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insights into urate co-regulation and the SLC2A9 locus



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors conducted the largest EWAS for serum urate levels against CpG, discovering 100. The 

major locus was SLC2A9, where a complicated pattern of association was detected. 

 

I have two major points and a series of minor points. 

 

Major comments 

1. The authors conducted Mendelian randomization to attempt to disentangle the relationship between 

SU and altered CpG methylation at SLC2A9. I found it striking that, for each CpG, there were >20 

apparently independent cis-meQTLs for the MR testing for a causal role of CpG methylation on urate. 

Is this typical? (Min et al reported a median of 2.) Is there any chromosome connectivity data to give 

more confidence to the cis-meQTLs. The authors used a LD-clumping threshold of r2<0.2. I would like 

to see a lower LD-clumping threshold used (eg <0.05) i.e. are these meQTLs truly genetically 

independent, this could be checked by conditional analysis. Looking through the list for cg13841979 

(Fig S5A) ~6 were multi-allelic. How does the harmonization function of 2sampleMR cope with this? 

What MAF cut-off was used? (I looked at Min et al, which has not been peer-reviewed, but this wasn't 

helpful, I could not find a substantive methods section.) Finally, the contributing studies to Min et al 

only reported back on meQTLs with p,10-5. Could this create bias / instability, and be a cause of the 

very low Phet values in the MR (Table 1). While I agree with the statement lines 328-9 re complex 

situation at SLC2A9, these low Phet values require more interrogation. 

In summary, this section of work did not 'feel right' to me. The authors should redo with more careful 

curation of IV SNPs. 

With respect to the SU vs CpG methylation MR only the FHS was used. (Why was ARIC not used as 

well.) Excluding the SLC2A9 variant what was the power? (I imagine low.) (The SLC2A9 variant should 

really be excluded as it is from the same locus of the major CpG effects.) How was family structure 

accounted for? Unless an adequately powered MR analysis can be done sans SLC2A9 then this 

analysis, perhaps, should not be presented. Or, at least, more cautiously interpreted. 

 

2. I was surprised that the authors did not weave 'training' of the innate immune system to be more 

responsive to MSU crystals by soluble urate into the interpretation of their results. This important 

phenomenon was not mentioned at all. Admittedly soluble urate has not yet been shown to change 

methylation status, although it has with other training exposures. A schema can be developed 

whereby increased urate -> transported into monocytes by SLC2A9 -> altered methylation at SLC2A9 

and other genes -> may increase urate levels via increased renal reuptake and increase 

responsiveness to MSU crystals. 

As one example the perplexing heritability data on pp 11-12 could be interpreted via a training effect 

of soluble urate. (This possibility is consistent with the sentence lines 293-5.) Training could lead to a 

direct correlation between SU and methylation. There are other places in the manuscript, including 

discussion where training as a mechanism could be woven in. 

I note that the urate-associated CpG genes encode transporters that could conceivably provide 

substrate for epigenomic modification........ 

 

Other comments. 

1. In the context of the correlation with other metabolic traits it is important to point out that there is 

no robust evidence by MR for soluble urate being causal of these traits. 

2. Line 253 'median of the mean age'. 

3. In the mediation analysis there were only 3 independent variants reported at SLC2A9 in Tin et al 

(Table S5). Also, are these variants truly independent, as Tin et al 2019 used a genomic distance cut-

off, there was no LD-clumping or conditional analysis. (And the SNPs in the current study were 

different than those reported in Tin et al 2019 - are they surrogates?) 

4. Something odd re references line 528. 



5. Line 557, the phrase 'complexity of associations of SNPs in the SLC2A9 locus' did not make sense to 

me. 

6. Para beginning line 562. Of course the most associated genes are going to support the pathway 

analysis as they were used to generate the pathway analysis. This is a circular argument. 

7. Figures 2 and 3 - what is the LD measure used? 

 

 

 

Reviewer #2: 

Remarks to the Author: 

In this interesting transethnic meta-analysis, Tin et al., have utilized 24 cohort studies to examine 

epigenome wide associations of serum urate. The authors have performed rigorous statistical analyses 

and used multiple layers of complementary evidence to support the validity of the findings. The 

authors have discussed on the complexity of these associations, biological plausibility of the results, 

and the associations of urate-associated methylation markers with other complex traits. The paper is 

well-written, clear description of methods and with noteworthy findings. I have a few minor 

comments. 

 

Line 254: It will be better to mention that the “Normative aging study (NAS)” only included men in the 

replication cohort. Other cohorts included both men and women. 

 

Line 261: The authors have identified 140 significant CpGs (discovery dataset) associated with serum 

urate levels in the trans-ethnic meta-analysis including European, African American, South Asian and 

Sub-Saharan African Ancestries and 99 significant CpGs in the replication dataset. Did the authors 

evaluate whether the urate-associated methylation markers were significant across the ancestries 

included in the study, and whether there was any ancestry-specific DNA methylation marker? 

Additional information on the ancestry specific markers would be good to see in the supplementary 

information. 

 

Line 322: The causal effect estimates on serum urate (Table 1) results ranged from 0.16 to 0.30 

mg/dl per standard deviation... instead of “0.15”. Minor typo to correct. 

 

Line 324-325: Similar to the above sentence (Table 1), “effect sizes ranging from -0.38 to -0.51 mg/dl 

per SD.. instead of “-0.37”. Minor typo to correct. 

 

Figure 2. Please include A and B in the main figures for PHGDH and SLC1A5. You have described 

separately as A and B in the legends but is missing in the figures. 

 

Figure 3, line 1026: Legend typo error for the “HM450K” annotation file. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

This is a remarkably dense paper, which I have had to read several times to understand what is going 

on. The authors are to be commended that all the analyses are stringently carried out and unbiased. 

However, I feel that more effort is necessary to communicate the biological messages from the 

results. 

 

Methylation is a dynamic process that often reflects the regulatory state of particular loci. It is very 

rarely heritable, for example with imprinted loci. The authors are aware that apparent heritability may 

be attributed to underlying SNPS affecting transcription binding sites. Their investigation of SNP/DMR 

interactions is worthy but the train of the analysis is difficult to follow. 

 



The biological meat of the study is in table 4 of the supplementary information where CpG/DMRs and 

their associated genes are listed. There are some really interesting genes here that are unmentioned 

in the text. I would put an abbreviated form of this into the main paper and include columns with a 

brief description of putative gene function and an indicator of the presence of SNPs associated with the 

trait. 

 

I would provide detailed maps, such as figure 2, of the most important of these loci, including 

recognised genomic features such as CpG islands and known regulatory elements, and the position of 

trait-associated SNPs. 

 

I find the description of Mendelian Randomisation choked with jargon and really really difficult to 

understand. Some simple explanation would make the paper far more accesible to non-statistical 

readers. 

 

A major problem is that the DNA for DMR identification came from peripheral blood, which is a mixture 

of different cell types with quite different functions and many cell-specific DMRs. This means that 

DMRs associated with any of the metabolic syndrome traits may simply refelect changes in the 

elements of the white cell count. Some effort needs to be made to deconvolute this. At the simplest 

level thsi could be detecting correlations with WCC subsets (neutrophils, eosinophils etc. etc.), but the 

use of invariant CpG markers of cell lineages or WGCNA analyses are also possible 
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Reviewer #1 (Remarks to the Author): 
 
The authors conducted the largest EWAS for serum urate levels against CpG, discovering 
100. The major locus was SLC2A9, where a complicated pattern of association was 
detected. 
 
I have two major points and a series of minor points. 
 
Major comments 
1. The authors conducted Mendelian randomization to attempt to disentangle the 
relationship between SU and altered CpG methylation at SLC2A9. I found it striking that, 
for each CpG, there were >20 apparently independent cis-meQTLs for the MR testing for 
a causal role of CpG methylation on urate. Is this typical? (Min et al reported a median 
of 2.) Is there any chromosome connectivity data to give more confidence to the cis-
meQTLs. The authors used a LD-clumping threshold of r2<0.2. I would like to see a lower 
LD-clumping threshold used (eg <0.05) i.e. are these meQTLs truly genetically 
independent, this could be checked by conditional analysis. Looking through the list for 
cg13841979 (Fig S5A) ~6 were multi-allelic. How does the harmonization function of 
2sampleMR cope with this? What MAF cut-off was used? (I looked at Min et al, which 
has not been peer-reviewed, but this wasn't helpful, I could not find a substantive 
methods section.) Finally, the contributing studies to Min et al only reported back on 
meQTLs with p,10-5. Could this create bias / instability, and be a cause of the very low 
Phet values in the MR (Table 1). While I agree with the statement lines 328-9 re complex 
situation at SLC2A9, these low Phet values require more interrogation. 
In summary, this section of work did not 'feel right' to me. The authors should redo with 
more careful curation of IV SNPs. 
With respect to the SU vs CpG methylation MR only the FHS was used. (Why was ARIC 
not used as well.) Excluding the SLC2A9 variant what was the power? (I imagine low.) 
(The SLC2A9 variant should really be excluded as it is from the same locus of the major 
CpG effects.) How was family structure accounted for? Unless an adequately powered 
MR analysis can be done sans SLC2A9 then this analysis, perhaps, should not be 
presented. Or, at least, more cautiously interpreted. 
 
 
Response: Thank you for this detailed comment, which we have addressed in 
several ways. First, regarding the r2 threshold and checking the independence of 
meQTLs using conditional analysis, we followed the Reviewer’s suggestions and 
use a two-step process to select independent meQTLs. First, we applied an 
r2<0.05 threshold to screen for meQTLs in addition to the other criteria in our 
original analysis (MAF >1%, association with DNA methylation at p<5E-8, no 
significant association with potential confounders, and no potential reverse 
causation). As recommended by the Reviewer, we then conducted conditional 
analysis for the meQTLs that passed the screening step to obtain the p-value of 
each meQTL conditioning on all other meQTLs for a given CpG, and only 
retained those meQTLs with conditional p-value <5E-8 as instruments. Using the 
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revised criteria, 27 CpGs had 4 or more meQTLs available for MR analysis. In 
the new results, 4 CpGs in SLC2A9 had significant causal effects on urate 
(p<1.9E-3=0.05/27), and 1 in SLC2A9 had significant casual effects on gout. The 
updated MR results are reported in Table 2. Moreover, we have also added two 
new sets of plots: a) LD plots showing the r2 between the meQTLs for each CpG; 
and b) forest plots of the causal effect estimate for each meQTL to help visualize 
any heterogeneity of the MR results. The forest plots show that the majority of 
the meQTLs support the significant causal effects. Revisions in the main text: 
Results: page 11, paragraph 2 to page 13, paragraph 1; Methods: page 30, 
paragraph 2 to page 33, paragraph 1; Table 2, Figures 4 and 5, Supplementary 
Tables 10 and 11; Supplementary Figures 3 to 10; Supplementary text: page 
10, paragraph 1. All page and paragraph numbers refer to the clean version of 
the manuscript. 
 
Second, the CpGs at SLC2A9 indeed had more independent meQTLs than other 
CpGs. The median numbers of meQTLs that met the revised screening criteria 
were 2 (25th, 75th percentile: 0, 5) among the 92 replicated CpGs outside of 
SLC2A9, and were 20 (25th, 75th percentile: 8, 21) among the 7 CpGs at 
SLC2A9. SLC2A9 is the GWAS locus with the largest effect size for urate, and 
multiple studies reported that DNA methylation at some of the CpGs had high 
heritability.1, 2, 3 For example, the 4 CpGs with significant causal effects on urate 
in our updated analysis had average heritability estimates from 0.39 to 0.93 from 
3 studies (Supplementary Table 9), meaning that a substantial proportion of the 
variance in DNA methylation at these sites is due to additive genetic effects. 
Thus, heritability in this context does not refer to the inheritance across 
generations.   
 
Third, about multi-allelic SNPs, some meQTLs have additional rare alleles in 
dbSNP, we only included meQTLs with MAF >1% and having 2 alleles with 
imputed frequencies that sum to 100% in the GoDMC analysis. The summary 
statistics used in the MR analyses were based on meta-analyzed GWAS of 
imputed genotypes after filtering out SNPs with low imputation quality (info score 
<0.8 for GoDMC and imputation quality <0.6 for the CKDGen Consortium). While 
some imputed genotypes therefore contain some degree of imprecision, 
potentially reducing the power to discovery additional meQTLs, this is unlikely to 
affect our results overall. 
 
Fourth, about the meQTLs available from the GoDMC data, Min et al. only 
included meQTLs with p<10-5 from at least one cohort. This was to screen for 
meQTLs that would more likely be genome-wide significant in their meta-analysis 
across all cohorts. It is possible that some meQTLs with p-value >10-5 within 
each cohort might have achieved genome-wide significance in a meta-analysis, 
in which case we may have missed some additional meQTLs, as explained in the 
GoDMC paper that has just been published in Nature Genetics.4 However, the 
screening process in GoDMC was independent of urate, and therefore unlikely to 
result in bias in our MR results.    
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Fifth, we used the FHS meQTL results for reverse MR instead of those from 
ARIC because most meQTL data from ARIC were from African-American 
participants (Supplementary Table 1), whereas the GWAS meta-analysis of 
serum urate used in MR was based on European ancestry (EA) individuals. The 
analysis in FHS accounted for family structure using linear mixed model as 
reported in Huan et al. Nat Comm 2019.5 The FHS data have the additional 
advantage of being an independent sample from the urate EWAS analysis.  
 
Sixth, regarding power, an F-statistic >10 is an accepted threshold for avoiding 
weak instrument bias, and our p-value threshold at genome-wide significance (p-
value <5E-8), is equivalent to an F-statistic of 30.6 Using a tool cited by the 
Guidelines for Mendelian randomization studies 
(https://sb452.shinyapps.io/power/),7 we calculated the minimum detectable 
effect size for the CpGs that remained significant in the updated analysis 
assuming 90% power, a significance threshold of 1.9E-3, and the sample sizes 
that used in our MR analysis. The results are shown in Reviewer Table 1. These 
effect sizes were well below those detected for urate or gout (Table 2). Thus, the 
power calculations support that our MR analyses were well powered.   
 
 
Reviewer Table 1. Minimum detectable effect size in forward MR analysis of 
DNA methylation on serum urate or gout. 
 

    

All meQTLs in primary 
analysis 

Excluding meQTLs wtih r2 >0.05 with 5 
urate SNPs in EA* 

Outcome CpG 
# of 

meQTLs

Min 
detectable 

effect size** 

# of 
meQTLs 

Min detectable effect size** 

Urate cg02387843 6 0.044 Not enough meQTL for MR analysis (< 4) 
Urate cg13841979 10 0.039 7 0.104 

Urate cg03725404 8 0.047 
Not enough meQTL for MR analysis (< 4) 

Urate cg11266682 11 0.020 

Gout cg03725404 8 0.918 Not enough meQTL for MR analysis (< 4) 
 
*The 5 urate SNPs in SLC2A9 in EA reported in Tin et al. 2019: SNP with lowest p-value in EA: 
rs4447862, independent SNPs identified by GCTA stepwise selection: rs6825187, rs62286563, 
rs10017305, rs73224492. 
** The effect size was estimated for mg/dL per SD of DNA methylation beta value for urate and 
OR per SD of DNA methylation beta value for gout. 
 
  
Lastly, regarding urate-associated variants at SLC2A9 reported from GWAS and 
the causal relationship between DNA methylation and serum urate levels. After 
we excluded meQTLs with r2>0.05 with the 5 urate SNPs in EA listed in the 
footnote of Reviewer Table 1, cg13841979 had ≥4 meQTLs for MR analysis and 
was nominally significant (p=2.25E-2 based on our primary method, IVW-MRE as 
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opposed to p=1.38E-04 before; Supplementary Tables 10). However, we also 
identified significant mediating effects of cg13841979 for GWAS index SNPs on 
serum urate (Supplementary Table 13). Excluding meQTLs in LD with GWAS 
index SNPs in the MR analysis amounts to the removal of the mediating effect of 
the CpG and thus attenuated the causal effect estimate.  In summary, both our 
MR and mediation analyses support the potentially causal and genetic-variant 
mediating effects of DNA methylation at SLC2A9 on urate levels. We have 
clarified these points in the manuscript (Results: page 11, paragraph 2).  
 
  
 
 
2. I was surprised that the authors did not weave 'training' of the innate immune system 
to be more responsive to MSU crystals by soluble urate into the interpretation of their 
results. This important phenomenon was not mentioned at all. Admittedly soluble urate 
has not yet been shown to change methylation status, although it has with other 
training exposures. A schema can be developed whereby increased urate -> transported 
into monocytes by SLC2A9 -> altered methylation at SLC2A9 and other genes -> may 
increase urate levels via increased renal reuptake and increase responsiveness to MSU 
crystals. 
As one example the perplexing heritability data on pp 11-12 could be interpreted via a 
training effect of soluble urate. (This possibility is consistent with the sentence lines 293-
5.) Training could lead to a direct correlation between SU and methylation. There are 
other places in the manuscript, including discussion where training as a mechanism 
could be woven in. 
I note that the urate-associated CpG genes encode transporters that could conceivably 
provide substrate for epigenomic modification........ 
 
Response: Thank you for raising this point. We have added the following text in 
the Discussion section: “Prior exposure to serum urate in its soluble or crystal 
form has been shown to heighten the proinflammatory response of myeloid cells 
in vitro and in animal models potentially through epigenetic mechanisms.8 This is 
also known as urate-induced training immunity. In our study, Mendelian 
randomization analysis did not identify significant causal effects of serum urate 
on DNA methylation, but it is conceivable that serum urate might act on other 
forms of epigenetic mechanisms, such as histone modification.9” (Discussion: 
page 21, paragraph 1) 
 
 
Other comments. 
1. In the context of the correlation with other metabolic traits it is important to point 
out that there is no robust evidence by MR for soluble urate being causal of these traits. 
 
Response: We agree and added this interpretation in the Discussion section: 
“There has been no robust evidence supporting causal effects of serum urate on 
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cardiometabolic traits.10, 11 Instead, our observations are consistent with shared 
gene regulatory programs resulting in a common DNA methylation signature of 
serum urate and metabolic syndrome in whole blood” (Discussion: page 21, 
paragraph 2). 
 
2. Line 253 'median of the mean age'. 
 
Response: Each cohort reported the mean age within the cohort, which ranged 
from 39.7 years among African Americans in CARDIA to 75.4 years among 
European Americans in CHS (Supplementary Table 1). We selected the median 
of this mean age across cohorts for reporting. To clarify this, we have revised the 
text to read “the median of the average age within each cohort” (Results: page 8, 
paragraph 2). 
 
3. In the mediation analysis there were only 3 independent variants reported at SLC2A9 
in Tin et al (Table S5). Also, are these variants truly independent, as Tin et al 2019 used a 
genomic distance cut-off, there was no LD-clumping or conditional analysis. (And the 
SNPs in the current study were different than those reported in Tin et al 2019 - are they 
surrogates?) 
 
Response: Tin et al 2019 reported 4 independent SNPs among individuals of 
European ancestry in the SLC2A9 region (Nat Genet. vol 51, page 1462). 
Whereas the 183 loci based on the results from transethnic meta-analysis in Tin 
et al. were defined using a distance criterion, the independent SNPs for 
performing statistical fine-mapping were based on summary statistics from 
European ancestry individuals. The first step in statistical fine-mapping was the 
selection of independent SNPs (GCTA command: cojo-slct, collinearity <0.01) 
and resulted in the identification of the 4 independent SNPs (Tin et al. 2019, 
Supplementary Table 18, rs6825187, rs62286563, rs10017305, rs73224492). 
Thus, the 4 independent SNPs used in the current mediation analysis (see 
Supplementary Table 12 of the current EWAS manuscript, containing these 
same SNPs) were selected based on LD rather than on genomic distance.  
 
4. Something odd re references line 528. 
 
Response: Thank you for the careful read. We have fixed the references. 
 
5. Line 557, the phrase 'complexity of associations of SNPs in the SLC2A9 locus' did not 
make sense to me. 
 
Response: We have revised the text to “Roles for SLC2A9 for urate uptake into 
cells in both secretory and reabsorption pathways may also help explain some of 
the heterogeneity of associations of SNPs at the SLC2A9 locus.” (Discussion: 
page 23, paragraph 1). 
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6. Para beginning line 562. Of course the most associated genes are going to support the 
pathway analysis as they were used to generate the pathway analysis. This is a circular 
argument. 
 
Response: We have revised the sentence to: “Terms or pathways enriched for 
urate-associated CpGs were mainly related to transmembrane transport of 
organic acids, … .” (page 23, paragraph 2). 
 
7. Figures 2 and 3 - what is the LD measure used? 
 
Response: Thank you for raising this point. The color in the bottom triangle in 
these figures represents the absolute values of the Pearson correlations between 
adjusted DNA methylation levels of the CpGs. The strength of the correlation can 
provide insight on the pattern of association between CpGs and urate. We used 
residuals of DNA methylation levels adjusting out blood cell type proportions and 
batch effects because these were the key technical covariates in the EWAS. We 
have added a color legend and related text in the legends of these figures (now 
Figures 3 and 4).  
 
 
 
Reviewer #2 (Remarks to the Author): 
 
 
In this interesting transethnic meta-analysis, Tin et al., have utilized 24 cohort studies to 
examine epigenome wide associations of serum urate. The authors have performed 
rigorous statistical analyses and used multiple layers of complementary evidence to 
support the validity of the findings. The authors have discussed on the complexity of 
these associations, biological plausibility of the results, and the associations of urate-
associated methylation markers with other complex traits. The paper is well-written, 
clear description of methods and with noteworthy findings. I have a few minor 
comments. 
 
Response: We thank the Reviewer for the positive feedback. 
 
 
Line 254: It will be better to mention that the “Normative aging study (NAS)” only 
included men in the replication cohort. Other cohorts included both men and women. 
 
Response: We have now noted that among the 8 replication cohorts, the 
Normative Aging Study (NAS) included only men (Results: page 8, paragraph 2. 
All page and paragraph numbers refer to the clean version of the manuscript). 
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Line 261: The authors have identified 140 significant CpGs (discovery dataset) associated 
with serum urate levels in the trans-ethnic meta-analysis including European, African 
American, South Asian and Sub-Saharan African Ancestries and 99 significant CpGs in 
the replication dataset. Did the authors evaluate whether the urate-associated 
methylation markers were significant across the ancestries included in the study, and 
whether there was any ancestry-specific DNA methylation marker? Additional 
information on the ancestry specific markers would be good to see in the 
supplementary information. 
 
Response: Regarding heterogeneity across ancestries, we reported the I2 
heterogeneity measure from the meta-analysis that combined the results from 
the meta-analyses of individuals of European ancestry and of African Americans 
with results from individuals of South Asian ancestry (LOLIPOP only) and Sub-
Saharan Africans (RODAM only) in Supplementary Table 4. Among the 
replicated CpGs, 32 had I2 values >50%. Of these, 90% (29 CpGs) had effect 
estimates in the same direction across all ancestries. To help visualize 
differences across ancestries, we are now providing forest plots of the ancestry-
specific results at these 32 CpGs (Supplementary Figures 2A to 2AF). 
Regarding ancestry-specific CpGs, we now conducted additional epigenome-
wide meta-analyses of all cohorts of European ancestry and of African-American 
ancestry. We added new supplementary tables to report the CpGs with p-value 
<1.1E-7 in each ancestry group when present, or with p-value <1E-5 otherwise 
(Supplementary Tables 5, 6, 7 and 8, respectively). The new supplementary 
tables are cited on in the Results section (page 9, paragraph 1).    
 
 
Line 322: The causal effect estimates on serum urate (Table 1) results ranged from 0.16 
to 0.30 mg/dl per standard deviation... instead of “0.15”. Minor typo to correct. 
 
Response: Thank you for pointing this out. We have adapted this sentence 
using the new results based on the suggestions from Reviewer 1 point 1. Among 
the promoter-associated CpGs, cg11266682 now remained significant with a 
causal estimate of 0.21 mg/dL per SD of DNA methylation beta value (Results: 
page 11, paragraph 2).  
 
Line 324-325: Similar to the above sentence (Table 1), “effect sizes ranging from -0.38 to 
-0.51 mg/dl per SD.. instead of “-0.37”. Minor typo to correct. 
 
Response: To reflect the revised MR results, we updated the sentence to 
“ranging from -0.65 to -0.46 mg/dL per SD of DNA methylation beta value” 
(Results: page 11, paragraph 2). 
 
 
Figure 2. Please include A and B in the main figures for PHGDH and SLC1A5. You have 
described separately as A and B in the legends but is missing in the figures. 
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Response: We have added the A and B labels in the main figure.  
 
 
 
Figure 3, line 1026: Legend typo error for the “HM450K” annotation file. 
 
Response: Thank you for the careful read. We have corrected the typo in the 
legend of this figure (now Figure 4). 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
 
This is a remarkably dense paper, which I have had to read several times to understand 
what is going on. The authors are to be commended that all the analyses are stringently 
carried out and unbiased. However, I feel that more effort is necessary to communicate 
the biological messages from the results. 
 
Methylation is a dynamic process that often reflects the regulatory state of particular 
loci. It is very rarely heritable, for example with imprinted loci. The authors are aware 
that apparent heritability may be attributed to underlying SNPS affecting transcription 
binding sites. Their investigation of SNP/DMR interactions is worthy but the train of the 
analysis is difficult to follow. 
 
Response: Thank you for the positive feedback. We agree that heritability of 
DNA methylation at specific sites does not imply that DNA methylation is 
inherited across generations through the germline, but refers to the proportion of 
DNA methylation variance due to additive genetic effects. We have further 
clarified the concept of heritability in this context (Results: page 10, paragraph 2. 
All page and paragraph numbers refer to the clean version of the manuscript). 
 
To help the reader to follow the train of analysis, we have now enhanced the 
workflow figure (former Supplementary Figure 1) and moved it to the main 
manuscript as Figure 1 (cited in Results: page 8, paragraph 2).  
  
 
 
The biological meat of the study is in table 4 of the supplementary information where 
CpG/DMRs and their associated genes are listed. There are some really interesting 
genes here that are unmentioned in the text. I would put an abbreviated form of this 
into the main paper and include columns with a brief description of putative gene 
function and an indicator of the presence of SNPs associated with the trait. 
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Response: In total, there were 81 unique nearest genes among the replicated 
CpGs. To prioritize the more interesting genes into a main table that fits on a 
journal page, we have now selected the 24 genes with any of the following 4 
features: a) genes containing CpGs that are significantly associated with the 
expression of the corresponding gene in whole blood or monocytes, b) genes 
that map into known urate and/or gout loci from GWAS, c) genes with CpGs that 
were significant in MR analysis of urate or gout, and d) genes having CpGs 
associated with at least one of the metabolic syndrome traits reported in Figure 
8. For these genes, we have now added a new Table 1 that includes a brief 
description of gene function and indicators for the above 4 features. This table 
should also help readers with the navigation of the findings, in addition to the new 
workflow figure. Table 1 is cited in Results, page 9, paragraph 1. 
 
 
I would provide detailed maps, such as figure 2, of the most important of these loci, 
including recognised genomic features such as CpG islands and known regulatory 
elements, and the position of trait-associated SNPs. 
 
Response: For plotting, we prioritized the genes with more than one replicated 
CpG that also showed significant associations with gene expression (PHGDH, 
SLC1A5, and SLC2A9). No other genes met these criteria (see new Table 1). To 
provide more information on regulatory genomic features, we have now added 
annotations for CpG islands and CpG position in the gene to Supplementary 
Table 4. Regarding urate-associated SNPs, three genes with replicated CpGs 
were annotated as known GWAS loci for serum urate (SLC2A9, NBPF20/PDZK1 
and HRASLS2, see new Table 1). We only found evidence for the relationship of 
genetic signals and DNA methylation at SLC2A9. To present the MR results, we 
plotted the meQTLs at the CpGs that were significant in the forward MR analysis 
(Supplementary Figures 5A to 5D for urate and Supplementary Figure 6 for 
gout). For the other genes with replicated CpGs and mapping into known urate 
GWAS loci, there is no evidence that the genetic and DNA methylation signals 
are related.  
 
I find the description of Mendelian Randomisation choked with jargon and really really 
difficult to understand. Some simple explanation would make the paper far more 
accesible to non-statistical readers. 
 
Response: Thank you for this comment. We have added explanations on the 
basic assumptions of an MR study in the Methods section along with the ways 
that our selection criteria for genetic variants and analysis methods address the 
MR assumptions (page 30, paragraph 2). 
 
 
 
A major problem is that the DNA for DMR identification came from peripheral blood, 
which is a mixture of different cell types with quite different functions and many cell-



10 
 

specific DMRs. This means that DMRs associated with any of the metabolic syndrome 
traits may simply refelect changes in the elements of the white cell count. Some effort 
needs to be made to deconvolute this. At the simplest level thsi could be detecting 
correlations with WCC subsets (neutrophils, eosinophils etc. etc.), but the use of 
invariant CpG markers of cell lineages or WGCNA analyses are also possible 
 
Response: We agree it is important to estimate associations between DNA 
methylation and a trait independent from blood cell type composition. A common 
and accepted practice is to adjust for blood cell type proportions that have been 
measured or imputed from markers of cell lineages.12 Our study, as well as all 
EWAS of cardiometabolic traits used in our manuscript, have followed these 
established methods to minimize any effect of differential blood cell type 
proportions. Supplementary Table 2 provides an overview of the study-specific 
procedures for measuring or estimating the proportions of white blood cell types. 
Supplementary Table 19 reports the covariates, including cell type proportions, 
used in the EWAS of cardiometabolic traits. 
 

As suggested by the Reviewer, we now performed additional checks by 
computing the Pearson correlations between blood cell type proportions and the 
residuals of the DNA methylation levels of the 17 urate-associated CpGs found to 
be associated with cardiometabolic traits using data from the participants of 
European ancestry in the ARIC study. The residuals were generated by adjusting 
out imputed blood cell type proportions and batch effects, technical covariates 
used in the EWAS analysis. As shown in Reviewer Table 2, the low correlations 
between cell type proportions and the residuals of DNA methylation support our 
approach that controlling for blood cell type proportions indeed allows for the 
detection of association between DNA methylation levels and traits independent 
of white blood cell proportions. We cannot exclude the possibility that inaccurate 
values of cell type proportions may generate biased estimates. However, the 
CpG associations used in this analysis of cardiometabolic traits were mostly 
generated from meta-analyses of multiple studies like ours, which serve to 
reduce biases from any one study. We have revised the Methods section to 
clarify the importance of controlling for cell type proportions in EWAS and pointed 
to Supplementary Tables 2 and 19, showing that this approach was chosen by 
all studies (Methods: page 27, paragraph 2; page 39, paragraph 1).  
 
Reviewer Table 2. Pearson correlations between imputed blood cell type 
proportions and residuals of DNA methylation adjusting out batch effect and cell 
type proportions (technical covariates in the EWAS analysis) among participants 
of European ancestry (n=741) in the ARIC study. The blood cell type proportions 
were imputed using the Houseman algorithm.12 
 

  B cell CD4 T cell CD8 T cell Granulocyte Monocyte 
Natural 

Killer cell 

cg03725309 0.004 -0.005 0.006 -0.003 -0.002 0.007 

cg16246545 0.001 0.005 0.001 0.002 -0.005 -0.015 
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cg14476101 -0.002 0.004 0.007 -0.006 0.000 -0.005 

cg19693031 0.003 0.008 -0.004 0.010 -0.013 -0.027 

cg06690548 -0.001 -0.004 -0.017 0.010 -0.011 -0.011 

cg18120259 0.016 0.003 0.008 -0.012 -0.008 0.019 

cg21429551 -0.017 -0.010 0.000 0.001 0.011 0.006 

cg22103219 -0.011 -0.015 -0.010 0.010 -0.001 -0.001 

cg17061862 -0.012 -0.004 -0.005 0.005 0.004 -0.003 

cg11376147 -0.003 -0.016 -0.007 0.006 0.020 -0.010 

cg00574958 -0.002 0.004 -0.008 0.004 -0.007 -0.007 

cg01243823 0.006 0.002 0.002 -0.010 0.024 0.006 

cg26470501 -0.008 0.005 0.006 -0.013 0.013 0.009 

cg22304262 0.006 0.012 0.001 -0.012 0.007 0.000 

cg02711608 -0.005 0.000 -0.004 -0.002 0.021 -0.003 

cg21766592 0.004 -0.002 -0.011 0.005 0.006 0.000 

cg01881899 -0.002 0.006 0.018 -0.001 0.003 0.001 
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Thanks to the authors for addressing my points, all of which are addressed to my satisfaction. Some 

additional follow-up suggestions for improving the clarity: 

 

1. Include the response regarding median number of meQTLs (para 2, page 2 of response letter) also 

in the paper, it helpful in putting the number of SLC2A9 meQTLs in context. 

2. Please explain in the revised paper why ARIC was not included in the reverse MR. 

3. Include the power calculation table in Supplemental material. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

Thank you for making the changes. No further comments. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors have made a great effort to respond to the reviewers' suggestions, and the paper is much 

easier to read and to interpret. It is a formidable study that I am sure will become a landmark in the 

field. I am very happy with the detailed responses to the problems I identified. 



 1 

NCOMMS-21-09981A; Response to Reviewers 

 

Reviewer #1 (Remarks to the Author): 

 

Thanks to the authors for addressing my points, all of which are addressed to my 

satisfaction. Some additional follow-up suggestions for improving the clarity: 

 

1. Include the response regarding median number of meQTLs (para 2, page 2 of 

response letter) also in the paper, it helpful in putting the number of SLC2A9 meQTLs in 

context. 

Response: Thank you for reviewing our revised manuscript. We agree with the Reviewer 
that this is helpful information, and have included it along with the section describing the 
selection of the meQTLs on page 29, paragraph 1. 

 

2. Please explain in the revised paper why ARIC was not included in the reverse MR. 

Response: We have included this explanation on page 31, paragraph 2. 

 

3. Include the power calculation table in Supplemental material. 

 

Response: We have included the power calculation table in the Supplementary Text on page 
11, and refer readers to this calculation in the main manuscript on page 31, paragraph 1. 

 

Reviewer #2 (Remarks to the Author): 

 

Thank you for making the changes. No further comments. 

 

Response: Thank you for reviewing our revised materials. 

 

Reviewer #3 (Remarks to the Author): 

 

The authors have made a great effort to respond to the reviewers' suggestions, and the 

paper is much easier to read and to interpret. It is a formidable study that I am sure will 

become a landmark in the field. I am very happy with the detailed responses to the 

problems I identified. 

 

Response: Thank you for reviewing our revised materials, and for the positive assessment of 
our work. 

 


