Supplementary Information for the Manuscript

Crosstalk between Plk1, p53, Cell Cycle, and DNA Damage Checkpoint Regulation in Cancer: Computational Modeling and Analysis

Yongwoon Jung^{1,#}, Pavel Kraikivski^{2,#,*}, Sajad Shafiekhani³, Scott S. Terhune^{4,6}, and Ranjan K. Dash^{1,5,6,*}

¹Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA

²Academy of Integrated Science, Division of Systems Biology, Virginia Tech, Blacksburg, VA 24061, USA

³Department of Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

⁴Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA

⁵Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA

⁶Center of Systems and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA

[#]These authors contributed equally to this work as first authors

*These authors contributed equally to this work as senior authors

Correspondence: <u>pavelkr@vt.edu</u>; <u>rdash@mcw.edu</u>

Overview of Supplementary Materials

This supplemental text includes 9 Supplementary Tables and 8 sets of Supplementary Figures. Supplementary Tables and Supplementary Figures are presented in the order they are cited in the main text.

Our complete model consists 15 synthesis, 26 reactions of multiple degradations and 22 transformation reactions (Supplementary Table 1), 34 ODEs (Supplementary Table 2), and 137 parameters (Supplementary Table 3). Initial conditions are also provided in Supplementary Table 2.

Supplementary Figure 1 demonstrates that the limit cycle exists only for a specific range of parameter values. For example, the limit cycle is observed when k_{s8} parameter values is between 0.08 and 0.1, but not for values of k_{s8} less than or equal to 0.07 and greater than or equal to 0.5. These results indicate that there are Hopf bifurcation points between k_{s8} =0.07 and k_{s8} =0.5. For all other parameter.

Supplementary Table 4 provides left and right endpoints of the interval that covers corresponding parameter values for which limit cycle oscillations exist.

Supplementary Figure 2 shows the period of oscillations of ATM/ATR, p53, Wip1, Mdm2 regulators depending on Plk1 depletion levels.

Supplementary Table 5 provides the number of different cancer cell lines that carry a specific gene mutation from Dependency Map database (depmap.org) and the number of cell lines for which CRISPR data are available.

To compute the average logarithmic sensitivity intensity for k^{th} protein, we compute the logarithmic sensitivity intensity $S_{P_i}^k$ (see definition in the main text) of this protein for every parameter P_i (*i*=1...137) and then define the average as:

$$< S^k > = \frac{1}{137} \sum_{i=1}^{137} S_{\mathsf{P}_i}^k$$

Supplementary Table 6 provides the average logarithmic sensitivity intensities for WT, Plk1-depleted WT, p53-null cancer, and Plk1-depleted p53-null cancer cells. Supplementary Table 7 provides the list of twenty proteins with largest average logarithmic sensitivity intensities.

The average logarithmic sensitivity intensities for 50 model components are also shown in Supplementary Figure 3.

Supplementary Figure 4 shows the logarithmic sensitivity intensities for some important regulators involved in G2/M DNA damage checkpoint and cell cycle regulations as function of varied parameters that control expression of 15 proteins.

Supplementary Figure 5 show results of Partial Rank Correlation Coefficients (PRCC) analysis for the following four cases: 1) p53-wt Plk1-normal, 2) p53-wt Plk1 depleted by 45%, 3) p53-null Plk1-normal, 4) p53-null Plk1 depleted by 45%.

Supplementary Figure 6 and Supplementary Figure 7 show results of Fuzzy analysis for the following four cases: 1) p53-wt Plk1-normal, 2) p53-wt Plk1 depleted by 45%, 3) p53-null Plk1normal, 4) p53-null Plk1 depleted by 45%. Case #2 and Case #4 are combined in Supplementary Figure 5. Case #1 and Case #3 are combined in Supplementary Figure 6.

Supplementary Table 8 provides predicted phenotypes of p53-wt and p53-null cancer cells that carry a mutation in the interaction described by the corresponding parameter that is set to 0. The mutation can induce the cell cycle arrest or cause the change in cell cycle period which is represented by the ratio T_m/T , where T_m is the mutant cell cycle period and T is the cell cycle period in wild type.

Supplementary Figure 8 and Supplementary Figure 9 show the effect of gene deletions on the phenotypes of p53-wt and p53-null cancer cells.

Supplementary Table 9 provides parameter values used to model cell lines and CRISPR perturbations.

The MATLAB code is posted in GitHub at https://github.com/Yongwoon-Jung/PLK1.

Supplementary Table 1. Reactions

$\xrightarrow{k_{s1}} CycB \xrightarrow{k_{d1.1}, k_{d1.2}S_6, k_{d1.3}S_7} \rightarrow$	
$S_6 = APC/CP:Cdc20; S_7 = APC/CT:Cdh1$	(1)
$CycB + CDK1 \xrightarrow[k_{r_1}]{k_{r_1}} MPF$	(2)
$preMPF \xrightarrow[k_{f2}]{k_{f2}} MPF$	(3)
$MPF \xrightarrow{k_{d3.1}, k_{d3.2}S_6, k_{d3.3}S_7} \rightarrow$	
$\text{preMPF} \xrightarrow{k_{d4.1}, k_{d4.2}S_6, k_{d4.3}S_7} \rightarrow$	
$k_{f2} = k'_{f2}[Cdc25P] + k''_{f2}[Cdc25]$	
$k_{r2} = k'_{r2}[Wee1] + k''_{r2}[Wee1P]$	
$Cdc25 \xrightarrow[k_{f_3}]{k_{r_3}} Cdc25P$	(4)
$Cdc25P \xrightarrow{k_{d7.1}, k_{d7.3}S_7} \rightarrow$	
$\xrightarrow{k_{s8}S_3} Cdc25 \xrightarrow{k_{d8.1}, k_{d8.3}S_7} \rightarrow$	
$k_{s8}S_3 = k_{s8}\frac{K_{A2}}{K_{A2} + [ATM/ATR]};$	
$k_{f3} = k'_{f3}[MPF] + k''_{f3}[Plk1P]; k_{r3} = k'_{r3}[PP2A]$	
Wee1 $\underset{k_{r4}}{\overset{k_{f4}}{\longleftarrow}}$ Wee1P	(5)
$\xrightarrow{k_{s9}} Wee1 \xrightarrow{k_{d9}}$	
Wee1P $\xrightarrow{k_{d10}}$	
$k_{f4} = k'_{f4}[MPF] + k''_{f4}[Plk1P]; k_{r4} = k'_{r4}[PP2A]$	

$p21:MPF \xrightarrow{k_{f5}}{k_{r5}} 3p21 + MPF$	(6)
$\xrightarrow{k_{s5}S_5} p21 \xrightarrow{k_{d5}}$	
$k_{s5}S_5 = k_{s5}(1 + [p53]/K_{p53})$	
$Plk1 \xrightarrow[k_{r_6}]{k_{r_6}} Plk1P$	(7)
$Plk1P \xrightarrow{k_{d11.1}, k_{d11.3}S_7}$	
$\xrightarrow{k_{s12}} \text{Plk1} \xrightarrow{k_{d12.1}, k_{d12.3}S_7} \rightarrow$	
$k_{f6} = k'_{f6}[MPF] \frac{K_{A1}}{K_{A1} + [ATM/ATR]}; \ k_{r6} = k'_{r6}[PP2A]$	
$PP2AP \xrightarrow{k_{f7}} PP2A$	(8)
$\xrightarrow{k_{s13}} PP2A \xrightarrow{k_{d13}}$	
$PP2AP \xrightarrow{k_{d14}}$	
$k_{r7} = k'_{r7}[MPF]$	
(i) APC/C $\xleftarrow{k_{f_8}}{k_{r_8}}$ APC/CP	(9)
$\xrightarrow{k_{s15}} APC/C \xrightarrow{k_{d15}}$	
$APC/CP \xrightarrow{k_{d16}} \rightarrow$	
(ii) APC/C:Cdh1 $\underset{k_{r_8}}{\overset{k_{f_8}}{\longrightarrow}}$ APC/CP:Cdh1	
(iii) APC/CP:Cdc20 $\xrightarrow{k_{r_8}}$ APC/C + Cdc20	
$k_{f8} = k'_{f8}[MPF] + k''_{f8}[Plk1P]; k_{r8} = k'_{r8}[PP2A]$	

(i) Cdc20P $\xrightarrow[k_{r9}]{k_{r9}}$ Cdc20	(10)
$\xrightarrow{k_{s17}} Cdc20 \xrightarrow{k_{d17.1}, k_{d17.3}S_7} \rightarrow$	
$Cdc20P \xrightarrow{k_{d18.1}, k_{d18.3}S_7} \rightarrow$	
(ii) APC/CP:Cdc20 $\xrightarrow{k_{r9}}$ APC/CP + Cdc20P	
$k_{r9} = k'_{r9}[MPF] + k''_{r9}[Plk1P]; k_{f9} = k'_{f9}[PP2A]$	
$APC/CP + Cdc20 \xrightarrow[k_{f10}]{k_{f10}} APC/CP: Cdc20$	(11)
(i) Cdh1P $\underset{k_{r11}}{\overset{k_{f11}}{\underset{k_{r11}}{\longrightarrow}}}$ Cdh1	(12)
$\xrightarrow{k_{s20}} Cdh1 \xrightarrow{k_{d20}}$	
$Cdh1P \xrightarrow{k_{d21}} \rightarrow$	
(ii) APC/C:Cdh1 $\xrightarrow{k_{r11}}$ APC/C + Cdh1P	
(iii) APC/CP:Cdh1 $\xrightarrow{k_{r11}}$ APC/CP + Cdh1P	
$k_{r11} = k'_{r11}[MPF] + k''_{r11}[Plk1P]; \ k_{f11} = k'_{f11}[PP2A] \frac{K_{Pttg1}}{K_{Pttg1} + [Pttg1]}$	
$APC/C + Cdh1 \xrightarrow[k_{r_{12}}]{k_{r_{12}}} APC/C: Cdh1$	(13)
$APC/CP + Cdh1 \xrightarrow[k_{f13}]{k_{f13}} APC/CP: Cdh1$	(14)
$Pttg1P \xrightarrow{k_{f14}} Pttg1$	(15)
$\xrightarrow{k_{s24}} Pttg1 \xrightarrow{k_{d24.1}, k_{d24.2}S_6}$	
$Pttg1P \xrightarrow{k_{d25.1}, k_{d25.2}S_6} \rightarrow$	

$k_{r14} = k'_{r14}[MPF]; \ k_{f14} = k'_{f14}[PP2A]$	
$LMNA \underset{k_{r15}}{\overset{k_{f15}}{\longrightarrow}} LMNAP$	(16)
$k_{f15} = k'_{f15} [MPF]$	
$\xrightarrow{k_{s27}\text{DDS}}\text{ATM}/\text{ATR}\xrightarrow{k_{d27}, k_{d27.1}S_2}$	
$k_{d27.1}S_2 = k_{d27.1} \frac{[Wip1]^4}{K_{Wip1}^4 + [Wip1]^4}$	(17)
$p53 \xrightarrow{k_{f16}} p53P$	(18)
$\xrightarrow{k_{s28}S_3} p53 \xrightarrow{k_{d28}, k_{d28,1}S_4} \rightarrow$	
$p53P \xrightarrow{k_{d28}, k_{d28,1}S_4} \rightarrow$	
$S_4 = Mdm2$	
$k_{s28}S_3 = k_{s28}(1 + [ATM/ATR]/K_{A3})$	
$k_{f16} = k'_{f16} \frac{[ATM/ATR]^4}{K_{A4}^4 + [ATM/ATR]^4}; \ k_{r16} = k'_{r16} [Wip1]$	
$\xrightarrow{k_{s31,} k_{s31,1}S_8} Mdm2 \xrightarrow{k_{d31,1} k_{d31,1}S_3}$	
$S_8 = p53P; S_3 = ATM/ATR$	(19)
$\xrightarrow{k_{s32}, k_{s32.1}S_8} Wip1 \xrightarrow{k_{d32}}$	(20)
$p53P + Plk1P \xrightarrow{k_{f17}} p53P: Plk1P$	(21)
Mad2 + Cdc20P $\underset{k_{r18}}{\overset{k_{f18}}{\longrightarrow}}$ Mad2: Cdc20P	(22)
$\xrightarrow{k_{s33}} Mad2 \xrightarrow{k_{d33}}$	
$k_{r18} = k'_{r18}(1 + [p21]/K_{MCD} + \epsilon[Plk1P]/K_{MCD})$	

Supplementary Table 2. Model differential equations and initial conditions (τ =1.65: Time scaling factor)

$$\begin{aligned} \frac{1}{\tau} \frac{d[CycB]}{dt} &= k_{s1} + k_{r1}[MPF] - k_{f1}[CycB][CDK1] \\ &- \left(k_{d1.1} + k_{d1.2} \frac{[APC/CP:Cdc20]}{K_{CycB1} + [CycB]} + k_{d1.3} \frac{[APC/CT:Cdh1]}{K_{CycB2} + [CycB]} \right) [CycB] \end{aligned}$$
(1)
$$\begin{aligned} &- \left(k_{d1.1} + k_{d1.2} \frac{[APC/CP:Cdc20]}{K_{CycB1} + [CycB]} + k_{d1.3} \frac{[APC/CT:Cdh1]}{K_{CycB2} + [CycB]} \right) [CycB] \end{aligned}$$
(2)
$$\begin{aligned} &+ \left(k_{d3.1} + k_{d3.2} \frac{[APC/CP:Cdc20]}{K_{MPF1} + [MPF]} + k_{d3.3} \frac{[APC/CT:Cdh1]}{K_{MPF2} + [MPF]} \right) [MPF] \\ &+ \left(k_{d4.1} + k_{d4.2} \frac{[APC/CP:Cdc20]}{K_{preMPF1} + [preMPF]} + k_{d3.3} \frac{[APC/CT:Cdh1]}{K_{MPF2} + [MPF]} \right) [MPF] \\ &+ k_{d4.3} \frac{[APC/CT:Cdh1]}{K_{preMPF1} + [preMPF]} \right) [preMPF] \end{aligned}$$
(3)
$$\begin{aligned} &+ k_{r5} [p21:MPF] - k_{r5} [p21]^3 [MPF] \\ &+ k_{d6.2} \left(\frac{[APC/CP:Cdc20]}{K_{p21MPF1} + [p21:MPF]} \right) [p21:MPF] \\ &- \left(k_{d3.1} + k_{d3.2} \frac{[APC/CP:Cdc20]}{K_{MPF1} + [MPF]} + k_{d3.3} \frac{[APC/CT:Cdh1]}{K_{MPF2} + [MPF]} \right) [MPF] \end{aligned}$$
(3)
$$k_{r2} = k_{r2}' [Cdc25P] + k_{r2}' [Cdc25], k_{r2} = k_{r2}' [Wec1] + k_{r2}' [Wec1P], as in Supplementary Table 1. [MPF](0)=0 \end{aligned}$$

$$\frac{1}{\tau} \frac{d[\text{preMPF}]}{dt} = k_{r2}[\text{MPF}] - k_{f2}[\text{preMPF}]$$

$$- \left(k_{d4.1} + k_{d4.2} \frac{[\text{APC/CP:Cdc20}]}{K_{\text{preMPF1}} + [\text{preMPF}]} + [\text{preMPF}]\right)$$

$$+ k_{d4.3} \frac{[\text{APC/CT:Cdh1}]}{K_{\text{preMPF2}} + [\text{preMPF}]} \left[\text{preMPF}\right]$$

$$\left[\text{preMPF}[(0)=0 + k_{d4.3} \frac{[\text{APC/CT:Cdh1}]}{K_{\text{preMPF2}} + [\text{preMPF}]}\right] \left[\text{preMPF}\right] + k_{d4.3} \frac{[\text{APC/CT:Cdh1}]}{K_{\text{preMPF2}} + [\text{preMPF}]} + [\text{preMPF}] + k_{r5}[\text{MPF}][\text{p21}]^3 - k_{d5}[\text{p21}] + k_{d5}[\text{p21}]^3 + 3(k_{f5}[\text{p21:MPF}] - k_{r5}[\text{MPF}][\text{p21}]^3) - k_{d5}[\text{p21}] + k_{r5}[\text{mPF}][\text{p21}](0)=0 + k_{d6} \left(\frac{[\text{APC/CP:Cdc20}]}{K_{p21:MPF} + [\text{p21:MPF}]}\right) \left[\text{p21:MPF}\right]$$

$$\left[\text{p21:MPF}[(0)=0 + \frac{1}{\tau} \frac{d[\text{Cdc25P}]}{dt} = k_{r3}[\text{Cdc25}] - k_{r3} \frac{[\text{Cdc25P}]}{K_{Cdc25P1} + [\text{Cdc25P}]}\right) \left[\text{Cdc25P}\right] + k_{r3}[\text{MPF}] + k_{r3}[\text{P1k1P}], k_{r3} = k_{r3}'[\text{P2A}], \text{as in Supplementary Table 1.}$$

$$\left[\text{Cdc25P}[(0)=0 + \frac{1}{\tau} \frac{d[\text{Cdc25P}]}{dt} = k_{s8} \frac{K_{A2}}{K_{A2} + [\text{ATM/ATR}]} - k_{r3}[\text{Cdc25}] + k_{r3} \frac{[\text{Cdc25P}]}{K_{Cdc25P1} + [\text{Cdc25P}]} - \left(k_{d8.1} + k_{d8.3} \frac{[\text{APC/CT:Cdh1}]}{K_{Cdc25} + [\text{Cdc25}]}\right) \left[\text{Cdc25}\right] \right]$$

$$\left[\text{Cdc25}[(0)=1 + \frac{1}{\tau} \frac{d[\text{Cdc25}]}{k_{c3} + k_{c3}} \frac{[\text{APC/CT:Cdh1}]}{k_{Cdc25} + [\text{Cdc25}]}\right] \left[\text{Cdc25P}\right]$$

$$\frac{1}{\tau} \frac{d[Wee1]}{dt} = k_{gg} + k_{r4} \frac{[Wee1P]}{K_{Wee1P} + [Wee1P]} - k_{f4}[Wee1] - k_{d9}[Wee1]$$
(9)

$$k_{f4} = k_{f4}[MPF] + k_{f4}^{''}[Plk1P], k_{r4} = k_{r4}^{'}[PP2A], as in Supplementary Table 1.
[Wee1](0)=1 (10)
$$\frac{1}{\tau} \frac{d[Wee1P]}{dt} = k_{f4}[Wee1] - k_{r4} \frac{[Wee1P]}{K_{Wee1P} + [Wee1P]} - k_{d10}[Wee1P]$$
(10)

$$[Wee1P](0)=0$$
(11)

$$\frac{1}{\tau} \frac{d[Plk1P]}{dt} = k_{f6}[Plk1] - k_{r6} \frac{[Plk1P]}{K_{Plk1P1} + [Plk1P]} - (k_{d11.1} + k_{d11.3} \frac{[APC/CT:Cdh1]}{K_{Plk1P2} + [Plk1P]}) [Plk1P] - k_{f17}[p53P][Plk1P] + k_{r17}[p53P]Plk1P]$$
(11)

$$k_{f6} = k_{f6}^{'}[MPF] \frac{K_{A1}}{K_{A1} + |AIMATR|}, k_{r6} = k_{r6}^{'}[PP2A], as in Supplementary Table 1.
[Plk1P](0)=0 (12)
$$\frac{1}{\tau} \frac{d[Plk1]}{dt} = k_{g12} + k_{F6} \frac{[Plk1P]}{K_{Plk1P1} + [Plk1P]} - k_{f6}[Plk1] - k_{d12.1}[Plk1] - (k_{d12.3} \frac{[APC/CT:Cdh1]}{K_{Plk1} + [Plk1]}) [Plk1]
[Plk1](0)=1 (13)
$$k_{r7} = k_{r7}^{'}[MPF], as in Supplementary Table 1.
[PP2A](0)=1 (14)
$$\frac{1}{\tau} \frac{d[PP2AP]}{dt} = k_{r7}[PP2A] - k_{r7}[PP2AP] - k_{d14}[PP2AP]$$
(14)$$$$$$$$

$\frac{1}{\tau} \frac{d[\text{APC/CP:Cdc20}]}{dt} = k_{f10} [\text{APC/CP}][\text{Cdc20}] - (k_{r8} + k_{r9} + k_{r10})[\text{APC/CP:Cdc20}]$	(19)
[APC/CP:Cdc20](0)=0	
$\frac{1}{\tau} \frac{d[\text{Cdh1}]}{dt} = k_{s20} - k_{r11}[\text{Cdh1}] + k_{f11} \frac{[\text{Cdh1P}]}{K_{\text{Cdh1P}} + [\text{Cdh1P}]} + k_{r12}[\text{APC/C:Cdh1}]$	(20)
$- k_{f12}[Cdh1][APC/C] + k_{r13}[APC/CP:Cdh1] - k_{f13}[Cdh1][APC/CP]$	
$-k_{d20}$ [Cdh1]	
$k_{f11} = k'_{f11}[PP2A] \frac{K_{Pttg11}}{K_{Pttg11} + [Pttg1]}, k_{r11} = k'_{r11}[MPF] + k''_{r11}[Plk1P], as in Supplementer$	
tary Table 1. [Cdh1](0)=1	
$\frac{1}{\tau} \frac{d[\text{Cdh1P}]}{dt} = k_{r11}[\text{Cdh1}] - k_{f11} \frac{[\text{Cdh1P}]}{K_{\text{Cdh1P}} + [\text{Cdh1P}]} + k_{r11}[\text{APC/C:Cdh1}]$	(21)
+ k_{r11} [APC/CP:Cdh1] - k_{d21} [Cdh1P]	
[Cdh1P](0)=0	
$\frac{1}{\tau} \frac{d[\text{APC/C:Cdh1}]}{dt}$	(22)
$= k_{f12}[APC/C][Cdh1] + k_{r8}[APC/CP:Cdh1]$	
$-(k_{f8} + k_{r11} + k_{r12})[APC/C:Cdh1]$	
[APC/C:Cdh1](0)=0	
$\frac{1}{\tau} \frac{d[\text{APC/CP:Cdh1}]}{dt}$	(23)
$= k_{f13}[APC/CP][Cdh1] + k_{f8}[APC/C:Cdh1]$	
$-(k_{r8} + k_{r11} + k_{r13})[APC/CP:Cdh1]$	
[APC/CP:Cdh1](0)=0	

$$\frac{1}{\tau} \frac{d[Pug1]}{dt} = k_{s24} + k_{f14} \frac{[Pug1P]}{K_{Pug1P1} + [Ptg1P]} - k_{r14}[Ptg1] \qquad (24)$$

$$- \left(k_{d24.1} + k_{d24.2} \frac{[APC/CP:Cdc20]}{K_{Pug1} + [Ptg1]}\right) [Ptg1] \qquad (24)$$

$$k_{f14} = k'_{f14}[PP2A] + k''_{f14}[Plk1P], k_{r14} = k'_{r14}[MPF], as in Supplementary Table 1.$$

$$[Ptg1](0)=1 \qquad (25)$$

$$\frac{1}{\tau} \frac{d[Ptg1P]}{dt} = k_{r14}[Ptg1] - k_{f14} \frac{[Ptg1P]}{K_{Pug1P1} + [Ptg1P]} \qquad (25)$$

$$- \left(k_{d25.1} + k_{d25.2} \frac{[APC/CP:Cdc20]}{K_{Pug1P2} + [Ptg1P]}\right) [Ptg1P] \qquad (26)$$

$$\frac{1}{\tau} \frac{d[LMNAP]}{dt} = k_{r15}[LMNA] - k_{r15}[LMNAP] \qquad (26)$$

$$k_{r15} = k'_{r15}[MPF], LMNA = LMNAT - LMNAP, where LMNAT = 1.$$

$$[LMNAP](0)=0 \qquad (27)$$

$$\frac{1}{\tau} \frac{d[ATM/ATR]}{dt} = k_{s27}(1 + K_{DDS}Sig) - \frac{k_{d27.1}[ATM/ATR][Wip1]^4}{K_{Wip1}^4 + [Wip1]^4} - k_{d27}[ATM/ATR] \qquad (27)$$

$$When [Mad2:Cdc20P] \ge 0.6, DDS = 200([Mad2:Cdc20P] - 0.6) \\ When [Mad2:Cdc20P] \ge 0.36, DDS = 0 \\ Sig = DDS e^{-0.000000011} \\ [ATM/ATR](0)=0 \qquad (28)$$

$$- k_{d28.1}[p53][Mdm2] - k_{d28}[p53] \qquad (28)$$

[p53](0)=0	
$\frac{1}{\tau} \frac{d[p53P]}{dt} = k_{f16}[p53] - k_{r16}[p53P] + k_{r17}[p53P:Plk1P] - k_{f17}[p53P][Plk1P]$	(29)
$-k_{d29.1}[p53P][Mdm2] - k_{d29}[p53P]$	
$k_{f16} = k'_{r16} \frac{[ATM/ATR]^4}{K_{A4}^4 + [ATM/ATR]^4}$, $k_{r16} = k'_{r16}$ [Wip1], as in Supplementary Table 1.	
[p53P](0)=0	
$\frac{1}{\tau} \frac{d[p53P:Plk1P]}{dt} = k_{f17}[p53P][Plk1P] - k_{r17}[p53P:Plk1P]$	(30)
[p53P:Plk1P](0)=0	
$\frac{1}{\tau} \frac{d[Mdm2]}{dt} = k_{s31} + k_{s31.1}[p53P] - k_{d31.1}[ATM/ATR][Mdm2] - k_{d31}[Mdm2]$	(31)
[Mdm2](0)=0	
$\frac{1}{\tau} \frac{d[\text{Wip1}]}{dt} = k_{s32} + k_{s32.1}[\text{p53P}] - k_{d32}[\text{Wip1}]$	(32)
[Mdm2](0)=0	
$\frac{1}{\tau} \frac{d[Mad2]}{dt} = k_{s33} - k_{f18}[Mad2][Cdc20P] + k_{r18}[Mad2:Cdc20P] - k_{d33}[Mad2]$	(33)
$k_{r18} = k'_{r18}(1 + [p21]/K_{MCD} + \epsilon[Plk1P]/K_{MCD})$, as in Supplementary Table 1.	
[Mad2](0)=1	
$\frac{1}{\tau} \frac{d[\text{Mad2:Cdc20P}]}{dt} = k_{\text{f18}}[\text{Mad2}][\text{Cdc20P}] - k_{\text{r18}}[\text{Mad2:Cdc20P}]$	(34)
[Mad2:Cdc20P](0)=0	

No	Symbol Definition			
1	k _{f1}	Forward rate constant for association of CycB and CDK1		
2	k _{r1}	k _{r1} Reverse rate constant for dissociation of MPF		
3	k _{f2}	k _{f2} Dephosphorylation rate constant of preMPF by Cdc25P		
4	k _{f2}	Dephosphorylation rate constant of preMPF by Cdc25	0.2	
5	k _{r2}	Phosphorylation rate constant of MPF by Wee1	3	
6	k _{r2}	Phosphorylation rate constant of MPF by Wee1P	0.1	
7	k _{f3}	Phosphorylation rate constant of Cdc25 by MPF	1	
8	k _{f3}	Phosphorylation rate constant of Cdc25 by Plk1P	2	
9	k _{r3}	Dephosphorylation rate constant of Cdc25P by PP2A	0.54	
10	k _{f4}	Phosphorylation rate constant of Wee1 by MPF		
11	k _{f4}	Phosphorylation rate constant of Wee1 by Plk1P		
12	k _{r4}	Dephosphorylation rate constant of Wee1 by PP2A		
13	k _{f5}	Forward rate constant for dissociation of p21:MPF	8	
14	k _{r5}	Reverse rate constant for association of p21 and MPF	80	
15	k _{f6}	Phosphorylation rate constant of Plk1 by MPF	5	
16	k _{r6}	Dephosphorylation rate constant of Plk1P by PP2A	0.5	
17	k _{f7}	Dephosphorylation rate constant of PP2AP	0.4	
18	k _{r7}	Phosphorylation rate constant of PP2A by MPF	4	
19	k_{f8}	Phosphorylation rate constant of APC/C by MPF	0.1	
20	k′ _{f8}	Phosphorylation rate constant of APC/C by Plk1P	0.35	
21	k _{r8}	Dephosphorylation rate constant of APC/CP by PP2A	0.04	

Supplementary Table 3. Model parameter definitions and values

22	k _{r9}	Phosphorylation rate constant of Cdc20 by MPF			
23	k′ r9	Phosphorylation rate constant of Cdc20 by Plk1P			
24	k _{f9}	Dephosphorylation rate constant of Cdc20 by PP2A			
25	k _{f10}	Forward rate constant for association of APC/CP and Cdc20	80		
26	k _{r10}	Reverse rate constant for dissociation of APC/CP:Cdc20	20		
27	k _{f11}	Dephosphorylation rate constant of Cdh1P by PP2A	0.02		
28	k _{r11}	Phosphorylation rate constant of Cdh1 by MPF	22		
29	". k _{r11}	Phosphorylation rate constant of Cdh1 by Plk1P	22		
30	k _{f12}	Forward rate constant for association of APC/C and Cdh1	80		
31	k _{r12}	Reverse rate constant for dissociation of APC/C:Cdh1	20		
32	k _{f13}	Forward rate constant for association of APC/CP and Cdh1			
33	k _{r13}	Reverse rate constant for dissociation of APC/CP:Cdh1			
34	k _{f14}	Dephosphorylation rate constant of Pttg1P by PP2A			
35	k _{r14}	Phosphorylation rate constant of Pttg1 by MPF			
36	k _{f15}	Phosphorylation rate constant of LMNA by MPF			
37	k _{r15}	Dephosphorylation rate constant of LMNAP	1		
38	k _{f16}	Phosphorylation rate constant of p53 by ATM/ATR	1		
39	k _{r16}	Dephosphorylation rate constant of p53P by Wip1	3		
40	k _{f17}	Forward rate constant for association of Plk1P and p53P	80		
41	k _{r17}	Reverse rate constant for association of Plk1P:p53P	20		
42	k _{f18}	Forward rate constant for association of Mad2 and Cdc20P	20		
43	k' _{r18}	Reverse rate constant for dissociation of Mad2:Cdc20P	0.1		
44	k _{s1}	CycB synthesis rate constant	0.1		
45	k _{s5}	p21 synthesis rate constant influenced by p53	0.0001		
46	k _{s8}	Cdc25 synthesis rate constant	0.1		
47	k_{s9} Weel synthesis rate constant (

48	k _{s12}	Plk1 synthesis rate constant	
49	k _{s13}	PP2A synthesis rate constant	
50	k _{s15}	APC/C synthesis rate constant	
51	k _{s17}	Cdc20 synthesis rate constant	
52	k _{s20}	Cdh1 synthesis rate constant	0.1
53	k _{s24}	Pttg1 synthesis rate constant	0.1
54	k _{s27}	ATM/ATR synthesis rate constant influenced by DDS	0.0001
55	k _{s28}	p53 synthesis rate constant influenced by ATM/ATR	0.0001
56	k _{s31}	Mdm2 synthesis rate constant	0.0001
57	k _{s31.1}	p53P-dependent Mdm2 synthesis rate constant	6
58	k _{s32}	Wip1 synthesis rate constant	0.0001
59	k _{s32.1}	p53P-dependent Wip1 synthesis rate constant	6
60	k _{s33}	Mad2 synthesis rate constant	0.1
61	k _{d1.1}	CycB self-degradation rate constant	0.3
62	k _{d1.2}	CycB degradation rate constant by APC/CP:Cdc20	
63	k _{d1.3}	CycB degradation rate constant by APC/CT:Cdh1	
64	k _{d3.1}	MPF self-degradation rate constant	
65	k _{d3.2}	MPF degradation rate constant by APC/CP:Cdc20	
66	k _{d3.3}	MPF degradation rate constant by APC/CT:Cdh1	
67	k _{d4.1}	preMPF self-degradation rate constant	0.01
68	k _{d4.2}	preMPF degradation rate constant by APC/CP:Cdc20	1
69	k _{d4.3}	preMPF degradation rate constant by APC/CT:Cdh1	1
70	k _{d5}	p21 self-degradation rate constant	0.01
71	k _{d6}	p21 degradation rate constant in p21:MPF by APC/CP:Cdc20	1
72	k _{d7.1}	Cdc25P self-degradation rate constant	0.18
73	k _{d7.3}	Cdc25P degradation rate constant by APC/CT:Cdh1	0.1
74	k _{d8.1}	Cdc25 self-degradation rate constant	0.08
75	k _{d8.3}	Cdc25 degradation rate constant by APC/CT:Cdh1	1
76	k _{d9}	Wee1 self-degradation rate constant	0.1
77	k _{d10}	Wee1P self-degradation rate constant	1
78	k _{d11.1}	k _{d11.1} Plk1P self-degradation rate constant	
79	k _{d11.3}	Plk1P degradation rate constant by APC/CT:Cdh1	1.5

80	k _{d12.1}	Plk1 self-degradation rate constant			
81	k _{d12.3}	Plk1 degradation rate constant by APC/CT:Cdh1			
82	k _{d13}	PP2A self-degradation rate constant			
83	k _{d14}	PP2AP self-degradation rate constant			
84	k _{d15}	APC/C self-degradation rate constant	0.2		
85	k _{d16}	APC/CP self-degradation rate constant	0.1		
86	k _{d17.1}	Cdc20 self-degradation rate constant	0.2		
87	k _{d17.3}	Cdc20 degradation rate constant by APC/CT:Cdh1	1.5		
88	k _{d18.1}	Cdc20P self-degradation rate constant	0.2		
89	k _{d18.3}	Cdc20P degradation rate constant by APC/CT:Cdh1	1.5		
90	k _{d20}	Cdh1 self-degradation rate constant	0.2		
91	k _{d21}	Cdh1P self-degradation rate constant	0.2		
92	k _{d24.1}	Pttg1 self-degradation rate constant	0.1		
93	k _{d24.2}	Pttg1 degradation rate constant by APC/CP:Cdc20	1		
94	k _{d25.1}	Pttg1P self-degradation rate constant	0.1		
95	k _{d25.2}	Pttg1P degradation rate constant by APC/CP:Cdc20			
96	k _{d27}	ATM/ATR self-degradation rate constant			
97	k _{d27.1}	Saturating Wip1-dependent ATM/ATR degradation rate			
98	k _{d28}	p53 self-degradation rate constant			
99	k _{d28.1}	Mdm2-dependent p53 degradation rate	1		
100	k _{d28}	p53P degradation rate constant	0.2		
101	k _{d29.1}	Mdm2-dependent p53P degradation rate	1		
102	k _{d31.1}	ATM/ATR dependent Mdm2 inactivation rate	1		
103	k _{d31}	Mdm2 degradation rate constant	0.2		
104	k _{d32}	Wip1 degradation rate constant	5		
105	k _{d33}	Mad2 degradation rate constant	0.2		
106	K _{A1}	Intensifying scale rate of k'_{f6} by ATM_ATR	1		
107	K _{Pttg11}	Intensifying scale rate of k'_{f11} by Pttg1	0.5		
108	K _{A2}	Intensifying scale rate of k_{s8} by ATM/ATR	1		
109	K _{p53}	Intensifying scale rate of ks5 by p53	0.001		
110	K _{DDS}	Intensifying scale rate of DDS 10			
111	K _{A3}	Intensifying scale rate of ks28 by ATM_ATR	0.0002		

112	K _{MCD}	Intensifying scale rate_of Mad2_Cdc20P dissociation by p21	
113	3	Intensifying scale ratio of Plk1/p21	1
114	K _{CycB1}	MM constant of CycB degradation by APC/CP:Cdc20	0.1
115	K _{CycB2}	MM constant of CycB degradation by APC/CP:Cdh1	0.1
116	K _{MPF1}	MM constant of MPF degradation by APC/CP:Cdc20	0.1
117	K _{MPF2}	MM constant of MPF degradation by APC/CT:Cdh1	0.1
118	K _{preMPF1}	MM constant of MPF degradation by APC/CP:Cdc20	0.1
119	K _{preMPF2}	MM constant of MPF degradation by APC/CP:Cdh1	0.1
120	K _{p21MPF}	MM constant of p21:MPF degradation by APC/CP:Cdc20	0.1
121	K _{Cdc25P1}	MM constant of Cdc25CP Dephosphorylation by PP2A	0.1
122	K _{Cdc25P2}	MM constant of Cdc25P degradation by APC/CT:Cdh1	
123	K _{Cdc25}	MM constant of Cdc25 degradation by APC/CT:Cdh1	
124	K _{Wee1P}	MM constant of Wee1P dephosphorylation by PP2A	
125	K _{Plk1P1}	MM constant of Plk1P dephosphorylation by PP2A	0.1
126	K _{Plk1P2}	MM constant of Plk1P degradation by APC/CT:Cdh1	0.1
127	K _{Plk1}	MM constant of Plk1 degradation by APC/CT:Cdh1	0.1
128	K _{APC/CP}	MM constant of APC/CP dephosphorylation by PP2A	0.1
129	K _{Cdc20P1}	MM constant of Cdc20P dephosphorylation by PP2A	0.1
130	K _{Cdc20}	MM constant of Cdc20 degradation by APC/CT:Cdh1	0.1
131	K _{Cdc20P2}	MM constant of Cdc20P degradation by APC/CT:Cdh1	0.1
132	K _{Cdh1P}	MM constant of Cdh1P dephosphorylation by PP2A	0.1
133	K _{Pttg1P1}	MM constant of Pttg1P dephosphorylation by PP2A	0.1
134	K _{Pttg1}	MM constant of Pttg1 degradation by APC/CP:Cdc20	0.1
135	K _{Pttg1P2}	MM constant of Pttg1P degradation by APC/CP:Cdc20	0.1
136	K _{A4}	MM constant of p53 phosphorylation by Wip1	0.5
137	K _{Wip1}	MM constant of ATM/ATR signal degradation by Wip1	0.5

Supplementary Figure 1. Numerical simulation results obtained using four different k_{s8} parameter values: (a) 0.07, (b) 0.08, (c) 0.1, and (d) 0.5. Dynamics of cell cycle components shows that limit cycle oscillations exist when k_{s8} is between 0.08 and 0.1 but not for values less than or equal to 0.07 and greater than or equal to 0.5.

No	Symbol	Value	Left endpoint	Right endpoint
1	k _{f1}	18	10	191
2	k _{r1}	0.1	0	3.1
3	k' _{f2}	10	0.3	120
4	k''_f2	0.2	0.1	2
5	k' _{r2}	3	1	3
6	k'' _{r2}	0.1	0	26
7	k' _{f3}	1	0	9
8	k''_f3	2	0	49
9	k' _{r3}	0.54	0.07	>1000
10	k' _{f4}	1	0	15
11	$k_{f4}^{\prime\prime}$	2	0	25
12	k' _{r4}	0.2	0	3.4
13	k _{f5}	8	0	>1000
14	k _{r5}	80	0	>1000
15	k' _{f6}	5	1	14
16	k' _{r6}	0.5	0.1	16.4
17	k _{f7}	0.4	0.2	>1000
18	k′ _{r7}	4	0	6
19	k' _{f8}	0.1	0	0.4
20	k'' _{f8}	0.35	0.05	1.9
21	k' _{r8}	0.04	0.01	0.13
22	k' _{r9}	11	0	>1000
23	k′′ _{r9}	11	0	>1000
24	k' _{f9}	20	0	>1000
25	k _{f10}	80	0	400
26	k _{r10}	20	4	58
Real Provide Automatica Contractor Contractor Contractor Contractor Contractor Contractor Contractor Contractor				

Supplementary Table 4. Parameter ranges for the model to exhibit limit cycle oscillations

27	k' _{f11}	0.02	0	0.03
28	k' _{r11}	22	20	>1000
29	k'' _{r11}	22	0	>1000
30	k _{f12}	80	0	104
31	k _{r12}	20	16	>1000
32	k _{f13}	80	0	848
33	k _{r13}	3	0	>1000
34	k' _{f14}	0.01	0	>1000
35	k' _{r14}	50	0	>1000
36	k' _{f15}	1	0	>1000
37	k _{r15}	1	0	>1000
38	k' _{f16}	1	0	>1000
39	k′ _{r16}	3	0	>1000
40	k _{f17}	80	0	>1000
41	k _{r17}	20	0	>1000
42	k _{f18}	20	0	>1000
43	k' _{r18}	0.1	0	>1000
44	k _{s1}	0.1	0.1	0.1
45	k _{s5}	0.0001	0	0.0073
46	k _{s8}	0.1	0.1	0.3
47	k _{s9}	0.1	0.1	0.1
48	k _{s12}	0.1	0.1	0.1
49	k _{s13}	0.1	0	0.1
50	k _{s15}	0.1	0	0.1
51	k _{s17}	0.1	0.1	0.2
52	k _{s20}	0.1	0	0.1
53	k _{s24}	0.1	0	>1000
54	k _{s27}	0.0001	0	10
55	k _{s28}	0.0001	0	0.00981

56	k _{s31}	0.0001	0	>1000
57	k _{s31p}	6	0	>1000
58	k _{s32}	0.0001	0	10
59	k _{s32p}	6	0	>1000
60	k _{s33}	0.1	0	>1000
61	k _{d1.1}	0.3	0	1.4
62	k _{d1.2}	1	0	49
63	k _{d1.3}	1	0	2
64	k _{d3.1}	0.01	0	0.23
65	k _{d3.2}	1	1	8
66	k _{d3.3}	1	0	1
67	k _{d4.1}	0.01	0	0.16
68	k _{d4.2}	1	0	4
69	k _{d4.3}	1	0	1
70	k _{d5}	0.01	0	>1000
71	k _{d6}	1	0	>1000
72	k _{d7.1}	0.18	0	>1000
73	k _{d7.3}	0.1	0	>1000
74	k _{d8.1}	0.08	0	0.24
75	k _{d8.3}	1	0	1
76	k _{d9}	0.1	0.1	0.5
77	k _{d10}	1	1	>1000
78	k _{d11.1}	0.1	0	92.7
79	k _{d11.3}	1.5	0	96.5
80	k _{d12.1}	0.2	0	18.5
81	k _{d12.3}	1.5	0	21.2
82	k _{d13}	0.1	0	0.4
83	k _{d14}	0.1	0	0.2
84	k _{d15}	0.2	3	>1000

85	k _{d16}	0.1	0	>1000
86	k _{d17.1}	0.2	0	0.9
87	k _{d17.3}	1.5	0	14
88	k _{d18.1}	0.2	0	0.6
89	k _{d18.3}	1.5	0	48.6
90	k _{d20}	0.2	0.1	>1000
91	k _{d21}	0.2	0	>1000
92	k _{d24.1}	0.1	0	>1000
93	k _{d24.2}	1	0	>1000
94	k _{d25.1}	0.1	0	>1000
95	k _{d25.2}	1	0	>1000
96	k _{d27}	0.1	0	>1000
97	k _{d27p}	100	0	>1000
98	k _{d28}	0.2	0	>1000
99	k _{d28p}	1	0	>1000
100	k _{d29}	0.2	0	>1000
101	k _{d29p}	1	0	>1000
102	k _{d31.1}	1	0	>1000
103	k _{d31}	0.2	0	>1000
104	k _{d32}	5	0	>1000
105	k _{d33}	0.2	0	>1000
106	K _{A1}	1	1	>1000
107	K _{Pttg1}	0.5	0	>1000
108	K _{A2}	1	1	>1000
109	K _{p53}	0.001	0.001	100
110	K _{DDS}	1000	0	>1000
111	K _{A3}	0.0002	0.0001	>1000
112	K _{MCD}	0.01	0.01	>1000
113	З	1	0	>1000

114	K _{CycB1}	0.1	0.1	>1000
115	K _{CycB2}	0.1	0.1	>1000
116	K _{MPF1}	0.1	0.1	0.9
117	K _{MPF2}	0.1	0.1	>1000
118	K _{preMPF1}	0.1	0.1	>1000
119	K _{preMPF2}	0.1	0.1	>1000
120	K _{p21MPF}	0.1	0.1	>1000
121	K _{Cdc25P1}	0.1	0.1	1.2
122	K _{Cdc25P2}	0.1	0.1	>1000
123	K _{Cdc25}	0.1	0.1	>1000
124	K _{Wee1P}	0.1	0.1	>1000
125	K _{Plk1P1}	0.1	0.1	0.4
126	K _{Plk1P2}	0.1	0.1	>1000
127	K _{Plk1}	0.1	0.1	>1000
128	K _{APC/CP}	0.1	0.1	>1000
129	K _{Cdc20P1}	0.1	0.1	0.4
130	K _{Cdc20}	0.1	0.1	>1000
131	K _{Cdc20P2}	0.1	0.1	>1000
132	K _{Cdh1P}	0.1	0.1	>1000
133	K _{Pttg1P1}	0.1	0.1	>1000
134	K _{Pttg1}	0.1	0	>1000
135	K _{Pttg1P2}	0.1	0.1	>1000
136	K _{A4}	0.5	0.1	>1000
137	K _{Wip1}	0.5	0.1	>1000

Supplementary Figure 2. The period of oscillations of ATM/ATR, p53, Wip1, Mdm2 regulators. (a) When ATM/ATR-p53-Wip1-Mdm2 subnetwork is disconnected from the cell cycle regulation it produces oscillations with a period of ~5hrs. (b-f) Oscillations in p53 regulation that is connected with the cell cycle regulation (our full model). The period of oscillations depends on the level of Plk1 depletion that induces the activation of DNA damage checkpoint. (f) The dependence of the period of p53 oscillations on the level of Plk1 depletion. (g-h) Fitting and extrapolation the dependence of p53 oscillation period on Plk1 depletion level using a linear and polynomial functions. Oscillations can be resolved only at high level of Plk1 depletion, when DNA damage checkpoint is activated. The extrapolation to lower Plk1 depletion values shows the expected period of oscillations at lower levels of Plk1 depletion.

Supplementary Table 5. The number of different cancer cell lines that carry a specific gene mutation from Dependency Map database (depmap.org) and the number of cell lines for which CRISPR data are available.

Gene	Number of different cancer cell	Number of different cancer cell
	lines that carry a corresponding	lines that carry a corresponding
	gene mutation	gene mutation and for which
TD 52	1001	CRISPR data are available
1P53	1091	549
ATM	267	136
ATR	184	92
PPM1D	78	28
FZR1	74	34
CDC25B	62	24
CDC27	59	29
PLK1	58	31
LMNA	51	26
CDC16	48	20
CDC23	39	20
CDC25A	39	15
CDKN1A	39	23
CDC25C	37	14
CDC20	35	18
MDM2	34	20
WEE1	34	17
CCNB1	27	14
CCNB2	24	9
PPP2CA	23	11
PTTG1	20	14
MAD2L1	18	6
MAD2L2	18	9
ATM-TP53	190	106
ATR-TP53	128	63
FZR1-TP53	56	23
PPM1D-TP53	56	21
ATM-ATR	53	29
CDC25B-TP53	43	18
CDC27-TP53	41	21
ATM-FZR1	39	20
PLK1-TP53	39	24
LMNA-TP53	34	16
CDC16-TP53	33	17
CDC23-TP53	31	16

CDKN1A-TP53	29	17
CDC20-TP53	28	15
MDM2-TP53	28	15
ATM-PPM1D	27	9
CDC25A-TP53	27	12
ATM-CDC25B	23	9
CDC25C-TP53	22	8
ATR-FZR1	21	9
TP53-WEE1	21	12
ATM-CDC23	20	8
ATR-PPM1D	20	6
ATM-CDC27	19	11
CCNB2-TP53	19	9
ATM-PLK1	18	9
ATR-CDC25B	17	7
PTTG1-TP53	17	13
ATM-CDC25A	16	6
ATR-LMNA	16	5
ATM-CDC16	15	6
ATM-CDC20	15	8
ATM-LMNA	15	7
ATM-MDM2	15	5
ATR-CDC23	15	6
FZR1-PLK1	15	9
PPP2CA-TP53	15	7
ATR-CDC27	14	8
CCNB1-TP53	14	8
CDC25A-FZR1	14	5
ATM-CDC25C	13	4
ATR-PLK1	13	8
MAD2L1-TP53	13	5
ATM-CCNB2	12	4
ATM-CDKN1A	12	7
ATM-WEE1	12	7
ATR-CDC25A	12	4
ATR-CDC25C	12	3
ATR-CDKN1A	12	6
ATR-MDM2	12	4
CDC25B-FZR1	12	3
FZR1-PPM1D	12	3
MAD2L2-TP53	12	7

ATM-PPP2CA	11	2
ATM-PTTG1	11	9
ATR-CDC16	11	3
ATR-WEE1	11	5
CDC20-FZR1	11	5
CDC25C-PPM1D	10	1
CDC27-FZR1	10	5
ATR-CDC20	9	5
CDC16-FZR1	9	4
CDC23-FZR1	9	1
CDC25A-LMNA	9	4
CDC27-PLK1	9	6
MDM2-PPM1D	9	2
ATM-MAD2L1	8	3
ATR-CCNB1	8	5
ATR-PPP2CA	8	4
CDC20-WEE1	8	5
CDC25A-CDC25B	8	1
CDC25B-PLK1	8	5
CDKN1A-FZR1	8	4
FZR1-LMNA	8	2
ATM-MAD2L2	7	4
ATR-MAD2L2	7	2
CDC20-CDC25B	7	3
CDC20-PPM1D	7	2
CDC25A-CDC27	7	3
CDC25B-CDC27	7	3
CDC25B-WEE1	7	3
CDC25C-CDKN1A	7	4
CDC25C-LMNA	7	2
CDKN1A-PPM1D	7	3
FZR1-PTTG1	7	5
FZR1-WEE1	7	3
MDM2-PLK1	7	4
PLK1-PPM1D	7	1
PLK1-PTTG1	7	6
CDC16-CDC25A	6	2
CDC16-LMNA	6	2
CDC16-PLK1	6	3
CDC16-WEE1	6	2
CDC20-CDC25A	6	2

CDC20-CDC27	6	2
CDC23-CDC27	6	3
CDC25A-CDC25C	6	2
CDC25A-MDM2	6	1
CDC25B-MDM2	6	3
CDC27-WEE1	6	3
FZR1-MDM2	6	2
LMNA-PPM1D	6	2
ATM-CCNB1	5	3
ATR-CCNB2	5	2
ATR-MAD2L1	5	2
ATR-PTTG1	5	4
CDC16-CDC20	5	3
CDC16-MAD2L2	5	2
CDC23-MDM2	5	2
CDC23-PPM1D	5	1
CDC25A-CDKN1A	5	2
CDC25A-MAD2L2	5	2
CDC25A-PLK1	5	2
CDC25A-PPM1D	5	0
CDC25A-WEE1	5	2
CDC25B-MAD2L1	5	1
CDC25C-FZR1	5	2
CDC25C-MDM2	5	1
CDKN1A-MDM2	5	1
CDKN1A-PLK1	5	1
FZR1-MAD2L2	5	4
FZR1-PPP2CA	5	1
LMNA-MDM2	5	1
LMNA-PLK1	5	3
MAD2L2-PPM1D	5	1
PPM1D-PPP2CA	5	1
CCNB1-CDC25A	4	2
CCNB2-FZR1	4	2
CDC16-CDC23	4	1
CDC16-CDC27	4	1
CDC16-PPM1D	4	0
CDC16-PPP2CA	4	2
CDC20-CDKN1A	4	2
CDC20-LMNA	4	1
CDC20-MAD2L2	4	2

CDC20-PLK1	4	2
CDC23-CDC25A	4	0
CDC23-LMNA	4	0
CDC23-PLK1	4	2
CDC23-WEE1	4	2
CDC25A-MAD2L1	4	2
CDC25B-PPM1D	4	1
CDC25C-CDC27	4	3
CDC27-MDM2	4	2
CDC27-PPP2CA	4	1
CDKN1A-LMNA	4	1
LMNA-PPP2CA	4	1
MAD2L1-PLK1	4	2
MAD2L2-WEE1	4	2
CCNB1-CDC25B	3	2
CCNB1-CDC25C	3	1
CCNB1-LMNA	3	1
CCNB1-MAD2L2	3	1
CCNB2-CDC25A	3	0
CCNB2-CDC25B	3	1
CCNB2-PLK1	3	3
CDC16-CDC25B	3	1
CDC16-CDKN1A	3	2
CDC16-MAD2L1	3	1
CDC16-MDM2	3	0
CDC16-PTTG1	3	2
CDC20-CDC23	3	1
CDC20-MAD2L1	3	1
CDC20-PTTG1	3	2
CDC23-CDC25B	3	1
CDC23-CDKN1A	3	1
CDC23-PPP2CA	3	0
CDC25A-PPP2CA	3	2
CDC25B-CDC25C	3	1
CDC25B-CDKN1A	3	1
CDC25B-LMNA	3	1
CDC25C-MAD2L2	3	0
CDC27-LMNA	3	1
CDC27-PPM1D	3	1
CDC27-PTTG1	3	2
CDKN1A-PPP2CA	3	3

CDKN1A-PTTG1	3	2
FZR1-MAD2L1	3	1
LMNA-MAD2L2	3	1
LMNA-WEE1	3	1
MAD2L1-PPM1D	3	1
MAD2L2-PLK1	3	3
MDM2-WEE1	3	1
PPM1D-WEE1	3	0
CCNB1-CDC20	2	1
CCNB1-CDC27	2	2
CCNB1-FZR1	2	2
CCNB1-MAD2L1	2	1
CCNB1-PPM1D	2	0
CCNB2-CDC16	2	1
CCNB2-CDC20	2	1
CCNB2-CDC23	2	0
CCNB2-MAD2L2	2	1
CCNB2-PTTG1	2	2
CDC16-CDC25C	2	0
CDC20-CDC25C	2	1
CDC20-MDM2	2	0
CDC23-MAD2L2	2	1
CDC23-PTTG1	2	2
CDC25B-MAD2L2	2	1
CDC25B-PTTG1	2	2
CDC25C-PLK1	2	0
CDC25C-WEE1	2	1
CDC27-CDKN1A	2	1
CDC27-MAD2L1	2	2
CDC27-MAD2L2	2	2
MAD2L1-MAD2L2	2	1
MAD2L1-PPP2CA	2	2
PLK1-PPP2CA	2	0
PLK1-WEE1	2	2
PPM1D-PTTG1	2	1
PTTG1-WEE1	2	2
CCNB1-CCNB2	1	0
CCNB1-CDC16	1	0
CCNB1-CDKN1A	1	1
CCNB1-PLK1	1	0
CCNB1-PPP2CA	1	1

CCNB1-WEE1	1	1
CCNB2-CDC25C	1	0
CCNB2-CDKN1A	1	1
CCNB2-MAD2L1	1	0
CCNB2-MDM2	1	0
CCNB2-PPM1D	1	0
CCNB2-PPP2CA	1	0
CDC20-PPP2CA	1	1
CDC23-CDC25C	1	0
CDC23-MAD2L1	1	0
CDC25C-MAD2L1	1	0
CDC25C-PPP2CA	1	0
CDC25C-PTTG1	1	1
CDKN1A-MAD2L1	1	0
CDKN1A-MAD2L2	1	0
CDKN1A-WEE1	1	0
LMNA-MAD2L1	1	0
LMNA-PTTG1	1	1
MAD2L1-MDM2	1	0
MAD2L1-WEE1	1	1
MAD2L2-MDM2	1	0
MDM2-PPP2CA	1	0
MDM2-PTTG1	1	1
PPP2CA-WEE1	1	0

Supplementary Table 6. The average logarithmic sensitivity intensities for p53-wt, p53-wt Plk1 depleted, p53-null cancer and Plk1-depleted p53-null cancer cells.

p53-wt cance	r cells	Plk1 depleted t	o 0.055 zt cells	p53-null cells Plk1 depleted t		o 0.055 ill cells	
Protein	Intensity	Protein	Intensity	Protein	Intensity	Protein	Intensity
Cdc20P	0.88	p53P	4.29	ATM/ATR	19.97	Cdc20P	6.37
APC/CP:Cdc20	0.87	Wip1	3.29	APC/CP:Cdc20	0.89	Plk1P	5.38
p53P:Plk1P	0.86	p53	3.2	Cdc20P	0.87	APC/CP	5.11
Plk1P	0.72	p53P:Plk1P	3.14	APC/CP	0.71	Cdc25P	4.78
APC/CP	0.71	p53T	2.96	Plk1P	0.7	ATM/ATR	4.57
Mad2:Cdc20P	0.7	p21:MPF	2.9	Mad2:Cdc20P	0.64	APC/CP:Cdc20	4.28
APC/CP:Cdh1	0.6	ATM/ATR	2.73	p21:MPF	0.58	Mad2:Cdc20P	4.19
Cdc25P	0.58	Mdm2	2.71	Cdc25P	0.56	p21:MPF	3.84
MPF (Cy- clinB:CDK1)	0.53	APC/CP:Cdh1	2.68	APC/CP:Cdh1	0.54	MPF (Cy- clinB:CDK1)	3.53
p21:MPF	0.5	APC/CP:Cdc20	1.52	MPF (Cy- clinB:CDK1)	0.53	LMNAP	3.07
Plk1	0.49	preMPF	1.49	Plk1	0.49	Plk1T	2.43
LMNAP	0.47	APC/CP	1.21	LMNAP	0.47	preMPF	1.63
Cdc20T	0.45	CyclinBT	1.06	Cdc20T	0.46	Wee1P	1.63
preMPF	0.44	p21T	1	preMPF	0.43	Cdc25	1.59
Pttg1P	0.44	p21	0.95	Plk1T	0.43	APC/CP:Cdh1	1.42
Pttg1T	0.43	APC/CPT	0.83	APC/C:Cdh1	0.43	PP2AP	1.39
Plk1T	0.42	Cdc25	0.81	Pttg1P	0.43	Mdm2	1.37
APC/C:Cdh1	0.42	Cdc20T	0.78	Pttg1T	0.42	CyclinB	1.33
Cdh1	0.39	Mad2:Cdc20P	0.78	Cdh1	0.39	Cdc20T	1.26
Cdc20	0.39	Pttg1P	0.74	Cdc20	0.39	Wee1	0.96
APC/CPT	0.37	Cdc25T	0.71	APC/CPT	0.36	Wee1T	0.85
Pttg1	0.32	APC/CT:Cdh1	0.7	Pttg1	0.33	APC/C:Cdh1	0.82
Wee1	0.32	Pttg1T	0.67	Wee1	0.33	CyclinBT	0.78
p53P	0.3	Wee1P	0.67	Cdc25	0.29	Plk1	0.77
Wee1P	0.29	Plk1T	0.53	Wee1T	0.28	Cdh1	0.77
Wee1T	0.28	CyclinB	0.51	Wee1P	0.28	Pttg1	0.74
Cdc25	0.27	Cdc20P	0.5	CyclinBT	0.27	PP2A	0.68
CyclinBT	0.27	Plk1	0.49	CyclinB	0.26	APC/CT:Cdh1	0.64
PP2AP	0.26	Pttg1	0.48	PP2AP	0.26	Pttg1T	0.62
CyclinB	0.26	MPF (Cy- clinB:CDK1)	0.46	APC/CT:Cdh1	0.21	Cdc20	0.61
APC/CT:Cdh1	0.2	Plk1P	0.45	Cdc25T	0.2	Pttg1P	0.61
Cdc25T	0.19	Cdc20	0.43	PP2A	0.17	Mad2T	0.56
PP2A	0.17	APC/C:Cdh1	0.43	Mad2T	0.13	Cdc25T	0.52
Mad2T	0.13	CDK1	0.42	APC/C	0.12	APC/CPT	0.43
p21	0.11	LMNAP	0.35	CDK1	0.11	APC/C	0.34

p21T	0.11	Cdh1	0.34	APC/CT	0.1	CDK1	0.33
APC/C	0.11	PP2AP	0.31	Mdm2	0.08	Mad2	0.24
CDK1	0.11	Cdc25P	0.3	Mad2	0.06	APC/CT	0.14
APC/CT	0.1	APC/CT	0.23	Cdh1T	0.05	Cdh1T	0.12
Mad2	0.06	Wee1T	0.17	Cdh1P	0.03	Cdh1P	0.06
Cdh1T	0.05	Wee1	0.16	p21	0.03	p21	0.03
Cdh1P	0.03	PP2A	0.14	p21T	0.03	p21T	0.03
p53T	0.03	Mad2T	0.13	PP2AT	0.01	Wip1	0.01
p53	0.03	Mad2	0.1	Wip1	0.01	PP2AT	0.01
Mdm2	0.01	Cdh1T	0.08	CDK1T	0	CDK1T	0
PP2AT	0.01	APC/C	0.08	LMNAT	0	LMNAT	0
ATM/ATR	0.01	Cdh1P	0.07	p53	NaN	p53	NaN
Wip1	0.01	PP2AT	0.01	p53P	NaN	p53P	NaN
CDK1T	0	CDK1T	0	p53P:Plk1P	NaN	p53P:Plk1P	NaN
LMNAT	0	LMNAT	0	p53T	NaN	p53T	NaN

Supplementary Table 7. Twenty proteins with largest average logarithmic sensitivity intensities for p53-wt cells, p53-wt Plk1 depleted cells, p53-null cancer and Plk1-depleted p53-null cancer cells.

p53-wt cancer cells		Plk1 depleted to 0.055 level in p53-wt cancer cells		p53-null cells		Plk1 depleted to 0.055 level in p53-null cells	
Protein	Intensity	Protein	Intensity	Protein	Intensity	Protein	Intensity
Cdc20P	0.88	p53P	4.29	ATM/ATR	19.97	Cdc20P	6.37
APC/CP:Cdc20	0.87	Wip1	3.29	APC/CP:Cdc20	0.89	Plk1P	5.38
p53P:Plk1P	0.86	p53	3.2	Cdc20P	0.87	APC/CP	5.11
Plk1P	0.72	p53P:Plk1P	3.14	APC/CP	0.71	Cdc25P	4.78
APC/CP	0.71	p53T	2.96	Plk1P	0.7	ATM/ATR	4.57
Mad2:Cdc20P	0.7	p21:MPF	2.9	Mad2:Cdc20P	0.64	APC/CP:Cdc20	4.28
APC/CP:Cdh1	0.6	ATM/ATR	2.73	p21:MPF	0.58	Mad2:Cdc20P	4.19
Cdc25P	0.58	Mdm2	2.71	Cdc25P	0.56	p21:MPF	3.84
MPF (Cy- clinB:CDK1)	0.53	APC/CP:Cdh1	2.68	APC/CP:Cdh1	0.54	MPF (Cy- clinB:CDK1)	3.53
p21:MPF	0.5	APC/CP:Cdc20	1.52	MPF (Cy- clinB:CDK1)	0.53	LMNAP	3.07
Plk1	0.49	preMPF	1.49	Plk1	0.49	Plk1T	2.43
LMNAP	0.47	APC/CP	1.21	LMNAP	0.47	preMPF	1.63
Cdc20T	0.45	CyclinBT	1.06	Cdc20T	0.46	Wee1P	1.63
preMPF	0.44	p21T	1	preMPF	0.43	Cdc25	1.59
Pttg1P	0.44	p21	0.95	Plk1T	0.43	APC/CP:Cdh1	1.42
Pttg1T	0.43	APC/CPT	0.83	APC/C:Cdh1	0.43	PP2AP	1.39
Plk1T	0.42	Cdc25	0.81	Pttg1P	0.43	Mdm2	1.37
APC/C:Cdh1	0.42	Cdc20T	0.78	Pttg1T	0.42	CyclinB	1.33
Cdh1	0.39	Mad2:Cdc20P	0.78	Cdh1	0.39	Cdc20T	1.26
Cdc20	0.39	Pttg1P	0.74	Cdc20	0.39	Wee1	0.96

Supplementary Figure 3. The average logarithmic sensitivity intensities for 50 model components for WT (**a**), Plk1 depleted WT (**b**), p53-null cancer (**c**) and Plk1-depleted p53-null cancer (**d**) cells.

Supplementary Figure 4. Logarithmic intensities for Mad2, Wee1, Cdc20, Cdc25P, PP2AP, Plk1T, ATM/ATR, p53, Mdm2, Wip1, p21, Mad2:Cdc20P, Cdh1, MPF regulators in WT (a) and p53-null cancer (b) cells. The sensitivity intensities are obtained by varying k_{s1}, k_{s5}, k_{s8}, k_{s9}, k_{s12}, k_{s13}, k_{s15}, k_{s17}, k_{s20}, k_{s24}, k_{s27}, k_{s28}, k_{s31}, k_{s32}, k_{s33} parameters that control synthesis rates of Cyclin B, p21, cdc25, Wee1, Plk1, PP2A, APC/C, Cdc20, Cdh1, Pttg1, ATM/ATR, p53, Mdm2, Wip1, Mad2 correspondingly.

Supplementary Figure 5. Results of Partial Rank Correlation Coefficients (PRCC) analysis for the averaged dynamics of model components at time window 0:96h. Four heatmaps show mean PRCC values for the following four cases: 1) p53-wt Plk1-normal, 2) p53-wt Plk1 depleted by 45%, 3) p53-null Plk1-normal, 4) p53-null Plk1 depleted by 45%. Each pixel on the heatmap shows the statistically significant (p-value < 0.05) PRCC mean value for the corresponding protein (indicated along y-axis) and parameter (listed along x-axis). Black pixels ('NaN') show 'not a number' and represent no significant (p-value > 0.05) correlation between corresponding proteins and parameters. The mean of PRCC values are obtained using five replications of PRCC analysis (1000 runs).

Concentration

Figure 6. Fuzzy analysis for comparison of case 2 (red dot-dashed lines) (p53-wt Plk1 depleted by 45%) and case 4 (blue dashed lines) (p53-null Plk1 depleted by 45%). The analysis is performed for 50 model components (shown as titles for panels) by setting k_{s1} , k_{s5} , k_{s9} , k_{s12} , k_{s13} , k_{s15} , k_{s20} , k_{s24} , k_{s27} , k_{s28} , k_{s31} , k_{s32} , k_{s33} as fuzzy parameters. These parameters control the synthesis of Cyclin B, p21, Cdc25, Wee1, Plk1, PP2A, APC/C, Cdc20, Cdh1, Pttg1, ATM/ATR, p53, Mdm2, Wip1, Mad2 proteins, respectively. Each parameter is perturbed by 1% of its value. The horizontal axis of each panel depicts the maximum uncertainty band of concentration of model components affected by uncertainty of the parameter. The vertical axis shows the different α -cut levels (by increasing the α value from zero, the uncertainty decreases and $\alpha = 1$, depicts the crisp setting (no uncertainty)).

Supplementary Figure 7. Fuzzy analysis for comparison of case 1 (red dot-dashed lines) (p53-wt Plk1-normal) and case 3 (blue dashed lines) (p53-null Plk1-normal). The analysis is performed for 50 model components (shown as titles for panels) by setting k_{s1} , k_{s5} , k_{s9} , k_{s12} , k_{s13} , k_{s15} , k_{s20} , k_{s24} , k_{s27} , k_{s28} , k_{s31} k_{s32} , k_{s33} as fuzzy parameters. These parameters control the synthesis of Cyclin B, p21, Cdc25, Wee1, Plk1, PP2A, APC/C, Cdc20, Cdh1, Pttg1, ATM/ATR, p53, Mdm2, Wip1, Mad2 proteins, respectively. Each parameter is perturbed by 1% of its value. The horizontal axis of each panel depicts the maximum uncertainty band of concentration of model components affected by uncertainty of the parameter. The vertical axis shows the different α -cut levels (by increasing the α value from zero, the uncertainty decreases and $\alpha = 1$, depicts the crisp setting (no uncertainty)).

Supplementary Table 8. Predicted phenotypes of p53-wt and p-53 cancer cells that carry a mutation in the interaction described by the corresponding parameter that is set to 0. "inviable" indicates cell cycle arrest and the number is the ratio of T_m/T , where T_m is the mutant cell cycle period and *T* is the cell cycle period in wild type.

No	Perturbation	Mutation Description	p53-wt	p53-null	p53-wt (Plk1 =0.055)	p53-null (Plk1 =0.055)
1	$k_{f1} \rightarrow 0$	Loss of association of CycB and CDK1	inviable	inviable	inviable	inviable
2	$k_{r1} \rightarrow 0$	Loss of dissociation of MPF	1.095	1.295	1.382	inviable
3	$k_{f2}^\prime \to 0$	Loss of dephosphorylation in preMPF by Cdc25P	inviable	inviable	inviable	inviable
4	$k_{f2}^{\prime\prime} \rightarrow 0$	Loss of dephosphorylation in preMPF by Cdc25	inviable	inviable	inviable	inviable
5	$k_{r2}^\prime \to 0$	Loss of phosphorylation sites of MPF by Wee1	inviable	inviable	inviable	inviable
6	$k_{r2}^{\prime\prime} \rightarrow 0$	Loss of phosphorylation sites of MPF by Wee1P	1.006	1.006	1.368	1.839
7	$k_{f3}^{\prime} \rightarrow 0$	Loss of phosphorylation sites of Cdc25 by MPF	1.335	1.455	inviable	inviable
8	$k_{f3}^{\prime\prime} \rightarrow 0$	Loss of phosphorylation sites of Cdc25 by Plk1P	1.041	1.043	1.465	1.932
9	$k'_{r3} \rightarrow 0$	Loss of dephosphorylation of Cdc25P by PP2A	0.337	0.335	0.376	0.372
10	$k_{f4}^\prime \to 0$	Loss of phosphorylation sites of Wee1 by MPF	inviable	inviable	inviable	inviable
11	$k_{f4}^{\prime\prime} \rightarrow 0$	Loss of phosphorylation sites of Wee1 by Plk1P	1.002	1.002	1.521	1.831
12	$k_{r4}^\prime \to 0$	Loss of dephosphorylation of Wee1 by PP2A	0.684	0.682	0.756	1.06
13	$k_{f5} ightarrow 0$	Loss of dissociation of p21:MPF	1.002	1	1.55	1.845
14	$k_{r5} \rightarrow 0$	Loss of association of p21 and MPF	0.998	1	1.351	1.837
15	$k_{f6}^\prime \to 0$	Loss of phosphorylation sites of Plk1 by MPF	inviable	inviable	inviable	inviable
16	$k_{r6}^\prime \to 0$	Loss of dephosphorylation of Plk1P by PP2A	inviable	inviable	inviable	inviable
17	$k_{f7} \rightarrow 0$	Loss of dephosphorylation of PP2AP	inviable	inviable	inviable	inviable
18	$k'_{r7} \rightarrow 0$	Loss of phosphorylation sites of PP2A by MPF	0.69	0.688	inviable	inviable
19	$k_{f8}^\prime \to 0$	Loss of phosphorylation sites of APC/C by MPF	1.056	1.262	1.184	inviable
20	$k^{\prime\prime}_{~f8} \rightarrow 0$	Loss of phosphorylation sites of APC/C by Plk1P	inviable	1.556	1.021	inviable
21	$k_{r8}^{\prime} \rightarrow 0$	Loss of dephosphorylation of APC/CP by PP2A	inviable	inviable	inviable	inviable
22	$k'_{r9} \rightarrow 0$	Loss of phosphorylation sites of Cdc20 by MPF	0.758	0.76	1.035	1.037
23	$k_{r9}^{\prime\prime} ightarrow 0$	Loss of phosphorylation sites of Cdc20 by Plk1P	0.752	0.752	1.184	1.188
24	$k_{f9}^\prime \to 0$	Loss of dephosphorylation of Cdc20 by PP2A	inviable	inviable	1.822	inviable
25	$k_{f10} ightarrow 0$	Loss of association of APC/CP and Cdc20	inviable	inviable	inviable	inviable
26	$k_{r10} \rightarrow 0$	Loss of dissociation of APC/CP:Cdc20	inviable	inviable	inviable	inviable

27	$\mathbf{k}_{\mathrm{f11}}^\prime \to 0$	Loss of dephosphorylation of Cdh1P by PP2A	0.769	0.771	0.853	1.182
28	$k_{r11}^\prime \to 0$	Loss of phosphorylation sites of Cdh1 by MPF	inviable	inviable	inviable	inviable
29	$k_{r11}^{\prime\prime} \rightarrow 0$	Loss of phosphorylation sites of Cdh1 by Plk1P	2.32	2.32	inviable	inviable
30	$k_{f12} \rightarrow 0$	Loss of association of APC/C and Cdh1	0.424	0.421	0.467	0.463
31	$k_{r12} \rightarrow 0$	Loss of dissociation of APC/C:Cdh1	inviable	inviable	inviable	inviable
32	$k_{f13} \rightarrow 0$	Loss of association of APC/CP and Cdh1	0.86	0.944	1.048	1.61
33	$k_{r13} \rightarrow 0$	Loss of dissociation of APC/CP:Cdh1	1.64	1.643	inviable	inviable
34	$k_{f14}^\prime \to 0$	Loss of dephosphorylation of Pttg1P by PP2A	1.002	1.004	1.393	1.851
35	$k_{r14}^\prime \to 0$	Loss of phosphorylation sites of Pttg1 by MPF	0.862	0.862	0.977	1.314
36	$k_{f15}^\prime \to 0$	Loss of phosphorylation sites of LMNA by MPF	1	1	1.382	1.837
37	$k_{r15} \rightarrow 0$	Loss of dephosphorylation of LMNAP	1	1	1.382	1.837
38	${k'}_{f16} \to 0$	Loss of phosphorylation rate constant of p53 by ATM:ATR	1	1	inviable	1.837
39	${k'}_{r16} \to 0$	Loss of dephosphorylation rate constant of p53P by Wip1	1	1	1.345	1.837
40	$k_{f17} \rightarrow 0$	Loss of association of p53P and Plk1P	1	1	1.407	1.837
41	$k_{r17} \rightarrow 0$	Loss of association of p53P: Plk1P	1	1	1.343	1.837
42	$k_{f18} \rightarrow 0$	Loss of association of Mad2 and Cdc20P	0.876	0.878	1.18	1.18
43	$k_{r18}^\prime \to 0$	Loss of dissociation of Mad2:Cdc20P	inviable	inviable	inviable	Inviable
43 44	$\begin{array}{c} k_{r18}^{\prime} \rightarrow 0 \\ \\ k_{s1} \rightarrow 0 \end{array}$	Loss of dissociation of Mad2:Cdc20P Loss of CCNB1 gene	inviable inviable	inviable inviable	inviable inviable	Inviable Inviable
43 44 45	$\begin{array}{c} k_{r18}^{\prime} \rightarrow 0 \\ \\ \hline k_{s1} \rightarrow 0 \\ \\ \hline k_{s5} \rightarrow 0 \end{array}$	Loss of dissociation of Mad2:Cdc20P Loss of CCNB1 gene Loss of CDKN1A gene	inviable inviable 1	inviable inviable 1	inviable inviable 1.343	Inviable Inviable 1.909
43 44 45 46	$k'_{r18} \rightarrow 0$ $k_{s1} \rightarrow 0$ $k_{s5} \rightarrow 0$ $k_{s8} \rightarrow 0$	Loss of dissociation of Mad2:Cdc20P Loss of CCNB1 gene Loss of CDKN1A gene Loss of CDC25 gene	inviable inviable 1 inviable	inviable inviable 1 inviable	inviable inviable 1.343 inviable	Inviable Inviable 1.909 inviable
43 44 45 46 47	$k'_{r18} \rightarrow 0$ $k_{s1} \rightarrow 0$ $k_{s5} \rightarrow 0$ $k_{s8} \rightarrow 0$ $k_{s9} \rightarrow 0$	Loss of dissociation of Mad2:Cdc20P Loss of CCNB1 gene Loss of CDKN1A gene Loss of CDC25 gene Loss of WEE1 gene	inviable inviable 1 inviable inviable	inviable inviable 1 inviable inviable	inviable inviable 1.343 inviable inviable	Inviable Inviable 1.909 inviable inviable
43 44 45 46 47 48	$k'_{r18} \rightarrow 0$ $k_{s1} \rightarrow 0$ $k_{s5} \rightarrow 0$ $k_{s8} \rightarrow 0$ $k_{s9} \rightarrow 0$ $k_{s12} \rightarrow 0$	Loss of dissociation of Mad2:Cdc20P Loss of CCNB1 gene Loss of CDKN1A gene Loss of CDC25 gene Loss of WEE1 gene Loss of PLK1 gene	inviable inviable 1 inviable inviable inviable	inviable inviable 1 inviable inviable inviable	inviable inviable 1.343 inviable inviable inviable	Inviable Inviable 1.909 inviable inviable inviable
43 44 45 46 47 48 49	$\begin{aligned} k_{r18}' &\rightarrow 0 \\ \hline k_{s1} &\rightarrow 0 \\ \hline k_{s5} &\rightarrow 0 \\ \hline k_{s8} &\rightarrow 0 \\ \hline k_{s9} &\rightarrow 0 \\ \hline k_{s12} &\rightarrow 0 \\ \hline k_{s13} &\rightarrow 0 \end{aligned}$	Loss of dissociation of Mad2:Cdc20P Loss of CCNB1 gene Loss of CDKN1A gene Loss of CDC25 gene Loss of WEE1 gene Loss of PLK1 gene Loss of PP2ACA gene	inviable inviable 1 inviable inviable inviable inviable	inviable inviable inviable inviable inviable inviable	inviable inviable 1.343 inviable inviable inviable inviable	Inviable Inviable 1.909 inviable inviable inviable inviable
43 44 45 46 47 48 49 50	$\begin{aligned} k_{r18}' &\rightarrow 0 \\ k_{s1} &\rightarrow 0 \\ k_{s5} &\rightarrow 0 \\ k_{s8} &\rightarrow 0 \\ k_{s9} &\rightarrow 0 \\ k_{s12} &\rightarrow 0 \\ k_{s13} &\rightarrow 0 \\ k_{s15} &\rightarrow 0 \end{aligned}$	Loss of dissociation of Mad2:Cdc20P Loss of CCNB1 gene Loss of CDKN1A gene Loss of CDC25 gene Loss of WEE1 gene Loss of PLK1 gene Loss of PP2ACA gene Loss of ANAPC/C1 gene	inviable inviable inviable inviable inviable inviable inviable	inviable inviable inviable inviable inviable inviable inviable	inviable inviable 1.343 inviable inviable inviable inviable inviable	Inviable Inviable inviable inviable inviable inviable inviable
43 44 45 46 47 48 49 50 51	$\begin{aligned} k_{r18}' &\rightarrow 0 \\ \hline k_{s1} &\rightarrow 0 \\ \hline k_{s5} &\rightarrow 0 \\ \hline k_{s8} &\rightarrow 0 \\ \hline k_{s9} &\rightarrow 0 \\ \hline k_{s12} &\rightarrow 0 \\ \hline k_{s13} &\rightarrow 0 \\ \hline k_{s15} &\rightarrow 0 \\ \hline k_{s17} &\rightarrow 0 \end{aligned}$	Loss of dissociation of Mad2:Cdc20P Loss of CCNB1 gene Loss of CDKN1A gene Loss of CDC25 gene Loss of WEE1 gene Loss of PLK1 gene Loss of PP2ACA gene Loss of ANAPC/C1 gene Loss of CDC20 gene	inviable inviable inviable inviable inviable inviable inviable inviable	inviable inviable inviable inviable inviable inviable inviable inviable	inviable inviable 1.343 inviable inviable inviable inviable inviable inviable	Inviable Inviable 1.909 inviable inviable inviable inviable inviable
43 44 45 46 47 48 49 50 51 52	$\begin{aligned} k_{r18}' &\rightarrow 0 \\ k_{s1} &\rightarrow 0 \\ k_{s5} &\rightarrow 0 \\ k_{s8} &\rightarrow 0 \\ k_{s9} &\rightarrow 0 \\ k_{s12} &\rightarrow 0 \\ k_{s13} &\rightarrow 0 \\ k_{s15} &\rightarrow 0 \\ k_{s17} &\rightarrow 0 \\ k_{s20} &\rightarrow 0 \end{aligned}$	Loss of dissociation of Mad2:Cdc20P Loss of CCNB1 gene Loss of CDKN1A gene Loss of CDC25 gene Loss of WEE1 gene Loss of PLK1 gene Loss of PP2ACA gene Loss of ANAPC/C1 gene Loss of CDC20 gene Loss of CDH1 gene	inviable 1 inviable inviable inviable inviable inviable inviable 0.324	inviable inviable inviable inviable inviable inviable inviable inviable 0.322	inviable inviable 1.343 inviable inviable inviable inviable inviable 0.345	Inviable Inviable 1.909 inviable inviable inviable inviable inviable inviable
43 44 45 46 47 48 49 50 51 52 53	$\begin{aligned} k_{r18}' &\rightarrow 0 \\ k_{s1} &\rightarrow 0 \\ k_{s5} &\rightarrow 0 \\ k_{s8} &\rightarrow 0 \\ k_{s9} &\rightarrow 0 \\ k_{s12} &\rightarrow 0 \\ k_{s13} &\rightarrow 0 \\ k_{s15} &\rightarrow 0 \\ k_{s17} &\rightarrow 0 \\ k_{s20} &\rightarrow 0 \\ k_{s24} &\rightarrow 0 \end{aligned}$	Loss of dissociation of Mad2:Cdc20P Loss of CCNB1 gene Loss of CDKN1A gene Loss of CDC25 gene Loss of WEE1 gene Loss of PLK1 gene Loss of PP2ACA gene Loss of ANAPC/C1 gene Loss of CDC20 gene Loss of CDH1 gene Loss of PTTG1 gene	inviable inviable inviable inviable inviable inviable inviable 0.324 1.05	inviable inviable inviable inviable inviable inviable inviable 0.322 1.05	inviable inviable 1.343 inviable inviable inviable inviable inviable 0.345 1.626	Inviable Inviable 1.909 inviable inviable inviable inviable inviable inviable inviable
43 44 45 46 47 48 49 50 51 52 53 54	$\begin{array}{c} k_{r18}' \to 0 \\ \\ k_{s1} \to 0 \\ \\ k_{s5} \to 0 \\ \\ k_{s9} \to 0 \\ \\ k_{s12} \to 0 \\ \\ k_{s13} \to 0 \\ \\ k_{s15} \to 0 \\ \\ k_{s17} \to 0 \\ \\ k_{s20} \to 0 \\ \\ k_{s24} \to 0 \\ \\ k_{s27} \to 0 \end{array}$	Loss of dissociation of Mad2:Cdc20P Loss of CCNB1 gene Loss of CDKN1A gene Loss of CDC25 gene Loss of WEE1 gene Loss of PLK1 gene Loss of PP2ACA gene Loss of ANAPC/C1 gene Loss of CDC20 gene Loss of CDC1 gene Loss of CDH1 gene Loss of PTTG1 gene Loss of ATM gene	inviable 1 inviable inviable inviable inviable inviable inviable 0.324 1.05 0.998	inviable inviable inviable inviable inviable inviable inviable inviable 0.322 1.05 0.998	inviable inviable 1.343 inviable inviable inviable inviable inviable 0.345 1.626 1.357	Inviable Inviable 1.909 inviable inviable inviable inviable inviable inviable 2.143 1.357
43 44 45 46 47 48 49 50 51 52 53 54 55	$\begin{aligned} k_{r18}' &\rightarrow 0 \\ k_{s1} &\rightarrow 0 \\ k_{s5} &\rightarrow 0 \\ k_{s8} &\rightarrow 0 \\ k_{s9} &\rightarrow 0 \\ k_{s12} &\rightarrow 0 \\ k_{s13} &\rightarrow 0 \\ k_{s15} &\rightarrow 0 \\ k_{s17} &\rightarrow 0 \\ k_{s20} &\rightarrow 0 \\ k_{s24} &\rightarrow 0 \\ k_{s27} &\rightarrow 0 \\ k_{s28} &\rightarrow 0 \end{aligned}$	Loss of dissociation of Mad2:Cdc20P Loss of CCNB1 gene Loss of CDKN1A gene Loss of CDC25 gene Loss of WEE1 gene Loss of PLK1 gene Loss of PP2ACA gene Loss of ANAPC/C1 gene Loss of CDC20 gene Loss of CDC20 gene Loss of CDH1 gene Loss of PTTG1 gene Loss of ATM gene	inviable inviable inviable inviable inviable inviable inviable 0.324 1.05 0.998	inviable inviable inviable inviable inviable inviable inviable 0.322 1.05 0.998	inviable inviable 1.343 inviable inviable inviable inviable 0.345 1.626 1.357 1.837	Inviable Inviable 1.909 inviable inviable inviable inviable inviable inviable 2.143 1.357 1.837
43 44 45 46 47 48 49 50 51 52 53 54 55 56	$\begin{array}{c} k_{r18}' \to 0 \\ \\ k_{s1} \to 0 \\ \\ k_{s5} \to 0 \\ \\ k_{s9} \to 0 \\ \\ k_{s12} \to 0 \\ \\ k_{s13} \to 0 \\ \\ k_{s13} \to 0 \\ \\ k_{s15} \to 0 \\ \\ k_{s20} \to 0 \\ \\ k_{s24} \to 0 \\ \\ k_{s22} \to 0 \\ \\ k_{s28} \to 0 \\ \\ k_{s31} \to 0 \end{array}$	Loss of dissociation of Mad2:Cdc20P Loss of CCNB1 gene Loss of CDKN1A gene Loss of CDC25 gene Loss of WEE1 gene Loss of PLK1 gene Loss of PP2ACA gene Loss of ANAPC/C1 gene Loss of CDC20 gene Loss of CDH1 gene Loss of PTTG1 gene Loss of ATM gene Loss of TP53 gene Loss of Mad2 gene	inviable inviable inviable inviable inviable inviable inviable 0.324 1.05 0.998 1	inviable inviable inviable inviable inviable inviable inviable 0.322 1.05 0.998 1	inviable inviable 1.343 inviable inviable inviable inviable 0.345 1.626 1.357 1.837 1.382	Inviable Inviable 1.909 inviable inviable inviable inviable inviable 2.143 1.357 1.837
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	$\begin{array}{c} k_{r18}' \to 0 \\ \\ k_{s1} \to 0 \\ \\ k_{s5} \to 0 \\ \\ k_{s9} \to 0 \\ \\ k_{s12} \to 0 \\ \\ k_{s12} \to 0 \\ \\ k_{s13} \to 0 \\ \\ k_{s15} \to 0 \\ \\ k_{s20} \to 0 \\ \\ k_{s20} \to 0 \\ \\ k_{s24} \to 0 \\ \\ k_{s27} \to 0 \\ \\ k_{s28} \to 0 \\ \\ k_{s31} \to 0 \\ \\ \\ k_{s31p} \to 0 \end{array}$	Loss of dissociation of Mad2:Cdc20P Loss of CCNB1 gene Loss of CDKN1A gene Loss of CDC25 gene Loss of WEE1 gene Loss of PLK1 gene Loss of PP2ACA gene Loss of ANAPC/C1 gene Loss of CDC20 gene Loss of CDC20 gene Loss of CDH1 gene Loss of PTTG1 gene Loss of ATM gene Loss of TP53 gene Loss of Mad2 gene Loss of p53P-dependent Mdm2 synthesis rate constant	inviable inviable inviable inviable inviable inviable inviable 0.324 1.05 0.998 1 1	inviable inviable inviable inviable inviable inviable inviable 0.322 1.05 0.998 1 1	inviable inviable 1.343 inviable inviable inviable inviable 0.345 1.626 1.357 1.837 1.382 1.298	Inviable Inviable 1.909 inviable inviable inviable inviable inviable 2.143 1.357 1.837 1.837
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	$\begin{array}{c} k_{r18}' \to 0 \\ \\ k_{s1} \to 0 \\ \\ k_{s5} \to 0 \\ \\ k_{s9} \to 0 \\ \\ k_{s12} \to 0 \\ \\ k_{s13} \to 0 \\ \\ k_{s13} \to 0 \\ \\ k_{s15} \to 0 \\ \\ k_{s20} \to 0 \\ \\ k_{s20} \to 0 \\ \\ k_{s24} \to 0 \\ \\ k_{s22} \to 0 \\ \\ k_{s31} \to 0 \\ \\ k_{s31p} \to 0 \\ \\ k_{s32} \to 0 \end{array}$	Loss of dissociation of Mad2:Cdc20P Loss of CCNB1 gene Loss of CDKN1A gene Loss of CDC25 gene Loss of WEE1 gene Loss of PLK1 gene Loss of PP2ACA gene Loss of ANAPC/C1 gene Loss of CDC20 gene Loss of CDC1 gene Loss of CDH1 gene Loss of PTTG1 gene Loss of ATM gene Loss of TP53 gene Loss of Mad2 gene Loss of p53P-dependent Mdm2 synthesis rate constant Loss of Wip1 synthesis rate constant	inviable inviable inviable inviable inviable inviable inviable 0.324 0.324 1.05 0.998 1 1	inviable inviable inviable inviable inviable inviable inviable 0.322 1.05 0.998 1 1 1	inviable inviable 1.343 inviable inviable inviable inviable 0.345 1.626 1.357 1.837 1.382 1.298 1.382	Inviable Inviable 1.909 inviable inviable inviable inviable inviable 2.143 1.357 1.837 1.837 1.837

60	$k_{s33} \rightarrow 0$	Loss of Mad2 synthesis rate constant	0.876	0.876	1.18	1.18
61	$k_{d1.1} \rightarrow 0$	CycB degron deletion	1.029	1.202	1.159	inviable
62	$k_{d1.2} \rightarrow 0$	Loss of CycB degron site for APC/CP:Cdc20	1.174	1.409	1.424	inviable
63	$k_{d1.3} \rightarrow 0$	Loss of CycB degron site for APC/CT:Cdh1	0.831	0.868	0.901	1.252
64	$k_{d3.1} \rightarrow 0$	MPF degron deletion	1.062	1.225	1.343	inviable
65	$k_{d3.2} \rightarrow 0$	Loss of MPF degron site for APC/CP:Cdc20	inviable	inviable	0.006	inviable
66	$k_{d3.3} \rightarrow 0$	Loss of MPF degron site for APC/CT:Cdh1	0.57	0.847	0.636	inviable
67	$k_{d4.1} \rightarrow 0$	preMPF degron deletion	1.002	1.07	1.264	1.719
68	$k_{d4.2} \rightarrow 0$	Loss of preMPF degron site for APC/CP:Cdc20	1.174	1.411	1.399	inviable
69	$k_{d4.3} \rightarrow 0$	Loss of preMPF degron site for APC/CT:Cdh1	0.758	inviable	0.669	inviable
70	$k_{d5} \rightarrow 0$	p21 degron deletion	0.998	1	1.488	1.783
71	$k_{d6} \rightarrow 0$	Loss of p21 degron site for APC/CP:Cdc20	0.998	1	1.415	1.837
72	$k_{d7.1} \rightarrow 0$	Cdc25P degron deletion	0.696	1.293	1.037	inviable
73	$k_{d7.3} \rightarrow 0$	Loss of Cdc25P degron site for APC/CT:Cdh1	0.992	0.992	1.36	1.81
74	$k_{d8.1} \rightarrow 0$	Cdc25 degron deletion	0.574	0.574	0.643	1.167
75	$k_{d8.3} \rightarrow 0$	Loss of Cdc25 degron site for APC/CT:Cdh1	0.533	0.533	0.57	0.812
76	$k_{d9} \rightarrow 0$	Wee1 degron deletion	inviable	inviable	inviable	inviable
77	$k_{d10} \rightarrow 0$	Wee1P degron deletion	inviable	inviable	inviable	inviable
78	$k_{d11.1} \rightarrow 0$	Plk1P degron deletion	inviable	inviable	inviable	1.719
79	$k_{d11.3} \rightarrow 0$	Loss of Plk1P degron site for APC/CT:Cdh1	0.837	0.839	1.174	1.529
80	$k_{d12.1} \rightarrow 0$	Plk1 degron deletion	inviable	inviable	1.157	1.436
81	$k_{d12.3} \rightarrow 0$	Loss of Plk1 degron site for APC/CT:Cdh1	0.467	0.465	0.634	0.777
82	$k_{d13} \rightarrow 0$	PP2A degron deletion	inviable	inviable	inviable	inviable
83	$k_{d14} \rightarrow 0$	PP2AP degron deletion	1.087	1.087	inviable	inviable
84	$k_{d15} \rightarrow 0$	APC/C degron deletion	inviable	inviable	inviable	inviable
85	$k_{d16} \rightarrow 0$	APC/CP degron deletion	1.256	1.258	1.897	1.93
86	$k_{d17.1} \rightarrow 0$	Cdc20 degron deletion	1.027	1.159	1.911	inviable
87	$k_{d17.3} \rightarrow 0$	Loss of Cdc20 degron site for APC/CT:Cdh1	1.397	1.393	inviable	inviable
88	$k_{d18.1} \rightarrow 0$	Cdc20P degron deletion	0.936	1.207	1.339	inviable
89	$k_{d18.3} \rightarrow 0$	Loss of Cdc20P degron site for APC/CT:Cdh1	0.994	0.998	1.368	1.847
90	$k_{d20} \rightarrow 0$	Cdh1 degron deletion	inviable	inviable	inviable	inviable
91	$k_{d21} \rightarrow 0$	Cdh1P degron deletion	1.095	1.095	1.971	inviable
92	$k_{d24,1} \rightarrow 0$	Pttg1 degron deletion	0.996	0 998	1.372	1.824
	u24.1 -	8 8	0.770	0.770		
93	$k_{d24.2} \rightarrow 0$	Loss of Pttg1 degron site for APC/CP:Cdc20	0.998	1	1.378	1.837

95	$k_{d25.2} \rightarrow 0$	Loss of Pttg1P degron site for APC/CP:Cdc20	1	1	1.38	1.837
96	$k_{d27} \rightarrow 0$	ATM_ATR degron deletion	1.099	inviable	inviable	inviable
97	$k_{d27p} \rightarrow 0$	Loss of saturating Wip1-dependent ATM:ATR degradation rate	1	1	1.651	1.837
98	$k_{d28} \rightarrow 0$	p53 degron deletion	1.174	1	inviable	1.837
99	$k_{d28p} \rightarrow 0$	Loss of Mdm2-dependent p53 degradation rate	1	1	1.362	1.837
100	$k_{d29} \rightarrow 0$	Loss of p53P degradation rate constant	1	1	1.357	1.837
101	$k_{d29p} \rightarrow 0$	Loss of Mdm2-dependent p53P degradation rate	1	1	1.308	1.837
102	$k_{d31.1} \rightarrow 0$	Loss of ATM-ATR dependent Mdm2 inactiva- tion rate	1	1	1.455	1.837
103	$k_{d31} \rightarrow 0$	Loss of Mdm2 degradation rate constant	0.998	1	1.355	1.837
104	$k_{d32} \rightarrow 0$	Loss of Wip1 degradation rate constant	1	1	1.353	1.829
105	$k_{d33} \rightarrow 0$	Loss of Mad2 degradation rate constant	inviable	inviable	inviable	inviable
106	$K_{A1} \rightarrow 0$	Loss of Intensifying scale rate of k'_{f6} by ATM_ATR	inviable	inviable	inviable	inviable
107	$K_{\rm P} \rightarrow 0$	Loss of intensifying scale rate of k'_{f11} by Pttg1	0.769	0.771	0.853	1.182
108	$K_{A2} \rightarrow 0$	Loss of intensifying scale rate of k_{s8} by ATM_ATR	inviable	inviable	inviable	inviable
109	$K_{p53} \rightarrow 0$	Loss of intensifying scale rate of ks5 by p53	inviable	inviable	inviable	inviable
110	$K_{DDS} \rightarrow 0$	Loss of intensifying scale rate of DDS	1	1	1.36	1.364
111	$K_{A3} \rightarrow 0$	Loss of intensifying scale rate of ks28 by ATM_ATR	inviable	inviable	inviable	inviable
112	$K_{MCD} \rightarrow 0$	Loss of intensifying scale rate of Mad2_Cdc20P dissociation by p21	inviable	inviable	inviable	inviable
113	$\epsilon ightarrow 0$	Loss of intensifying scale of Plk1/p21	1.161	inviable	1.523	inviable
114	$K_{CycB1} \rightarrow 0$	Loss of MM constant of CycB degradation by APC/CP:Cdc20	inviable	inviable	inviable	inviable
115	$K_{CycB2} \rightarrow 0$	Loss of MM constant of CycB degradation by APC/CP:Cdh1	inviable	inviable	inviable	inviable
116	$K_{MPF1} \rightarrow 0$	Loss of MM constant of MPF degradation by APC/CP:Cdc20	inviable	inviable	inviable	inviable
117	$K_{MPF2} \rightarrow 0$	Loss of MM constant of MPF degradation by APC/CT:Cdh1	inviable	inviable	inviable	inviable
118	$K_{preMPF1} \rightarrow 0$	Loss of MM constant of MPF degradation by APC/CP:Cdc20	inviable	inviable	inviable	inviable
119	$K_{preMPF2} \rightarrow 0$	Loss of MM constant of MPF degradation by APC/CP:Cdh1	inviable	inviable	inviable	inviable
120	$K_{p21MPF} \rightarrow 0$	Loss of MM constant of p21 ₃ :MPF degradation by APC/CP:Cdc20	inviable	inviable	inviable	inviable
121	$K_{Cdc25P1} \rightarrow 0$	Loss of MM constant of Cdc25CP Dephosphorylation by PP2A	inviable	inviable	inviable	inviable
122	$K_{Cdc25P2} \rightarrow 0$	Loss of MM constant of Cdc25P degradation by APC/CT:Cdh1	inviable	inviable	inviable	inviable
123	$K_{Cdc25} \rightarrow 0$	Loss of MM constant of Cdc25 degradation by APC/CT:Cdh1	inviable	inviable	inviable	inviable
124	$K_{Wee1P} \rightarrow 0$	Loss of MM constant of Wee1P dephosphory- lation by PP2A	inviable	inviable	inviable	inviable

125	$K_{Plk1P1} \rightarrow 0$	Loss of MM constant of Plk1P dephosphoryla- tion by PP2A	inviable	inviable	inviable	inviable
126	$K_{Plk1P2} \rightarrow 0$	Loss of MM constant of Plk1P degradation by APC/CT:Cdh1	inviable	inviable	inviable	inviable
127	$K_{Plk1} \rightarrow 0$	Loss of MM constant of Plk1 degradation by APC/CT:Cdh1	inviable	inviable	inviable	inviable
128	$K_{APC/CP} \rightarrow 0$	Loss of MM constant of APC/CP dephosphor- ylation by PP2A	inviable	inviable	inviable	inviable
129	$K_{Cdc20P1} \rightarrow 0$	Loss of MM constant of Cdc20P dephosphory- lation by PP2A	inviable	inviable	inviable	inviable
130	$K_{Cdc20} \rightarrow 0$	Loss of MM constant of Cdc20 degradation by APC/CT:Cdh1	inviable	inviable	inviable	inviable
131	$K_{Cdc20P2} \rightarrow 0$	Loss of MM constant of Cdc20P degradation by APC/CT:Cdh1	inviable	inviable	inviable	inviable
132	$K_{Cdh1P} \rightarrow 0$	Loss of MM constant of Cdh1P dephosphory- lation by PP2A	inviable	inviable	inviable	inviable
133	$K_{Pttg1P1} \rightarrow 0$	Loss of MM constant of Pttg1P dephosphory- lation by PP2A	inviable	inviable	inviable	inviable
134	$K_{Pttg1} \rightarrow 0$	Loss of MM constant of Pttg1 degradation by APC/CP:Cdc20	1.002	1.002	1.386	1.839
135	$K_{Pttg1P2} \rightarrow 0$	Loss of MM constant of Pttg1P degradation by APC/CP:Cdc20	inviable	inviable	inviable	inviable
136	$K_{ATMATR} \rightarrow 0$	Loss of MM constant of p53 phosphorylation by Wip1	inviable	inviable	inviable	inviable
137	$K_{Wip1} \rightarrow 0$	Loss of MM constant of ATM_ATR signal degradation by Wip1	inviable	inviable	inviable	inviable

Supplementary Figure 8. Numerical simulations of p53-wt cancer cells with the following gene deletions: CCNB1 and CCNB2 (k_{s1} =0), CDKN1A (k_{s5} =0), CDC25A, CDC25B and CDC25C (k_{s8} =0), WEE1 (k_{s9} =0), PLK1 (k_{s12} =0), PPA2 (k_{s13} =0), ANAPC/C1 (k_{s15} =0), CDC20 (k_{s17} =0), CDH1 (k_{s20} =0), PTTG1 (k_{s24} =0), ATM (k_{s27} =0), TP53 (k_{s28} =0), Mdm2 (k_{s31} =0), Wip1 (k_{s32} =0), MAD2 (k_{s33} =0).

Supplementary Figure 9. Numerical simulations of p53-null cancer cells with the following gene deletions: CCNB1 and CCNB2 (k_{s1} =0), CDKN1A (k_{s5} =0), CDC25A, CDC25B and CDC25C (k_{s8} =0), WEE1 (k_{s9} =0), PLK1 (k_{s12} =0), PPA2 (k_{s13} =0), ANAPC/C1 (k_{s15} =0), CDC20 (k_{s17} =0), CDH1 (k_{s20} =0), PTTG1 (k_{s24} =0), ATM (k_{s27} =0), TP53 (k_{s28} =0), Mdm2 (k_{s31} =0), Wip1 (k_{s32} =0), MAD2 (k_{s33} =0).

Gene mutated in	Parameter values used to model	Deutechedeeure	Parameter values used to
Cancer Cell Line	the corresponding cell line	Perturbed gene	model the perturbation
CCNB1	$k_{s1} = 0.095$	CCNB1	$k_{s1} = 0.095$
CDKN1A	$k_{s5} = 0$	CDKN1A	$k_{s5} = 0$
CDC25	$k_{s8} = 0.095$	CDC25	$k_{s8} = 0.095$
WEE1	$k_{s9} = 0.0998$	WEE1	k _{s9} = 0
PLK1	$k_{s12} = 0.096$	PLK1	$k_{s12} = 0$
PP2ACA	$k_{s13} = 0.098$	PP2ACA	$k_{s13} = 0.062$
APC/C	$k_{s15} = 0.099$	APC/C	$k_{s15} = 0.03$
CDC20	$k_{s17} = 0.0997$	CDC20	$k_{s17} = 0$
FZR1	$k_{s20} = 0$	FZR1	$k_{s20} = 0$
PTTG1	$k_{s24} = 0.05$	PTTG1	$k_{s24} = 0$
ATM and ATR	$k_{s27} = 0$	ATM and ATR	$k_{s27} = 0$
TP53-null	$k_{s28} = 0$	TP53-null	$k_{s28} = 0$
MDM2	k _{s31} = 0	MDM2	$k_{s31} = 0$
PPM1D	$k_{s32} = 0.0998$	PPM1D	$k_{s32} = 0$
Mad2L1 or	$k_{res} = 0.0998$	Mad2L1 or MAD2L2	$k_{res} = 0$
MAD2L2	$M_{S33} = 0.0770$		$M_{S33} = 0$

Supplementary Table 9. Parameter values used to model cell lines and CRISPR perturbations.