of the Witwatersrand Human Research Ethics Committee (Medical) [M10458 and M141159] and the Mpumalanga Provincial Research and Ethics Committee. The baseline study also received ethical approval from the Institutional Review Board of the University of Colorado – Boulder [11-0549] and the follow-up study from the Harvard TH Chan School of Public Health, Office of Human Research Administration [C13-1608-02]. Written consent to participate was obtained for all participants in the baseline study. Each respondent in the follow-up study also provided written, informed consent (or by a proxy, when needed).

Data sharing: The datasets generated and/or analysed for the follow-up study are available at the Harvard Center for Population and Development Studies (HCPDS) program website: www.haalsi.org. The data supporting the findings of this study are available from the corresponding author on reasonable request.

REFERENCES

- Lim, S. S., T. Vos, A. D. Flaxman, G. Danaei, K. Shibuya, H. Adair-Rohani, M. A. AlMazroa, M. Amann, H. R. Anderson, and K. G. Andrews. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. *The Lancet* 2013;380:2224-2260.
- 2. Ibrahim, M. M., and A. Damasceno. Hypertension in developing countries. *The Lancet* 2012;380:611-619.
- 3. Bosu, W. K., S. T. Reilly, J. M. K. Aheto, and E. Zucchelli. Hypertension in older adults in Africa: A systematic review and meta-analysis. *PloS One* 2019;14:e0214934.
- Guwatudde, D., J. Nankya-Mutyoba, R. Kalyesubula, C. Laurence, C. Adebamowo, I. Ajayi, F. Bajunirwe, M. Njelekela, F. S. Chiwanga, T. Reid, J. Volmink, H. O. Adami, M. D. Holmes, and S. Dalal. The burden of hypertension in sub-Saharan Africa: a fourcountry cross sectional study. *BMC Public Health* 2015;15:1211.
- 5. Kaze, A. D., A. E. Schutte, S. Erqou, A. P. Kengne, and J. B. Echouffo-Tcheugui. Prevalence of hypertension in older people in Africa. *Journal of Hypertension* 2017;35:1345-1352.
- 6. Sarki, A. M., C. U. Nduka, S. Stranges, N. B. Kandala, and O. A. Uthman. Prevalence of Hypertension in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. *Medicine* 2015;94:e1959.
- Twagirumukiza, M., D. De Bacquer, J. G. Kips, G. de Backer, R. V. Stichele, and L. M. Van Bortel. Current and projected prevalence of arterial hypertension in sub-Saharan Africa by sex, age and habitat: an estimate from population studies. *J Hypertens* 2011;29:1243-1252.
- 8. Lloyd-Sherlock, P., J. Beard, N. Minicuci, S. Ebrahim, and S. Chatterji. Hypertension among older adults in low- and middle-income countries: prevalence, awareness and control. *International Journal of Epidemiology* 2014;43:116-128.
- 9. Sudharsanan, N., and P. Geldsetzer. Impact of Coming Demographic Changes on the Number of Adults in Need of Care for Hypertension in Brazil, China, India, Indonesia, Mexico, and South Africa. *Hypertension* 2019;73:770-776.
- 10. Addo, J., L. Smeeth, and D. A. Leon. Hypertension in sub-saharan Africa: a systematic review. *Hypertension* 2007;50:1012-1018.
- Gómez-Olivé, F. X., S. A. Ali, F. Made, C. Kyobutungi, E. Nonterah, L. Micklesfield, M. Alberts, and R. Boua. Stark Regional and Sex Differences in the Prevalence and Awareness of Hypertension: An H3Africa AWI-Gen Study Across 6 Sites in Sub-Saharan Africa. *Global Heart* 2017
- 12. Ataklte, F., S. Erqou, S. Kaptoge, B. Taye, J. B. Echouffo-Tcheugui, and A. P. Kengne. Burden of undiagnosed hypertension in sub-saharan Africa: a systematic review and meta-analysis. *Hypertension* 2015;65:291-298.
- Jardim, T. V., S. Reiger, S. Abrahams-Gessel, F. X. Gomez-Olive, R. G. Wagner, A. Wade, T. W. Bärnighausen, J. Salomon, S. Tollman, and T. A. Gaziano. Hypertension management in a population of older adults in rural South Africa. *Journal of Hypertension* 2017;35:1283-1289.
- 14. Kengne, A. P., L. M. Ntyintyane, and B. M. Mayosi. A systematic overview of prospective cohort studies of cardiovascular disease in sub-Saharan Africa. *Cardiovascular Journal of Africa* 2012;23:103-112.

1 2		
3	15.	Holmes. M. D.,
4 5		W. C. Willett, a
5 6		the case for coh
7	16.	Herbst, A. J., G
8		Adult mortality
9		Africa. Bulletin
10	17.	Kabudula, C. W
17		and S. Tollman.
13		setting: findings
14		Health 2017;17
15	18.	Vollmer, S., K.
16		HIV epidemic i
1/	10	Health Surveys
10	19.	Anand, A. R., C
20	20	dysfunction: Im
21	20.	Grinspoon, S., a
22	01	infected adults.
23	21.	Dillon, D. G. A
24 25		Africa: a system
26	22	2013;42:1/54-1
27	22.	Rigaua, AS., a
28	22	2001,30A.M21 Mayosi P M
29	23.	The burden of r
30 21	24	Brennan A T
31	24.	Stokes M Mas
33		treatment and c
34		treatment in nul
35		2018-13-e0204(
36	25	Okello S M k
3/ 38	20.	and M J Siedn
39		initiating antire
40		2045
41	26	Rodríguez-Arbo
42	_0.	M. Battegav. E.
43		hypertension an
44 45		One 2017:12:e0
46	27.	Schutte, A. E., I
47		Malan, L. Mala
48		Wentzel-Viljoe
49		blamed for the
50		South Africans?
51 52		2012;41:1114-1
53	28.	Kahn, K., M. A
54		Afolabi, B. D. C
55		Silaule, J. B. Ti
56		Profile: Aginco
5/ 50		2012;41:988-10
50 59		
60		

- Holmes, M. D., S. Dalal, J. Volmink, C. A. Adebamowo, M. Njelekela, W. W. Fawzi, W. C. Willett, and H. O. Adami. Non-communicable diseases in sub-Saharan Africa: the case for cohort studies. *PLoS Med* 2010;7:e1000244.
- 16. Herbst, A. J., G. S. Cooke, T. Bärnighausen, A. KanyKany, F. Tanser, and M. Newell. Adult mortality and antiretroviral treatment roll-out in rural KwaZulu-Natal, South Africa. *Bulletin of the World Health Organization* 2009;87:754-762.
- 17. Kabudula, C. W., B. Houle, M. A. Collinson, K. Kahn, F. X. Gómez-Olivé, S. J. Clark, and S. Tollman. Progression of the epidemiological transition in a rural South African setting: findings from population surveillance in Agincourt, 1993-2013. *BMC Public Health* 2017;17:424.
- 18. Vollmer, S., K. Harttgen, T. Alfven, J. Padayachy, P. Ghys, and T. Bärnighausen. The HIV epidemic in sub-Saharan Africa is aging: Evidence from the Demographic and Health Surveys in sub-Saharan Africa. *AIDS Behav* 2016;21:101-113.
- 19. Anand, A. R., G. Rachel, and D. Parthasarathy. HIV proteins and endothelial dysfunction: Implications in cardiovascular disease. *Front Cardiovasc Med* 2018;5:185.
- 20. Grinspoon, S., and A. Carr. Cardiovascular risk and body-fat abnormalities in HIVinfected adults. *New England Journal of Medicine* 2005;352:48-62.
- 21. Dillon, D. G. Association of HIV and ART with cardiometabolic traits in sub-Saharan Africa: a systematic review and meta-analysis. *International Journal of Epidemiology* 2013;42:1754-1771.
- 22. Rigaud, A.-S., and B. Forette. Hypertension in older adults. *Journal of Gerontology* 2001;56A:M217-M225.
- 23. Mayosi, B. M., A. J. Flisher, U. G. Lalloo, F. Sitas, S. M. Tollman, and D. Bradshaw. The burden of non-communicable diseases in South Africa. *Lancet* 2009;374:934-947.
- 24. Brennan, A. T., L. Jamieson, N. J. Crowther, M. P. Fox, J. A. George, K. M. Berry, A. Stokes, M. Maskew, I. Sanne, and L. Long. Prevalence, incidence, predictors, treatment, and control of hypertension among HIV-positive adults on antiretroviral treatment in public sector treatment programs in South Africa. *PloS One* 2018;13:e0204020.
- 25. Okello, S., M. Kanyesigye, W. R. Muyindike, B. H. Annex, P. W. Hunt, S. Haneuse, and M. J. Siedner. Incidence and predictors of hypertension in adults with HIV-initiating antiretroviral therapy in south-western Uganda. *J Hypertens* 2015;33:2039-2045.
- Rodríguez-Arbolí, E., K. Mwamelo, A. V. Kalinjuma, H. Furrer, C. Hatz, M. Tanner, M. Battegay, E. Letang, and S. G. KIULARCO. Incidence and risk factors for hypertension among HIV patients in rural Tanzania - A prospective cohort study. *PLoS One* 2017;12:e0172089.
- 27. Schutte, A. E., R. Schutte, H. W. Huisman, J. M. van Rooyen, C. M. Fourie, N. T. Malan, L. Malan, C. M. Mels, W. Smith, S. J. Moss, G. W. Towers, H. S. Kruger, E. Wentzel-Viljoen, H. H. Vorster, and A. Kruger. Are behavioural risk factors to be blamed for the conversion from optimal blood pressure to hypertensive status in Black South Africans? A 5-year prospective study. *International Journal of Epidemiology* 2012;41:1114-1123.
- 28. Kahn, K., M. A. Collinson, F. X. Gomez-Olive, O. Mokoena, R. Twine, P. Mee, S. A. Afolabi, B. D. Clark, C. W. Kabudula, A. Khosa, S. Khoza, M. G. Shabangu, B. Silaule, J. B. Tibane, R. G. Wagner, M. L. Garenne, S. J. Clark, and S. M. Tollman. Profile: Agincourt Health and Socio-demographic Surveillance System. *Int J Epidemiol* 2012;41:988-1001.

29. Gómez-Olivé, F. X., N. Angotti, B. Houle, K. Klipstein-Grobusch, C. Kabudula, J. Menken, J. Williams, S. Tollman, and S. J. Clark. Prevalence of HIV among those 15 and older in rural South Africa. *AIDS Care* 2013;25:1122-1128.

- 30. Gómez-Olivé, F. X., L. Montana, R. G. Wagner, C. W. Kabudula, J. K. Rohr, K. Kahn, T. Bärnighausen, M. Collinson, D. Canning, T. Gaziano, J. A. Salomon, C. F. Payne, A. Wade, S. M. Tollman, and L. Berkman. Cohort Profile: Health and Ageing in Africa: a Longitudinal Study of an INDEPTH Community in South Africa (HAALSI). *International Journal of Epidemiology* 2018;47:689-690j.
- 31. Altunkan, S., K. Öztas, and E. Altunkan. Validation of the Omron 637IT wrist blood pressure measuring device with a position sensor according to the International Protocol in adults and obese adults. *Blood Pressure Monitoring* 2006;11:79-85.
- 32. Saladini, F., E. Benetti, and P. Palatini. Accuracy of the visomat handy wrist blood pressure measuring device according to the International Protocol. *Blood Press Monit* 2010;15:281-284.
- Omboni, S., I. Riva, A. Giglio, G. Caldara, A. Groppelli, and G. Parati. Validation of the Omron M5-I, R5-I and HEM-907 automated blood pressure monitors in elderly individuals according to the International Protocol of the European Society of Hypertension. *Blood Pressure Monitoring* 2007;12:233-242.
- Centers for Disease Control and Prevention (CDC). National Health and Nutrition Examination Survey: 1999-2000 Data Documentation, Codebook, and Frequencies.
- 35. US Department of Health and Human Services. 2004. *The seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure*. National Heart, Lung, and Blood Institute (US),
- 36. Kabudula, C., B. Houle, M. A. Collinson, K. Kahn, S. Tollman, and S. Clark. Assessing changes in household socioeconomic status in rural South Africa, 2001-2013: a distributional analysis using household asset indicators. *Social Indicators Research* 2016;133:1047-1073.
- Byass, P., D. Chandramohan, S. J. Clark, L. D'Ambruoso, E. Fottrell, W. J. Graham, A. J. Herbst, A. Hodgson, S. Hounton, K. Kahn, A. Krishnan, J. Leitao, F. Odhiambo, O. A. Sankoh, and S. M. Tollman. Strengthening standardised interpretation of verbal autopsy data: the new InterVA-4 tool. *Glob Health Action* 2012;5:1-8.
- 38. StataCorp. 2017. *Stata Statistical Software: Release 15*. StataCorp, LP, College Station, TX.
- 39. Fine, J. P., and R. J. Gray. A Proportional Hazards Model for the Subdistribution of a Competing Risk. *Journal of the American Statistical Association* 1999;94:496-509.
- 40. Steyn, K., T. A. Gaziano, D. Bradshaw, R. Laubscher, and J. Fourie. Hypertension in South African adults: results from the Demographic and Health Survey, 1998. *Journal of Hypertension* 2001;19:1717-1725.
- 41. Ntuli, S. T., E. Maimela, M. Alberts, S. Choma, and S. Dikotope. Prevalence and associated risk factors of hypertension amongst adults in a rural community of Limpopo Province, South Africa. *Afr J Prim Health Care Fam Med* 2015;7:847.
- 42. Chobanian, A. V., G. L. Bakris, H. R. Black, W. C. Cushman, L. A. Green, J. L. Izzo Jr, D. W. Jones, B. J. Materson, S. Oparil, and J. T. Wright Jr. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. *JAMA* 2003;289:2560-2571.
- 43. Blalock, C. L. Labor migration and employment in post-apartheid rural South Africa. *Department of Sociology* 2014;Doctor of Philosophy

ו ר	
2	
4	
5	
6	
7	
8	
9 10	
11	
12	
13	
14	
15	
10	
18	
19	
20	
21	
22	
24	
25	
26	
27	
28 29	
30	
31	
32	
33	
34 35	
36	
37	
38	
39	
40 41	
42	
43	
44	
45	
46 47	
48	
49	
50	
51	
52 52	
55 54	
55	
56	
57	
58	
59 60	
00	

- 44. Houle, B., S. J. Clark, F. X. Gómez-Olivé, K. Kahn, and S. M. Tollman. The unfolding counter-transition in rural South Africa: mortality and cause of death, 1994-2009. *PLoS One* 2014;9:e100420.
- 45. Clark, S. J., F. X. Gómez-Olivé, B. Houle, M. Thorogood, K. Klipstein-Grobusch, N. Angotti, C. Kabudula, J. Williams, J. Menken, and S. Tollman. Cardiometabolic disease risk and HIV status in rural South Africa: establishing a baseline. *BMC Public Health* 2015;15:372.
- 46. Gaziano, T. A., S. Abrahams-Gessel, F. X. Gomez-Olive, A. Wade, N. J. Crowther, S. Alam, J. Manne-Goehler, C. W. Kabudula, R. Wagner, J. Rohr, L. Montana, K. Kahn, T. W. Bärnighausen, L. F. Berkman, and S. Tollman. Cardiometabolic risk in a population of older adults with multiple co-morbidities in rural south africa: the HAALSI (Health and Aging in Africa: longitudinal studies of INDEPTH communities) study. *BMC Public Health* 2017;17:206.
- 47. Houle, B., N. Angotti, F. X. Gómez-Olivé, and S. J. Clark. Fieldworker effects on substance use reporting in rural South Africa. *International Journal of Alcohol and Drug Research* 2018;7:29-39.
- 48. Maredza, M., K. J. Hofman, and T. Tollman. A hidden menace: cardiovascular disease in South Africa and the costs of an inadequate policy response: health policy and cardiovascular disease. *SA Heart* 2011;8:48-57.
- 49. Feeley, A. B. B., K. Kahn, R. Twine, and S. A. Norris. Exploratory survey of informal vendor-sold fast food in rural South Africa. *South African Journal of Clinical Nutrition* 2011;24:199-201.
- 50. Clark, S. J., and B. Houle. Validation, replication, and sensitivity testing of Heckmantype selection models to adjust estimates of HIV prevalence. *PLoS One* 2014;9:e112563.
- 51. Maredza, M., M. Y. Bertram, and S. M. Tollman. Disease burden of stroke in rural South Africa: an estimate of incidence, mortality and disability adjusted life years. *BMC Neurol* 2015;15:54.
- 52. Collinson, M. A., M. J. White, P. Bocquier, S. T. McGarvey, S. A. Afolabi, S. J. Clark, K. Kahn, and S. M. Tollman. Migration and the epidemiological transition: insights from the Agincourt sub-district of northeast South Africa. *Global Health Action* 2014;7:23514.
- 53. Pheiffer, C. F., S. T. McGarvey, C. Ginsburg, M. Collinson, F. X. Gómez-Olivé, S. Tollman, and M. J. White. Dimensions of internal migration and their relationship to blood pressure in South Africa. *J Biosoc Sci* 20191-16.
- Poulter, N. R., K. T. Khaw, B. E. Hopwood, M. Mugambi, W. S. Peart, G. Rose, and P. S. Sever. The Kenyan Luo migration study: observations on the initiation of a rise in blood pressure. *BMJ* 1990;300:967-972.
- 55. Steyn, K., D. Bradshaw, R. Norman, and R. Laubscher. Determinants and treatment of hypertension in South Africans: the first Demographic and Health Survey. *South African Medical Journal* 2008;98:376-380.
- 56. Hunter, L. M., W. Twine, and L. Patterson. "Locusts are now our beef": adult mortality and household dietary use of local environmental resources in rural South Africa. *Scand J Public Health Suppl* 2007;69:165-174.
- 57. Manne-Goehler, J., L. Montana, F. X. Gómez-Olivé, J. Rohr, G. Harling, R. G. Wagner, A. Wade, C. W. Kabudula, P. Geldsetzer, K. Kahn, S. Tollman, L. F. Berkman, T. W. Bärnighausen, and T. A. Gaziano. The ART advantage: healthcare utilization for diabetes and hypertension in rural South Africa. *JAIDS Journal of Acquired Immune Deficiency Syndromes* 2017;75:561-567.

FIGURE CAPTIONS

Figure 1. Participant flowchart.

Figure 2. Proportion of participants with incident hypertension, by age and gender, 2015.

to beet terien only

Table 1. Sample characteristics at baseline (2010), by study participation in 2015 for eligible
individuals (n=977).

	Lost to follow-up		Completed 2015 (n=676)			Total	
	(II– n	·301) %	(II- n	-070) %	n-value	-11) n	->//) %
Gender	<u> </u>	/0		/0	p value		/0
Male	140	(46.5)	239	(35.4)	0.001	379	(38.8)
Female	161	(53.5)	437	(64.6)		598	(61.2)
Age groups				× ,			
35-44	130	(43.2)	227	(33.6)	0.003	357	(36.5)
45-54	71	(23.6)	180	(26.6)		251	(25.7)
55-64	34	(11.3)	126	(18.6)		160	(16.4)
65-74	29	(9.6)	81	(12.0)		110	(11.3)
75+	37	(12.3)	62	(9.2)		99	(10.1)
Education							
None	40	(34.2)	277	(41.0)	0.018	317	(40.0)
Less than secondary	54	(46.2)	327	(48.4)		381	(48.0)
Secondary or more	23	(19.7)	72	(10.7)		95	(12.0)
Union status							
Not in union	166	(55.1)	302	(44.7)	0.002	468	(47.9)
Formal/informal union	135	(44.9)	374	(55.3)		509	(52.1)
SES ^a							
Low	130	(43.2)	253	(37.7)	0.258	383	(39.4)
Middle	86	(28.6)	216	(32.2)		302	(31.1)
High	85	(28.2)	202	(30.1)		287	(29.5)
Employment status							
Not employed	80	(68.4)	498	(74.1)	0.196	578	(73.3)
Employed	37	(31.6)	174	(25.9)		211	(26.7)
Smoking history							
Never	236	(78.4)	548	(81.1)	0.206	784	(80.2)
Prior	18	(6.0)	49	(7.2)		67	(6.9)
Current	47	(15.6)	79	(11.7)		126	(12.9)
Alcohol use							
Not in past 30 days	235	(78.1)	544	(80.5)	0.686	779	(79.7)
Less than weekly	24	(8.0)	47	(7.0)		71	(7.3)
Weekly	42	(14.0)	85	(12.6)		127	(13.0)
Physical activity ^b							
Low	27	(9.4)	40	(6.0)	0.128	67	(7.0)

Moderate	80	(27.9) 209	(31.3)	289 (30.3)
High	180	(62.7) 419	(62.7)	599 (62.7)
High waist circumference ^c				
No	205	(72.7) 430	(65.8)	0.04 635 (67.9)
Yes	77	(27.3) 223	(34.2)	300 (32.1)
Diabetes ^d				
No	293	(98.0) 655	(97.2)	0.46 948 (97.4)
Yes	6	(2.0) 19	(2.8)	25 (2.6)
High triglycerides ^e				
No	213	(72.7) 479	(73.5)	0.805 692 (73.2)
Yes	80	(27.3) 173	(26.5)	253 (26.8)

HIV/ART is not included given missing values (n=297) for the vast majority of those lost to follow-up.

^a Based on a household asset index score.

^bBased on the International Physical Activity Questionnaire (IPAQ).

^c Greater than 102cm for men and 88cm for women.

^d Blood glucose greater than or equal to 11.1.

^e Greater than or equal to 1.7 mmol/l.

Table 2. Hypertension incidence rates and incidence rate ratios per 100 person-years over 5 years of follow-up (2010-2015), by sociodemographic, health and behavioural factors among those completing both time points.

				95% CI			95% CI			
Value	Events	PYRS	IR	Lower	Upper	IRR	Lower	Upper	p- value	
Overall	193	2311	8.374	7.242	9.721					
Gender										
Male	74	815	9.097	7.266	11.496	1				
Female	119	1496	8.159	6.832	9.804	0.897	0.67	1.2	0.463	
Age groups										
40-49	56	975	5.04	3.837	6.73	1				
50-59	47	556	8.897	6.667	12.077	1.765	1.177	2.647	0.006	
60-69	42	399	11.104	8.282	15.14	2.203	1.464	3.315	< 0.001	
70-79	28	239	11.875	8.285	17.436	2.356	1.486	3.735	< 0.001	
80+	20	141	16.197	10.647	25.379	3.213	1.931	5.348	< 0.001	
Education										
None	85	986	9.256	7.491	11.536	1				
Less than										
secondary	92	1090	8.21	6.645	10.229	0.887	0.655	1.202	0.439	
Secondary or	1.6	225	10	0.110	0.650		0.010	1.004	0.04 -	
more	16	235	5.318	3.112	9.652	0.575	0.319	1.034	0.065	
Union status	0.4	1001	0.610							
Not in union $\sum_{i=1}^{n} \frac{1}{i}$	91	1034	8.613	6.983	10.709	1				
Formal/informal	102	1277	8 165	6 685	10.051	0.048	0 706	1 273	0 722	
SESa	102	12//	0.105	0.085	10.031	0.740	0.700	1.275	0.722	
Low	68	867	8 064	6 3 2 8	10 307	1				
Middle	64	736	8 715	6 708	11 305	1 081	0 750	1 530	0.667	
High	60	680	8 3 8 0	6 1 1 9	11.000	1.001	0.739	1.339	0.007	
Employment	00	089	0.309	0.449	11.030	1.04	0.723	1.49/	0.851	
status										
Not employed	144	1701	8.336	7.048	9.911	1				
Employed	48	595	8.511	6.375	11.557	1.021	0.726	1.435	0.905	
Smoking history										
Never	163	1861	8.644	7.392	10.155	1				
Prior	11	171	6.356	3.501	12.447	0.735	0.391	1.381	0.339	
Current	19	279	6.715	4.293	10.956	0.777	0.478	1.262	0.308	
Alcohol use		_,,,	01710	>0	100000	0.,,,,	0	1.202	0.200	
Not in past 30										
days	153	1852	8.416	7.167	9.931	1				
Less than			_	_		_	_		_	
weekly	10	167	5.459	2.879	11.284	0.649	0.331	1.272	0.208	
Weekly	30	292	9.789	6.708	14.649	1.163	0.766	1.765	0.478	
Physical activity ^b										

Low	20	122	15.468	9.85	24.91	1			
Moderate	71	687	10.641	8.402	13.61	0.688	0.412	1.149	0.153
High	100	1471	6.98	5.718	8.59	0.451	0.275	0.742	0.002
High waist circumference ^c									
No	104	1512	6.519	5.326	8.046	1			
Yes	78	735	10.571	8.483	13.283	1.621	1.197	2.196	0.002
Diabetes ^d									
No	186	2240	8.298	7.156	9.662	1			
Yes	6	64	10.06	4.451	26.006	1.212	0.529	2.778	0.649
High triglycerides ^e									
No	122	1660	7.262	6.049	8.775	1			
Yes	59	575	10.59	8.177	13.88	1.458	1.057	2.012	0.022
HIV and ART									
status									
Negative	155	1514	10.452	8.909	12.318	1			
Positive, not on									
ART	25	486	4.749	3.15	7.439	0.454	0.289	0.713	0.001
Positive, on									
ART	6	178	3.553	1.52	10.122	0.34	0.142	0.811	0.015

^a Based on a household asset index score.

^b Based on the International Physical Activity Questionnaire (IPAQ).

^c Greater than 102cm for men and 88cm for women.

^d Blood glucose greater than or equal to 11.1. nmol/l.

^e Greater than or equal to 1.7 mmol/l.

		95%	CI	
	IRR	Lower	Upper	p-value
Gender				
Male	1			
Female	0.818	0.512	1.305	0.39
Age groups				
40_49	1			
50 50	1 921	1 102	2 811	0.00
50-59	1.051	1.195	2.011	-0.00
60-69	2.4	1.463	3.938	<0.00
/0-/9	2.607	1.451	4.684	<0.00
80+	2.561	1.196	5.488	< 0.00
Education				
None	1			
Less than				
secondary	1.061	0.732	1.537	0.75
Secondary or				
more	0.741	0.372	1.478	0.39
Union status				
Not in union	1			
Formal/informal				
union	1.023	0.724	1.445	0.89
SES ^a				
Low	1			
Middle	1 068	0.715	1 593	0.74
High	0.015	0.50	1.373	0.74
Employment	0.915	0.39	1.42	0.09
status				
Not amployed	1			
	1 1.570	1 071	2 2 2 0	0.02
Employed	1.579	1.0/1	2.329	0.02
Smoking history				
Never	1			
Prior	0.758	0.37	1.55	0.44
Current	0.709	0.373	1.349	0.29
Alcohol use				
Not in past 30				
days	1			
Less than				
weekly	0.717	0.345	1.492	0.37
Weekly	1.07	0.652	1.755	0.78
Physical activity ^b				
Low	1			
Modorato	0 701	0 447	1 264	0.20
wioderate	0.781	0.447	1.304	0.383

T-11.2 Maltinerial1. Dairea . Circulant h rtonaia ind graphic, 516).

High	0.57	0.319	1.018	0.057
High waist				
circumference ^c				
No	1			
Yes	1.557	1.074	2.259	0.02
Diabetes ^d				
No	1			
Yes	0.932	0.399	2.178	0.87
High				
triglyceridese				
No	1			
Yes	1.297	0.932	1.805	0.123
2 D 1 1	1 1 1 1 1			

^a Based on a household asset index score.

^b Based on the International Physical Activity Questionnaire (IPAQ).

^c Greater than 102cm for men and 88cm for women.

^d Blood glucose greater than or equal to 11.1.

° Greater than or equal to 1.7 mmol/l.

Table 4. Multivariable Poisson regression of incident hypertension on sociodemographic, health and behavioural risk factors, and HIV and ART status among those completing both time points (n=581).

		95%	CI	
	IRR	Lower	Upper	p-value
Gender				
Male	1			
Female	0.854	0.533	1.369	0.512
Age groups				
40-49	1			
50-59	1.846	1.183	2.879	0.007
60-69	2.128	1.281	3.535	0.004
70-79	2.339	1.256	4.356	0.007
80+	2.139	0.978	4.676	0.057
Education				
None				
Less than				
secondary	1.124	0.765	1.652	0.552
Secondary or				
more	0.754	0.368	1.542	0.439
Union status				
Not in union	1			
In union	0.939	0.662	1.332	0.724
SES ^a				
Low	1			
Middle	0.97	0.647	1.454	0.883
High	0.812	0.519	1.269	0.36
Employment				
status				
Not employed	1			
Employed	1.604	1.064	2.419	0.024
Smoking history				
Never	1			
Prior	0.727	0.34	1.554	0.411
Current	0.661	0.345	1.267	0.213
Alcohol use				
Not in past 30				
days	1			
Less than	0.751	0.259	1 574	0.440
weekly	0.751	0.358	1.574	0.448
weekly	1.111	0.668	1.846	0.685
Physical activity [®]				
Low	l	. .		
Moderate	0.77	0.434	1.365	0.371

0.50			0.0.
0.56	0.309	1.015	0.056
1			
1.448	0.975	2.149	0.066
1			
0.907	0.392	2.102	0.82
1			
1.34	0.956	1.877	0.089
1			
0.484	0.301	0.778	0.003
0.462	0.197	1.082	0.075
	0.56 1 1.448 1 0.907 1 1.34 1 0.484 0.462	$\begin{array}{cccc} 0.56 & 0.309 \\ 1 \\ 1.448 & 0.975 \\ 1 \\ 0.907 & 0.392 \\ 1 \\ 1.34 & 0.956 \\ 1 \\ 0.484 & 0.301 \\ 0.462 & 0.197 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^a Based on a household asset index score.

^b Based on the International Physical Activity Questionnaire (IPAQ).

^c Greater than 102cm for men and 88cm for women. equal to 11.1. mol/l.

^d Blood glucose greater than or equal to 11.1.

^e Greater than or equal to 1.7 mmol/l.

1	
2	
4	Supplementary Materials
5	
6	Online Supplemental Tables 1-6
7	
8	
9 10	
10	
12	
13	
14	
15	
16 17	
17	
10	
20	
21	
22	
23	
24 25	
26	
27	
28	
29	
30	
31 20	
33	
34	
35	
36	
37	
38	
40	
41	
42	
43	
44	
45 46	
47	
48	
49	
50	
51 52	
52 53	
55	
55	
56	
57	
58	
59	
60	

for peer teriew only

Figure 1

134x89mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

139x101mm (300 x 300 DPI)

SUPPLEMENTARY MATERIALS

Supplemental Table 1. Hypertension incidence rates and incidence rate ratios per 100 person-years over 5 years of follow-up (2010-2015), by sociodemographic, health and behavioral factors among the full eligible sample.

Value				95% CI		95% CI				
	Events	PYRS	IR	Lower	Upper	IRR	Lower	Upper	p- value	
Overall	193	3187	4.579	3.911	5.361					
Gender										
Male	74	1203	5.14	4.078	6.548	1				
Female	119	1984	4.408	3.641	5.369	0.858	0.632	1.163	0.323	
Age groups										
40-49	56	1418	2.795	2.117	3.755	1				
50-59	47	727	5.092	3.731	7.069	1.821	1.191	2.786	0.006	
60-69	42	514	5.478	3.876	7.848	1.96	1.25	3.073	0.003	
70-79	28	316	6.244	4.127	9.655	2.233	1.347	3.704	0.002	
80+	20	212	8.825	5.585	14.45	3.157	1.83	5.445	< 0.001	
Education										
None	85	1134	6.774	5.397	8.574	1				
Less than										
secondary	92	1258	6.158	4.919	7.769	0.909	0.658	1.257	0.563	
Secondary or	16	200	2 750	2 10	(0 (0	0 555	0.205	1 000	0.052	
more	16	298	3./56	2.19	6.868	0.555	0.305	1.008	0.053	
Union status	01	1,500	4 0 0 7		5 2 5 7	1				
Not in union	91	1508	4.237	3.38	5.357	1				
ronnal/informat	102	1679	4 928	3 984	6 1 4 4	1 163	0 849	1 593	0 347	
SES ^a	102	1075	4.920	5.704	0.144	1.105	0.047	1.575	0.547	
Low	68	1248	3 909	3 01	5 1 3 8	1				
Middle	60 64	975	5.612	4 325	7 372	1 436	0 986	2 089	0.059	
High	60	946	4 464	3 362	6.007	1.130	0.700	1 69	0.007	
Employment	00	710	1.101	5.502	0.007	1.1 12	0.772	1.09	0.507	
status										
Not employed	144	1970	6.057	5.062	7.284	1				
Employed	48	706	6.503	4.83	8.911	1.074	0.754	1.529	0.694	
Smoking history										
Never	163	2573	4.638	3.92	5.514	1				
Prior	11	218	4.314	2.36	8.558	0.93	0.49	1.765	0.825	
Current	19	396	3.89	2.441	6.48	0.839	0.506	1.391	0.496	
Alcohol use										
Not in past 30										
days	153	2546	4.522	3.805	5.401	1				
Less than	10	227	2 557	1 075	7 41 4	0 707	0.200	1 540	0 400	
weekly	10	227	3.557	1.875	/.414	$0./8^{\prime}$	0.399	1.549	0.488	
—										
----------	--------------------------------	-------------	-----------	--------	-------	--------	-------	-------	-------	-------
3	Weekly	30	414	5.546	3.691	8.558	1.227	0.784	1.92	0.372
4 5	Physical activity ^b									
6	Low	20	199	6.424	3.801	11.185	1			
7	Moderate	71	913	6.323	4.899	8.246	0.984	0.548	1.769	0.958
o 9	High	100	2017	3.798	3.073	4.733	0.591	0.335	1.043	0.07
10	High waist									
11	circumference ^c									
12	No	104	2106	3.629	2.936	4.523	1			
13	Yes	78	974	5.796	4.544	7.455	1.597	1.151	2.215	0.005
15	Diabetes ^d									
16	No	186	3095	4.513	3.851	5.311	1			
17 18	Yes	6	81	6.868	2.92	18.668	1.522	0.64	3.621	0.342
19	High									
20	triglycerides ^e									
21	No	122	2269	4.084	3.367	4.989	1			
22	Yes	59	817	5.344	4.014	7.203	1.309	0.922	1.857	0.132
24	HIV and ART									
25	status									
26 27	Negative	155	1522	10.254	8.726	12.104	1			
27	Positive, not on									
29	ART	25	490	4.615	3.054	7.246	0.45	0.286	0.708	0.001
30	Positive, on	-								
31 22	$\frac{ART}{R}$	6	178	3.553	1.52	10.122	0.346	0.145	0.827	0.017
J∠	" Based on a househo	nd asset in	dev score							

^a Based on a household asset index score.

^b Based on the International Physical Activity Questionnaire (IPAQ).

^c Greater than 102cm for men and 88cm for women. uol/l.

^d Blood glucose greater than or equal to 11.1.

^e Greater than or equal to 1.7 mmol/l.

		95%	CI	
	IRR	Lower	Upper	p-value
Gender				
Male	1			
Female	0.783	0.489	1.253	0.307
Age groups				
40-49	1			
50-59	1.871	1.205	2.905	0.005
60-69	1.972	1.146	3.392	0.014
70-79	2.183	1.149	4.146	0.017
80+	2.86	1.305	6.265	0.009
Education				
None	1			
Less than				
secondary	0.947	0.647	1.387	0.781
Secondary or	0.607		1 227	0.164
more	0.007	0.5	1.227	0.104
Nation status	1			
Not in union Formal/informal	1			
union	0.972	0.678	1.392	0.876
SES ^a	0.77			01070
Low	1			
Middle	1.258	0.825	1,918	0.286
High	0.963	0.599	1.55	0.878
Employment	019 02		1.00	
status				
Not employed	1			
Employed	1.814	1.195	2.752	0.005
Smoking history				
Never	1			
Prior	0.802	0.381	1.688	0.562
Current	0.71	0.362	1.393	0.32
Alcohol use				
Not in past 30				
days	1			
Less than	<u> </u>	0 /15	1 770	N 201
Weekly	U.80	0.413	1.//9	0.084
Weekly Dhypical activity	1.114	0.040	1.922	0.698
rnysical activity	1			
LOW		0.405	1 (5)	0 740
wooerate	0.906	0.490	1.030	0./48

Supplemental Table 2. Multivariable Poisson regression of incident hypertension on sociodemographic, health and behavioral risk factors among the full eligible sample (n=721).

BMJ Open

2 3 4 5 6	High High waist circumference ^c	0.639	0.342	1.195	0.161
7	No	1			
8 9	Yes	1.564	1.047	2.335	0.029
10	Diabetes ^d				
11	No	1			
12 13 14	Yes High	1.047	0.438	2.506	0.917
15	triglycerides ^e				
16	No	1			
17 18	Yes	1.126	0.776	1.633	0.532
19	^a Based on a house	hold asset index sc	ore.		

Based on a household asset index score.

^b Based on the International Physical Activity Questionnaire (IPAQ).

^c Greater than 102cm for men and 88cm for women.

^d Blood glucose greater than or equal to 11.1.

^e Greater than or equal to 1.7 mmol/l.

Supplemental Table 3. Multivariable Poisson regression of incident hypertension on sociodemographic, health (using BMI instead of waist circumference) and behavioral risk factors, and HIV and ART status among those completing baseline and follow-up time points (n=579).

	95% CI				
	IRR	Lower	Upper	p-value	
Gender					
Male	1				
Female	0.911	0.595	1.396	0.669	
Age groups					
40-49	1				
50-59	1.906	1.237	2.938	0.003	
60-69	2.38	1.426	3.972	0.001	
70-79	2.649	1.444	4.857	0.002	
80+	2.335	1.055	5.168	0.036	
Education					
None	1				
Less than	-				
secondary	1.128	0.775	1.642	0.53	
Secondary or					
more	0.746	0.365	1.525	0.421	
Union status					
Not in union	1				
Formal/informal	0 0 - 1	0.60.5		0.0.C -	
union	0.971	0.685	1.376	0.867	
SES ^a					
Low	1				
Middle	0.927	0.619	1.389	0.714	
High	0.778	0.498	1.215	0.269	
Employment					
status					
Not employed	1		• • • •		
Employed	1.526	1.014	2.295	0.043	
Smoking history					
Never	1				
Prior	0.732	0.342	1.565	0.421	
Current	0.716	0.372	1.378	0.317	
Alcohol use					
Not in past 30					
days	1				
Less than	0 752	0 262	1 550	0 444	
Weekly	0.732	0.303	1.339	0.444	
Weekiy	1.03/	0.628	1./11	0.88/	
Physical activity					

2					
3	Low	1			
4		0.721	0.410	1 0 10	0.000
5	Moderate	0.721	0.419	1.242	0.239
6	High	0.506	0.289	0.886	0.017
7	Obesity ^c				
9	No	1			
10	Yes	1.902	1.315	2.751	0.001
11	Diabetesd				
12	Diabetes				
13	No	1			
14	Yes	0.916	0.371	2.263	0.849
15	High				
16	triglycerides ^e				
17	N	·			
18	No	1			
19	Yes	1.346	0.965	1.876	0.08
20	HIV and ART				
21	etatus				
22	Status				
23	Negative	I			
24	Positive, not on				
25	ART	0.504	0.315	0.809	0.004
26	Positive, on				
27	ART	0.507	0.221	1.165	0.11
28	• D 1 1 1 1				

^a Based on a household asset index score.

^b Based on the International Physical Activity Questionnaire (IPAQ).

^c Greater than or equal to 30 BMI.

BMI. or equal to 11.1. mmol/l. ^d Blood glucose greater than or equal to 11.1.

^e Greater than or equal to 1.7 mmol/l.

1	
2	
3	
4	
5	
6	
/	
8	
9	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
25 24	
24	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
3/ 20	
20	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50 E 1	
51 57	
52 52	
54	
55	
56	
57	
58	
59	
60	

Supplemental Table 4. Multivariable Poisson regression of incident hypertension (based on BP threshold only) on sociodemographic, health and behavioral risk factors, and HIV and ART status among those completing baseline and follow-up time points (n=581).

	95% CI					
	IRR	Lower	Upper	p-value		
Gender						
Male	1					
Female	0.773	0.455	1.315	0.343		
Age groups						
40-49	1					
50-59	1.902	1.17	3.093	0.01		
60-69	2.06	1.166	3.641	0.013		
70-79	1.432	0.658	3.117	0.366		
80+	1.888	0.795	4.483	0.15		
Education						
None						
Less than						
secondary Secondary or	0.99	0.648	1.514	0.965		
more	0.772	0.363	1.644	0.502		
Union status						
Not in union	1					
In union	0.8	0.54	1.185	0.266		
SES ^a						
Low	1					
Middle	0.899	0.569	1.419	0.647		
High	0.657	0.394	1.094	0.106		
Employment						
Not employed	1					
Employed	1 747	1 093	2 792	0.02		
Smoking history	1.7 17	1.075	2.172	0.02		
Never	1					
Prior	0.612	0 237	1 581	0 311		
Current	0.012	0.297	1.301	0.189		
Alcohol use	0.01	0.271	1.2//	0.107		
Not in past 30						
days	1					
Less than						
weekly	0.738	0.326	1.672	0.467		
Weekly	0.959	0.542	1.699	0.887		
Physical activity ^b						
Low	1					
Moderate	0.973	0.5	1.894	0.936		

BMJ Open

High	0.669	0.33	1.355	0.264
ioh waist				
rcumference ^c				
No	1			
Yes	1.361	0.882	2.102	0.164
iabetes ^d				
No	1			
Ves	0 341	0.05	2 309	0.27
igh	0.5 11	0.05	2.507	0.27
ign				
glycerides				
No	1			
Yes	1.19	0.792	1.789	0.402
IV and ART				
Negative	1			
Positive, not on				
ART	0.28	0.151	0.518	< 0.001
Positive, on				
A D T	0 212	0.108	0 008	0.033
AKI	0.515	0.100	0.200	0.055
	High igh waist rcumference ^c No Yes iabetes ^d No Yes igh iglycerides ^e No Yes IV and ART atus Negative Positive, not on ART Positive, on	High 0.669 igh waistrcumferencecNo1Yes 1.361 iabetesd1No1Yes 0.341 igh0.341igh1Yes1.19IV and ART1.19IV and ART1No1Positive, not on0.28Positive, on0.212	High 0.669 0.33 igh waist rcumferencec 1 No1Yes 1.361 0.882 iabetesd 1 No1Yes 0.341 0.05 igh 1 iglyceridese 1 No1Yes 1.19 0.792 IV and ART 1 atus 1 Negative 1 Positive, not on 0.28 0.151 Positive, on 0.212 0.100	High igh waist rcumferencec 0.669 0.33 1.355 No1Yes 1.361 0.882 2.102 iabetesd1 0.05 2.309 igh iglyceridese 0.341 0.05 2.309 No1 0.792 1.789 Ves 1.19 0.792 1.789 IV and ART atus1 0.28 0.151 Negative1 0.28 0.151 0.518 Positive, not on ART 0.212 0.100 0.200

Based on a household asset index score.

^b Based on the International Physical Activity Questionnaire (IPAQ).

^c Greater than 102cm for men and 88cm for women.

^d Blood glucose greater than or equal to 11.1. br equal to 11.1. mmol/l.

^e Greater than or equal to 1.7 mmol/l.

Supplemental Table 5. Multivariable competing risk regression (Fine-Grey model) of incident hypertension on sociodemographic, health and behavioral risk factors among the full eligible sample (n=662).

		95%	CI	
	SHR	Lower	Upper	p-value
Gender				
Male	1			
Female	0.835	0.526	1.326	0.445
Education				
None	1			
Less than				
secondary	1.1	0.766	1.58	0.607
Secondary or	0.068	0.512	1 820	0.021
	0.908	0.515	1.629	0.921
Not in union	1			
Not in union Formal/informal				
union	1.067	0.759	1.5	0.708
SES ^a	11007		110	01700
Low	1			
Middle	1.021	0.689	1.512	0.919
High	0.881	0.566	1.371	0.574
Employment	0.001	0.200	110 / 1	0.071
status				
Not employed	1			
Employed	1.969	1.374	2.821	< 0.001
Smoking history				
Never	1			
Prior	0.772	0.38	1.57	0.475
Current	0.73	0.367	1.451	0.369
Alcohol use				
Not in past 30				
days	1			
Less than	0.000	0 422	1 700	0.720
weekly	0.882	0.432	1.798	0.729
Weekly	0.899	0.506	1.597	0./16
Physical activity ⁶	1			
Low	1		2 1 0 2	0.54
Moderate	1.184	0.667	2.102	0.564
High	0.914	0.512	1.633	0.761
circumference ^c				
No	1			
Ves	1 200	0 052	2 056	0 086
n us Diabetes ^d	1.377	0.752	2.050	0.000

BMJ Open

No	1			
Yes	1.399	0.677	2.887	0.364
High				
triglycerides ^e				
No	1			
Yes	1.111	0.778	1.585	0.563

^b Based on the International Physical Activity Questionnaire (IPAQ).

^c Greater than 102cm for men and 88cm for women.

^d Blood glucose greater than or equal to 11.1.

° Greater than or equal to 1.7 mmol/l.

Supplemental Table 6. (Cause of death by broad	disease category for the	full eligible sample.
-------------------------	-------------------------	--------------------------	-----------------------

Cause group	Ν	%
HIV/AIDS and TB	20	28
Other infectious diseases	16	23
Noncommunicable diseases	34	48
External	1	1

Cause of death information from InterVA-4. Information on cause of death missing for 4 individuals.

for beet teries only

 BMJ Open

		STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>cohort studies</i>	
Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5
		(b) For matched studies, give matching criteria and number of exposed and unexposed	NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6-7
Bias	9	Describe any efforts to address potential sources of bias	7-8
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	7-8
		(d) If applicable, explain how loss to follow-up was addressed	7-8
		(e) Describe any sensitivity analyses	8
Results			

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	9
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	9
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	9; Table 1
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	Table 2
Outcome data	15*	Report numbers of outcome events or summary measures over time	9
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	9-10, Table 2, Table
		interval). Make clear which confounders were adjusted for and why they were included	3, Table 4
		(b) Report category boundaries when continuous variables were categorized	Table 2, Table 3,
			Table 4
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	11
Discussion			
Key results	18	Summarise key results with reference to study objectives 🚩 🖊 🥿	11-12
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	12-14
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	13
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	15

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open

Hypertension incidence among middle-aged and older adults: Findings from a 5-year prospective study in rural South Africa, 2010-2015

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-049621.R1
Article Type:	Original research
Date Submitted by the Author:	21-Sep-2021
Complete List of Authors:	Houle , Brian ; Australian National University, School of Demography; University of the Witwatersrand School of Public Health, MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt) Gaziano, Thomas A.; Brigham and Women's Hospital, Division of Cardiovascular Medicine; Harvard University, Harvard Medical School Angotti, Nicole; American University, Department of Sociology; University of the Witwatersrand School of Public Health, MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt) Mojola, Sanyu A; Princeton University, Department of Sociology, School of Public and International Affairs, and Office of Population Research; University of the Witwatersrand School of Public Health, MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt) Mojola, Sanyu A; Princeton University of Public Health, MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt) Kabudula, Chodziwadziwa; University of the Witwatersrand School of Public Health, MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt); INDEPTH Network Tollman, Stephen; University of the Witwatersrand School of Public Health, MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt); Umea University, Centre for Global Health Research Gómez-Olivé, F. Xavier; University of the Witwatersrand School of Public Health, MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt); Harvard University, Centre for Population and Development Studies
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Global health, HIV/AIDS
Keywords:	Hypertension < CARDIOLOGY, PUBLIC HEALTH, HIV & AIDS < INFECTIOUS DISEASES, EPIDEMIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Hypertension incidence among middle-aged and older adults: Findings from a 5-year prospective study in rural South Africa, 2010-2015

Brian Houle,^{1,2,3} Thomas Gaziano,^{4,5} Nicole Angotti,^{2,3,6} Sanyu A Mojola,^{2,7} Chodziwadziwa W Kabudula,^{2,8} Stephen M Tollman,^{2,8,9} F Xavier Gómez-Olivé^{2,8,10}

1 School of Demography, The Australian National University, Canberra, ACT, Australia

2 MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School

of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg,

South Africa

3 Institute of Behavioral Science, University of Colorado Boulder, Boulder, Colorado, USA

4 Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA

5 Harvard Medical School, Harvard University, Boston, MA, USA

6 Department of Sociology, American University, Washington, DC, USA

7 Department of Sociology, School of Public and International Affairs, and Office of

Population Research, Princeton University, Princeton, NJ, USA

8 INDEPTH Network, Accra, Ghana

9 Centre for Global Health Research, Umeå University, Umeå, Sweden

10 Harvard Center for Population and Development Studies, Harvard University, Cambridge,

MA, USA

Correspondence to: Brian Houle; brian.houle@anu.edu.au

Word count: 3,146

ABSTRACT

Objectives: There is a scarcity of longitudinal cohort studies in sub-Saharan Africa to understand the epidemiology of cardiovascular disease as a basis for intervention. We estimated incident hypertension and associated sociodemographic, health and behavioural risk factors in a population aged 40 and older over a 5-year period.

Design: We assessed the association between incident hypertension and sociodemographic, health and behavioural factors using Poisson regression. We adjusted for nonresponse in 2015 using inverse probability sampling weights from a logistic regression including sex and age at baseline.

Setting: Rural South Africa.

Participants: We used a population-based cohort of normotensive adults in 2010 who were ages 40 and older at retest in 2015.

Results: Of 676 individuals completing baseline and 5-year follow-up, there were 193 incident cases of hypertension. The overall hypertension incidence rate was 8.374/100 person-years. In multivariable analyses, those that became hypertensive were more likely to be older, have a high waist circumference (incidence rate ratio (IRR): 1.557 95% CI: 1.074-2.259) and be employed (IRR: 1.579 95% CI 1.071-2.329) at baseline. Being HIV-positive and not on antiretroviral therapy at baseline was associated with lower risk of incident hypertension.

Conclusions: Over a 5-year period, 29% of respondents developed hypertension. Given the high burden of hypertension in South Africa, continued longitudinal follow-up is needed to understand the complex interplay of noncommunicable and infectious diseases and their underlying and modifiable risk factors to inform public health prevention strategies and programs.

Keywords: Hypertension; incidence; South Africa; rural population; cohort

Strengths and limitations of this study

- We provide longitudinal evidence on hypertension incidence from a population-based cohort in rural South Africa including both HIV positive and HIV negative individuals.
- Associations between HIV status and incident hypertension may be sensitive to survivorship bias if those who died due to HIV/AIDS over the five-year period were also more likely to develop hypertension.
- A longer period of follow-up is needed to assess the effects of HIV and ART on hypertension and related cardiometabolic conditions.

BMJ Open

INTRODUCTION

Hypertension is one of the most important noncommunicable disease (NCD) risk factors and the largest contributor to the global burden of disease, with high blood pressure accounting for 7% of global disability-adjusted life years.¹ The burden of hypertension is greatest in low and middle-income countries (LMIC),² and has increased rapidly in sub-Saharan Africa.^{3–7} A study of people aged 50 years and over from six countries found markedly high prevalence in South Africa (77.9%).⁸

Rapid demographic and epidemiological changes in LMICs, such as population aging, are expected to dramatically increase hypertension prevalence. Results from a modelling study found that without any changes in the age-specific prevalence of hypertension, the hypertensive population in South Africa is expected to grow by 105% by 2050.⁹ These dramatic changes on the epidemiology of hypertension are further complicated by a lack of awareness by those with a hypertensive condition, with serious consequences of a low proportion of hypertensive individuals being on treatment.^{10–12} In South Africa, an estimated 38-64% of hypertensives were aware of their status and 7.8-22.8% effectively controlled.^{8 13}

Longitudinal data from sub-Saharan Africa are needed to examine changes in populationspecific hypertension risk factors over time,¹⁴ particularly given differences in socio-cultural environments and related health factors (e.g., diet, concurrent infectious diseases), and differentials in rural versus urban risk factor levels.¹⁵ This is particularly important as widescale availability of antiretroviral therapy (ART) has reduced HIV/AIDS-related mortality^{16 17} thereby increasing the population of those aging with HIV.¹⁸ The aging population will be at higher risk of developing hypertension, and the effect of HIV and ART may also increase the incidence of hypertension.^{19–22} In South Africa, an emerging dual

burden of disease, along with urban-rural differences due to the legacy of the apartheid era also highlight the importance of understanding location-specific hypertension risk factors over time.²³ However, there are currently a limited number of longitudinal studies examining risk factors for incident hypertension in the region, with most of these restricted to HIV positive individuals only.^{24–27}

METHODS

We use a population-based cohort of adults in rural South Africa who were normotensive in 2010-11 and were 40 years or older in 2014-15 to estimate hypertension incidence and identify sociodemographic, health and behavioural risk factors over a five-year period.

We use data from two survey studies conducted in 2010-11 and 2014-2015 in the Agincourt Health and socio-Demographic Surveillance System (HDSS) study area in rural northeast South Africa.²⁸ The area is a low rainfall setting with limited subsistence farming. Since 1992, the Medical Research Council (MRC)/Wits Rural Public Health and Health Transitions Unit has been conducting an annual census update of the population living in the study site, including information on vital events (births, deaths, migrations) and household and individual socio-demographic information. In 2010-11, the baseline study (Ha Nakekela) included a sex-age stratified random sample of 7,662 men and women aged 15 and older who were permanent residents from the 2009 HDSS census.²⁹ A follow-up study from November 2014 to November 2015 (The Health and Aging in Africa: A Longitudinal Study of an INDEPTH Community in South Africa (HAALSI)) included a random sample of 6,281 men and women aged 40 years and older who were permanent residents from the baseline study who fulfilled the inclusion criteria. Both studies included information on sociodemographic factors and self-reported health and

 BMJ Open

conditions, anthropometric and blood pressure measurements, and point of care blood tests for glucose and lipids, and dried blood spots (DBS) for HIV status.

Outcome measure

Blood pressure (BP) and hypertension. BP was measured three times using a Boso BP instrument two minutes apart in 2010 and an Omron M6W automated cuff two minutes apart in 2015. Validation studies of similar blood pressure monitoring devices indicate that they can provide accurate measurements.^{31–33} Consistent with national surveillance guidance, we used the average of the second and third measurements.³⁴ Hypertension was defined as a systolic blood pressure \geq 140 mmHg or diastolic blood pressure \geq 90 mmHg or if the respondent self-reported taking antihypertensive medication.

2010 risk factors

Anthropometry and high waist circumference. Height, weight, and waist circumference were measured using a flexible stadiometer (Seca). High waist circumference was defined as >102cm for men and >88cm for women.³⁵ Obesity was classified as a body mass index (BMI; kg/m²) \geq 30.³⁵

Random blood glucose and diabetes. Point of care instruments were used to measure glucose (Caresens POP blood glucose meter). Diabetes was defined as a random blood glucose level of \geq 11.1 mmol/L or if the respondent self-reported medication use for diabetes.³⁶

High triglycerides. A Cardiocheck instrument was used to measure lipid levels. High triglycerides was defined as $\geq 1.7 \text{ mmol/}1.^{37}$

HIV status. HIV DBS were tested using screening assay Vironostika Uniform 11 (Biomeriuex, France); with positive results retested using the SD Bioline HIV ELISA test (SD; Standard Diagnostics Inc., Korea). If the two tests were inconsistent, we conducted a third assay (Elecys, Roche, USA) that determined the final result.

Socio-demographics and behaviours. Respondents were asked about smoking (never, prior, current) and alcohol history (not in past 30 days, less than weekly, weekly), physical activity (using the International Physical Activity Questionnaire (IPAQ)), and if they were using ART. Information on years of completed education, employment (currently working for pay), union (informal or formal) and socioeconomic status (based on tertiles of an asset index³⁸) were extracted from the most recent surveillance census.

Cause of death: For those who died between the baseline and follow-up study and for whom a death was identified from census updates, a verbal autopsy (VA) was conducted using a standardized VA instrument. For each identified death, a specially trained team conducted a VA interview with the closest living care taker to record signs and symptoms experienced before the death. We categorized cause of death using InterVA- 4^{39} – assigning a single cause for the largest likelihood for each death.

Analysis

 We calculated hypertension incidence (over five years) for those aged 40 years and older at the time of the second survey overall, and by sex, age, and other socio-demographic factors. We calculated age-adjusted incidence using the Agincourt 2009 census population. We used Poisson regression with robust standard errors to examine the association of hypertension

BMJ Open

status with socio-demographic, health and behavioural risk factors from the baseline study. To adjust for nonresponse in the follow-up study, we developed inverse probability sampling weights (IPSW) based on a logistic regression including sex and age in August 2010. We multiplied the IPSW for nonresponse by the inverse probability weights from the 2010 sample selection to derive our final weights for analysis. For our fully adjusted multivariable models, we fit separate models with and without HIV/ART status given a reduced sample of 2010 respondents with measured HIV status (particularly for the eligible sample estimates, see below).

We used two approaches to estimating exposure time for our incidence estimates. For the first approach, we included only those individuals who participated in both surveys. For incident cases, we defined exposure time as the midpoint between the dates of the first and second survey assessments. For the second approach, we included all eligible individuals from the first survey who were able to be tracked from census data. For those who out-migrated or died before the start of the second study, we allowed them to contribute exposure time between their blood pressure measurement in the first study and time at death or out-migration. For those who were not found or refused to participate in the second survey, we allowed exposure time between the first study's measurement and the start of the second study. As the second approach includes additional exposure time but no new incident cases, it provides a lower bound for our estimate of hypertension incidence. Individuals who aged to 40 during the follow-up time only contributed to exposure when they had reached 40 years or older. We used Stata 15 for all statistical analyses.⁴⁰

We also tested the sensitivity of our results. We tested models using either BMI or waist-tohip ratio instead of waist circumference. We also tested a model of hypertension based on

only BP thresholds to assess if there were differences in the associations between predictors and incident BP only. Finally, we tested a competing-risk model for those eligible individuals who either died, migrated, or completed the follow-up study to test for bias in our risk factor associations. We modelled incident hypertension as the main event and death due to any cause as a competing event (censoring those who out-migrated) using the Fine-Grey model.⁴¹

Patient and public involvement

Neither study participants nor public were involved in study design or conduct of the study. The HDSS Learning, Information dissemination and Networking with Community (LINC) office manages community liaison activities with the HDSS study communities and their leaders. Annual feedback of findings from the HDSS census and research projects conducted in the site are provided through open village meetings, with frequent participation from local el.e service providers.

RESULTS

Figure 1 shows the participant flowchart. A total of 977 individuals were eligible for analysis from the first study and 676 (69%) also completed the second study. Table 1 presents sample characteristics from the baseline study comparing those who completed the second study and those who did not. Women, those with a high waist circumference, those in older ages and in a union with lower completed education were more likely to participate in the second study.

There were 193 incident cases of hypertension since baseline. The overall hypertension incidence rate was 8.374 per 100 person-years (95% CI: 7.242-9.721) for those completing both studies (men 9.097 (95% CI: 7.266-11.496); women 8.159 (95% CI: 6.832-9.804); Table 2). The overall age-adjusted hypertension incidence rate for those completing both

BMJ Open

studies was 8.372 per 100 person-years (men 8.955; women 8.50). Rates were lower when including the full eligible sample (Online supplemental table 1). Men in their 40s and 50s had higher incidence compared to same-aged women; from ages 60-plus, women showed higher rates than men (Figure 2).

Table 2 shows incident rates and ratios (unadjusted) for those completing both studies by baseline socio-demographic, health, and behavioural risk factors. Older individuals had higher incident hypertension risk compared to those ages 40-49. Those with high waist circumference and elevated triglycerides had a higher risk of incident hypertension. Respondents engaging in high physical activity levels had a lower risk of incident hypertension compared to those with low physical activity levels. Compared to those HIV-negative at baseline, those HIV-positive and not on ART had a 55% lower risk of developing hypertension over the 5 years of follow-up, while those on ART also had lower hypertensive risk. Results for the full eligible sample are presented in online supplemental table 1.

Table 3 shows the multivariable-adjusted results from the full Poisson regression excluding HIV status for those completing both studies (see online supplemental table 2 for the full eligible sample results). Older ages (e.g., ages 60-69 aIRR: 2.4 95% CI: 1.463-3.938), being employed (aIRR: 1.579 95% CI: 1.071-2.329), and having a high waist circumference (aIRR: 1.557 95% CI: 1.074-2.259) were associated with higher risk of incident hypertension in 2015. Those engaging in high levels of physical activity had an approximately 43% lower risk of incident hypertension, although the 95% CI overlapped with the null value of 1 (95% CI: 0.319-1.018)

BMJ Open

Table 4 shows the same multivariable-adjusted Poisson model as Table 3 including HIV status, with similar results to those risk factors from the model without HIV status. The results for high waist circumference were in the same direction but the 95% CI overlapped with the null value of 1. Those who were HIV-positive and not on ART had an approximately 52% lower risk of incident hypertension compared to those HIV-negative at baseline (95% CI 0.301-0.778), while those HIV-positive and on ART showed similar associations to those not on ART.

Results of the sensitivity analyses of alternate anthropometry measures showed similar associations for BMI as for waist circumference (online supplemental table 3). There were not enough cases of high waist-to-hip ratio to include in the models. A model examining an outcome based only on BP thresholds also showed similar associations to the original models (online supplemental table 4). For the competing risk model, high rates of missing data on HIV/ART status precluded including that indicator. Results omitting HIV/ART status at baseline are presented in online supplemental table 5, showing similar results to the full eligible sample (online supplemental table 2). Cause of death information according to broad cause groups is presented in online supplemental table 6.

DISCUSSION

In 1998, South Africa had approximately 6.3 million adults with hypertension.⁴² Now it is estimated to be close to 12 million, nearly doubling despite population growth of about 34% over the same time period, with prevalence increasing from 24% to over 40% in some populations.⁴³ Based on our finding of 8.37 per 100 person-years, we estimate that roughly 1.4 million adults over the age of 40 will develop hypertension over the next five years. Given an increase of nearly 50% in the risk of ischemic heart disease and stroke death for

Page 13 of 47

BMJ Open

each 10 mmHg increase,⁴⁴ the results suggest both a significant increase in the number of people in need of additional treatment, and premature mortality if not adequately controlled.

We found that 29% of middle-aged and older adults in our study developed hypertension over a five-year period. Our results were similar to another study from South Africa following individuals ages 30-plus over five years (2005-2010) who started with optimal blood pressure. They found a relatively similar incidence of 24%²⁷ given the slightly younger age range.

We showed that men have higher hypertension incidence rates in mid-life, while women had higher rates at older ages. This is likely due at least in part to the smaller sample size of men in our study. A potentially similar pattern was shown in a study in South Africa (2004-2016) of patients initiating ART at 10 public sector clinics (9 urban, 1 rural) which included a wider age range (ages 18-50-plus).²⁴ They found that men had higher hypertension incidence rates at ages 18-39, while women had higher rates at ages 40-49 and 50-plus. Our finding may also be due to greater employment for middle-aged men⁴⁵ and higher survival^{17 46} or obesity^{47 48} among older women.

In multivariable-adjusted models, we found that being employed and having a high waist circumference at baseline were risk factors for incident hypertension. Another study in South Africa also found that high waist circumference was a key risk factor, along with alcohol intake.²⁷ While we showed no association with alcohol use, our sample also had low self-reported use of alcohol, with 80% reporting not drinking in the past month, which may be due to response bias.⁴⁹ Given the limited employment opportunities in our setting,²⁸ a higher risk of hypertension amongst employed individuals may represent those more likely to be

exposed to workplace-related stress and other behavioural factors such as diet^{50 51} that may differ from those not employed.

We found that being HIV-positive at baseline was associated with a lower risk of incident hypertension. This also aligns with an earlier study in South Africa that showed that being HIV-positive was inversely related to increased BP.²⁷ However, our results may be sensitive to survivorship bias if those who died due to HIV/AIDS over the five-year period were also more likely to develop hypertension. Of the 71 individuals for whom mortality information is available, about 28% died due to HIV/AIDS or TB. If a substantial portion of those individuals developed hypertension this may affect our estimates of the association between HIV/ART status and risk of incident hypertension. Further, as we lacked information on HIV/ART status for many individuals in the eligible sample who did not complete the follow-up study, this may affect our estimates if those individuals were more likely to be HIV-positive.⁵² A longer period of follow-up is needed to assess the effects of HIV and ART on hypertension and related cardiometabolic conditions. Longitudinal studies restricted to HIV-positive individuals have shown high hypertension incident rates over relatively short periods of follow-up and similar risk factors to the HIV-negative population.^{25 26}

Our longitudinal findings are particularly important given the complex health transition occurring in South Africa, with a concomitant burden of infectious and noncommunicable diseases.^{17 23 29 47} A study from the same community as our study demonstrated a high and increasing burden of stroke morbidity and mortality.⁵³ While our findings are consistent with hypertension-related risk factors found in other regions, population-specific studies such as ours are important to contextualize the epidemiological findings from elsewhere and inform local prevention and treatment strategies.¹⁴ They also provide an opportunity to understand

1:

BMJ Open

the interaction between cardiometabolic and infectious diseases such as HIV. A longer period of follow-up, which will be possible as future waves of the study are completed, will permit a greater understanding of the interplay between hypertension, HIV, and treatment of both and related conditions.

We acknowledge our study limitations. While our study is one of the few population-based, longitudinal cohorts on hypertension incidence in Africa, the study comes from a defined region in rural northeast South Africa. Additional studies are needed in other settings, particularly given differences in exposures and differential risk factors in rural and urban contexts. We include a wide range of potential risk factors based on existing studies. Other factors, however, such as migration history, would be important to consider given the high levels of circular labour migration in this setting and potential links of rural to urban migration to increased blood pressure.^{54–57} Other important factors to consider include nutritional factors such as consumption of fruits and vegetables and salt intake. Further, food insecurity is highly prevalent in this setting⁵⁸ and may lead to differential hypertension risk due to dietary differences. Given the high level of missing data on HIV/ART status amongst the eligible population who did not complete the follow-up study, we were unable to assess the effect of HIV/ART in a competing risk framework. Our measure of ART status is also based on self-report and may be subject to response bias, as well as factors related to HIV awareness such as engagement with health services.⁵⁹ Our self-reported measures may also be subject to social desirability and recall bias.

Over a period of five years, 29% of individuals developed hypertension in a population-based cohort of individuals ages 40 and older given an incidence rate of 8.374 per 100 person-years. Abdominal obesity was one of the most consistent risk factors. Being employed was also a

 1^{\cdot}

BMJ Open

predictor of incident hypertension. As South Africa continues to undergo a complex health and epidemiological transition, continued longitudinal follow-up is needed to understand the complex interplay of noncommunicable and infectious diseases, along with their underlying and modifiable risk factors. In response to the call for longitudinal studies from sub-Saharan Africa on hypertension risk, this study contributes to the evidence base that can help inform and target public health strategies to reduce preventable morbidity and mortality.

<text><text><text>

Acknowledgements

The authors thank the study participants and all those involved in the successful field operations in Ha Nakekela, HAALSI and the Agincourt HDSS.

Contributions: BH wrote the first draft and designed and completed the statistical analyses. FXG, BH, TG and SMT conceptualized the work. FXG, NA, CWK, and SMT designed and implemented the baseline study. TG, FXG, CWK, and SMT designed and implemented the follow-up study. TG, NA, SAM, CWK, SMT, and FXG revised the manuscript for important intellectual content and contributed to interpretation of the data. All authors read and approved the final manuscript.

Funding: The Ha Nakekela study was supported by the National Institutes of Health [R24 AG032112-05] and the William and Flora Hewlett Foundation 2009-4060 African Population Research and Training Program. Data analysis for this study, part of the HIV after 40 in rural South Africa project, was funded by the US National Institute on Aging [R01 AG049634] and the University of Colorado, Innovative Seed Grant [not applicable].

HAALSI was supported by the U.S. National Institute on Aging [P01AG041710; 1R01AG051144-01; 3U54HG006938-03S1].

The MRC/Wits Rural Public Health and Health Transitions Research Unit and Agincourt Health and Socio-Demographic Surveillance System, a node of the South African Population Research Infrastructure Network (SAPRIN), is supported by the Department of Science and Innovation [not applicable], the University of the Witwatersrand [not applicable], and the Medical Research Council, South Africa [not applicable], and previously the Wellcome Trust, UK (Grants 058893/Z/99/A; 069683/Z/02/Z; 085477/Z/08/Z; 085477/B/08/Z).

Competing interests: None declared.

Ethics approval: Ethical clearance for both surveys and the HDSS were obtained from the University of the Witwatersrand Human Research Ethics Committee (Medical) [M10458 and M141159] and the Mpumalanga Provincial Research and Ethics Committee. The baseline study also received ethical approval from the Institutional Review Board of the University of Colorado – Boulder [11-0549] and the follow-up study from the Harvard TH Chan School of Public Health, Office of Human Research Administration [C13-1608-02]. Written consent to participate was obtained for all participants in the baseline study. Each respondent in the follow-up study also provided written, informed consent (or by a proxy, when needed).

Data sharing: The datasets generated and/or analysed for the follow-up study are available at the Harvard Center for Population and Development Studies (HCPDS) program website: www.haalsi.org. The data supporting the findings of this study are available from the corresponding author on reasonable request.

REFERENCES

- Lim, S. S., T. Vos, A. D. Flaxman, G. Danaei, K. Shibuya, H. Adair-Rohani, M. A. AlMazroa, M. Amann, H. R. Anderson, and K. G. Andrews. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. *The Lancet* 2013;380:2224-2260.
- 2. Ibrahim, M. M., and A. Damasceno. Hypertension in developing countries. *The Lancet* 2012;380:611-619.
- 3. Bosu, W. K., S. T. Reilly, J. M. K. Aheto, and E. Zucchelli. Hypertension in older adults in Africa: A systematic review and meta-analysis. *PloS One* 2019;14:e0214934.
- Guwatudde, D., J. Nankya-Mutyoba, R. Kalyesubula, C. Laurence, C. Adebamowo, I. Ajayi, F. Bajunirwe, M. Njelekela, F. S. Chiwanga, T. Reid, J. Volmink, H. O. Adami, M. D. Holmes, and S. Dalal. The burden of hypertension in sub-Saharan Africa: a fourcountry cross sectional study. *BMC Public Health* 2015;15:1211.
- 5. Kaze, A. D., A. E. Schutte, S. Erqou, A. P. Kengne, and J. B. Echouffo-Tcheugui. Prevalence of hypertension in older people in Africa. *Journal of Hypertension* 2017;35:1345-1352.
- 6. Sarki, A. M., C. U. Nduka, S. Stranges, N. B. Kandala, and O. A. Uthman. Prevalence of Hypertension in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. *Medicine* 2015;94:e1959.
- Twagirumukiza, M., D. De Bacquer, J. G. Kips, G. de Backer, R. V. Stichele, and L. M. Van Bortel. Current and projected prevalence of arterial hypertension in sub-Saharan Africa by sex, age and habitat: an estimate from population studies. *J Hypertens* 2011;29:1243-1252.
- 8. Lloyd-Sherlock, P., J. Beard, N. Minicuci, S. Ebrahim, and S. Chatterji. Hypertension among older adults in low- and middle-income countries: prevalence, awareness and control. *International Journal of Epidemiology* 2014;43:116-128.
- 9. Sudharsanan, N., and P. Geldsetzer. Impact of Coming Demographic Changes on the Number of Adults in Need of Care for Hypertension in Brazil, China, India, Indonesia, Mexico, and South Africa. *Hypertension* 2019;73:770-776.
- 10. Addo, J., L. Smeeth, and D. A. Leon. Hypertension in sub-saharan Africa: a systematic review. *Hypertension* 2007;50:1012-1018.
- Gómez-Olivé, F. X., S. A. Ali, F. Made, C. Kyobutungi, E. Nonterah, L. Micklesfield, M. Alberts, and R. Boua. Stark Regional and Sex Differences in the Prevalence and Awareness of Hypertension: An H3Africa AWI-Gen Study Across 6 Sites in Sub-Saharan Africa. *Global Heart* 2017
- 12. Ataklte, F., S. Erqou, S. Kaptoge, B. Taye, J. B. Echouffo-Tcheugui, and A. P. Kengne. Burden of undiagnosed hypertension in sub-saharan Africa: a systematic review and meta-analysis. *Hypertension* 2015;65:291-298.
- Jardim, T. V., S. Reiger, S. Abrahams-Gessel, F. X. Gomez-Olive, R. G. Wagner, A. Wade, T. W. Bärnighausen, J. Salomon, S. Tollman, and T. A. Gaziano. Hypertension management in a population of older adults in rural South Africa. *Journal of Hypertension* 2017;35:1283-1289.
- 14. Kengne, A. P., L. M. Ntyintyane, and B. M. Mayosi. A systematic overview of prospective cohort studies of cardiovascular disease in sub-Saharan Africa. *Cardiovascular Journal of Africa* 2012;23:103-112.

- Holmes, M. D., S. Dalal, J. Volmink, C. A. Adebamowo, M. Njelekela, W. W. Fawzi, W. C. Willett, and H. O. Adami. Non-communicable diseases in sub-Saharan Africa: the case for cohort studies. *PLoS Med* 2010;7:e1000244.
- 16. Herbst, A. J., G. S. Cooke, T. Bärnighausen, A. KanyKany, F. Tanser, and M. Newell. Adult mortality and antiretroviral treatment roll-out in rural KwaZulu-Natal, South Africa. *Bulletin of the World Health Organization* 2009;87:754-762.
- 17. Kabudula, C. W., B. Houle, M. A. Collinson, K. Kahn, F. X. Gómez-Olivé, S. J. Clark, and S. Tollman. Progression of the epidemiological transition in a rural South African setting: findings from population surveillance in Agincourt, 1993-2013. *BMC Public Health* 2017;17:424.
- 18. Vollmer, S., K. Harttgen, T. Alfven, J. Padayachy, P. Ghys, and T. Bärnighausen. The HIV epidemic in sub-Saharan Africa is aging: Evidence from the Demographic and Health Surveys in sub-Saharan Africa. *AIDS Behav* 2016;21:101-113.
- 19. Anand, A. R., G. Rachel, and D. Parthasarathy. HIV proteins and endothelial dysfunction: Implications in cardiovascular disease. *Front Cardiovasc Med* 2018;5:185.
- 20. Grinspoon, S., and A. Carr. Cardiovascular risk and body-fat abnormalities in HIVinfected adults. *New England Journal of Medicine* 2005;352:48-62.
- 21. Dillon, D. G. Association of HIV and ART with cardiometabolic traits in sub-Saharan Africa: a systematic review and meta-analysis. *International Journal of Epidemiology* 2013;42:1754-1771.
- 22. Rigaud, A.-S., and B. Forette. Hypertension in older adults. *Journal of Gerontology* 2001;56A:M217-M225.
- 23. Mayosi, B. M., A. J. Flisher, U. G. Lalloo, F. Sitas, S. M. Tollman, and D. Bradshaw. The burden of non-communicable diseases in South Africa. *Lancet* 2009;374:934-947.
- Brennan, A. T., L. Jamieson, N. J. Crowther, M. P. Fox, J. A. George, K. M. Berry, A. Stokes, M. Maskew, I. Sanne, and L. Long. Prevalence, incidence, predictors, treatment, and control of hypertension among HIV-positive adults on antiretroviral treatment in public sector treatment programs in South Africa. *PloS One* 2018;13:e0204020.
- 25. Okello, S., M. Kanyesigye, W. R. Muyindike, B. H. Annex, P. W. Hunt, S. Haneuse, and M. J. Siedner. Incidence and predictors of hypertension in adults with HIV-initiating antiretroviral therapy in south-western Uganda. *J Hypertens* 2015;33:2039-2045.
- Rodríguez-Arbolí, E., K. Mwamelo, A. V. Kalinjuma, H. Furrer, C. Hatz, M. Tanner, M. Battegay, E. Letang, and S. G. KIULARCO. Incidence and risk factors for hypertension among HIV patients in rural Tanzania - A prospective cohort study. *PLoS One* 2017;12:e0172089.
- 27. Schutte, A. E., R. Schutte, H. W. Huisman, J. M. van Rooyen, C. M. Fourie, N. T. Malan, L. Malan, C. M. Mels, W. Smith, S. J. Moss, G. W. Towers, H. S. Kruger, E. Wentzel-Viljoen, H. H. Vorster, and A. Kruger. Are behavioural risk factors to be blamed for the conversion from optimal blood pressure to hypertensive status in Black South Africans? A 5-year prospective study. *International Journal of Epidemiology* 2012;41:1114-1123.
- 28. Kahn, K., M. A. Collinson, F. X. Gomez-Olive, O. Mokoena, R. Twine, P. Mee, S. A. Afolabi, B. D. Clark, C. W. Kabudula, A. Khosa, S. Khoza, M. G. Shabangu, B. Silaule, J. B. Tibane, R. G. Wagner, M. L. Garenne, S. J. Clark, and S. M. Tollman. Profile: Agincourt Health and Socio-demographic Surveillance System. *Int J Epidemiol* 2012;41:988-1001.

1		
2	20	
4	29.	Gomez-Olive, F. X., N. Angotti, B. Houle, K. Klipstein-Grobusch, C. Kabudula, J.
5		Menken, J. Williams, S. Tollman, and S. J. Clark. Prevalence of HIV among those 15
6	20	and older in rural South Africa. AIDS Care 2013;25:1122-1128.
7	30.	Gomez-Olive, F. X., L. Montana, R. G. Wagner, C. W. Kabudula, J. K. Rohr, K. Kahn,
8		1. Barnighausen, M. Collinson, D. Canning, I. Gaziano, J. A. Salomon, C. F. Payne, A.
9		Wade, S. M. Tollman, and L. Berkman. Cohort Profile: Health and Ageing in Africa: a
10		Longitudinal Study of an INDEPTH Community in South Africa (HAALSI).
12		International Journal of Epidemiology 2018;47:689-690j.
13	31.	Altunkan, S., K. Oztas, and E. Altunkan. Validation of the Omron 637IT wrist blood
14		pressure measuring device with a position sensor according to the International Protocol
15		in adults and obese adults. <i>Blood Pressure Monitoring</i> 2006;11:79-85.
16	32.	Saladini, F., E. Benetti, and P. Palatini. Accuracy of the visomat handy wrist blood
17		pressure measuring device according to the International Protocol. Blood Press Monit
18		2010;15:281-284.
19	33.	Omboni, S., I. Riva, A. Giglio, G. Caldara, A. Groppelli, and G. Parati. Validation of
20		the Omron M5-I, R5-I and HEM-907 automated blood pressure monitors in elderly
22		individuals according to the International Protocol of the European Society of
23		Hypertension. Blood Pressure Monitoring 2007;12:233-242.
24	34.	Centers for Disease Control and Prevention (CDC). National Health and Nutrition
25		Examination Survey: 1999-2000 Data Documentation, Codebook, and Frequencies.
26		2002
27	35.	US Department of Health and Human Services. 2004. The seventh report of the Joint
20		National Committee on prevention, detection, evaluation, and treatment of high blood
30		pressure. National Heart, Lung, and Blood Institute (US), NIH Publication No. 04-
31		5230.
32	36.	World Health Organization. 2007. Prevention of cardiovascular disease. Pocket
33		guidelines for assessment and management of cardiovascular risk: (WHO/ISH
34		cardiovascular risk prediction charts for the African region). World Health
35		Organization. Geneva.
36	37.	US Department of Health and Human Services. 2004. The seventh report of the Joint
37 38		National Committee on prevention, detection, evaluation, and treatment of high blood
39		pressure National Heart Lung and Blood Institute (US)
40	38	Kabudula C B Houle M A Collinson K Kahn S Tollman and S Clark Assessing
41	50.	changes in household socioeconomic status in rural South Africa 2001-2013: a
42		distributional analysis using household asset indicators. Social Indicators Research
43		2016·133·1047-1073
44	30	Byass P. D. Chandramohan S. I. Clark I. D'Ambruoso F. Fottrell W. I. Graham A.
45	57.	L Herbst A Hodgson S Hounton K Kahn A Krishnan I Leitao F Odhiambo O
40 47		J. Herost, A. Hougson, S. Hounton, K. Kaim, A. Krisiman, J. Lettao, F. Oumanioo, O.
48		A. Sankon, and S. M. Tomman. Surenginening standardised interpretation of verbar autopsy data: the new InterVA A tool. Clob Health Action 2012:5:1.8
49	40	Stote Corp. 2017. Stata Statistical Software: Poloage 15. Stote Corp. J.D. College Station
50	40.	StataCorp. 2017. Stata Statistical Software: Release 15. StataCorp, LP, Conege Station,
51	41	IA. Fine I. D. and D. I. Corres. A Description of the Model for the Soch distribution of a
52	41.	Fine, J. P., and K. J. Gray. A Proportional Hazards Model for the Subdistribution of a
53	10	Competing Risk. Journal of the American Statistical Association 1999;94:496-509.
54	42.	Steyn, K., I. A. Gaziano, D. Bradshaw, R. Laubscher, and J. Fourie. Hypertension in
55		South African adults: results from the Demographic and Health Survey, 1998. <i>Journal</i>
50 57		of Hypertension 2001;19:1717-1725.
58	43.	Ntuli, S. T., E. Maimela, M. Alberts, S. Choma, and S. Dikotope. Prevalence and
59		associated risk factors of hypertension amongst adults in a rural community of Limpopo
60		Province, South Africa. Afr J Prim Health Care Fam Med 2015;7:847.

- Chobanian, A. V., G. L. Bakris, H. R. Black, W. C. Cushman, L. A. Green, J. L. Izzo Jr, D. W. Jones, B. J. Materson, S. Oparil, and J. T. Wright Jr. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. *JAMA* 2003;289:2560-2571.
- 45. Blalock, C. L. Labor migration and employment in post-apartheid rural South Africa. *Department of Sociology* 2014;Doctor of Philosophy
- Houle, B., S. J. Clark, F. X. Gómez-Olivé, K. Kahn, and S. M. Tollman. The unfolding counter-transition in rural South Africa: mortality and cause of death, 1994-2009. *PLoS One* 2014;9:e100420.
- 47. Clark, S. J., F. X. Gómez-Olivé, B. Houle, M. Thorogood, K. Klipstein-Grobusch, N. Angotti, C. Kabudula, J. Williams, J. Menken, and S. Tollman. Cardiometabolic disease risk and HIV status in rural South Africa: establishing a baseline. *BMC Public Health* 2015;15:372.
- 48. Gaziano, T. A., S. Abrahams-Gessel, F. X. Gomez-Olive, A. Wade, N. J. Crowther, S. Alam, J. Manne-Goehler, C. W. Kabudula, R. Wagner, J. Rohr, L. Montana, K. Kahn, T. W. Bärnighausen, L. F. Berkman, and S. Tollman. Cardiometabolic risk in a population of older adults with multiple co-morbidities in rural south africa: the HAALSI (Health and Aging in Africa: longitudinal studies of INDEPTH communities) study. *BMC Public Health* 2017;17:206.
- 49. Houle, B., N. Angotti, F. X. Gómez-Olivé, and S. J. Clark. Fieldworker effects on substance use reporting in rural South Africa. *International Journal of Alcohol and Drug Research* 2018;7:29-39.
- 50. Maredza, M., K. J. Hofman, and T. Tollman. A hidden menace: cardiovascular disease in South Africa and the costs of an inadequate policy response: health policy and cardiovascular disease. *SA Heart* 2011;8:48-57.
- 51. Feeley, A. B. B., K. Kahn, R. Twine, and S. A. Norris. Exploratory survey of informal vendor-sold fast food in rural South Africa. *South African Journal of Clinical Nutrition* 2011;24:199-201.
- 52. Clark, S. J., and B. Houle. Validation, replication, and sensitivity testing of Heckmantype selection models to adjust estimates of HIV prevalence. *PLoS One* 2014;9:e112563.
- 53. Maredza, M., M. Y. Bertram, and S. M. Tollman. Disease burden of stroke in rural South Africa: an estimate of incidence, mortality and disability adjusted life years. *BMC Neurol* 2015;15:54.
- 54. Collinson, M. A., M. J. White, P. Bocquier, S. T. McGarvey, S. A. Afolabi, S. J. Clark, K. Kahn, and S. M. Tollman. Migration and the epidemiological transition: insights from the Agincourt sub-district of northeast South Africa. *Global Health Action* 2014;7:23514.
- 55. Pheiffer, C. F., S. T. McGarvey, C. Ginsburg, M. Collinson, F. X. Gómez-Olivé, S. Tollman, and M. J. White. Dimensions of internal migration and their relationship to blood pressure in South Africa. *J Biosoc Sci* 20191-16.
- Poulter, N. R., K. T. Khaw, B. E. Hopwood, M. Mugambi, W. S. Peart, G. Rose, and P. S. Sever. The Kenyan Luo migration study: observations on the initiation of a rise in blood pressure. *BMJ* 1990;300:967-972.
- 57. Steyn, K., D. Bradshaw, R. Norman, and R. Laubscher. Determinants and treatment of hypertension in South Africans: the first Demographic and Health Survey. *South African Medical Journal* 2008;98:376-380.
- 58. Hunter, L. M., W. Twine, and L. Patterson. "Locusts are now our beef": adult mortality and household dietary use of local environmental resources in rural South Africa. *Scand J Public Health Suppl* 2007;69:165-174.

59. Manne-Goehler, J., L. Montana, F. X. Gómez-Olivé, J. Rohr, G. Harling, R. G. Wagner, A. Wade, C. W. Kabudula, P. Geldsetzer, K. Kahn, S. Tollman, L. F. Berkman, T. W. Bärnighausen, and T. A. Gaziano. The ART advantage: healthcare utilization for diabetes and hypertension in rural South Africa. *JAIDS Journal of Acquired Immune Deficiency Syndromes* 2017;75:561-567.

for occreation work
FIGURE CAPTIONS

Figure 1. Participant flowchart.

Figure 2. Proportion of participants with incident hypertension, by age and gender, 2015.

to beet terien only

Table 1. Sample characteristics at baseline (2010), by study participation in 2015 for eligible
individuals (n=977).

	Lost to follow-up (n=301)		Com 20 (n=	pleted 015 =676)		Total (n=977)	
	n	%	'n	%	p-value	'n	%
Gender					•		
Male	140	(46.5)	239	(35.4)	0.001	379	(38.8)
Female	161	(53.5)	437	(64.6)		598	(61.2)
Age groups							
35-44	130	(43.2)	227	(33.6)	0.003	357	(36.5)
45-54	71	(23.6)	180	(26.6)		251	(25.7)
55-64	34	(11.3)	126	(18.6)		160	(16.4)
65-74	29	(9.6)	81	(12.0)		110	(11.3)
75+	37	(12.3)	62	(9.2)		99	(10.1)
Education							
None	40	(34.2)	277	(41.0)	0.018	317	(40.0)
Less than secondary	54	(46.2)	327	(48.4)		381	(48.0)
Secondary or more	23	(19.7)	72	(10.7)		95	(12.0)
Union status							
Not in union	166	(55.1)	302	(44.7)	0.002	468	(47.9)
Formal/informal union	135	(44.9)	374	(55.3)		509	(52.1)
SES ^a							
Low	130	(43.2)	253	(37.7)	0.258	383	(39.4)
Middle	86	(28.6)	216	(32.2)		302	(31.1)
High	85	(28.2)	202	(30.1)		287	(29.5)
Employment status							
Not employed	80	(68.4)	498	(74.1)	0.196	578	(73.3)
Employed	37	(31.6)	174	(25.9)		211	(26.7)
Smoking history							
Never	236	(78.4)	548	(81.1)	0.206	784	(80.2)
Prior	18	(6.0)	49	(7.2)		67	(6.9)
Current	47	(15.6)	79	(11.7)		126	(12.9)
Alcohol use							
Not in past 30 days	235	(78.1)	544	(80.5)	0.686	779	(79.7)
Less than weekly	24	(8.0)	47	(7.0)		71	(7.3)
Weekly	42	(14.0)	85	(12.6)		127	(13.0)
Physical activity ^b							
Low	27	(9.4)	40	(6.0)	0.128	67	(7.0)

Moderate	80	(27.9) 209	(31.3)	289 (30.3)
High	180	(62.7) 419	(62.7)	599 (62.7)
High waist circumference ^c				
No	205	(72.7) 430	(65.8)	0.04 635 (67.9)
Yes	77	(27.3) 223	(34.2)	300 (32.1)
Diabetes ^d				
No	293	(98.0) 655	(97.2)	0.46 948 (97.4)
Yes	6	(2.0) 19	(2.8)	25 (2.6)
High triglycerides ^e				
No	213	(72.7) 479	(73.5)	0.805 692 (73.2)
Yes	80	(27.3) 173	(26.5)	253 (26.8)

HIV/ART is not included given missing values (n=297) for the vast majority of those lost to follow-up.

^a Based on a household asset index score.

^bBased on the International Physical Activity Questionnaire (IPAQ).

^c Greater than 102cm for men and 88cm for women.

^d Blood glucose greater than or equal to 11.1.

^e Greater than or equal to 1.7 mmol/l.

Table 2. Hypertension incidence rates and incidence rate ratios per 100 person-years over 5 years of follow-up (2010-2015), by sociodemographic, health and behavioural factors among those completing both time points.

				95% CI			95% CI		
Value	Events	PYRS	IR	Lower	Upper	IRR	Lower	Upper	p- value
Overall	193	2311	8.374	7.242	9.721				
Gender									
Male	74	815	9.097	7.266	11.496	1			
Female	119	1496	8.159	6.832	9.804	0.897	0.67	1.2	0.463
Age groups									
40-49	56	975	5.04	3.837	6.73	1			
50-59	47	556	8.897	6.667	12.077	1.765	1.177	2.647	0.006
60-69	42	399	11.104	8.282	15.14	2.203	1.464	3.315	< 0.001
70-79	28	239	11.875	8.285	17.436	2.356	1.486	3.735	< 0.001
80+	20	141	16.197	10.647	25.379	3.213	1.931	5.348	< 0.001
Education									
None	85	986	9.256	7.491	11.536	1			
Less than									
secondary	92	1090	8.21	6.645	10.229	0.887	0.655	1.202	0.439
Secondary or	16	225	5 210	2 1 1 2	0.650	0.575	0.210	1.024	0.065
more	16	235	5.318	3.112	9.652	0.575	0.319	1.034	0.065
Union status	0.1	1004	0.(10	6.000	10 500				
Not in union	91	1034	8.613	6.983	10.709	1			
Formal/Informat	102	1277	8 165	6 685	10.051	0 948	0 706	1 273	0 722
SESa	102	12//	0.105	0.005	10.031	0.740	0.700	1.275	0.722
Low	68	867	8 064	6 3 2 8	10 397	1			
Middle	64	736	8 715	6 798	11 305	1 081	0 759	1 539	0.667
High	60	689	8 389	6 4 4 9	11.056	1.001	0.733	1.337	0.831
Employment	00	007	0.507	0.777	11.050	1.04	0.725	1.777	0.051
status									
Not employed	144	1701	8.336	7.048	9.911	1			
Employed	48	595	8.511	6.375	11.557	1.021	0.726	1.435	0.905
Smoking history									
Never	163	1861	8.644	7.392	10.155	1			
Prior	11	171	6.356	3.501	12.447	0.735	0.391	1.381	0.339
Current	19	279	6.715	4.293	10.956	0.777	0.478	1.262	0.308
Alcohol use	-								
Not in past 30									
days	153	1852	8.416	7.167	9.931	1			
Less than			. .			0 -	<i>.</i> -		
weekly	10	167	5.459	2.879	11.284	0.649	0.331	1.272	0.208
Weekly	30	292	9.789	6.708	14.649	1.163	0.766	1.765	0.478
Physical activity ^b									

Low	20	122	15.468	9.85	24.91	1			
Moderate	71	687	10.641	8.402	13.61	0.688	0.412	1.149	0.153
High	100	1471	6.98	5.718	8.59	0.451	0.275	0.742	0.002
High waist circumference ^c									
No	104	1512	6.519	5.326	8.046	1			
Yes	78	735	10.571	8.483	13.283	1.621	1.197	2.196	0.002
Diabetes ^d									
No	186	2240	8.298	7.156	9.662	1			
Yes	6	64	10.06	4.451	26.006	1.212	0.529	2.778	0.649
High									
triglycerides ^e									
No	122	1660	7.262	6.049	8.775	1			
Yes	59	575	10.59	8.177	13.88	1.458	1.057	2.012	0.022
HIV and ART									
status									
Negative	155	1514	10.452	8.909	12.318	1			
Positive, not on									
ART	25	486	4.749	3.15	7.439	0.454	0.289	0.713	0.001
Positive, on									
ART	6	178	3.553	1.52	10.122	0.34	0.142	0.811	0.015

^a Based on a household asset index score.

^b Based on the International Physical Activity Questionnaire (IPAQ).

^c Greater than 102cm for men and 88cm for women.

^d Blood glucose greater than or equal to 11.1. nmol/l.

^e Greater than or equal to 1.7 mmol/l.

	95% CI						
	aIRR	Lower	Upper	p-value			
Gender							
Male	1						
Female	0.818	0.512	1.305	0.399			
Age groups							
40-49	1						
50 50	1 831	1 103	2 811	0.00			
50-59	1.001	1.193	2.011				
00-09	2.4	1.403	3.938	<0.00			
/0-/9	2.607	1.451	4.684	< 0.00			
80+	2.561	1.196	5.488	< 0.00			
Education							
None	1						
Less than							
secondary	1.061	0.732	1.537	0.75			
Secondary or							
more	0.741	0.372	1.478	0.393			
Union status							
Not in union	1						
Formal/informal							
union	1.023	0.724	1.445	0.89			
SES ^a							
Low	1						
Middle	1 068	0.715	1 593	0.74			
High	0.915	0.59	1.42	0.69			
Employment	0.915	0.57	1.42	0.07			
status							
Not employed	1						
Employed	1 570	1 071	2 2 2 0	0.02			
Current in a history	1.379	1.071	2.329	0.02			
Smoking history							
Never	1						
Prior	0.758	0.37	1.55	0.44			
Current	0.709	0.373	1.349	0.29			
Alcohol use							
Not in past 30							
days	1						
Less than							
weekly	0.717	0.345	1.492	0.37			
Weekly	1.07	0.652	1.755	0.78			
Physical activity ^b							
Low	1						
Moderate	0.781	0.447	1.364	0.384			
	0.,01		1.201	5.50.			

14-1-1-12 Deiggen regreggion of incident hypertension aiadan ographic, 616).

2	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
ע∠ 2∕	
24	
25	
26	
27	
28	
20	
20	
30	
31	
32	
33	
34	
25	
22	
36	
37	
38	
39	
40	
_ 1 0	
41	
42	
43	
44	
45	
46	
40	
4/	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
5/	
58	
59	

1

High High waist circumference ^c	0.57	0.319	1.018	0.057
No	1			
Yes	1.557	1.074	2.259	0.02
Diabetes ^d				
No	1			
Yes	0.932	0.399	2.178	0.87
High				
triglyceridese				
No	1			
Yes	1.297	0.932	1.805	0.123
^a Based on a househ	old asset index so	core.		

^b Based on the International Physical Activity Questionnaire (IPAQ).

JOT W J 11.1. ^c Greater than 102cm for men and 88cm for women.

^d Blood glucose greater than or equal to 11.1.

^e Greater than or equal to 1.7 mmol/l.

Table 4. Multivariable Poisson regression of incident hypertension on sociodemographic, health and behavioural risk factors, and HIV and ART status among those completing both time points (n=581).

	95% CI							
	aIRR	Lower	Upper	p-value				
Gender								
Male	1							
Female	0.854	0.533	1.369	0.512				
Age groups								
40-49	1							
50-59	1.846	1.183	2.879	0.007				
60-69	2.128	1.281	3.535	0.004				
70-79	2.339	1.256	4.356	0.007				
80+	2.139	0.978	4.676	0.057				
Education								
None								
Less than								
secondary	1.124	0.765	1.652	0.552				
Secondary or								
more	0.754	0.368	1.542	0.439				
Union status								
Not in union	1							
In union	0.939	0.662	1.332	0.724				
SES ^a								
Low	1							
Middle	0.97	0.647	1.454	0.883				
High	0.812	0.519	1.269	0.36				
Employment								
status								
Not employed	1							
Employed	1.604	1.064	2.419	0.024				
Smoking history								
Never	1							
Prior	0.727	0.34	1.554	0.411				
Current	0.661	0.345	1.267	0.213				
Alcohol use								
Not in past 30								
days	1							
Less than	0 751	0.250	1 57 4	0.440				
weekly	0.751	0.358	1.574	0.448				
Weekly	1.111	0.668	1.846	0.685				
Physical activity ^b								
Low	1							
Moderate	0.77	0.434	1.365	0.371				

High	0.56	0 309	1.015	0.056
High waist	0.50	0.507	1.015	0.050
circumference ^c				
No	1			
Yes	1.448	0.975	2.149	0.066
Diabetes ^d				
No	1			
Yes	0.907	0.392	2.102	0.82
High				
triglyceridese				
No	1			
Yes	1.34	0.956	1.877	0.089
HIV and ART				
status				
Negative	1			
Positive, not on				
ART	0.484	0.301	0.778	0.003
Positive, on				
ART	0.462	0.197	1.082	0.075

^a Based on a household asset index score.

^b Based on the International Physical Activity Questionnaire (IPAQ).

^c Greater than 102cm for men and 88cm for women. equal to 11.1. mol/l.

^d Blood glucose greater than or equal to 11.1.

^e Greater than or equal to 1.7 mmol/l.

1	
2	
3 1	Supplementary Materials
5	
6	Online Supplemental Tables 1-6
7	
8	
9	
10	
11	
12	
13	
15	
16	
17	
18	
19	
20	
21 22	
22	
24	
25	
26	
27	
28 20	
29 30	
31	
32	
33	
34	
35	
30 37	
38	
39	
40	
41	
42	
43 44	
45	
46	
47	
48	
49 50	
50 51	
52	
53	
54	
55	
56 57	
57 58	
59	
60	

to peer teriew only

SUPPLEMENTARY MATERIALS

Supplemental Table 1. Hypertension incidence rates and incidence rate ratios per 100 person-years over 5 years of follow-up (2010-2015), by sociodemographic, health and behavioral factors among the full eligible sample.

				95% CI		95% CI			
Value	Events	PYRS	IR	Lower	Upper	IRR	Lower	Upper	p- value
Overall	193	3187	4.579	3.911	5.361				
Gender									
Male	74	1203	5.14	4.078	6.548	1			
Female	119	1984	4.408	3.641	5.369	0.858	0.632	1.163	0.323
Age groups									
40-49	56	1418	2.795	2.117	3.755	1			
50-59	47	727	5.092	3.731	7.069	1.821	1.191	2.786	0.006
60-69	42	514	5.478	3.876	7.848	1.96	1.25	3.073	0.003
70-79	28	316	6.244	4.127	9.655	2.233	1.347	3.704	0.002
80+	20	212	8.825	5.585	14.45	3.157	1.83	5.445	< 0.001
Education									
None	85	1134	6.774	5.397	8.574	1			
Less than									
secondary	92	1258	6.158	4.919	7.769	0.909	0.658	1.257	0.563
Secondary or	16	200	2 750	2 10	(0 (0	0 555	0.205	1 000	0.052
more	16	298	3./56	2.19	6.868	0.555	0.305	1.008	0.053
Union status	01	1,500	4 0 0 7		5 2 5 7	1			
Not in union	91	1508	4.237	3.38	5.357	1			
ronnal/informat	102	1679	4 928	3 984	6 1 4 4	1 163	0 849	1 593	0 347
SES ^a	102	1075	4.920	5.704	0.144	1.105	0.047	1.575	0.547
Low	68	1248	3 909	3 01	5 1 3 8	1			
Middle	60 64	975	5.612	4 325	7 372	1 436	0 986	2 089	0.059
High	60	946	4 464	3 362	6.007	1.130	0.700	1 69	0.007
Employment	00	710	1.101	5.502	0.007	1.1 12	0.772	1.09	0.507
status									
Not employed	144	1970	6.057	5.062	7.284	1			
Employed	48	706	6.503	4.83	8.911	1.074	0.754	1.529	0.694
Smoking history									
Never	163	2573	4.638	3.92	5.514	1			
Prior	11	218	4.314	2.36	8.558	0.93	0.49	1.765	0.825
Current	19	396	3.89	2.441	6.48	0.839	0.506	1.391	0.496
Alcohol use									
Not in past 30									
days	153	2546	4.522	3.805	5.401	1			
Less than	10	227	2 557	1 075	7 41 4	0 707	0.200	1 540	0 400
weekly	10	227	3.557	1.875	/.414	$0./8^{\prime}$	0.399	1.549	0.488

2										
3	Weekly	30	414	5.546	3.691	8.558	1.227	0.784	1.92	0.372
4 5	Physical activity ^b									
6	Low	20	199	6.424	3.801	11.185	1			
7	Moderate	71	913	6.323	4.899	8.246	0.984	0.548	1.769	0.958
8 9	High	100	2017	3.798	3.073	4.733	0.591	0.335	1.043	0.07
10	High waist									
11	circumference ^c									
12	No	104	2106	3.629	2.936	4.523	1			
13	Yes	78	974	5.796	4.544	7.455	1.597	1.151	2.215	0.005
15	Diabetes ^d									
16	No	186	3095	4.513	3.851	5.311	1			
1/ 18	Yes	6	81	6.868	2.92	18.668	1.522	0.64	3.621	0.342
19	High				,					
20	triglycerides ^e									
21	No	122	2269	4.084	3.367	4.989	1			
22 23	Yes	59	817	5.344	4.014	7.203	1.309	0.922	1.857	0.132
24	HIV and ART									
25	status									
26	Negative	155	1522	10.254	8.726	12.104	1			
27	Positive, not on									
29	ART	25	490	4.615	3.054	7.246	0.45	0.286	0.708	0.001
30	Positive, on									
31	ART	6	178	3.553	1.52	10.122	0.346	0.145	0.827	0.017
32	^a Based on a househo	ld accet in	dev score							

^a Based on a household asset index score.

^b Based on the International Physical Activity Questionnaire (IPAQ).

^c Greater than 102cm for men and 88cm for women.

^d Blood glucose greater than or equal to 11.1.

^e Greater than or equal to 1.7 mmol/l.

		95%	CI	
	aIRR	Lower	Upper	p-value
Gender				
Male	1			
Female	0.783	0.489	1.253	0.307
Age groups				
40-49	1			
50-59	1.871	1.205	2.905	0.005
60-69	1.972	1.146	3.392	0.014
70-79	2.183	1.149	4.146	0.017
80+	2.86	1.305	6.265	0.009
Education				
None	1			
Less than				
secondary	0.947	0.647	1.387	0.781
Secondary or	0.007		1 227	0.164
more	0.60/	0.3	1.227	0.164
Union status	1			
Not in union	1			
ronnal/informat	0 972	0.678	1 392	0.876
SES ^a	0.972	0.070	1.572	0.070
Low	1			
Middle	1 258	0.825	1 918	0 286
High	0.963	0.599	1.510	0.200
Employment	0.705	0.377	1.55	0.070
status				
Not employed	1			
Employed	1.814	1.195	2.752	0.005
Smoking history				
Never	1			
Prior	0.802	0.381	1.688	0.562
Current	0.71	0.362	1.393	0.32
Alcohol use				
Not in past 30				
days	1			
Less than	0.07	A	1 == 0	0.00
weekly	0.86	0.415	1.779	0.684
Weekly	1.114	0.646	1.922	0.698
² hysical activity ^b				
Low	1	_		_
Moderate	0.906	0.495	1.656	0.748

Supplemental Table 2. Multivariable Poisson regression of incident hypertension on sociodemographic, health and behavioral risk factors among the full eligible sample (n=721).

BMJ Open

-					
2					
3	High	0.620	0 242	1 105	0 161
4		0.039	0.342	1.195	0.101
5	High waist				
6	circumference				
7	No	1			
8	Yes	1.564	1.047	2.335	0.029
9	Dishetesd		10017	2.000	0.023
10	Diabetes				
11	No	1			
12	Yes	1.047	0.438	2.506	0.917
13	High				
14	triglycerides ^e				
15	ligiyeendes				
16	No	l			
1/	Yes	1.126	0.776	1.633	0.532
18 10	^a Based on a house	hold asset index so	core.		
19					

Based on a household asset index score.

^b Based on the International Physical Activity Questionnaire (IPAQ).

^c Greater than 102cm for men and 88cm for women.

^d Blood glucose greater than or equal to 11.1.

^e Greater than or equal to 1.7 mmol/l.

Supplemental Table 3. Multivariable Poisson regression of incident hypertension on sociodemographic, health (using BMI instead of waist circumference) and behavioral risk factors, and HIV and ART status among those completing baseline and follow-up time points (n=579).

	95% CI				
	aIRR	Lower	Upper	p-value	
Gender					
Male	1				
Female	0.911	0.595	1.396	0.669	
Age groups					
40-49	1				
50-59	1.906	1.237	2.938	0.003	
60-69	2.38	1.426	3.972	0.001	
70-79	2.649	1.444	4.857	0.002	
80+	2.335	1.055	5.168	0.036	
Education	2.550	1.000	2.100	01020	
None	1				
Less than	1				
secondary	1.128	0.775	1.642	0.53	
Secondary or					
more	0.746	0.365	1.525	0.421	
Union status					
Not in union	1				
Formal/informal					
union	0.971	0.685	1.376	0.867	
SES ^a					
Low	1				
Middle	0.927	0.619	1.389	0.714	
High	0.778	0.498	1.215	0.269	
Employment					
status					
Not employed	1				
Employed	1.526	1.014	2.295	0.043	
Smoking history					
Never	1				
Prior	0.732	0.342	1.565	0.421	
Current	0.716	0.372	1.378	0.317	
Alcohol use					
Not in past 30					
days	1				
Less than	0 750	0.262	1 550	0 4 4 4	
weekiy	0./52	0.363	1.559	0.444	
Weekly	1.037	0.628	1./11	0.887	
Physical activity [®]					

2					
3	Low	1			
4		0.701	0.410	1 0 10	0.000
5	Moderate	0.721	0.419	1.242	0.239
6	High	0.506	0.289	0.886	0.017
7 8	Obesity ^c				
9	No	1			
10	Yes	1.902	1.315	2.751	0.001
11	Diabetes ^d				
12	Diabetes	1			
13	No	l			
14	Yes	0.916	0.371	2.263	0.849
15	High				
16	triglycerides ^e				
17	N	^			
18	No				
19	Yes	1.346	0.965	1.876	0.08
20	HIV and ART				
21	status				
22	status				
23	Negative	1			
24	Positive, not on				
25	ART	0.504	0.315	0.809	0.004
26	Positive, on				
27	ART	0.507	0.221	1.165	0.11
28	· D 1 1 1 1				

^a Based on a household asset index score.

^b Based on the International Physical Activity Questionnaire (IPAQ).

^c Greater than or equal to 30 BMI.

or equal to 11.1. mmol/l. ^d Blood glucose greater than or equal to 11.1.

^e Greater than or equal to 1.7 mmol/l.

			9
		aIRR	Lower
G	lender		
	Male	1	
	Female	0.773	0.45
А	ge groups		
	40-49	1	
	50-59	1 902	11
	60-69	2.06	1.1
	70.70	1 432	0.65
	201	1.432	0.02
г	80+	1.888	0.79
E	ducation		
	None	1	
	Less than	l C	
	secondary	0.99	0.64
	Secondary or		
	more	0.772	0.36
U	nion status		
	Not in union	1	
	In union	0.8	0.5
S	ES ^a		
D	Low	1	
	LOW	1	0.54
	Middle	0.899	0.56
_	High	0.657	0.39
E	mployment		
S	tatus		
	Not employed	1	
	Employed	1.747	1.09
S	moking history		
	Never	1	
	Prior	0.612	0.23
	Current	0.61	0.25
		0.01	0.29
A	licohol use		
	Not in past 30	1	
	aays	1	
	Less than	0 720	0.22
	weekiy	0./38	0.32
	Weekly	0.959	0.54
Р	hysical activity ^b		
	Low	1	
	Moderate	0.973	0

Poisson regression of incident hypertension (based on c, health and behavioral risk factors, and HIV and seline and follow-up time points (n=581).

95% CI

0.455

1.17

1.166

0.658

0.795

0.648

0.363

0.54

0.569

0.394

1.093

0.237

0.291

0.326

0.542

0.5

Upper

1.315

3.093

3.641

3.117

4.483

1.514

1.644

1.185

1.419

1.094

2.792

1.581

1.277

1.672

1.699

1.894

p-value

0.343

0.01 0.013

0.366

0.15

0.965

0.502

0.266

0.647

0.106

0.02

0.311

0.189

0.467

0.887

0.936

BMJ Open

2					
3	High	0.669	0.33	1 3 5 5	0.264
4	High weigt	0.007	0.55	1.555	0.204
5	High walst				
6	circumference				
7	No	1			
8	Yes	1.361	0.882	2.102	0.164
9	Disketerd	1.001	0.002		01101
10	Diabetes				
11	No	1			
12	Yes	0.341	0.05	2.309	0.27
13	High				
14 15	triglycerides ^e				
16	No	1			
17	Ves	1 19	0 792	1 789	0 402
18	HIV and APT	1.17	0.172	1.707	0.402
19					
20	status				
21	Negative	1			
22	Positive, not on				
23	ART	0.28	0.151	0.518	< 0.001
24	Positive on				
25	ART	0 313	0 108	0 908	0.033
26			0.100	0.908	0.033
27	" Based on a household	i asset index sc	ore.		

Based on a household asset index score.

^b Based on the International Physical Activity Questionnaire (IPAQ).

^c Greater than 102cm for men and 88cm for women.

requal to 11.1. mol/l. ^d Blood glucose greater than or equal to 11.1.

^e Greater than or equal to 1.7 mmol/l.

Supplemental Table 5. Multivariable competing risk regression (Fine-Grey model) of incident hypertension on sociodemographic, health and behavioral risk factors among the full eligible sample (n=662).

		95%	CI	
	SHR	Lower	Upper	p-value
Gender				
Male	1			
Female	0.835	0.526	1.326	0.445
Education				
None	1			
Less than				
secondary	1.1	0.766	1.58	0.607
Secondary or	0.968	0.513	1 820	0 021
Union status	0.908	0.515	1.629	0.921
Not in union	1			
Formal/informal				
union	1.067	0.759	1.5	0.708
SES ^a				
Low	1			
Middle	1.021	0.689	1.512	0.919
High	0.881	0.566	1.371	0.574
Employment				
status				
Not employed	1			
Employed	1.969	1.374	2.821	< 0.001
Smoking history				
Never	1			
Prior	0.772	0.38	1.57	0.475
Current	0.73	0.367	1.451	0.369
Alcohol use				
Not in past 30				
days	1			
Less than	0.882	0 432	1 708	0 720
Weekly	0.862	0.432	1.790	0.729
Physical activity ^b	0.899	0.300	1.397	0.710
Low	1			
Low	1 1 10/	0 667	2 102	0 564
Ligh	1.104	0.007	2.102	0.304
High waist	0.714	0.312	1.033	0.701
circumference ^c				
No	1			
Yes	1.399	0.952	2.056	0.088
Diabetes ^d				

BMJ Open

No	1			
Yes	1.399	0.677	2.887	0.364
High				
triglycerides ^e				
No	1			
Yes	1.111	0.778	1.585	0.563

^b Based on the International Physical Activity Questionnaire (IPAQ).

^c Greater than 102cm for men and 88cm for women.

^d Blood glucose greater than or equal to 11.1.

^e Greater than or equal to 1.7 mmol/l.

Supplemental Table 6. (Cause of death by broad	disease category for the	full eligible sample.
-------------------------	-------------------------	--------------------------	-----------------------

Cause group	Ν	%
HIV/AIDS and TB	20	28
Other infectious diseases	16	23
Noncommunicable diseases	34	48
External	1	1

Cause of death information from InterVA-4. Information on cause of death missing for 4 individuals.

to beet terien only

 BMJ Open

		STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>cohort studies</i>	
Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5
		(b) For matched studies, give matching criteria and number of exposed and unexposed	NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6-7
Bias	9	Describe any efforts to address potential sources of bias	7-8
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	7-8
		(d) If applicable, explain how loss to follow-up was addressed	7-8
		(e) Describe any sensitivity analyses	8
Results			

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	9
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	9
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	9; Table 1
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	Table 2
Outcome data	15*	Report numbers of outcome events or summary measures over time	9
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	9-10, Table 2, Table
		(b) Report category boundaries when continuous variables were categorized	Table 2 Table 3
		(b) Report category boundaries when continuous variables were categorized	Table 4
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	11
Discussion			
Key results	18	Summarise key results with reference to study objectives	11-12
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	12-14
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	13
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	15

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.