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S1. Limitations to using TFBS predictions when constructing gene regulatory networks 

 
Position-weight-matrices (PWMs) are used to conceptualize the DNA sequence pattern bound by a transcription 
factor (TF). The genomic locations (“motif locations”) that match the pattern contained in a PWM can be used to 
predict a transcription factor’s binding sites (TFBSs). Multiple methods have been developed that leverage 
chromatin accessibility and other genomic information (e.g. sequence conservation, proximity to an annotated 
transcription start site, etc.) alongside PWMs to improve motif scoring and thereby TFBS predictions. These 
methods are generally benchmarked by comparing the scores associated with each motif location against a 
“gold standard” derived from ChIP-seq data. At a technical level, this amounts to comparing two vectors of length 
Nm, where Nm is the number of motif locations in the genome: (1) one containing scores associated with each 
motif location, and (2) one indicating whether or not there is also a ChIP-seq peak at these locations. This 
approach has two well-known limitations. First, by definition, this approach excludes locations in the genome 
where the TF is bound based on ChIP-seq data but there is no corresponding pattern in the DNA that matches 
the PWM. Secondly, because only a handful of motif locations are occupied by a transcription factor, these 
evaluations are prone to a high number of true-negatives, which can artificially inflate metrics such as the Area 
Under the Receiver-Operating Characteristic Curve (AUC-ROC, or more simply AUC).  
 
These issues, especially the former, are exacerbated when constructing gene regulatory networks. In 
constructing gene regulatory networks, the motif locations that occur within the regulatory region (most often the 
promoter region) of a gene are often used to estimate which TFs regulate that gene. In contrast to genome-wide 
TFBS prediction, benchmarking the targets of a TF in a gene regulatory network involves comparing two vectors 
of length Ng, where Ng is the number of genes in the network: (1) one containing information regarding whether 
or not the TF’s motif was found within the regulatory region(s) of the genes, and (2) one containing information 
regarding whether or not there is a ChIP-seq peak for that same TF within the regulatory region(s) of the genes. 
Note that in this evaluation, genes whose regulatory regions contain a bound TF based on ChIP-seq data, but 
do not contain a corresponding match to that TF’s PWM, are no longer excluded, but instead are considered 
false negatives. 
 
This shift has profound implications for model accuracy. Namely, even highly accurate TFBS predictions can, 
when naively used to construct a gene regulatory network as described above, lead to very poor network 
accuracy. To illustrate this seemingly counter-intuitive statement, Supplemental Figure 1 depicts a toy example 
illustrating how the same data evaluated using either a “motif-centric” or a “gene-centric” approach can lead to 
dramatically different AUC values. The top panel shows three tracks that represent the genomic locations of (1) 
motifs, (2) gene promoters, and (3) open chromatin (for example, DNase-seq peaks). The middle panel shows 
the location of TF binding sites based on ChIP-seq peaks. In constructing this example, we selected parameters 
consistent with those observed in real biological data. Namely, 75% of gene promoters also contained an open 
chromatin region and 40% contained a predicted TFBS, 5% of predicted TFBS not in promoters were in regions 
of open chromatin (representing enhancers), and 25% of open chromatin regions contained a true TF binding 
site (ChIP-seq peak); no ChIP-seq peaks were located outside of open chromatin regions.  
 
We computed the AUC using both a motif-centric and gene-centric approach. For the motif-centric comparison, 
motif locations that overlapped with open chromatin were given a score of “1” while motif locations that were not 
in open chromatin were given a score of “0”. Benchmarking this vector of motif scores against the ChIP-seq 
peaks resulted in a very high AUC value (AUC = 0.96; Supplemental Figure 1, first row of bottom panel). For 
the gene-centric approach we considered two scenarios. In the first, gene promoters that contained a motif were 
give a score of “1” and promoters that did not contain a motif were given a score of “0”. This is equivalent to 
using motif locations without chromatin information to predict a TF’s target genes, as in a regulatory network. In 
this set-up, the AUC value dropped severely (AUC = 0.55; Supplemental Figure 1, second row of bottom panel). 
For the second scenario, gene promoters that contained a motif that was also in open chromatin were given a 
score of “1” and all other gene promoters were given a score of “0”. In this case, despite the additional epigenetic 
information, there was only a minimal improvement in AUC (AUC = 0.63; Supplemental Figure 1, third row of 
bottom panel), and the accuracy was significantly below that obtained using the same information, but in a motif-
centric manner.  
 



This analysis shows that highly accurate results from motif-centric prediction approaches, including algorithms 
that combine PWM and chromatin accessibility information to predict TFBS, do not directly translate into accurate 
gene regulatory network models. This is not only due to a high number of true negatives, but also a high number 
of false negatives. 
 
 
S2. Evaluating SPIDER’s performance when using random-like seed networks 
 
At some level, a naïve network that is constructed by intersecting the locations of transcription factor binding 
sites and gene regulatory regions, can be thought of as “random-like” since it does not include any cell-type 
specific information. An additional intersection with open chromatin regions essentially prunes edges from this 
naïve network by incorporating information regarding the specific biological context measured in the associated 
experimental assay, such as cell type or exposure condition. One of the assumptions of SPIDER is that this 
pruned network contains biologically relevant patterns that can be identified and amplified by message-passing 
in order to improve accuracy. 
 
We investigated this assumption by evaluating whether pruning a naïve network using DNase hypersensitivity 
data is equivalent to creating a lower-density “random-like” network that can be improved using message-
passing, or if epigenetically informed pruning results in a non-random network, i.e. one that includes patterns 
that can be identified and amplified by message-passing in order to improve accuracy. To do this, we began with 
the naïve seed network analyzed in the main text. Then, for each cell line, instead of using DNase hypersensitivity 
data to create a SPIDER seed network, we randomly pruned edges from the naïve seed network to create a 
random-like seed network that had the same number of edges as the SPIDER seed network. We next applied 
message-passing to each of these random-like seed networks to create corresponding random-like regulatory 
networks. We repeated this ten times. Supplemental Figure 2 shows the AUC and AUPR values for the naïve 
seed, SPIDER seed, and SPIDER regulatory network in each cell line, as reported in Figure 2, as well as the 
mean AUC and AUPR values across the ten random-like seeds for each cell line and across the ten 
corresponding random-like regulatory networks for those cell lines.  
 
First, we see that the random-like seed networks are much less accurate than the naïve seed network (comparing 
the pale purple and gray bars). This is because the naïve seed network is not random but contains biological 
signal derived from the existence of transcription factor binding sites in the regulatory regions of genes. Thus, 
randomly pruning edges is equivalent to adding noise to the biological signal in the naïve seed network, resulting 
in lower accuracy. We also see that the message-passing procedure marginally improves network accuracy 
when applied to the random-like seeds (comparing dark purple and light purple bars). We believe that this is due 
to biological signal from the naïve seed network that is retained despite the random pruning. Consistent with this, 
these random-like regulatory networks (at best) approach the accuracy of the naïve seed network. In contrast, 
as reported in the main text, the epigenetically informed SPIDER seed networks have a slightly higher accuracy 
than the naïve seed network (comparing the orange and gray bars) and applying message-passing to the 
epigenetically informed SPIDER seed networks results in highly accurate predictions (red bars). 
 
Overall, this analysis illustrates that the employed seed networks are not random-like. In fact, the naïve seed 
network contains biological signal that is degraded upon random pruning, but that is slightly improved when 
pruning based on epigenetic data (as is done with SPIDER). We believe the message-passing procedure is 
identifying this signal and using it to further improve network accuracy. 
 
 
S3. Benchmarking SPIDER against other methods 
 
We compared the performance of SPIDER to that of several other methods and available networks. The methods 
and networks that incorporate epigenetic information fall into three main categories: (1) transcription factor 
binding site prediction methods (whose output needs to be processed to create gene regulatory networks 
comparable to those predicted by SPIDER); (2) publicly available gene regulatory networks (provided as a 
resource in other publications), and (3) gene regulatory network prediction methods. We also compared SPIDER 
to (4) algorithms that are designed to estimate a network using gene expression data. In analyzing these diverse 



methods and resources, we processed the provided data in as consistent of manner as possible to support a fair 
comparison of the sources. 
 
Below we describe each of these additional methods/networks and how we adapted their usage or output to 
systematically compare their performance with each other and with that of SPIDER. For all methods/networks 
we only focused on the subset of cell lines and transcription factors for which we had ChIP-seq data (see 
Supplemental File 1). This means that the evaluations we perform for each method/network are a subset of the 
evaluations we perform for SPIDER. For each of the methods/networks we performed a threshold analysis to 
evaluate the accuracy of that method/network’s predictions. The thresholds used in these analyses were used 
to calculate the true positive rate, true negative rate, false positive rate, and false negative rate for each test 
performed, which is summarized in Figure 5b in the main text. The results reviewed in this section are 
summarized in Supplemental Table 4 and illustrated in Figure 5a and Supplemental Figures 5-6. 
 
Group 1: TFBS inference methods 
 
We chose CENTIPEDE1 and PIQ2 as two representative, highly-cited examples of the many methods that have 
been developed to perform genome-wide TFBS prediction. Both of these were pioneering methods and are 
widely used as benchmarks.  
 
CENTIPEDE: The CENTIPEDE algorithm identifies regions of the genome that are bound by transcription factors 
using a hierarchical Bayesian mixture model to integrate histone modifications and DNase I cleavage patterns 
with gene annotations and evolutionary conservation. We downloaded the data on TFBS predicted by 
CENTIPEDE from two resources: 

(a) the original CENTIPEDE repository: http://centipede.uchicago.edu/SimpleMulti/ 
(b) website hosting supplemental material for 3: https://noble.gs.washington.edu/proj/priors4search/  

 
From the original CENTIPEDE repository, we downloaded the TFBS predictions for five cell lines (GM12878, 
H1HESC, HELAS3, HEPG2, K562) since these were analyzed in our primary SPIDER analysis. These data 
listed the genomic locations of predicted TFBS in hg18 coordinates, which we converted to hg19 coordinates 
using the liftOver program (downloaded from https://genome.ucsc.edu/cgi-bin/hgLiftOver, accessed October 2, 
2018), but no scoring information. Therefore, to provide additional insight into the performance of CENTIPEDE, 
we also downloaded information regarding the posterior probability of TF binding data for the CENTIPEDE 
model, which was provided as part of the supplemental material in 3. These data included six TFs in one exemplar 
cell line: GM12878. Although limited, these data included scores for all motif locations, allowing us to recapitulate 
the performance of CENTIPEDE at a genome-wide level and to gain insights into why the apparent superior 
performance of the algorithm did not directly translate into accurate network predictions (see Section S1).  
 
To evaluate CENTIPEDE, we first focused on the limited dataset from 3 and calculated the accuracy of the 
predicted motif locations based on PWM scores as well as the CENTIPEDE-predicted posterior probability 
scores. In particular, for each TF, we intersected the associated motif locations with the locations of ChIP-seq 
peaks (using the same ChIP-seq data as we used to benchmark SPIDER); locations that intersected with a 
ChIP-seq peak were considered true binding events. When then calculated the AUC based on the initial PWM 
scores associated with the motif locations as well as using the posterior probability scores predicted by 
CENTIPEDE. This analysis recapitulated CENTIPEDE’s excellent predictive performance, with a mean AUC of 
0.9782 across the six TFs based on the posterior probability score. This compared to a mean AUC of only 0.7039 
when using the original PWM scores (Supplemental Figure 5a). 
 
Next, for each TF, we intersected motif locations with either proximal (±1kb around the TSS) or distal (±20-25kb 
around the TSS) gene regulatory regions (as in Step 2 of SPIDER). Genes for which no associated regulatory 
region included a motif location were given a default weight of 0.001 less than the minimum posterior probability 
score across all motif locations, genes for which exactly one motif location was found across all associated 
regions were assigned the posterior probability score associated with that motif location, and genes for which 
more than one motif location was identified across all associated regulatory regions were assigned the highest 
of the posterior probability scores associated with the identified motif locations. For each TF, we compared the 
resulting vector of gene scores with information regarding whether or not there is also a ChIP-seq peak for that 
TF within at least one of the gene’s associated regulatory regions; we then used this information to calculate 
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both an AUC and AUPR for that TF. We found that the mean AUC across the six TFs was only 0.5403 for the 
proximal regions (Supplemental Figure 5b-c) and 0.5632 for the distal regions (Supplemental Figure 5e-f). 
 
We also performed a threshold analysis since this would better align with the data supplied in the original 
CENTIPEDE repository. In particular, we identified motif locations that had a high posterior probability (score > 
5) and intersected those locations with proximal and distal gene regulatory regions (as in Step 2 of SPIDER). 
Genes which were not associated with any regulatory regions that included one of these high-scoring motif 
locations were given a default weight of zero, while genes associated with at least one regulatory region that 
contained one or more of these high-scoring motif locations were given a score of one. The mean AUC across 
the six TFs in this context was only 0.5236 for the proximal regions and 0.5189 for the distal regions 
(Supplemental Table 4).  
 
Finally, we analyzed the data provided from original CENTIPEDE repository, which contained bed files listing 
only high-probability motif locations. Exactly as in the above analysis, we intersected motif locations with gene 
regulatory regions. We merged predictions from multiple motifs that mapped to the same TF and then 
benchmarked each resulting profile with its corresponding standard based on ChIP-seq data for that TF and cell-
line (47 total comparisons). We observed overall poor predictive performance, with a mean AUC of only 0.5156 
for proximal regions and 0.5218 for distal regions. These values are very similar to those we obtained when 
analyzing the more detailed data from only six TFs, as described above. The results of these analyses are shown 
in Figure 5a (proximal) and Supplemental Figure 5d (distal). 
 
Protein-DNA Interaction quantitation (PIQ): PIQ is a tool for global TF binding site detection using a 
combination of motif information and DNase-seq data2. Similar to CENTIPEDE, PIQ estimates binding 
probabilities associated with a set of motif locations. We downloaded data containing PIQ predictions from 
http://piq.csail.mit.edu/data/141105-3618f89-hg19k562.calls/. These data contained predictions for the K562 cell 
line and included 48 motifs that were also associated with one of the TFs for which we had K562 ChIP-seq data; 
these 48 motifs corresponding to 25 unique TFs.  
 
As in our CENTIPEDE analysis (see above), we first evaluated the overall accuracy of the PIQ scores across all 
motif locations. More specifically, for each motif, we merged together the genomic locations provided for both 
the standard and reverse compliment PIQ analyses. We then intersected these combined locations with the 
locations of ChIP-seq peaks (using the same ChIP-seq data as we used to benchmark SPIDER); locations that 
intersected with a ChIP-seq peak were considered true binding events. We used these data to calculate an AUC 
based on the initial PWM scores as well as based the scores assigned by PIQ. In this context, PIQ performed 
well, with a mean AUC of 0.7729 across the 48 motifs based on the PIQ score, compared to a mean AUC of 
0.6001 for the PWM score (Supplemental Figure 5a). 
 
Next, we intersected motif locations with either proximal or distal regulatory regions (as described in Step 2 of 
SPIDER). Exactly as in our CENTIPEDE analysis (see above), we merged predictions from multiple motifs that 
mapped to the same TF, genes whose regulatory regions didn’t include a motif location were given a default 
weight of 0.001 less than the minimum score across all motif locations, genes associated with exactly one motif 
location across all associated regulatory regions were assigned the score associated with that motif location, 
and genes with more than one motif location identified across all associated regulatory regions were assigned 
the highest score across all associated motif locations. For each motif, we compared the resulting vector of gene 
scores with information regarding whether or not there is also a ChIP-seq peak for the corresponding TF within 
at least one of the gene’s associated regulatory regions; this allowed us to calculate an AUC and AUPR for that 
motif. We found that the mean AUC across the 48 motifs was only 0.5703 for the proximal regions 
(Supplemental Figure 5b-c) and 0.5606 for the distal regions (Supplemental Figure 5e-f). 
 
Finally, we also performed a threshold analysis where we identified motif locations that had a high score (score 
> 0) and intersected those locations with proximal and distal gene regulatory regions (as in Step 2 of SPIDER). 
Genes whose associated regulatory regions didn’t include a high-scoring motif location were given a default 
value of zero, while genes that were associated with at least one regulatory region that contained one or more 
high-scoring motif locations were given a score of one. The mean AUC across the 48 tested motifs was 0.5559 
for proximal regions and 0.5389 for distal regions. The results of these analyses are shown in Figure 5a 
(proximal) and Supplemental Figure 5d (distal). 
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Overall, these analyses indicate that the predictions from CENTIPEDE and PIQ cannot be naively used for 
regulatory network inference. TFBS prediction approaches that combine motif locations with chromatin data are 
poor predictors of TF occupancy when restricted to gene regulatory regions. For more information, see Section 
S1, above. 
 
Group 2: Available gene regulatory networks 
 
Networks published along with Neph et. al.4:  One of the first attempts to use DNase footprints to construct 
regulatory networks was published by Neph et. al.4. In this paper, the authors combined TF motif locations with 
genome-wide DNase1 footprints to construct regulatory networks of transcription factors. Specifically, if the 
DNase1 footprint of transcription factor i was identified within the promoter region of the gene encoding 
transcription factor j, a regulatory edge was drawn from transcription factor i to transcription factor j. By design, 
only genes that encode transcription factors were included in these networks. 
 
We downloaded the regulatory networks associated with 4 from http://www.regulatorynetworks.org. From these, 
we selected the networks for the K562 and HEPG2 cell lines, since those were included in the six cell lines for 
which we had ChIP-seq data. Note that the downloaded networks were binary (non-weighted), only contained 
transcription factors, and were restricted to promoter-based regulatory predictions. We evaluated the accuracy 
of each of the TFs within these networks using the ChIP-seq gold standards used to evaluate TFs in the proximal 
SPIDER networks, restricting those standards to only include target genes within in the Neph et. al. networks 
(i.e. the subset of genes encoding transcription factors). The mean AUC across all the tests performed was 
0.5178, similar to mean AUC for threshold proximal CENTIPEDE analysis. The results of this analysis are 
illustrated in Figure 5a in the main text. 
 
Networks published along with Marbach et. al.5: Another collection of gene regulatory network models was 
provided along with the article published by Marbach et. al.5. These network models were constructed by 
identifying the promoters and enhancers of genes using CAGE expression profiles, and then linking TF motif 
locations found within these regions to the corresponding target genes. 
 
We downloaded the networks constructed by Marbach et. al.5 from http://regulatorycircuits.org. Among the 394 
networks provided through this resource, we identified five for which we had corresponding ChIP-seq data and 
could use for benchmarking and validation. The downloaded networks were binary (non-weighted), limited to the 
set of genes used for network building in the CAGE analysis (these genes were provided by the authors in a 
supplemental file together with the downloaded networks), and did not distinguish between proximal and distal 
regulation. Similar to how we evaluated the networks associated with Neph et. al. (see above), we evaluated the 
accuracy of these networks using the ChIP-seq gold standards used to evaluate the proximal SPIDER networks. 
Specifically, we restricted each gold standard to only include the set of genes used in the CAGE analysis and 
evaluated each TF in each network using its corresponding TF and cell line ChIP-seq standard (167 total tests). 
The mean AUC across all the tests performed was 0.5595, similar to the mean AUC for the threshold proximal 
PIQ analysis. The results of this analysis are illustrated in Figure 5a in the main text. 
 
Group 3: Gene regulatory network prediction methods 
 
TEPIC6, 7: TEPIC performs a segmentation-based method to predict TF-binding by the combining PWMs and 
open-chromatin assay data. TEPIC computes TF binding affinities based on a biophysical model of TF binding 
which detects low affinity binding sites. Of all the methods/networks evaluated, the TEPIC input information and 
approach is the most similar to that of SPIDER. 
 
Reconstructing networks using TEPIC: We downloaded the TEPIC program and supporting files from 
https://github.com/SchulzLab/TEPIC. To create regulatory predictions, the input to TEPIC includes (1) a set of 
formatted PWMs, (2) the full genomic sequence in FASTA format, (3) open chromatin regions in BED format, (4) 
a gene annotation file that indicates the location of gene transcriptional start sites, and (5) a window size to 
indicate the range around the TSS to designate as the regulatory region. For (1) we used a set of formatted 
JASPAR motifs (“human_jaspar_hoc_kellis.PSEM”) provided with the TEPIC program. For (2) we used the same 
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hg19 fasta sequence file used for the FIMO motif scan we performed to create the SPIDER input files. For (3) 
we used the same DNase peak bed files we used when running SPIDER. 
 
For (4) we created custom gene annotation files that would ensure TEPIC used the same regulatory regions that 
we used when running SPIDER. In particular, for the proximal regions we created a gtf file with each entry 
corresponding to a unique TSS. We note that some genes are associated with more than one TSS; however, 
TEPIC by default only considers one entry for each unique gene symbol. Therefore, in order for TEPIC to treat 
these as separate regulatory regions (as we did in SPIDER), we listed a gene (“GeneName”) that is annotated 
to multiple TSS as GeneName::COPY1, GeneName::COPY2, etc, one copy per unique TSS. When running 
TEPIC for proximal regions we set the window size to 1000, which corresponded to running TEPIC on regulatory 
regions defined as ±1kb around each TSS – the same regions we used for our proximal SPIDER analysis.  
 
To run TEPIC using distal regions, we created a gtf file that had two entries for each unique TSS, one noting a 
location 22500bp upstream of the TSS and one noting a location 22500bp downstream of the TSS. These 
locations correspond to the mid-points of the regulatory regions we used when performing our distal analysis 
with SPIDER. In order for TEPIC to treat these as separate regulatory regions, each gene (“GeneName”) was 
listed twice using the convention GeneName::U and GeneName::D, and annotated to the upstream and 
downstream TSS locations, respectively. As in the proximal analysis, genes that were associated with more than 
one TSS were denoted by GeneName::U::COPY1, GeneName::U::COPY2, etc. When running TEPIC for distal 
regions we set the window size to 2500, which corresponded to running TEPIC on regulatory regions located at 
±20-25kb around each TSS – the same regions we used for our distal SPIDER analysis. 
 
We ran TEPIC using DNase data for each of the six cell lines and gene annotations for proximal as well as distal 
regulatory regions (twelve total analyses). To handle multiple regulatory regions associated with the same gene 
(for example, a gene associated with multiple associated TSS and alternative 5’ gene ends), for each TF motif 
to gene edge, we weighted the edge based on its maximum score across all possible inferences. Note that only 
genes associated with at least one regulatory region that overlaps with a DNase peak are contained in the TEPIC 
output file. Therefore, for completeness, edges targeting genes not in the TEPIC output were given a default 
score of zero; this ensured the networks we inferred using TEPIC contained the same set of target genes as the 
networks inferred using SPIDER. 
 
Analyzing TEPIC-predicted networks: We first evaluated the accuracy of TEPIC predictions using continuous 
scores. Specifically, for each TF motif in each cell line, we extracted the vector of edge-weights from that motif 
to all genes in the TEPIC-predicted network and compared that vector to the TF’s targets in the corresponding 
cell line specific ChIP-seq gold standard. Based on this analysis, we observed a mean AUC across all the tests 
of 0.7405 for the proximal analysis (Supplemental Figure 5b-c) and 0.7586 for the distal analysis 
(Supplemental Figure 5e-f). Overall the predictions made by TEPIC were more accurate than all the other 
methods/networks we evaluated, with the exception of SPIDER. 
 
We also performed a threshold analysis. For each cell line network, we selected the top 25% of edges by weight. 
We evaluated the accuracy of each TF motif in these binarized networks using the corresponding TF and cell 
line specific ChIP-seq gold standard. Thresholding the TEPIC results negatively impacted its performance. When 
thresholding, we observe a mean AUC of only 0.5820 across all tests for the proximal analysis and a mean AUC 
of 0.6549 for the distal analysis. The results of this threshold analysis are shown in Figure 5a of the main text. 
 
SPIDER: Our main evaluation of SPIDER’s performance involved benchmarking the continuous edge scores 
predicted by SPIDER against ChIP-seq predictions. The results of these evaluations for individual TFs is shown 
in Figures 2 & 4 (proximal and distal AUC, respectively) in the main text and in Supplemental Figures 5a&c 
(proximal and distal AUPR, respectively). These results are summarized across all cell lines and shown in 
Supplemental Figure 5b-c (proximal networks) and Supplemental Figure 5e-f (distal networks) alongside the 
subset of methods for which we could also perform continuous evaluations (six motifs in CENTIPEDE, PIQ, and 
TEPIC). For SPIDER, we observe a mean AUC of 0.7949 (proximal) and 0.8477 (distal) across all tests. 
 
However, for many of the methods/networks described above we were only able to evaluate binary predictions. 
Therefore, to support a more equitable comparison of SPIDER to these other methods/networks, we also 
performed a threshold analysis based on SPIDER’s predictions. As in the TEPIC evaluations (see above), for 



each cell line network, we identified the top 25% of edges by weight. We evaluated the accuracy of each TF in 
these binarized networks using the corresponding TF and cell line specific ChIP-seq gold standard. We observed 
a mean AUC of only 0.6950 across all tests for the proximal analysis and a mean AUC of 0.7747 for the distal 
analysis. Although these AUC values are lower than the ones we obtained when evaluating SPIDER’s 
continuous scores, they are still much higher than those we obtained from all other sources in the context of 
thresholding. The results of this threshold analysis are shown in Figure 5a of the main text. 
 
SPIDER input data: For our final evaluation, we also determined the accuracy of the FIMO motif scan. This is an 
important evaluation since the quality of the data used to seed SPIDER may impact the algorithm’s performance 
and explain its higher accuracy compared to the other sources we evaluated. To begin, we intersected the 
genomic locations of each motif with each of the ChIP-seq bed files corresponding to that motif’s associated TF. 
Locations with an overlapping ChIP-seq peak were considered true binding events. Separately, we also 
intersected the genomic locations of each motif with open chromatin regions for each of the six cell lines, as 
defined in the DNase BED files used by SPIDER. Motif locations that overlapped with open chromatin regions 
were given a score of one, and all other locations were assigned a score of zero. This mirrors Step 1 of the 
SPIDER algorithm. 
 
We used these data to calculate an AUC based on the initial PWM scores as well as based the binary “scores” 
obtained from overlapping with chromatin information. We found that, at a genome wide level, the data used as 
an input to SPIDER was already fairly accurate, with a mean AUC across all tests of 0.6596 based on PWM 
scores, and a mean AUC across all tests of 0.7431 based on the binary DNase-based scoring scheme. These 
results are illustrated in Supplemental Figure 5a. Overall, the accuracy of the motif scan that we used to 
construct the seed networks for SPIDER appears fairly similar to that used by CENTIPEDE and PIQ. Thus, the 
accuracy of the SPIDER input data cannot explain its highly superior performance compared to these other 
approaches in the gene regulatory network context. 
 
Group 4: Algorithms that estimate networks using gene expression data 
 
SPIDER uses chromatin accessibility data to construct transcription factor to gene networks. In contrast, most 
existing network reconstruction approaches focus on estimating these relationships using transcriptomic data. 
Although they rely on different input data, the goal of SPIDER is similar to that of these approaches. Therefore, 
we also compared SPIDER’s performance to four commonly used expression-based network reconstruction 
methods: ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks)8, CLR (Context Likelihood 
of Relatedness)9, GENIE3 (GEne Network Inference with Ensemble of trees)10, and PANDA (Passing Attributes 
between Networks for Data Assimilation)11.  
 
To begin, we identified lymphoblastoid gene expression data from the Genotype-Tissue Expression (GTEx) 
project; these data had previously been processed and used to build a lymphoblastoid regulatory network using 
PANDA12;  666 TFs and 19260 genes that were in our naïve seed network had measurable gene expression in 
these data. We used the expression data for these 666 TFs and 19260 genes as an input to ARACNe, CLR, 
GENIE3, and PANDA. GENIE3 and PANDA additionally allow the user to include input data describing an initial 
estimate of transcription factor to gene regulatory relationships. Therefore, for these two algorithms we included 
as an input a subset of the naive seed network -- the portion that extends between these 666 TFs and 19260 
genes. To provide a fair comparison to SPIDER, we also re-ran SPIDER using only data pertaining to these 
same 666 TFs and 19260 genes. Finally, we benchmarked the five predicted networks (one each from ARACNe, 
CLR, GENIE3, PANDA, and SPIDER), using the associated portion of the ChIP-seq network for GM12878.  
 
Overall, we find that using expression information to reconstruct a regulatory network is inferior to using 
epigenetic information (Supplemental Figure 7). The relatively low performance of the expression-based 
algorithms is likely due to two things: (1) gene expression represents a very noisy signal that needs to be 
assessed across multiple samples during network reconstruction; (2) these expression-based algorithms were 
primarily developed and benchmarked in the context of less complex organisms, such as E. Coli or yeast, or 
using in silico data. In contrast, SPIDER estimates a network using a single open-chromatin profile and has been 
optimized in the context of human data. 
 



We note that upon close inspection, we find that SPIDER’s performance seems to be slightly worse in this setting 
compared to what is reported in the main text of our manuscript. Specifically, the GM12878 SPIDER-predicted 
regulatory network has a reported AUC of 0.82 and AUPR of 0.42 in Figure 2b, but an AUC of 0.78 and AUPR 
of 0.42 in the analysis shown here. This is due to limiting the input data. In particular, our primary analyses use 
SPIDER to model regulatory interactions between all TFs and all genes. However, due to the requirements of 
the expression-based algorithms, the analyses described here use only a subset of these. The message-passing 
procedure used by SPIDER considers regulatory patterns across all TFs and genes when inferring a network. 
Thus, restricting the number of considered TFs and genes can hurt the algorithms’ performance.  
 
We would like to mention that we believe the inability to model non-expressed genes is a limitation of many 
expression-based network algorithms. Just because a gene doesn’t have measurable expression doesn’t mean 
it is not regulated. Namely, a gene can be targeted and repressed, causing it to have little to no measured 
expression. Including these lowly or non-expressed genes in PANDA and SPIDER is a strength of these 
algorithms. 
 
 
S4. Potential of expanding SPIDER to incorporate other Omics data 
 
SPIDER builds on the message passing framework used by the PANDA reconstruction algorithm. Thus, it has 
the potential to be extended to incorporate other sources of regulatory information, including protein-protein 
interaction and gene expression data. 
 
To investigate this, we obtained protein-protein interaction (StringDB v10) and lymphoblastoid gene expression 
data from the Genotype-Tissue Expression (GTEx) project; these data had previously been processed and used 
to build a lymphoblastoid regulatory network using PANDA12. We removed transcription factors in the protein-
protein interaction data and genes in the expression data that were not included in our naïve seed network. We 
then used these data together with the GM12878 DNase hypersensitivity data to generate various gene 
regulatory networks and benchmarked using the GM12878 “gold standard” ChIP-seq network; the results are 
shown Supplemental Figure 8a. More specifically, we first applied the PANDA algorithm to the protein-protein 
interaction data, gene expression data, and the naïve seed network used in our main text analysis. We see that 
in the absence of epigenetic information, PANDA is only able to slightly improve the accuracy of the naïve seed 
network, from 0.58 (naïve seed network) to 0.60 (PANDA regulatory network). We also observe an AUC of about 
0.60 for the GM12878 SPIDER seed network, which represents the intersection of DNase data with the naïve 
seed network. The corresponding SPIDER regulatory network, which applies message-passing to SPIDER seed 
network has an AUC of 0.82. Next, we applied SPIDER to the GM12878 DNase hypersensitivity data, but 
included protein-protein interaction and gene co-expression information for P and C instead of identity matrices 
(see Methods in the main text). The final predicted network has an AUC of 0.80, which is slightly less than the 
SPIDER Regulatory Network. 
 
To interpret this result, we investigated how the density of epigenetic information impacted the algorithm’s 
performance. Specifically, we determined the degree (number of incoming edges) for the target genes in the 
SPIDER seed network. We then evaluated the accuracy of the edges targeting subsets of genes based on their 
degree (Supplemental Figure 8b). Although naively combining epigenetic, expression, and protein-protein 
interaction data using the PANDA/SPIDER framework did not directly result in a more accurate overall gene 
regulatory network, we observe a striking relationship between the density of information in the epigenetically 
informed SPIDER seed network and accuracy of the predictions. Specifically, adding protein interaction and 
gene expression data greatly improved the accuracy of edges targeting genes with low coverage in the SPIDER 
seed network (roughly, a degree less than 30). However, genes with relatively higher degree (from about 30 to 
120 incoming edges) were more accurately predicted using only epigenetic data (SPIDER regulatory network). 
Genes that had an initial saturation of regulatory information (more than 120 incoming edges in the SPIDER 
seed network) also slightly benefitted from adding in gene expression and protein interaction data. 
 
We believe these results are a consequence of the local density of the biological information that is coming from 
each Omics data source. In particular, it appears that the network structure induced by incorporating epigenetic 
information into the seed SPIDER network is highly informative for “medium degree” genes. For these genes, 
including expression data is equivalent to adding noise to the model, ultimately hurting edge predictions. 



However, in the absence of sufficient information (“low degree” genes) – or a saturation of information (“high 
degree” genes), adding gene expression and protein-protein interaction data improves network predictions. 
Although promising, these results highlight the complexity of effectively integrating multiple sources of Omics 
data in a single methodological framework and points to the need for future systematic methods development in 
this area. 
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with SPIDER; and (S4) an analysis exploring the potential to expand SPIDER to incorporate other Omics data. 
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Supplemental Tables: 

 
Supplemental Table 1: Statistical evaluation of the increase in AUC for the SPIDER Regulatory Networks (SRN) 
compared to the naïve regulatory networks (NRN) and SPIDER seed networks (SSN). Density for the naïve seed 
(NSN) network was 39.73%. 

 

 
 
 
Supplemental Table 2: Characteristics of the input data as well as output predictions made for distal ranges. 

 

Ranges 
GM12878 A549 

AUC - SRN AUC- SSN Density (%) AUC - SRN AUC- SSN Density (%) 
±0-1kb 0.819 0.602 5.77 0.815 0.593 5.89 
±5-10kb 0.842 0.622 5.89 0.846 0.629 4.84 
±20-25kb 0.855 0.620 4.97 0.849 0.627 4.73 
±45-50kb 0.854 0.620 5.12 0.848 0.627 4.82 
±70-75kb 0.853 0.620 5.10 0.846 0.624 4.77 
±95-100kb 0.849 0.618 5.04 0.849 0.625 4.68 

 
  

Proximal Region  
(0 – 1kb from TSS) 

Cell line 
(SSN 

density) 

 

AUC values (95% CI) SRN vs NRN SRN vs SSN 

NRN SSN SRN 
Percent 
increase 

z-score 
(DeLong’s 

test) 
p-value 

Percent 
increase 

z-score 
(DeLong’s 

test) 

p-value 
(two-
sided) 

A549 
(5.89%) 

0.574 
(0.5722-
0.5763) 

0.594 
(0.5921-
0.595) 

0.816 
(0.8144-
0.817) 

42.1 -220.78 < 2.2e-16 37.3 -316.34 < 2.2e-16 

H1-HESC 
(6.04%) 

0.597 
(0.5957-
0.5991) 

0.607 
(0.6057-
0.6083) 

0.726 
(0.7248-
0.7277) 

21.6 -138.43 < 2.2e-16 19.6 -194.41 < 2.2e-16 

HELAS3 
(5.64%) 

0.579 
(0.5725-
0.5755) 

0.602 
(0.6008-
0.603) 

0.8093 
(0.8072-
0.8092) 

39.7 -289.91 < 2.2e-16 34.3 -412.16 < 2.2e-16 

HEPG2 
(5.49%) 

0.583 
(0.5778-
0.5806) 

0.598 
(0.5974-
0.5994) 

0.770 
(0.77-

0.7721) 
32.1 -248.52 < 2.2e-16 28.7 -344.19 < 2.2e-16 

GM12878 
(5.77%) 

0.581 
(0.5771-
0.5795) 

0.602 
(0.6014-
0.6031) 

0.819 
(0.8178-
0.8193) 

40.9 -373.18 < 2.2e-16 36.0 -538.96 < 2.2e-16 

K562 
(5.69%) 

0.578 
(0.5738-
0.5761) 

0.596 
(0.5956-
0.5972) 

0.795 
(0.7943-
0.7959) 

37.5 -358.64 < 2.2e-16 33.3 -505.68 < 2.2e-16 



 
Supplemental Table 3: Statistical evaluation of the increase in AUC for the SPIDER Regulatory Networks (SRN) 
compared to the naïve regulatory networks (NRN) and SPIDER seed networks (SSN), based on a distal range 
of ±20-25kb around the TSS. Density for the naïve seed network (NSN) was 80.52%. 

 
 
 
Supplemental Table 4: Results when evaluating predicted TF–gene relationships estimated or provided by 
various sources. The number of tests performed for each source are listed as well as the mean AUC and AUPR 
values across all tests. Note that not all evaluations could be performed in all sources. In particular, continuous 
AUC and AUPR could not be calculated for many sources. CENTIPEDE-sub refers to a small subset of 
CENTIPEDE predictions for which we had continuous prediction information. CL=cell line; TF=transcription 
factor; thresh = threshold analysis; cont = continuous analysis; PWM = position weight matrix score used; * = 
sources shown in Figure 5; † = sources shown in Supplemental Figure 5d. 

 

 Characteristics Average AUC Across Tests Average AUPR Across Tests 

 # Evaluated proximal distal genome-wide proximal distal genome-wide 

Sources TFs CLs Tests thresh cont thresh cont PWM Score cont cont PWM Score 

CENTIPEDE-sub 6 1 6 0.524 0.540 0.519 0.563 0.704 0.978 0.316 0.199 0.303 0.730 

CENTIPEDE*† 19 5 47 0.516 X 0.522 X X X X X X X 

PIQ*† 25 1 48 0.556 0.570 0.539 0.561 0.600 0.773 0.280 0.141 0.066 0.229 

Neph* 64 2 91 0.518 X X X X X X X X X 

Marbach* 74 5 167 0.559 X X X X X X X X X 

TEPIC*† 97 6 243 0.582 0.741 0.655 0.759 X X 0.284 0.221 X X 

SPIDER*† 103 6 254 0.695 0.795 0.775 0.848 X X 0.374 0.332 X X 

SPIDER Input 103 6 254 0.601 X 0.622 X 0.660 0.743 X X X X 

Figure # X X X 5 S5b S5d S5e S5a S5a S5c S5f X X 

 
  

Distal Region  
(-20 to -25kb and +20 to +25 kb from TSS) 

Cell line 
(SSN 

density) 

 

AUC values (95% CI) SRN vs NRN SRN vs SSN 

NRN SSN SRN 
Percent 
increase 

z-score 
(DeLong’s 

test) 
p-value 

Percent 
increase 

z-score 
(DeLong’s 

test) 

p-value 
(two-
sided) 

A549 
(4.73%) 

0.536 
(0.5332-
0.5382) 

0.628 
(0.6258-
0.6298) 

0.85 
(0.8478-
0.8514) 

58.58 -196.17 < 2.2e-16 35.32 -218.68 < 2.2e-16 

H1-HESC 
(5.36%) 

0.513 
(0.4844-
0.4887) 

0.625 
(0.6232-
0.6268) 

0.807 
(0.8056-
0.8089) 

57.30 -225.91 < 2.2e-16 29.16 -214.0 < 2.2e-16 

HELAS3 
(5.16%) 

0.503 
(0.5043-
0.5083) 

0.615 
(0.6135-
0.6165) 

0.846 
(0.8442-
0.8467) 

68.2 -271.35 < 2.2e-16 37.47 -317.46 < 2.2e-16 

HEPG2 
(4.76%) 

0.526 
(0.517-
0.5205) 

0.614 
(0.6131-
0.6156) 

0.803 
(0.8014-
0.8041) 

52.66 -260.54 < 2.2e-16 30.7 -277 < 2.2e-16 

GM12878 
(4.97%) 

0.522 
(0.4826-
0.4857) 

0.62 
(0.6192-
0.6216) 

0.855 
(0.8538-
0.8557) 

63.79 -382.33 < 2.2e-16 37.9 -401.31 < 2.2e-16 

K562 
(5.56%) 

0.495 
(0.5077-
0.5107) 

0.616 
(0.615-
0.6172) 

0.832 
(0.8307-
0.8326) 

68.08 -354.71 < 2.2e-16 35.06 -414.83 < 2.2e-16 



Supplemental Table 5: The frequency of top genes in significant SPIDER edges (FDR<0.05) that were not 
part of the SPIDER seed network, for each of the six cell lines and for the proximal and distal regions. 

 

Cell line  Most frequent genes among novel edges inferred (FDR p<0.05) by SPIDER 

Proximal region (±0-1kb) Distal region (±20-25kb) 

A549 PDE4D 200 MIR6870 378 
MIR100HG 132 GPR25 375 
ZBTB20 108 CABLES1 369 
TGIF1 85 NINJ2 369 
LINC-PINT 31 SEPT9 368 
NCOA7 29 NFKBIZ 366 
MIA2 11 MIR100HG 362 
ABLIM1 9 SERTAD3 362 
FAM107B 5 MIR663B 360 

H1-HESC No significant edges CXXC5 241 
HOXA3 211 
SEPT9 209 
BDNF 134 
FGR 116 

HELA-S3 MIA2 163 PPARG 297 
ZBTB20 139 PLEC 286 
PLEC 35 CASC21 273 
MIR99AHG 25 KRT8 271 
UBE2D3 2 SMAD3 267 
CXXC5 1 PDE4D 257 
DNAJB4 1 CASC19 253 

HEPG2 No significant edges CFLAR 288 
NDUFS2 271 
SYS1 268 
CXXC5 205 
PCBD2 203 
FAM50B 199 
KIFC3 197 

GM12878 SEPT9 106 SLC44A2 376 
ZFP36L1 2 LOC100120357 375 
 TMEM151B 375 

MXRA7 373 
SPTBN1 372 

K562 FOXP1 84 CXXC5 290 
MAPRE2 1 MIR4761 281 
SAMSN1 1 PHF19 277 
 COMT 268 

RNY4 262 

 
  



 
Supplemental Table 6: For each of the six cell lines, the top edges (by weight) that were predicted by SPIDER 
around TFs for which we had ChIP-seq data in that cell line. Top edges that either had, or did not have, motif 
evidence are shown. Light blue shading indicates a true positive in the seed network that was retained after 
running SPIDER; light red shading indicates a false negative in the seed network that was recovered by SPIDER. 

 
 Cell line Range TF Gene SRN Motif ChIP-seq 

        

1. A549 0-1kb MAX MIR100HG 22.35 Yes No 

   CEBPB PDE4D 21.07 Yes Yes 

   SIX5 PDE4D 20.22 Yes Yes 

   CREB1 PDE4D 10.03 No Yes 

   ETS1 MIR100HG 8.86 No No 

   MAX PDE4D 6.86 No Yes 

        

 A549 20- 25kb MAX PDE4D 38.50 Yes Yes 

   ETS1 PDE4D 34.85 Yes Yes 

   CREB1 PDE4D 32.49 Yes Yes 

   YY1 PDE4D 14.61 No No 

   ETS1 SMAD3 12.85 No Yes 

   CREB1 ITGB1 12.25 No Yes 

        

2. H1HESC 0-1kb SP1 CNGA4 19.69 Yes No 

   SRF FOXP1 18.86 Yes Yes 

   SP1 SUGT1P1 18.77 Yes No 

   ZNF143 PAX6 3.76 No Yes 

   SIX5 PAX6 3.48 No No 

   BACH1 PAX6 3.22 No Yes 

        

 H1-HESC 20-25kb SRF CXXC5 25.12 Yes No 

   MAX CXXC5 23.53 Yes No 

   SRF HOXA3 22.12 Yes Yes 

   TEAD4 CXXC5 8.44 No Yes 

   CEBPB CXXC5 8.43 No No 

   NANOG HOXA3 8.29 No No 

        

3. HELA-S3 0-1kb E2F4 MIA2 24.76 Yes No 

   E2F1 MIA2 21.28 Yes No 

   MAZ TRANK1 19.75 Yes No 

   E2F1 ZBTB20 6.96 No Yes 

   ZNF143 MIA2 6.51 No No 

   TCF7L2 MIA2 6.18 No No 

        

 HELA-S3 20-25kb E2F4 KRT8 29.19 Yes No 

   RFX5 PDE4D 26.52 Yes Yes 

   STAT1 PDE4D 26.19 Yes Yes 

   E2F1 PDE4D 13.12 No No 

   ZNF143 PDE4D 11.90 No No 

   MAX PDE4D 11.77 No Yes 

        

4. HEPG2 0-1kb MYBL2 FOXP1 21.91 Yes No 

   MAZ DKFZP434H168 20.12 Yes No 

   SRF PDE4DIP 19.78 Yes No 

   HSF1 FOXP1 4.97 No No 



   HSF1 MIA2 4.18 No No 

   HSF1 MIR4461 4.17 No No 

        

 HEPG2 20-25kb BRCA1 CFLAR 28.18 Yes No 

   SRF CFLAR 27.36 Yes Yes 

   HSF1 CFLAR 25.10 Yes No 

   MYBL2 CFLAR 10.32 No Yes 

   SRF NDUFS2 8.02 No Yes 

   SRF SYS1 7.97 No No 

        

5. GM12878 0-1kb MAX SEPT9 24.35 Yes Yes 

   STAT5A SEPT9 20.15 Yes Yes 

   EBF1 SEPT9 20.07 Yes Yes 

   IKZF1 SEPT9 7.6 No No 

   ETS1 SEPT9 6.24 No Yes 

   ELK1 SEPT9 5.55 No No 

        

  20-25kb ELK1 CXXC5 30.49 Yes Yes 

   SRF CXXC5 30.26 Yes No 

   STAT3 CXXC5 28.86 Yes Yes 

   IKZF1 CXXC5 15.07 No Yes 

   SIX5 CXXC5 14.46 No No 

   PAX5 CXXC5 14.15 No Yes 

        

6. K562 0-1kb SRF FOXP1 22.86 Yes No 

   ZNF263 SKAP1 19.19 Yes No 

   MAZ DKFZP434H168 19.18 Yes Yes 

   ZNF143 FOXP1 6.47 No No 

   ETS1 FOXP1 6.22 No No 

   THAP1 FOXP1 6.15 No No 

        

  20-25kb MAX CXXC5 27.59 Yes Yes 

   ETS1 COMT 26.68 Yes Yes 

   ELK1 CXXC5 26.34 Yes Yes 

   STAT5A COMT 10.52 No Yes 

   MAX COMT 10.41 No Yes 

   E2F4 CXXC5 10.14 No Yes 

 
 
  



Supplemental Figures: 

 

 

Supplemental Figure 1: Illustrative example of how transcription factor binding site predictions can be 
used to create a seed regulatory network, and the limited impact of chromatin information on network 
accuracy. The top panel shows the genomic locations of transcription factor motifs, gene promoters, and open 
chromatin regions; gene promoters are more likely to be in regions of open chromatin. The second panel shows 
the true locations of transcription factor binding based on ChIP-seq data. The bottom panel illustrates 
combinations of data from the top panel. These combinations were evaluated using a benchmark derived from 
the ChIP-seq data in the middle panel. The term to the left of the colon indicates the set of elements being 
evaluated, while the term to the right indicates what is considered a positive prediction. For example, in the final 
row, each gene is assigned a value of 1 or 0 based on whether or not that gene’s promoter also contains both a 
motif and a DNase-seq peak; this is benchmarked against information regarding whether or not each gene’s 
promoter contains a true binding event, based on ChIP-seq peaks. The AUC value in this evaluation is 0.63. See 
also Supplemental Section S1.



 
Supplemental Figure 2: Application of message-passing to random-like seed networks. The AUC and 
AUPR values for the naïve seed, SPIDER seed, and SPIDER regulatory network in each cell line, as shown in 
Figure 2, as well as the mean AUC and AUPR values across the random-like seeds and their corresponding 
random-like regulatory networks. Random-like seeds for each cell line were constructed by randomly pruning 
edges from the naïve seed network to match the density of the SPIDER seed networks in that cell line. 

 



 

Supplemental Figure 3: Receiver-Operating Characteristic (ROC) and Precision-Recall (PR) curves. ROC 
and PR curves for the naïve regulatory network (blue) and SPIDER regulatory network (red), evaluated using 
ChIP-seq data from six cell lines. The precision and recall values obtained when selecting the top 10% of edges 
is also noted. Results are shown for both the a. proximal regulatory networks and b. distal regulatory models. 
See also Figure 2, Figure 4, Supplemental Table 1, and Supplemental Table 3. 

  



 

Supplemental Figure 4: AUPR values for the proximal and distal regulatory predictions. a. Distribution of 
AUPR scores across individual transcription factors for four types of proximal networks in six cell lines. b. AUPR 
scores for four types of distal regulatory models in six cell lines. c. Distribution of AUPR scores across individual 
transcription factor predictions in the distal regulatory models. Box plot elements: center line: median; box limits: 
1st and 3rd quartiles; whiskers: upper and lower fence; points: outliers. See also Figure 2 and Figure 4. 
  



 

Supplemental Figure 5: Detailed comparative benchmarking of SPIDER with other methods. a. 
Performance of CENTIPEDE, PIQ, and the input to SPIDER (the overlap of DNase peaks with motif predictions), 
when all transcription factor motif locations across the genome are considered in the evaluation, as measured 
by AUC. b-c. Performance of the networks derived from the output of CENTIPEDE and PIQ, as well as the 
networks predicted by TEPIC and SPIDER, based on continuous (as opposed to thresholded) edge-weights, as 
measured by (b) AUC and (c) AUPR. d-f. Performance of the networks derived from the output of CENTIPEDE 
and PIQ, as well as the networks predicted by TEPIC and SPIDER, using distal regulatory regions, based on (d) 
thresholded and (e-f) continuous edge-weights, and evaluated using the (d-e) AUC and (f) AUPR. These 
analyses demonstrate that even though some methods, such as CENTIPEDE and PIQ, perform well at predicting 
ChIP-seq binding when scoring motif locations (as shown in panel a), this does not translate into accurate 
network-level predictions (as demonstrated in panels b-f). Box plot elements: center line: median; box limits: 1st 
and 3rd quartiles; whiskers: upper and lower fence; points: outliers. See also Supplemental Section S1, 
Supplemental Figure 1, Supplemental Table 4, and Figure 5. 

 



 
Supplemental Figure 6: Performance of SPIDER compared to other methods when restricting to tests 
performed for both methods. The distribution of AUC values for the tests performed (transcription factor / cell 
line pairs) for each method, and the distribution of AUC values for those same tests using the results predicted 
by SPIDER. The distribution of values for each method is identical to those shown in Figure 5 but varies for 
SPIDER depending on the selected tests. Box plot elements: center line: median; box limits: 1st and 3rd quartiles; 
whiskers: upper and lower fence; points: outliers. See also Supplemental Table 4. 
  



 
 
Supplemental Figure 7: Performance of SPIDER compared to expression-based network inference 
algorithms. Performance of ARACNe, CLR, GENIE3, PANDA, and SPIDER in terms of a. AUC and b. AUPR. 
Gene expression data is used as an input to ARACNe, CLR, GENIE3, and PANDA. GENIE3 and PANDA also 
take as input data prior information regarding potential transcription factor to gene interactions (naïve seed 
network, illustrated as a dashed line). In contrast SPIDER uses open chromatin data to construct a seed 
network (dash-dotted line) that is then refined using message-passing. Due to the restrictions of the 
expression-based network reconstruction approaches, the networks reconstructed in this analysis only include 
information for a subset of transcription factors and genes. See also Supplemental Section S3.  
 

 

  



 

Supplemental Figure 8: Comparing SPIDER and PANDA a. The accuracy of the overall networks predicted 
using PANDA or SPIDER with various combinations of input data. b. The accuracy of non-overlapping subsets 
of these networks, specifically, all possible edges targeting genes that have a specific degree-range in the 
SPIDER seed network. The median degree of 32 is noted by a vertical dotted line.  

  



 

Supplemental Figure 9: Illustration of the PANDA message-passing procedure. 


