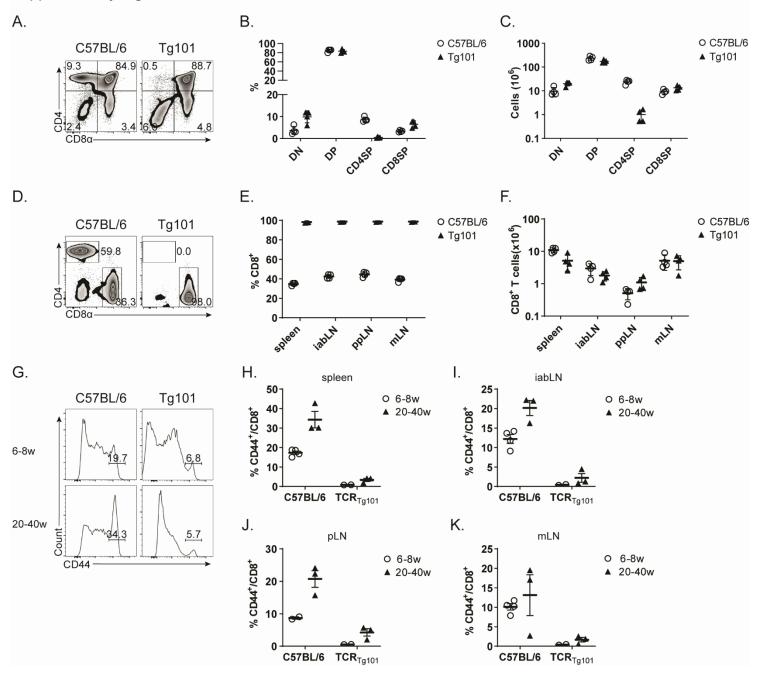
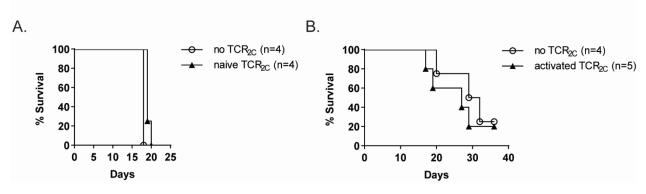
Cell Reports, Volume 37


Supplemental information

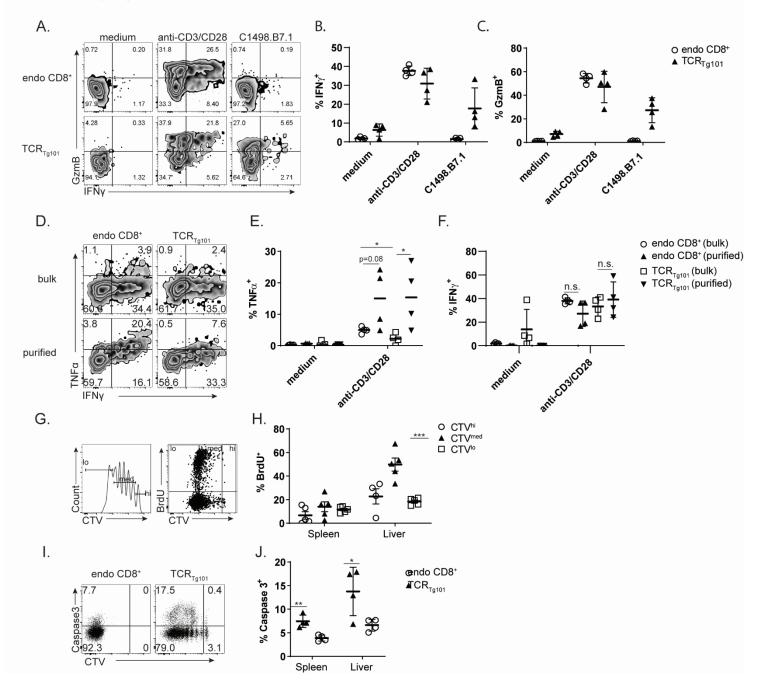
Divergent fates of antigen-specific

CD8⁺ T cell clones in mice with acute leukemia

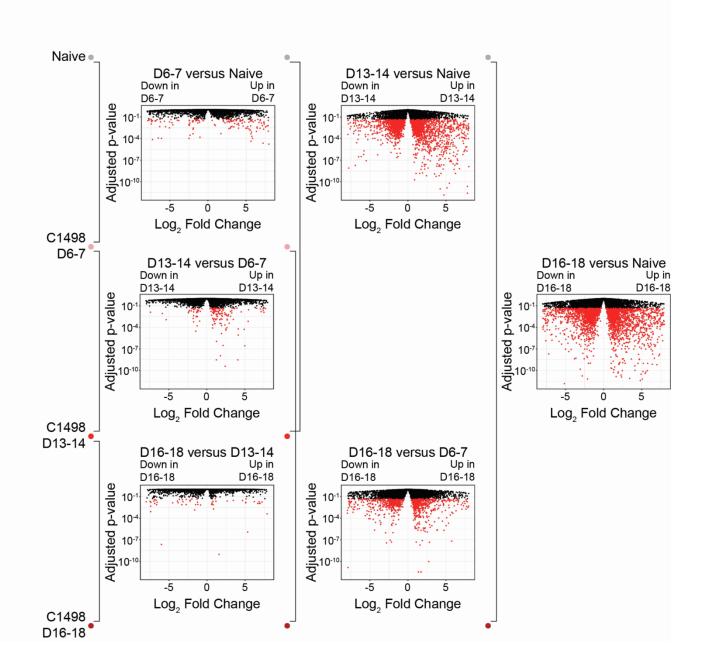
Xiufen Chen, Brendan W. MacNabb, Blake Flood, Bruce R. Blazar, and Justin Kline


Supplementary Figure 1

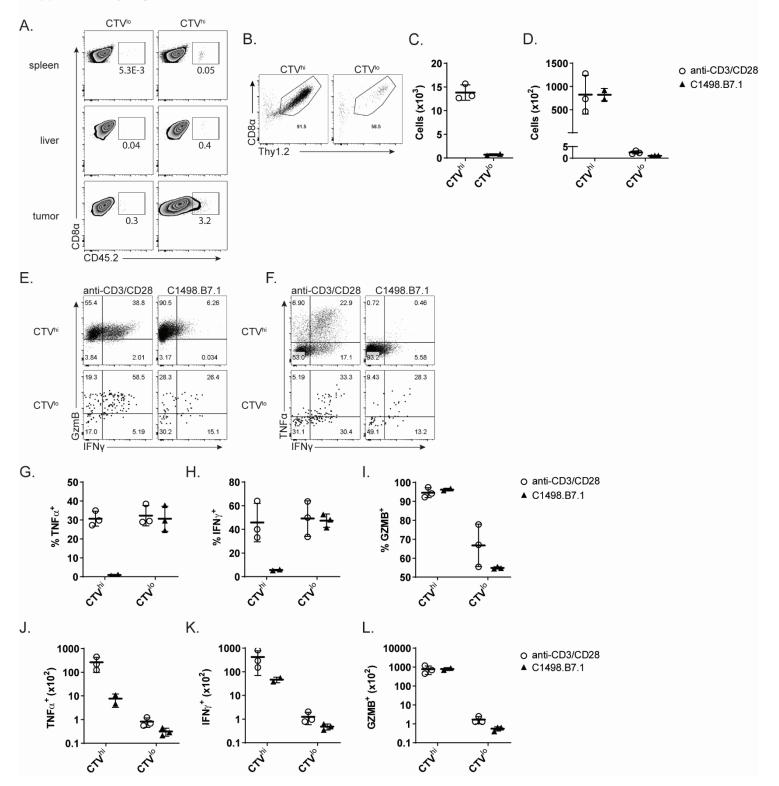
Supplementary Figure 1. T cell phenotyping of Tg101 TCR transgenic mice. Related to Figure 1. (A-C) Thymocyte development in $Rag2^{-/-}$ Tg101 mice. CD4 and CD8 expression on live thymocytes from 6-8 week-old C57BL/6 and $Rag2^{-/-}$ Tg101 mice were analyzed by flow cytometry. Representative FACS plots are shown in (A). Quantified data are shown in (B and C) as mean ± SD. DN – double negative; DP – double positive; SP - single positive. (D-F) Frequencies and absolute numbers of CD4⁺ and CD8⁺ T cells in SLO of C57BL/6 and $Rag2^{-/-}$ Tg101mice (gated on CD3⁺ cells). Representative FACS plots are shown in (D) and quantified results are shown in


(**E and F**). Sp - spleen; iabLN - pooled inguinal, axillary and brachial lymph lodes; pLN – periaortic lymph node; mLN - mesenteric lymph lode. (**G-K**) Analysis of CD44 expression on CD8⁺ T cells from C57BL/6 and *Rag2^{-/-}* Tg101 mice. Representative FACS plots depicting the frequency of CD44-expressing splenic CD8⁺ T cells from younger (6-8 weeks) and older (20-40 weeks) mice are shown in (**G**). Summary plots of different SLO are shown in (**H-K**) as mean \pm SD. Data are representative of at least 2 experiments with 2-4 mice/group.

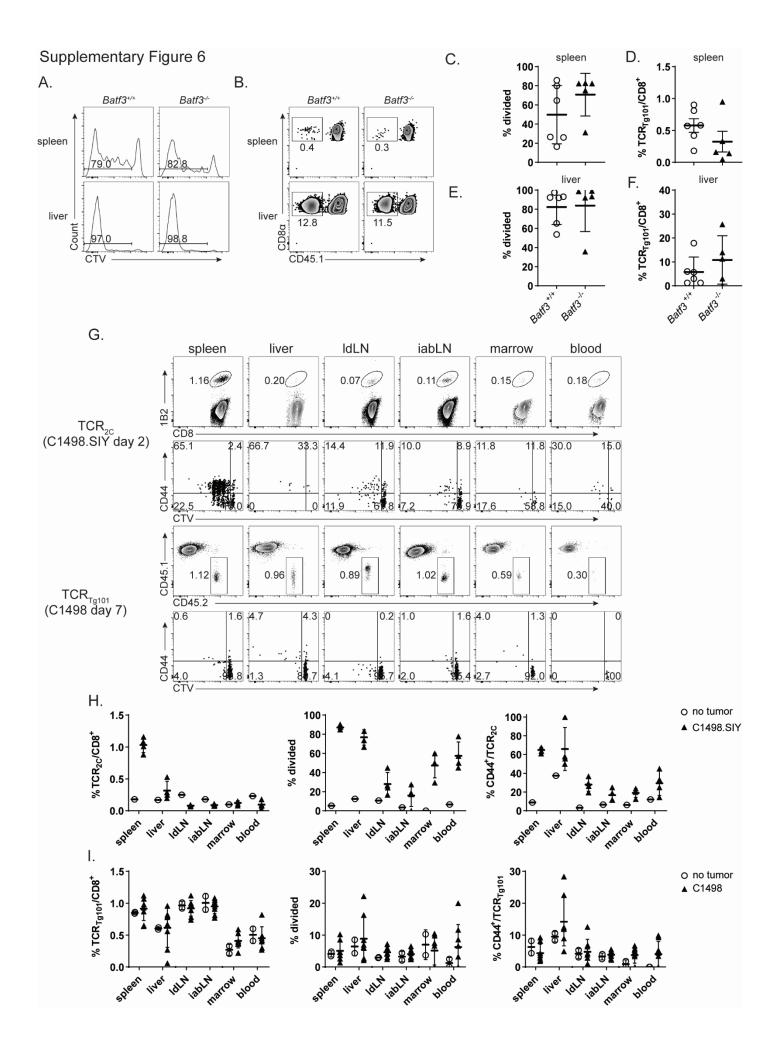
Supplementary Figure 2


Supplementary Figure 2. Adoptive transfer of naïve or activated TCR_{2C} does not impact survival of mice with leukemia. Related to Figure 2. (A and B) Survival of C57BL/6 mice challenged i.v. with C1498.SIY cells (10^6) and transferred or not with naive (A) or *in vitro* activated (B) TCR_{2C} (4x10⁶) 3-5 days later.

Supplementary Figure 3


Supplementary Figure 3. TCR_{Tg101} effector cytokine, proliferation and apoptosis profiles. Related to Figure 2. (A-C) Mononuclear cells isolated from livers of mice 18 days after C1498 cell inoculation (19 days following TCR_{Tg101} (CD45.1.2) adoptive transfer) were restimulated with anti-CD3 and anti-CD28 antibodies or irradiated C1498.B7.1 cells with IL-2 (50 U/ml), IL-7 (5 ng/ml), and IL-12 (20 ng/ml) overnight. Cytokine production was analyzed by flow cytometry. Gating was performed on TCR β ⁺CD8⁺CD45.1 cells (endogenous CD8⁺ T cells) or TCR β ⁺CD8⁺CD45.1.2 cells (TCR_{Tg101}). (A) Representative FACS plots showing IFN γ and Granzyme B (GzmB)

production by endogenous CD8⁺ T cells or TCR_{Tg101}. Quantitative data are shown in (**B** and **C**) as mean \pm SD. (**D**-**F**) CD8⁺ T cells (endogenous and TCR^{Tg101}) were purified or not from Ficoll-enriched mononuclear cells from livers of mice 18 days after C1498 cell inoculation. Bulk mononuclear cells or purified CD8⁺ T cells were restimulated with anti-CD3 and anti-CD28 antibodies plus IL-2 and IL-12 overnight, and cytokine production was analyzed by flow cytometry. Gating was performed on TCR β ⁺CD β ⁺CD45.1 cells (endogenous CD β ⁺ T cells) or TCR β ⁺CD8⁺CD45.1.2 cells (TCR_{Tg101}). (**D**) Representative FACS plots showing TNF α and IFN γ production by endogenous CD8⁺ T cells or TCR_{Tg101} from bulk or purified CD8⁺ T cell populations. Quantitative data are shown in (E and F) as mean \pm SD. * p < 0.05; n.s. – not significant (G and H) BrdU incorporation by CTV-labeled TCR_{Tg101} in livers of leukemia-bearing mice 17 days after C1498 cell challenge. (G) Representative FACS plots showing CTV^{hi}, CTV^{med}, and CTV^{low} TCR_{Tg101} populations (left) and BrdU incorporation by CTV dilution of TCR_{Tg101} (right). Gating was performed on TCR β^+ CD45.2 cells. (H) Quantified data from (G) as mean ± SD. (I and J) Activated caspase 3 in endogenous $CD8^+$ T cells or TCR_{Te101} from spleens or livers of leukemia-bearing mice 17 days following C1498 cell challenge. (I) Representative FACS plots showing activated caspase 3 expression in endogenous $CD8^+$ T cells and TCR_{Tg101} in livers of leukemia-bearing animals. (J) Quantified data shown as mean \pm SD. Data are pooled from 2 experiments with 2-3 mice/group. * p < 0.05; ** p < 0.01. *** p < 0.001. n.s. – not significant.


Supplementary Figure 4. Volcano plots showing differentially expressed genes in TCR_{Tg101} at specific time points. Related to Figure 3. Pairwise comparisons of RNA-seq profiles of TCR_{Tg101} from leukemia-bearing mice at early (day 6-7, pink icon), mid (day 13-14, red icon), and late (day 16-18, maroon icon) time points, as well as naïve mice (grey icon). Genes with an adjusted p-value <0.05 (Benjamini-Hochberg) were considered to be differentially expressed and are depicted in red.

Supplementary Figure 5

Supplementary Figure 5. The dysfunctional TCR_{Tg101} phenotype is not readily reversible. Related to Figure 4. (A) Identification of naïve (CTV^{hi}) or exhausted (CTV^{lo}) TCR_{Tg101} in secondary hosts. Experimental design outlined in Figure 4A. Representative FACS plots showing frequencies of naïve (CTV^{hi}) and exhausted (CTV^{lo}) TCR_{Tg101} (CD45.1.2) in the indicated tissues of secondary B6.SJL mice (CD45.1) with s.c. C1498 tumors. (**B and**

C) CTV^{hi} (naïve) and CTV^{lo} (exhausted) TCR_{Tg101} were FACS-purified from livers of leukemia-bearing mice17-18 days after i.v C1498 cell challenge, and (1x10⁴) were cultured with of IL-2 (50 U/ml), IL-7 (5 ng/ml), IL-12 (20 ng/ml) and IL-15 (5 ng/ml) for 5 days, at which point, surviving TCR_{Tg101} were enumerated. (**B**) Representative FACS plots showing live TCR_{Tg101} from CTV^{hi} and CTV^{lo} populations. Quantified data are shown in (C). (D-L) CTV^{hi} and CTV^{lo} TCR_{Tg101} were FACS-purified from livers of leukemia-bearing mice 17-18 days after i.v C1498 cell challenge, and 2-3x10⁴ CTV^{hi} or CTV^{lo} TCR_{Tg101} were restimulated with anti-CD3 and anti-CD28 antibodies or irradiated C1498.B7.1 cells in the presence of IL-2 (50 U/ml) and IL-12 (20 ng/ml) for 5 days. Viability and cytokine production by CTV^{hi} and CTV^{lo} TCR_{Tg101} was analyzed by flow cytometry. (**D**) Quantification of live TCR_{Tg101} following 5 days of *in vitro* culture. (E and F) Representative FACS plots showing effector cytokine production and GzmB expression among *in vitro* cultured CTV^{hi} and CTV^{lo} TCR_{Tg101} following restimulation with anti-CD3 and anti-CD28 antibodies or with irradiated C1498.B7.1 cells. (G-I) Quantified data showing frequencies of IFN γ -, TNF α -, or dual cytokine-producing, viable CTV^{hi} and CTV^{lo} TCR_{Tg101} after restimulation. (J-L) Quantified data showing absolute numbers of IFN γ -, TNF α -, or dual cytokine-producing, viable CTV^{hi} and CTV^{lo} TCR_{Tg101} after restimulation. Data are representative of 2 experiments with 2-3 mice/group and shown as mean \pm SD.

Supplementary Figure 6. TCR_{Tg101} initially encounter antigen in the liver in a cDC1-independent manner. Related to Figures 5 and 6. (A-F) CTV-labeled TCR_{Tg101} (CD45.2) were adoptively transferred into Batf3^{+/+} (CD45.1) or *Batf3^{-/-}* (CD45.1.2) mice 1 day prior to i.v. challenge with C1498 cells. Fifteen days later, TCR_{Tg101} proliferation and frequencies in spleens and livers of $Batf3^{+/+}$ and $Batf3^{-/-}$ mice were analyzed by flow cytometry. Representative FACS plots showing CTV dilution (A) or frequency (B) of TCR_{Tg101} in spleens and livers of leukemia-bearing *Batf3*^{+/+} and *Batf3*^{-/-} mice. (C-F) Quantitative data showing percent divided TCR_{Tg101} (C and E) and TCR_{Tg101} frequencies (**D** and **F**) in spleens (**C** and **D**) and livers (**E** and **F**) of leukemia-bearing $Batf3^{+/+}$ versus *Batf3^{-/-}* mice. Data in C-E are pooled from 2 independent experiments with 2-3 mice/group and shown as mean \pm SD. (G-I) 1x10⁶ CTV-labeled TCR_{2C} or TCR_{Tg101} were adoptively transferred into groups of congenic C57BL/6 mice that received an i.v. challenge with C1498.SIY cells (TCR_{2C}) or C1498 cells (TCR_{Tg101}) the following day, or that received no subsequent leukemia cell challenge. Two (TCR_{2C}) or seven (TCR_{Tg101}) days later, spleens, livers, bone marrow, pooled skin-draining lymph nodes, pooled liver-draining lymph nodes (portal and celiac), and peripheral blood were harvested. Frequencies, proliferation profiles, and CD44 expression among TCR_{2C} or TCR_{Tg101} at the indicated sites were analyzed by flow cytometry. (G) Representative FACS plots showing TCR_{2C} (top) or TCR_{Tg101} (bottom) frequency, proliferation (CTV dilution) and CD44 expression at the sites indicated. (H and I) Quantitative data from (G), including data from leukemia-free control mice. Data in H and I are pooled of 2 independent experiments with 2-4 mice/group and shown as mean \pm SD.